ArticlePDF Available

Evaluation of the Growth and Leaf Color of Indoor Foliage Plants under High Temperature and Continuous Lighting Conditions at Different Light Intensity

Authors:

Abstract and Figures

When designing interior spaces, the use of indoor foliage plants is considered as an integral part of providing a wonderful ambiance owing to both their aesthetic and functional properties. Being indoors, these plants are subjected to continuous lighting conditions at high temperatures with varying light intensities, which affect their survival, growth, and leaf color quality. Hence, this study was conducted to investigate the influence of different light intensity levels (60, 120, and 180 μmol m-2 s-1) on the growth and leaf color of commonly used indoor foliage plants (Hoya carnosa f. variegata, Epipremnum aureum f. variegata, Rhapis excelsa, Hedera helix, Chamaedorea elegans, and Spathiphyllum wallisii) under high temperature and continuous lighting conditions. The results demonstrated that the growth parameters of the indoor foliage plants, after 4 weeks of treatment, were relatively better when grown under lower light intensity levels (60 and 120 μmol m-2 s-1) compared to when grown under a higher light intensity level (180 μmol m-2 s-1). The CIELAB L * and b * values of a majority of the indoor foliage plants increased proportionally with the light intensity level, indicating that under a higher light intensity, the leaves tend to express yellow tones. In addition, SPAD units decreased as the light intensity increased. Taken together, the results of this study indicate that indoor foliage plants are sensitive to light stress under high temperature and continuous lighting conditions; therefore, it is recommended to cultivate them under relatively low light conditions (60 and 120 μmol m-2 s-1).
Content may be subject to copyright.
Vol.34, No.1, pp.26-36, 2022
Journal of Agricultural, Life and Environmental Sciences
RESEARCH ARTICLE
pISSN 2233-8322, eISSN 2508-870X
https://doi.org/10.22698/jales.20220004
고온과 연속광 조건에서 광도별 실내 관엽식물의 생육 엽색 평가
이재환1,2, 김현빈3, 남상용4,5*
1삼육대학교 환경원예학과 석·박사통합과정, 2삼육대학교 자연과학연구소 연구원, 3삼육대학교 환경원예학과 석사과정,
4삼육대학교 환경원예학과 교수, 5삼육대학교 자연과학연구소 연구소장
Evaluation of the Growth and Leaf Color of Indoor Foliage
Plants under High Temperature and Continuous Lighting
Conditions at Different Light Intensity
Jae-Hwan Lee1,2, Hyun-Bin Kim3, Sang-Yong Nam4,5*
1Integrated Ph.D. Student, Department of Environmental Horticulture, Sahmyook University, Seoul 01795, Korea
2Researcher, Natural Science Research Institute, Sahmyook University, Seoul 01795, Korea
3Master's Student, Department of Environmental Horticulture, Sahmyook University, Seoul 01795, Korea
4Professor, Department of Environmental Horticulture, Sahmyook University, Seoul 01795, Korea
5Director, Natural Science Research Institute, Sahmyook University, Seoul 01795, Korea
*Corresponding author: Sang-Yong Nam (E-mail: namsy@syu.ac.kr )
A B S T R A C T
Received: 3 December 2021
Revised: 4 March 2022
Accepted: 4 March 2022
When designing interior spaces, the use of indoor foliage plants is considered as an integral part of
providing a wonderful ambiance owing to both their aesthetic and functional properties. Being
indoors, these plants are subjected to continuous lighting conditions at high temperatures with
varying light intensities, which affect their survival, growth, and leaf color quality. Hence,
t
his
study was conducted to investigate the influence of different light intensity levels (60, 120, and
180 µmol m-2 s-1) on the growth and leaf color of commonly used indoor foliage plants (
H
oya
carnosa f. variegata, Epipremnum aureum f. variegata, Rhapis excelsa, Hedera helix, Chamaedorea
elegans, and Spathiphyllum wallisii) under high temperature and continuous lighting conditions.
The results demonstrated that the growth parameters of the indoor foliage plants, after 4 weeks of
treatment, were relatively better when grown under lower light intensity levels (60 and 120 µmol
m-2 s
-1) compared to when grown under a higher light intensity level (180 µmol m-2 s
-1). The
CIELAB L* and b* values of a majority of the indoor foliage plants increased proportionally with
the light intensity level, indicating that under a higher light intensity, the leaves tend to express
yellow tones. In addition, SPAD units decreased as the light intensity increased. Taken
t
ogether,
the results of this study indicate that indoor foliage plants are sensitive to light stress under
h
igh
temperature and continuous lighting conditions; therefore, it is recommended to cultivate
t
hem
under relatively low light conditions (60 and 120 µmol m-2 s-1).
Keywords: CIELAB, Growth parameters, Indoor environment, Light stress, SPAD units
Journal of Agricultural, Life and Environmental Sciences. This is an Open Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution,
and reproduction in any medium, provided the original work is properly cited.
이재환 외
/
고온과 연속광 조건에서 광도별 실내 관엽식물의 생육 및 엽색 평가
27
인류가 코로나(COVID-19) 판데믹과 AI 시대를 맞이함으로써 재택근무나 실내에서 생활하는 시간은 점차 길어졌
. 전체 가구의 30% 가까이가 1인가구로 변화 되었고(Lee and Kim, 2018), 세계적 감염병의 확산으로 인해 현재는
실내에서 생활하는 시간이 최대 93%에 이르고 있다(Abouleish, 2021). 이로 인해 실내 환경에서 접근이 쉽고 용이한
관엽식물 재배가 사람들의 취미생활 혹은 재테크용으로써 새로운 이목을 끌고 있다. 관엽식물은 화훼식물들에 비해
상대적으로 실내재배가 쉽고(Lee, 2003), 보편적이며 저렴한 비용으로도 구매가 가능한 것이 특징이다. 대중들로부
터 미세먼지와 대기 환경오염에 관한 관심이 날로 커지고 있기 때문에 미세먼지 저감효과가 주목되는 실내 관엽식물
(Kwon and Park, 2018; Abdo et al., 2016)의 소비는 앞으로도 지속적으로 증가할 전망이다. 실내 관엽식물은 미세먼
지 저감 기능 외에도 크기에 따라 스크린이나 파티션과 같이 기능적인 특징들을 제공하며(Randani, 2017), 능률에서
나 심리적인 부분을 안정화 시키는 것에도 도움을 주기 때문에(Shibata and Suzuki, 2002; Deng and Deng, 2018)
관심이 집중되고 있다.
