Content uploaded by Étienne Gariépy-Girouard
Author content
All content in this area was uploaded by Étienne Gariépy-Girouard on Sep 09, 2023
Content may be subject to copyright.
Expertise and funding as major drivers of river restoration
objectives and their diversity
Étienne Gariépy-Girouard1, Thomas Buffin-Bélanger1& Pascale M. Biron2
1Département de biologie, chimie et géographie, Université du Québec à Rimouski
2 Department of Geography, Planning and Environment, Concordia University
Scientific Advances in River Restoration (SARR) 2023
University of Liverpool – 6-8 September 2023 L’Yzeron (Véronique Benacchio, 2021)
1. Introduction
2
Benefits of integrating hydrogeomorphological (HGM)
principles into river restoration and management
•Planning: preliminary understanding of a river system,
its trajectory, degradation, and restoration potential
(Beechie et al., 2010; Brierley & Fryirs, 2016; Fryirs, 2015; Fryirs & Brierley, 2016;
Grabowski et al., 2014; Mould & Fryirs, 2018; Piégay et al., 2023)
•Objectives: various, benefits-oriented, and
consistent with river’s functioning and diverse uses
(Auerbach et al., 2014; Dufour & Piégay, 2009;
Gilvear et al., 2013; Serra-Llobet et al., 2022)
•Results: more sustainable and consistent with
river’s context
(Biron et al., 2018 ; Brierley & Fryirs, 2022;
García et al., 2021; Piégay et al., 2023)
Rivières Neigette / Sud-Ouest confluence
(Étienne Gariépy-Girouard, 2023)
Benefits of integrating hydrogeomorphological (HGM)
principles into river restoration and management
•Planning: preliminary understanding of a river system,
its trajectory, degradation, and restoration potential
(Beechie et al., 2010; Brierley & Fryirs, 2016; Fryirs, 2015; Fryirs & Brierley, 2016;
Grabowski et al., 2014; Mould & Fryirs, 2018; Piégay et al., 2023)
•Objectives: various, benefits-oriented, and
consistent with river’s functioning and diverse uses
(Auerbach et al., 2014; Dufour & Piégay, 2009;
Gilvear et al., 2013; Serra-Llobet et al., 2022)
•Results: more sustainable and consistent with
river’s context
(Biron et al., 2018 ; Brierley & Fryirs, 2022;
García et al., 2021; Piégay et al., 2023)
1. Introduction
Dufour & Piégay, 2009
3
Canal Saint-Georges (Gaëtan Laprise, 2021)
Ruisseau Taché, Stoneham-et-Tewkesbury
Ruisseau Taché (MTQ, 2017)
1. Introduction
Projects achieved in Quebec (Canada) still take little
account of these principles and approaches
•Regulation: market-based offsetting approach
(Jacob, 2022)
•Planning: explicit exclusion of HGM principles
(Biron et al., 2018)
•Objectives: unique and specific (habitats
improvement for a few species, aesthetics and
steadiness for public safety)
(Biron et al., 2018; Gariépy-Girouard et al., 2023)
•Results: control of river processes and morphology
with stream cleaning and engineering works
(Biron et al., 2018; Gariépy-Girouard et al., 2023)
•Artificialization and project failures
(Baril et al., 2019; Gariépy-Girouard et al., 2023)
4
2. Projects studied and methods
Rivière-à-Mars – RAM (LERGA-UQAC, 2020)
Rivière Les Escoumins – RLE (LERGA-UQAC, 2021)Rivière Centrale – RC (OBVNEBSL, 2022) Canal Saint-Georges – CSG (LGDF-UQAR, 2021)
5
Canal
Saint-
Georges (CSG)
Rivière
Centrale (RC) Rivière Les Escoumins
(RLE) Rivière à
Mars (RAM)
Stakeholder(s)
•
Comité ZIP Côte-Nord-du-
Golfe (ZIPCNG)
•
MRC des Basques
•
OBV du Nord-Est-du-Bas-
Saint-Laurent
(OBVNEBSL)
•
OBV de la Haute-Côte-
Nord
•
Contact Nature Rivière-à-
Mars
Context
and
origins
•
Suburban
•
Anthropogenic waterway
•
Infrastructures’
degradation
•
Agricultural
•
Regressive erosion
•
Farming equipment
crossing
•
Suburban
•
Emergency infrastructure
removal (2013)
•
Fish population decrease
•
Urban
•
Emergency bank
stabilization (1996)
•Sedimentary disconnection
Budget ~ (CAD)
600 000 $ 500 000 $
Level
of
advancement
•
2019-2022
•
Completed
•
2013-[…]
•
In progress
•
2020-[…]
•
In planning
•
2018-[…]
•
In planning
Objectives
•
Ecological habitats
•
Public safety
•
Water quality
•
Ecological habitats
•
Public safety
•
Ecological habitats
•
HGM processes
•
Recreational uses
•
Ecological habitats
•
HGM processes
Interventions
•
Weir restoration
•
Habitats development
•
Farming practices
•
Riparian buffer and
vegetalization
•
Crossing structures
development
•
HGM processes
restoration
•
Bank stabilization removal
•
Meander reconnexion
•
HGM processes
restoration
•
Bank stabilization removal
•
Living Lab development
2. Projects studied and methods
6
3. Results – Social Network Analysis
7
Potential
functionning
Organization expertise
and funding
Objectives
Community