관엽식물은 다양한 실내 공간에서 재배가 되고 있는데 집과 같이 낮과 밤이 확연히 나누어진 실내 공간에서 주로
배가 되는 한편, 국가기관, 호텔, 병원 및 사무실과 같이 밤낮 없이 24시간 서비스를 제공하는 곳에서 재배되기도 한
. 관엽식물은 작은 화분에서 재배되는 것을 넘어서서 그린월(green-wall) 시스템(Abdo et al., 2016), 실내정원(Jang
et al., 2016) 등에서도 다양하게 활용되고 있으며 심미적, 공간적인 효과 및 안정감을 주기 위해 서비스를 이용하는 손
님들을 위한 휴식장소 주변에 주로 배치되어 활용되어지고 있다(Deng and Deng, 2018).
관엽식물들의 실내재배와 관련한 생육 연구에서는 일장과 광도 별 조건에서의 생육과 관련한 연구들이 있었다
(Kim et al., 2005; Park et al., 2010; Kwon and Park, 2015; Nam et al., 2016). 그러나 관엽식물이 실내에서 24시간 조
명과 고온에 노출될 수 있는 환경이 많아짐에도 불구하고 고온에서의 연속광 조건에 대한 실험들은 크게 주목받지 못
하였던 것이 현실이다. 실내에서 관엽식물에 연속광을 조사하는 경우 광도에 따른 생육변화를 파악하기 위한 적절한
연구들이 수행되어야하며 온도 처리에 대해서는 20°C의 생활온도 조건하에서의 연속광 연구는 이미 수행되었으나
(Lee et al., 2021a), 여름과 같은 고온의 실내 환경을 기반으로 한 연구는 부족한 실정이다.
과거 여러 연구에서 상추(Lactuca sativa)(Koontz and Prince, 1986), 고구마(Ipomoea batatas)(Bonsi et al.,
1992), (Triticum aestivum)(Zhukov and Romanovskaja, 1980) 그리고 병아리콩(Cicer arietinum)(Sethi et al., 1981)
과 같이 연속광 하에서 우수한 생육결과가 나온 식물들이 있었다. 반면에 토마토(Solanum lycopersicum)(Haque et
al., 2015)는 품종의 경우 연속광 조건에서 잎이 황화 되는 것으로 나타났으나 야생종(Solanum pimpinellifolium)
연속광 조건에서 엽 손상에 대한 내성이 있는 것으로 나타났다. 한편 감자(Solanum tuberosum)는 품종의 종류에 따
라 연속광에 대한 생육 반응이 다르게 나타났다(Tibbitts et al., 1992). 이에 따라 식물별로 연속광이 식물의 생육에 미
치는 영향과 경제적, 학술적으로 어떤 이점을 제공할 수 있는지 알아보기 위해 여러 연구들이 지속적으로 수행되어야
할 것이다.
따라서 본 연구는 고온과 연속광 스트레스 하에서 다양한 광도 수준이 실내 관엽식물들로 하여금 어떠한 생육결과
를 나타내도록 하는지 알아보고 그 기초자료를 얻고자 수행되었다.
28 Journal of Agricultural, Life and Environmental Sciences Vol. 34, No. 1, 2022
재료 및 방법
식물재료
본 실험에 사용 된 식물재료는 24시간 운영되는 국가기관, 호텔, 병원, 사무실 및 상업공간 등의 실내에서 많이 이
되는 실내 관엽식물 여섯 종을 선발하였다(Kwon and Park, 2015; Park et al., 2010; Choi and Lee, 2013). 실내 관엽
식물로써 활용도와 기호도가 높은 무늬호야(Hoya carnosa f. variegata), 무늬스킨답서스(Epipremnum aureum f.
variegata), 관음죽(Rhapis excelsa), 아이비(Hedera helix), 테이블야자(Chamaedorea elegans), 스파티필름
(Spathiphyllum wallisii)을 실험식물로 선발하였다. 이때, 실험에 사용 된 실내 관엽식물은 농가의 관행농법과 동일한
밀식재배 방식을 따랐으며 각각의 1반복 무늬호야는 5, 무늬스킨답서스는 10, 관음죽은 1, 아이비는 10,
테이블야자는 10, 스파티필름은 3주가 식재되었다.
재배환경 설정
실험은 2021 417일부터 2021 516일까지 육대학 환경원학과 실험온실 별관의 식물생장실험실에
4주간 실시하였다. 실험에 사용 된 실내 관엽식물은 경기도 양주에 위치한 농가로부터 반 간 육일한
크기의 묘만을 선발하였으며, 사각 화분(L25 × W36 × H11.5 cm)에 원용 상토(Hanareumsangto, Shinsung
Mineral, South Korea)진한 이하였다. 식물은 식재 직후 광도별 처리를 실시하였다. 관수는 매주 1 1 L
관수하였다. 냉난방조절장치의 온도를 30 ± 1°C하였고 주광 6500K LED(CPH40W, Pulse Tech, South
Korea)를 광원으로 사용으며 휴대용 분광복사계(SpectraPen mini, Photon Systems Instruments, Czech Republic)
를 이용하여 식물의 정부에서부터 Photosynthetic photon flux density(PPFD)60, 120, 180 µmol m-2 s-1 수준으
정하였다. 명기는 24시간 연속광으로 정하였다. 실험은 의배치법(completely randomized design)으로
각 처리 및 종별로 7반복 배치하였다.
조사항목
고온과 연속광 조건에서 광도별 실내 관엽식물의 생육과 엽 반응을 가하기 위해 실험 종료일인 2021 516
일에 식물의 초장, , SPAD , CIELAB L*, a*, b* , 지상부, 지하부 생체중과 지상부, 지하부 건물중을 정하였
. 초장은 지면에서부터 식물의 정부까지 길이로 정하였고, 은 식물을 위에서 때 가장 은 부분을 기준
으로 정하여 정하였다. SPAD units(엽록소 수치)는 엽록소계(SPAD-502, Konica Minolta, Japan)를 이용하여
정하였으며 식물 별로 상, , 부의 잎 가장자리를 각각 1회씩 21반복 정하였다. CIELAB
분광광도계(CM-2600d, Konica Minolta, Japan)CIELAB D65 / 10°정한 식물 별로 상, ,
부의 잎 중부로부터 1회씩 21반복만큼 정반사광(SCI)함한 CIELAB L*, a*, b* 을 얻었다. 이때, 늬종의
경우 엽록소 수치와 CIELAB 정할 때 무늬가 없는 부분을 기준으로 정하였다. RHS 은 각 L*, a*, b*
Royal Horticultural Society Colour Chart 시스템(RHSCCS, 2021)과 대조하여 각 2개씩 선정하여 가하였다. 육안
가를 위한 변환상은 Zettl(2022)이 제작한 Converting Colors를 활용하여 CIELAB L*, a*, b* 을 변환상으로
치환하였다. 생체중과 건물중은 전자저(FA-2000, AND, Japan)을 사용하여 정하였고 건물중은 건조기
(HK-DO135F, HANKUK S&I, South Korea)에서 85°C에서 48시간 동안 건조시킨 정하였다.
이재환 외
/
고온과 연속광 조건에서 광도별 실내 관엽식물의 생육 및 엽색 평가
29
통계처리
실험 결과의 분SAS 9.1(SAS Institute, USA)을 사용하여 분산분(analysis of variance)을 수행하였다. 평균
간 비는 던의 다중(Duncan's multiple range test)을 이용하p < 0.05 수준에서 각 광도처리 간의 차이를 분
하였. 추가로 상관계수(Pearson correlation coefficients) 에서 생육과 엽 간에 가지 상관관계가
나타 아이비와 스파티필름으로부터 SPAD , CIELAB L*, a*, b*, 초장, , 지상부와 지하부 생체중, 지상부와
지하부 건물중 간의 상관관계를 분하였다.
결과 및 고찰
광도별 생육특성
고온 및 연속광 스트레스 조건 하에서 각기 다른 광도 조건은 실내 관엽식물의 생육에 영향을 미(Table 1).
늬호야는 180 µmol m-2 s-1에서 초장은 20.50 cm로 나타났고 120 µmol m-2 s-1 20.44 cm따라 광도가 높아수록
위로 길게 생육하는 경향이 있는 것으로 보인다. Lee et al.(2021a)의 연구에서 무늬호야가 180 µmol m-2 s-1에서 가장
높은 초장을 나타내 이 연구 결과와 사하였다. 지하부 생체중과 건물중은 120 µmol m-2 s-1에서 각각 2.97, 0.80 g
로 가장 높게 나타났으며 180 µmol m-2 s-1에서는 지하부 생체중과 건물중이 각각 1.93, 0.58 g으로 가장 낮게 나타
고광도 수준에서는 생육이 불해지고 있음을 시하였다. 무늬스킨답서스는 60 µmol m-2 s-1, 120 µmol m-2 s-1에서
지하부 생체중이 각각 11.09, 10.81 g으로 나타났고 지상부 건물중은 180 µmol m-2 s-1에서 5.46 g으로 가장 높게 나타
났다. Kim et al.(2005)의 연구에서 스킨답서스는 광이 상대적으로 높을 때 엽수와 생체중이 증가다고 보고하였
. 관음죽은 본 연구에 사용된 실내 관엽식물 중 일하게 광도별 생육 차이가 없는 것으로 나타났는데 이는 종
(Arecaceae)의 낮은 생육속도가 기인 된 것으로 판된다. 관음죽은 700 lux 수준에서는 초장, 엽수, 생체중, 건물중이
증가한 반면 상대적으로 낮은 수준인 400 lux에서는 생체중과 건물중은 낮아졌으나 엽장과 엽은 크게 증가하였다
(Ju et al., 2009).
아이비는 120 µmol m-2 s-1에서 생체중 지상부와 지하부가 가장 높게 나타났는데 각각 12.91, 1.89 g이었으며 그
60 µmol m-2 s-1에서는 지상부와 지하부가 각각 10.93, 1.60 g으로 나타났다. 건물중도 이와 사하게 나타나 120
µmol m-2 s-1에서는 지상부 지하부가 각각 5.37, 1.08 g이었고 60 µmol m-2 s-1에서는 4.82, 0.92 g으로 나타났다. 테이
블야자는 120 µmol m-2 s-1에서 초24.05 cm로 가장 60 µmol m-2 s-1에서는 지하부 생체중과 건물중은 각각
3.62, 1.45 g으로 나타났다. 스파티필름의 지상부 생체중은 60 µmol m-2 s-1에서 29.03 g으로 가장 높게 나타났고 지하
부 건물중은 120 µmol m-2 s-1180 µmol m-2 s-1에서 각각 1.75, 2.02 g으로 나타났다. Kwon and Park(2015)의 연구
에서 스파티필름류(Spathiphyllum spp.)60 µmol m-2 s-1 120 µmol m-2 s-1에서 높은 생체중을 나타내었다. 추가
인분해 종과 광도의 세기 간의 의성을 토한 결과 상호 의성은 없는 것으로 나타났다. 그러나 각 종
마다 처리 간 의성 분을 위해 F-test를 수행한 결과 관음죽을 제외한 실내 관엽식물은 광도처리 간 가지 의성
이 있는 것으로 나타났으며 60, 120 µmol m-2 s-1의 저광도 수준에서 생육 상가 양호해지는 경향이 있는 것으로 보
인다. 추가로 아이비는 이러한 저광도 수준에 대한 선호 경향이 가장 두드지는 것으로 나타났다. Lee et al.(2021a)
20°C에서 수행한 연속광 연구에서는 광도가 높을수록 실내 관엽식물이 우수한 생육 결과를 나타내었지, 본 연
구에서는 고온 조건으로 인해 고광도 수준에서 실내 관엽식물이 스트레스를 받아 생육이 저해된 것으로 판된다.