wishes
Ideal
Conditions Motivations
Level of integration
a) Conceptual diagram (Jacobs et
al., 2013) c) RC – MRCB e) RLE – OBVHCN
b) CSG – ZIPCNG d) RC – OBVNEBSL f) RAM – CN
8
3. Results – Integration of HGM principles and human benefits
CSG RC RLE RAM Number of
organizations
Thematic Code ZIPCNG MRCB
OBVNEBSL
OBVHCN CN Total
HGM
principles
Condition (
potential
functionning
)5 1 2 8 3
Motivation (
means) 1333212 5
Human
benefits
Condition (public
acceptance)
4 6 12 2 3 27 5
Motivation (
community
wishes
and needs) 211 6 1 20 4
Other
(participation and
sensibilization
)5 6 20 4 8 43 5
Expertise
Condition (
abilities) 10 12 5 1 28 4
Motivation (
interests) 3 1 5 2 11 4
Funding
Condition (
capacities) 10 13 5 2 30 4
Motivation (
imperatives) 22 812 9 1 52 5
3. Results – Integration of HGM principles and human benefits
9
10
3. Results – Integration of HGM principles and human benefits
“Since the beginning of the project, we've been
opportunistic. In other words, if there's an envelope […]”
(translated from P03)
“[…] we think ’okay, there's this possibility of doing this
type of project [...]’, so we dictate our objectives in
relation to the funding envelope.”
(translated from P01)
CSG RC RLE RAM Number of
organizations
Thematic Code ZIPCNG MRCB
OBVNEBSL
OBVHCN CN Total
COVID
-19 1 1 2 2
Lack
of expertise 519 5 5 34 4
Funding
Quantity
18 6 3 6 1 34 5
Duration
212 7 3 1 25 5
Interdisciplinarity
and
intersectionality
18 4 2 2 26 4
Legislation
and
regulation
2 9 12 730 4
Land use
217 19 2
Social
representations 4 6 1 11 3
Human
resources 2 7 1 1 11 4
3. Results – Challenges encountered during the project
11
4. Discussion
12
4. Discussion
13
“If the wider community agrees, we'll have
the political support to guarantee funding,
and if the funding is there, we can go and get
the expertise [hydrogeomorphology].”
(translated from P04)
4. Discussion
14
5. Conclusion
15
•Projects funding and stakeholders’
expertise are key drivers behind the
process of identifying river restoration
objectives
•Proposal of a novel framework to
identify objectives, integrating
internal and external drivers, and their
interactions towards more sustainable
approaches
• Framework’s content may evolve in
space and time, according to different
sociocultural and political contexts
shaping river restoration approaches
Auerbach, D. A., Deisenroth, D. B., McShane, R. R., McCluney, K. E., & LeRoy Poff, N. (2014). Beyond the concrete:
Accounting for ecosystem services from free-flowing rivers. Ecosystem Services, 10, 1–5.
https://doi.org/10.1016/j.ecoser.2014.07.005
Ashmore, P. (2015). Towards a sociogeomorphology of rivers. Geomorphology, 251, 149–156.
https://doi.org/10.1016/j.geomorph.2015.02.020
Baril, A.-M., Biron, P. M., & Grant, J. W. A. (2019). An Assessment of an Unsuccessful Restoration Project for Lake
Sturgeon Using Three-Dimensional Numerical Modelling. North American Journal of Fisheries Management, 39(1),
69–81. https://doi.org/10.1002/nafm.10250
Beechie, T., Sear, D. A., Olden, J. D., Pess, G. R., Buffington, J. M., Moir, H., Roni, P., & Pollock, M. M. (2010).
Process-based Principles for Restoring River Ecosystems. BioScience, 60(3), 209–222.
https://doi.org/10.1525/bio.2010.60.3.7
Biron, P. M., Buffin-Bélanger, T., & Massé, S. (2018). The need for river management and stream restoration
practices to integrate hydrogeomorphology. The Canadian Geographer / Le Géographe Canadien, 62(2), 288–295.
https://doi.org/10.1111/cag.12407
Brierley, G. J., & Fryirs, K. A. (2016). The Use of Evolutionary Trajectories to Guide ‘Moving Targets’ in the
Management of River Futures. River Research and Applications, 32(5), 823–835. https://doi.org/10.1002/rra.2930
Brierley, G., & Fryirs, K. (2022). Truths of the Riverscape: Moving beyond command-and-control to
geomorphologically informed nature-based river management. Geoscience Letters, 9, 14.
https://doi.org/10.1186/s40562-022-00223-0
Morandi, B., Cottet, M., & Piégay, H. (Eds.), River Restoration: Political, Social, and Economic Perspectives. John
Wiley & Sons, Ltd. https://doi.org/10.1002/9781119410010
Doyle, M. W., Singh, J., Lave, R., & Robertson, M. M. (2015). The morphology of streams restored for market and
nonmarket purposes: Insights from a mixed natural-social science approach. Water Resources Research, 51(7),
5603–5622. https://doi.org/10.1002/2015WR017030
Dufour, S., & Piégay, H. (2009). From the myth of a lost paradise to targeted river restoration: forget natural
references and focus on human benefits. River Research and Applications, 25(5), 568–581.
https://doi.org/10.1002/rra.1239
Friberg, N., Angelopoulos, N. V., Buijse, A. D., Cowx, I. G., Kail, J., Moe, T. F., Moir, H., O’Hare, M. T., Verdonschot,
P. F. M., & Wolter, C. (2016). Effective River Restoration in the 21st Century: From Trial and Error to Novel
Evidence-Based Approaches. In A. J. Dumbrell, R. L. Kordas, & G. Woodward (Eds.), Advances in Ecological
Research (Vol. 55, pp. 535–611). Academic Press Inc. https://doi.org/10.1016/bs.aecr.2016.08.010
Fryirs, K. A. (2015). Developing and using geomorphic condition assessments for river rehabilitation planning,
implementation and monitoring. Wiley Interdisciplinary Reviews: Water, 2(6), 649–667.
https://doi.org/10.1002/wat2.1100
Fryirs, K. A., & Brierley, G. J. (2016). Assessing the geomorphic recovery potential of rivers: forecasting future
trajectories of adjustment for use in management. Wiley Interdisciplinary Reviews: Water, 3(5), 727–748.
https://doi.org/10.1002/wat2.1158
García, J. H., Ollero, A., Ibisate, A., Fuller, I. C., Death, R. G., & Piégay, H. (2021). Promoting fluvial geomorphology
to “live with rivers” in the Anthropocene era. Geomorphology, 107649.
https://doi.org/10.1016/j.geomorph.2021.107649
Gariépy-Girouard, É., Buffin‐Bélanger, T., Savard, M., & Biron, P. M. (2023). Histoire du canal Saint-Georges (Port-
Menier, île d’Anticosti) et perspectives : la valorisation du patrimoine culturel par l’aménagement fluvial. Le
Naturaliste Canadien, 147(1), 114–125. https://doi.org/10.7202/1098178ar
Gilvear, D. J., Spray, C. J., & Casas-Mulet, R. (2013). River rehabilitation for the delivery of multiple ecosystem
services at the river network scale. Journal of Environmental Management, 126, 30–43.
https://doi.org/10.1016/j.jenvman.2013.03.026
Grabowski, R. C., Surian, N., & Gurnell, A. M. (2014). Characterizing geomorphological change to support
sustainable river restoration and management. Wiley Interdisciplinary Reviews: Water, 1(5), 483–512.
https://doi.org/10.1002/wat2.1037
Jacob, C. (2022). La compensation écologique, instrument de promotion du développement ou d’initiation à la
transition écologique: le cas de l’introduction de la non-perte nette des milieux humides et hydriques au Québec. In
A. Zaga-Mendez, J.-F. Bissonnette, & J. Dupras (Eds.), Une économie écologique pour le Québec : Comment
opérationnaliser une nécessaire transition (pp. 269–288). Presses de l’Universite du Québec.
Jacobs, D. F., Dalgleish, H. J., & Nelson, C. D. (2013). A conceptual framework for restoration of threatened plants:
the effective model of American chestnut (Castanea dentata) reintroduction. New Phytologist, 197(2), 378–393.
https://doi.org/10.1111/nph.12020
Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for
Handy Network Visualization Designed for the Gephi Software. PLoS ONE, 9(6), e98679.
https://doi.org/10.1371/journal.pone.0098679
Mould, S., & Fryirs, K. (2018). Contextualising the trajectory of geomorphic river recovery with environmental history
to support river management. Applied Geography, 94, 130–146. https://doi.org/10.1016/j.apgeog.2018.03.008
Piégay, H., Arnaud, F., Cassel, M., Marteau, B., Riquier, J., Rousson, C., Valette, L., & Vázquez-Tarrío, D. (2023).
Why considering gemorphology in river rehabilitation? Land, 12(8), 1491. https://doi.org/10.3390/land12081491
Serra-Llobet, A., Jähnig, S. C., Geist, J., Kondolf, G. M., Damm, C., Scholz, M., Lund, J., Opperman, J. J., Yarnell, S.
M., Pawley, A., Shader, E., Cain, J., Zingraff-Hamed, A., Grantham, T. E., Eisenstein, W., & Schmitt, R. (2022).
Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain
Management From California and Germany. Frontiers in Environmental Science, 9, 1–24.
https://doi.org/10.3389/fenvs.2021.778568
Wohl, E., Lane, S. N., & Wilcox, A. C. (2015). The science and practice of river restoration. Water Resources
Research, 51(8), 5974–5997. https://doi.org/10.1002/2014WR016874
Zingraff-Hamed, A., Serra-Llobet, A., & Kondolf, G. M. (2022). The Social, Economic, and Ecological Drivers of
Planning and Management of Urban River Parks. Frontiers in Sustainable Cities, 4, 907044.
https://doi.org/10.3389/frsc.2022.907044
16
6. References