30 Journal of Agricultural, Life and Environmental Sciences Vol. 34, No. 1, 2022
라서 고온과 연속광조건 하에서 실내 관엽식물을 재배할 경우 상대적으로 낮은 광도인 60 µmol m-2 s-1, 120 µmol m-2
s-1 이하의 광도 수준에서 재배하는 것이 할 것으로 판된다.
엽록소와 색도의 변화
광도에 따른 실내 관엽식물의 엽록소 수치와 CIELAB 은 여러 차이를 나타내었다(Table 2). 무늬호야는 180
µmol m-2 s-1에서 명도를 나타내는 L* 34.24로 나타났으며 적녹색에 연관 된 a* 5.75로 가장 높게 나
타났다. 식물은 장기간 거나 지속적인 스트레스 환경에서 상대적으로 엽이 황화 되는 경향이 있는데,
Table 1. Effects of high temperature and continuous lighting conditions at different light intensity levels on plant
parameters and the fresh and dry weight of various indoor foliage plants grown at 30°C for 4 weeks
Species Light intensity
(µmol m-2 s-1)
Plant parameters (cm) Fresh weight (g) Dry weight (g)
Height Width Shoot Root Shoot Root
Hoya carnosa f. variegata 60 16.55 bz23.97 49.37 2.71 a 3.84 0.71 ab
120 20.44 a 24.17 49.76 2.97 a 4.82 0.80 a
180 20.50 a 24.25 52.5 1.93 b 4.53 0.58 b
F-test y*NSNS**NS*
Epipremnum aureum f. variegata 60 25.92 22.45 46.54 11.09 a 3.73 b 1.28
120 27.30 23.54 48.44 10.81 a 4.33 b 1.42
180 28.48 25.84 50.05 7.14 b 5.46 a 1.53
F-test NS NS NS * *** NS
Rhapis excelsa 60 37.00 29.15 12.61 6.15 6.38 4.18
120 34.71 33.50 10.98 4.31 6.27 3.62
180 37.35 34.64 13.96 5.79 8.84 4.65
F-test NS NS NS NS NS NS
Hedera helix 60 23.80 20.72 10.93 a 1.60 a 4.82 a 0.92 a
120 23.04 25.87 12.91 a 1.89 a 5.37 a 1.08 a
180 20.57 26.12 8.34 b 1.01 b 3.69 b 0.65 b
F-test NS NS *** ** ** **
Chamaedorea elegans 60 25.32 21.74 a 11.81 3.62 a 3.63 1.45 a
120 24.82 17.81 b 10.80 2.70 b 3.58 1.28 b
180 26.55 24.05 a 10.72 2.78 b 3.72 1.28 b
F-test NS ** NS * NS *
Spathiphyllum wallisii 60 26.88 21.50 29.03 a 6.38 4.47 1.20 b
120 26.15 21.30 22.70 b 8.33 4.20 1.75 a
180 25.75 22.65 20.14 b 6.52 4.36 2.02 a
F-test NS NS ** NS NS **
SignificancexSpecies (A) *** *** *** *** *** ***
Light intensity (B) NS ** NS NS NS NS
(A) × (B)NSNSNSNSNSNS
zMean separation within columns between treatments by Duncan’s multiple range test at p < 0.05, no letter means no difference
in significance.
yStatistical significance on the comparison of means within species, NS, *, **, ***: non-significant or significant at p < 0.05,
0.01, or 0.001, respectively.
xStatistical significance using factorial analysis, NS, **, ***: non-significant or significant at p < 0.01 or 0.001, respectively.
이재환 외
/
고온과 연속광 조건에서 광도별 실내 관엽식물의 생육 및 엽색 평가
31
Lee et al.(2021b)의 차광수준에 관한 실험에서 속리기린초(Sedum zokuriense) 1200 µmol m-2 s-1의 고광도 수
준에서는 L* 이 높게 나타나는 반면 15 µmol m-2 s-1의 저광도 수준에서 b* 이 가장 높게 나타났다. 무늬스킨답
서스는 180 µmol m-2 s-1에서 L*36.81로 나타났으며 황청색에 연관 된 b*17.76으로 나타났다. Kwon and
Park(2015)의 연구에서 스킨답서스는 광도가 높아수록 L*b* 이 증가한다고 보고는데 본 연구에서도 이와
사한 결과가 나타났다. 한편 Cabahug et al.(2017)의 연구에서 아가보이데스(Echeveria agavoides)와 마커스(E.
Table 2. Effects of high temperature and continuous lighting conditions at different light intensity levels on the SPAD
units (Chlorophyll content), CIELAB values (indicating the RHS values), and converted color of various indoor foliage
plants grown at 30°C for 4 weeks
Species Light intensity
(µmol m-2 s-1)
SPAD
units
CIELAB values RHS values Converted
color z
L*a*b*
Hoya carnosa f. variegata 60 57.12 32.85 by6.58 b 10.58 N137A, 147A
120 61.06 33.42 ab 6.50 b 10.44 N137A, 147A
180 59.47 34.24 a 5.75 a 10.92 N137A, 147A
F-test xNS * * NS
Epipremnum aureum f. variegata 60 47.24 34.54 b 9.16 14.52 b N137A, 147A
120 46.34 35.82 ab 9.40 15.23 b N137A, 147A
180 47.83 36.81 a 9.43 17.76 a N137A, 147A
F-test NS ** NS *
Rhapis excelsa 60 58.97 a 31.77 6.36 b 10.59 b N137A, 147A
120 58.30 a 31.32 5.43 a 9.94 b N137A, 147A
180 48.70 b 33.09 6.25 b 12.70 a N137A, 147A
F-test *** NS * *
Hedera helix 60 40.40 a 39.01 b 7.62 14.49 b 146A, 147A
120 41.73 a 37.86 b 7.32 13.44 b 146A, 147A
180 32.81 b 43.50 a 6.84 17.57 a 146A, 148A
F-test *** *** NS **
Chamaedorea elegans 60 32.90 a 33.84 b 7.64 14.55 b N137A, 147A
120 34.05 a 35.36 ab 8.32 16.38 ab N137A, 147A
180 25.88 b 36.84 a 8.31 18.84 a 146A, 147A
F-test ** * NS **
Spathiphyllum wallisii 60 56.53 a 33.11 b 8.80 11.48 b N137A, 147A
120 53.92 a 35.69 a 9.20 16.31 a N137A, 147A
180 46.28 b 37.34 a 9.28 17.21 a 146A, 147A
F-test *** *** NS ***
SignificancewSpecies (A) *** *** *** ***
Light intensity (B) *** *** NS ***
(A) × (B) *** ** * **
zColors converted using L*, a*, and b* values of CIELAB.
yMean separation within columns between treatments by Duncan’s multiple range test at p < 0.05, no letter means no difference
in significance.
xStatistical significance on the comparison of means within species, NS, *, **, ***: non-significant or significant at p < 0.05,
0.01, or 0.001, respectively.
wStatistical significance using factorial analysis, NS, *, **, ***: non-significant or significant at p < 0.05, 0.01, or 0.001,
respectively.
32 Journal of Agricultural, Life and Environmental Sciences Vol. 34, No. 1, 2022
marcus)LED(light-emitting diode)의 광도가 상대적으로 높아수록 L*b* 은 상대적으로 낮아지는 것으로
보고하였다. 관음죽의 엽록소 수치는 60 µmol m-2 s-1120 µmol m-2 s-1에서 각각 58.97, 58.30으로 나타났다.
120 µmol m-2 s-1에서 a* 5.43으로 가장 높게 나타났으며 b* 180 µmol m-2 s-1에서 12.70으로 나타났다.
Ju et al.(2009)의 연구에서 관음죽은 고광도 수준에서 높은 엽록소 수치를 나타내었으나 본 연구에서는 고온 및 연속
광 처리로 인한 스트레스가 오히 고광도 수준에서 식물의 엽록소 함을 저해시킨 것으로 나타났다.
아이비는 60 µmol m-2 s-1120 µmol m-2 s-1 수준에서 엽록소 수치가 각각 40.40, 41.73으로 나타났다. 에서는
L*b* 180 µmol m-2 s-1 각각 43.50, 17.57로 가장 높게 나타나 120 µmol m-2 s-1 이하의 저광도 수준에 비해 엽
이 황화 된 것으로 판되었으며 엽록소 수준과 엽의 황화 되는 정도가 서로 반비하는 것으로 보인다. 테이블야
자는 엽록소 수치가 120 µmol m-2 s-1 60 µmol m-2 s-1에서 각각 34.05, 32.90으로 나타났으며 L*b* 180
µmol m-2 s-1에서 각각 36.84, 18.84로 가장 높게 나타났다. 스파티필름은 60 µmol m-2 s-1120 µmol m-2 s-1에서 엽
록소 수치가 각각 56.53, 53.92로 나타났으며 L* 120 µmol m-2 s-1 180 µmol m-2 s-1 수준에서 각각 35.69,
37.34로 나타났다. Kwon and Park(2015)의 연구에서 스파티필름류는 상대적으로 높은 광도에서 L*b*이 증가되
는 경향을 나타내었는데 본 연구에서도 이와 비한 경향을 나타내었다. 특히 관음죽, 아이비, 테이블야자, 스파티필
름은 엽록소 수치가 L*b* 과 반비하는 경향이 있는 것으로 보인다. 여섯 가지 실내 관엽식물은 모두 광도가
수록 L*b* 이 높아지는 일정한 경향을 나타내었는데 고온에서 연속광은 광도가 수록 식물들에게 현
저한 스트레스를 주는 것으로 생각되며 이로 인하여 엽이 황화 된 것으로 판된다(Fig. 1). 가된 RHS 에서 아
Fig. 1. Effects of high temperature and continuous lighting conditions at different light intensity levels on indoor
foliage plants grown for 4 weeks: A) Hoya carnosa f. variegata; B) Epipremnum aureum f. variegata; C) Rhapis excelsa;
D) Hedera helix; E) Chamaedorea elegans; and F) Spathiphyllum wallisii.
이재환 외
/
고온과 연속광 조건에서 광도별 실내 관엽식물의 생육 및 엽색 평가
33
이비는 180 µmol m-2 s-1 수준의 광도에서 146A, 148A로 다른 광도 처리에 비해 엽이 황화 된 것으로 가되었다.
이어 테이블야자와 스파티필름도 마가지로 180 µmol m-2 s-1에서 각각 146A, 147로 엽이 황화 된 것으로 가되
었다.
종과 광도의 세기 간 인에 대한 분을 수행한 결과, 엽록소 수치, L*a*, b* 모두 종과 광도의 세기의 상호
의성을 나타내었으며 특히 엽록소 수치는 고도의 의성을 나타내었다. 적으로 본 실험에 사용된 실내 관엽식
물은 고온과 연속광 조건에서 광도에 따른 엽록소 수치와 엽의 변화가 상한 것으로 나타났다.
상관관계 분석
고온 및 연속광 조건 하에서 실내 관엽식물의 생육, 엽록소 수치 그리고에 관한 상관관계를 분한 결과, 여섯
Table 3. Correlation between the growth parameters and CIELAB values of Hedera helix under high temperature and
continuous lighting conditions
SPAD L*a*b*Height Width SFzRF SD RD
SPAD 1
L*
0.306*y1
a*
0.069 0.358** 1
b*
0.193 0.841*** 0.726*** 1
Height 0.087 0.190 0.105 0.180 1
Width 0.264 0.035 0.095 0.046 0.159 1
SF 0.100 0.656** 0.139 0.520* 0.132 0.030 1
RF 0.340 0.563** 0.046 0.460* 0.237 0.090 0.764*** 1
SD 0.491* 0.404 0.220 0.419 0.251 0.023 0.344 0.249 1
RD 0.429* 0.700*** 0.297 0.627** 0.044 0.155 0.365 0.401 0.458* 1
zSF: shoot fresh weight; RF: root fresh weight; SD: shoot dry weight; RD: root dry weight.
y*, **, ***: significant at p < 0.05, 0.01, or 0.001, respectively.
Table 4. Correlation between the growth parameters and CIELAB values of Spathiphyllum wallisii under high
temperature and continuous lighting conditions
SPAD L*a*b*Height Width SFzRF SD RD
SPAD 1
L*
0.341**y1
a*0.030 0.346** 1
b*
0.190 0.875*** 0.457*** 1
Height 0.042 0.093 0.335 0.101 1
Width 0.101 0.151 0.036 0.334 0.107 1
SF 0.455* 0.599** 0.485* 0.324 0.216 0.129 1
RF 0.022 0.198 0.218 0.279 0.042 0.031 0.315 1
SD 0.048 0.225 0.070 0.132 0.364 0.064 0.201 0.501* 1
RD 0.031 0.107 0.291 0.218 0.180 0.162 0.555** 0.094 0.161 1
zSF: shoot fresh weight; RF: root fresh weight; SD: shoot dry weight; RD: root dry weight.
y*, **, ***: significant at p < 0.05, 0.01, or 0.001, respectively.
34 Journal of Agricultural, Life and Environmental Sciences Vol. 34, No. 1, 2022
종의 실내 관엽식물 중 아이비와 스파티필름은 생육과 엽 간의 가지 상관관계가 있는 것으로 나타났다(Tables 3
and 4). 내 상관관계에서 아이비와 스타필름은 L*a* 간의 상관관계가 각각 r = 0.358, 0.346 수준으로 나
타났으며, b* a*는 각각 r = 0.726, 0.457로 서로 음의 상관관계를 가졌고 고도의 의성을 나타내었다. 한 이
종에게서 L*b*는 각각 r = 0.841, 0.875로 상호 간 양의 상관관계를 가지며 고도의 의성을 나타내었다. a*
접적으로 연관이 있음에도 불구하고 아이비의 잎이 황화 되는 정도나 생육에는 영향을 미치는 것과는 무관계
한 것으로 나타났다. 잎이 황화 되는 경우 L*b*가 비하여 높아지나 반대로 a*는 낮아지는 것으로 나타났다. 아이
비는 L*과 지상부와 지하부 생체중(각각, r = 0.656, 0.563), 지하부 건물중(r = 0.700) 간에 음의 상관관계를 나
타내었다. 잎의 명도가 높아지는 것은 잎의 광성 기능이 저해되고 있음을 시하며 이는 식물의 생육불으로 이
어지는 것으로 판된다. 뿐만b* 한 지상부와 지하부 생체중(각각, r = 5.20, 0.460), 지하부 건물중(r =
0.627)과 음의 상관관계를 나타내 엽이 황화 될 수록 생육에 악영향을 미치는 것으로 가되었다. 스파티필름의
경우 아이비와 사하게 L*과 지상부 생체중 r = 0.599로 음의 상관관계를 나타내어 잎의 명도가 높아수록 식물
의 생육에는 부정적인 영향을 미치는 것을 알 수 있었다.
적으로 실내 관엽식물은 고온과 연속광 조건에서 상대적으로 고광도 수준일 때 많은 광 스트레스를 받는 것으
로 판되며 특히 엽록소 수치와 엽에 관한 계분에서 실내 관엽식물과 광도의 세기 간 상호 의성이 높은 것으
로 나타났다. 따라서 적절한 생육 수준과 엽의 품 지를 위해 상대적으로 저광도 수준인 60, 120 µmol m-2 s-1
서 재배하는 것이 할 것으로 판된다.
본 연구는 고온과 연속광 조건에서 광도별 실내 관엽식물의 생육과 엽 반응을 알아보고자 수행되었다. 실내 공간
성하기 위해 실내 관엽식물을 사용하는 것은 미적, 기능적 속성 모두정적인 영향을 미치며 향상 된 분위기
들기 위해 필수적인 부분으로 간주되고 있다. 날 실내 식물들은 생, 생육, 에 영향을 미치는 다양한
도 수준과 함 고온과 연속광 환경에 노출되기도 한다. 이에 따라 본 연구에서는 실내에서 히 사용하는 관엽식물
(Hoya carnosa f. variegata, Epipremnum aureum f. variegata, Rhapis excelsa, Hedera helix, Chamaedorea
elegans, Spathiphyllum wallisii)을 활용하여 연구를 수행하였다. 4주 동안 30°C의 고온과 24시간 연속광 처리를 실
시한 실내 관엽식물의 생육과 엽 수준을 가한 결과 무늬호야와 무늬스킨답서스는 60 µmol m-2 s-1의 저광도 수
준에서 가장 높은 생체중을 나타내었으며 모두 광도의 세기에 비하여 L* 이 높아지는 것으로 나타났다.
가로 무늬스킨답서스는 b* 이 광도의 세기에 비하여 높게 나타났다. 관음죽은 광도의 세기와 생육간에 차이가 없
는 것으로 나타났으며 테이블야자는 지하부 생체중과 건물중이 60 µmol m-2 s-1에서 가장 우수한 것으로 나타났고
180 µmol m-2 s-1에서 L*b* 이 가장 높게 나타났다. 아이비와 스파티필름은 상관관계 분에서 L*b*는 상호간
에 양의 상관관계를 가지는 것으로 나타났으며 뿐만L*b*는 식물의 생육과 음의 상관관계를 나타내어 엽
의 명도가 높아지고 황에 가까수록 생육에 부정적인 영향을 미다는 것을 시하였다. 실내 관엽식물은 120
µmol m-2 s-1 이하의 저광도 수준에서는 식물의 생육이 광도가 높을 때(180 µmol m-2 s-1) 보다 훨씬 양호한 것으로
나타났으며 엽에 대한 분 결과 60 µmol m-2 s-1에서는 엽의 황화가 다소 제되는 것으로 판되었다. 결과적으
로 고온과 연속광 조건의 복 스트레스 환경에서는 실내 관엽식물이 광 스트레스에 상감하게 반응하로 상
대적으로 저광도 수준인 60, 120 µmol m-2 s-1에서 재배하는 것이 할 것으로 판된다.
이재환 외
/
고온과 연속광 조건에서 광도별 실내 관엽식물의 생육 및 엽색 평가
35
본 연구는 육대학 내연구비 지원과 한국건기술연구원(KICT)의 연구비 지원에 의해 수행되었습니.
인용문헌(References)
Abdo, P., Huynh, B. P., Avakian, V., Nguyen, T., Gammon, J., Torpy, F. R., Irga, P. J. (2016) Measurement of air
flow through a green-wall module (20th ed). Australasian Fluid Mechanics Conference. Perth, Australia.
Abouleish, M. Y. Z. (2021) Indoor air quality and COVID-19. Public Health J 191:1-2.
Bonsi, C. K., Loretan, P. A., Hill, W. A., Mortley, D. G. (1992) Response of sweetpotatoes to continuous light. Hort
Sci 27:471.
Cabahug, R. A. M., Soh, S. Y., Nam, S. Y. (2017) Effects of light intensity on the growth and anthocyanin content of
Echeveria agavoides and E. marcus. Flower Res J 25:262-269.
Choi, I. A., Lee, J. K. (2013) A study on selection of plant of greening for indoor walls in commercial area. J Korean
Soc Floral Art Design 28:167-180.
Colours of the Royal Horticultural Society Colour Charts Edition V System (RHSCCS) (2021) Turquoise-green.
Colours of the Royal Horticultural Society Colour Charts Edition V in sRGB, CIE L*a*b* (CIE Lab) and CIE
L*C*h* (CIE LCh) system. http://rhscf.orgfree.com/c.html 2021.11.12.
Deng, L., Deng, Q. (2018) The basic roles of indoor plants in human health and comfort. Environ Sci Pollut Res Int
25:36087-36101.
Haque, M. S., Kjaer K. H., Rosenqvist E., Ottosen C. O. (2015) Continuous light increases growth, daily carbon gain,
antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species. Front Plant Sci 6:522.
Jang, H. S., Kim, K. J., Yoo, E. H., Jung H. H. (2016) Impact of indoor-garden in the public building of lounge to the
psychological effect of resident. J Korean Soc People Plants Environ 19:167-174.
Ju, J. H., Kim, S. H., Bang, K. J. (2009) Effect of light intensity of fluorescent lamp on the indoor plants in simulation
subway interior landscape. J Korean Soc People Plants Environ 12:15-24.
Kim, H. D., Jang, E. J., Lee, H. J., Song, J. S., Kwang, J. K., Yoo, E. H., Cho, J. G., Choi, S. Y. (2005) Effects of
fertilization intervals and light levels on the growth of Aphelandra and Epipremnum under Indoor Light
Condition. Flower Res J 13:279-282.
Koontz, H. V., Prince, R. P. (1986) Effect of 16 and 24 hours daily radiation (light) on lettuce growth. Hort Sci
21:123-124.
Kwon, K. J., Park, B. J. (2015) Effects of light intensity on growth and leaf color of indoor foliage plants. Flower Res
J 23:92-97.
Kwon, K. J., Park, B. J. (2018) Particulate matter removal of indoor plants, Dieffenbachia amoena ‘Marianne’ and
Spathiphyllum spp. according to light intensity. J Korean Inst Landscape Architecture 46:62-68.
Lee, J. E., (2003) A study on the rate of indoor air purification by plants and gauging compared with air clean
instrument. J Korean Soc Interior Landscape 5:1-12.
Lee, J. H., Cabahug, R. A. M., You, N. H., Nam, S. Y. (2021a) Chlorophyll fluorescence and growth evaluation of
ornamental foliage plants in response to light intensity levels under continuous lighting conditions. Flower Res J
29:153-164.
Lee, J. H., Lim, Y. S., Nam, S. Y. (2021b) Optimization of shading levels, potting media, and fertilization rates on the
vegetative growth of Sedum zokuriense Nakai. Flower Res J 29:239-246.
36 Journal of Agricultural, Life and Environmental Sciences Vol. 34, No. 1, 2022
Lee, J. W., Kim, K. S. (2018) A study on the analysis of new housing space element according to future environment.
J Korean Inst Interior Design 27:127-134.
Nam, S. Y., Lee, H. S., Soh, S. Y., Cabahug, R. A. M. (2016) Effects of supplementary lighting intensity and duration
on hydroponically grown Crassulaceae species. Flower Res J 24:1-9.
Park, S. A., Kim, M. G., Yoo, M. H, Oh, M. M., Son, K. C. (2010) Plant physiological responses in relation to
temperature, light intensity, and CO2 concentration for the selection of efficient foliage plants on the improvement
of indoor environment. Korean J Hort Sci Technol 28:928-936.
Randani, M. M. N., Caldera, H. I. U., Kaumal, M. N. (2017) Screening foliage plants for indoor air pollution
abatement. Proceedings of the 22nd International Forestry and Environment Symposium, University of Sri
Jayewardenepura, Sri Lanka.
Sethi, S. C., Byth, D. E., Gowda, C. L. L., Green, J. M. (1981) Photoperiodic response and accelerated generation
turnover in chickpea. Field Crops Res 4:215-225.
Shibata, S., Suzuki, N. (2002) Effects of the foliage plant on task performance and mood. J Environ Psych
22:265-272.
Tibbitts, T. W., Cao, W., Bennett, S. M. (1992) Utilization of potatoes for life support in space v. evaluation of
cultivars in response to continuous light and high temperature. American J Potato Res 69:229-237.
Zettl, A. (2022) Converting Colors. Converting Colors Website. https://convertingcolors.com 2022.01.13.
Zhukov, V. I., Romanovskaja, R. N. (1980) The length of the day at accelerated growing spring wheat. Sci Tech Bul
Siberian Res Inst Plant Grow Breed 5:74-77.
... 마지막으로 황색과 청색을 나타내는 매개변수인 CIELAB b * 는 '아시아슈가'가 적색 LED에서 32.96으로 가장 높게 나타났으며, '로사이탈리아나'는 녹색, 청색 LED 내에서 높게 나타났다(각각 28.46, 28.25)(Fig. 3D).과거 연구에서 L * 과 b * 의 증가는 식물의 생장수준과 음의 상관관계를 가지는 것으로 분석되었는데(Lee et al., 2021b;Lee et al., 2022aLee et al., , 2022b, 적색, 청색 등의 단색광과 백색 LED하에서 재배된 치커리 묘의 생육수준을 비교하였을 때 이와 유사한 결 과를 나타내었다. 이에 낮은 명도와 황색도를 나타내는 묘를 얻기 위해서는 백색 LED 하에서 재배하는 것이 상대적으로 유리 한 것으로 판단된다. ...
Article
Full-text available
Cichorium intybus, a leafy vegetable belonging to the Asteraceae family, is known for its potential health benefits and the inclusion of various bioactive compounds and indigestible oligosaccharides that improve liver function and aid in fatigue recovery. In this study, we evaluated the effects of light-emitting diode (LED) light qualities on the growth, vegetation indices, and photosynthesis of the C. intybus cultivars ‘Asia Sugar’ and ‘Rossa Italiana’, grown in a closed nursery facility. LED light treatments included seven types of monochromatic, composite, and white LEDs (i.e., red, green, blue; purple; 3000, 4100, and 6500 K white LEDs) applied to these cultivars. The results showed that ‘Asia Sugar’ reached its largest size under the 3000 and 4100 K white LED treatments, whereas ‘Rossa Italiana’ exhibited the highest growth under the 3000 K white LED light treatment. An analysis of monochromatic light revealed that red LED light increased plant sizes and weights compared to blue LED light, and a higher distribution of red wavelengths within the white light spectrum positively influenced plant sizes and weights. With regard to increasing plant weights, both cultivars performed best under 3000 and 4100 K white LEDs, similar to the results for plant sizes. In contrast, ‘Asia Sugar’ showed the most favorable vegetation and photosynthetic indices under 4100 and 6500 K white LEDs, while the ‘Rossa Italiana’ showed the most favorable photosynthetic indices and chlorophyll content (SPAD units) under 6500 K white LED, opposite to the plant size results. These findings provide valuable insights into how specific LED light qualities can be optimized to enhance the growth and physiological responses of Cichorium intybus cultivars seedlings.
Article
Full-text available
Background: Salvia miltiorrhiza Bunge, a medicinal plant belonging to the Lamiaceae family, is commonly used as a health-promoting tea in China. This study investigated and analyzed the improvements in S. miltiorrhiza growth, external quality, vegetation indices, and photosynthetic performance through photoperiod control. Methods and Results: The study was conducted with four different photoperiods: 8, 12, 16, and 24 hours of light period (h·d-1). The results showed that the 12 h·d-1 - 16 h·d-1 photoperiods were most effective for promoting shoot growth. This was determined by evaluating plant sizes, shoot biomass; various remote sensing vegetation indices including normalized difference vegetation index, photochemical reflectance index, and modified chlorophyll absorption ratio index; and five chlorophyll fluorescence parameters (Fv/Fm, ΦDo, ABS/RC, DIo/RC, and PIABS). Similarly, the root growth, root biomass, and external quality parameters (CIELAB color space values and visual score) indicated that a 12 h·d-1 - 16 h·d-1 photoperiod was the most effective. Conversely, continuous light conditions for 24 h·d-1 photoperiod significantly decreased most growth parameters and both shoot and root external qualities, suggesting inefficiency in such conditions. Conclusions: Therefore, the study recommends cultivating S. miltiorrhiza under a 12 h·d-1 - 16 h·d-1 range photoperiod to improve the growth, external qualities, and physiological characteristics.
Article
Full-text available
Salvia miltiorrhiza is a medicinal crop belonging to the Lamiaceae family. It is commonly used in China as an ingredient in health-promoting teas that enhance immunity and prevent diseases. Although some Korean local farmers have reported that S. miltiorrhiza grows vigorously in high temperatures and produces roots with a deep red color, there is no clear evidence or literature to confirm this. Therefore, this study investigated the growth and external quality of S. miltiorrhiza in response to different day and night temperature levels. Day and night temperature treatments were designed into four levels: 20/15, 24/19, 28/23, and 32/27°C, respectively. Among the parameters related to plant sizes, the shoot height and number of roots showed the highest values in the 32/27°C treatment, while other parameters, particularly the shoot width and root length exhibited the highest values in the 28/23°C treatment. In contrast, the majority of parameters, including the fresh weight and dry weight, which are indicative of root biomass, were lowest in the 20/15°C treatment, suggesting that S. miltiorrhiza, a species that prefers relatively high temperatures, thrives in warmer conditions. Importantly, the root fresh and dry weights, which are likely to be correlated with the market value of S. miltiorrhiza, showed the same significance levels within the temperature range of 24/19–32/27°C, but not in the relatively low-temperature treatment of 20/15°C. Thus, cultivation of S. miltiorrhiza is deemed feasible within all temperature ranges except for 20/15°C, with optimal conditions falling within the temperature range of 24/19–32/27°C. The CIELAB a* value, associated with red color, was highest in the comprehensive assessment of the 32/27°C treatment. Moreover, in the 32/27°C treatment, the Royal Horticultural Society (RHS) color chart values were found to indicate a deep reddish or brown-red color, with readings of 166B and 174A. Additionally, the root color obtained the highest visual score in the 32/27°C treatment. Based on previous studies, a* is considered to be related to the content and quantities of tanshinones and other hydrophilic phenolic compounds, which are effective components associated with the orange-red color. Therefore, it is recommended to cultivate S. miltiorrhiza at a high temperature of 32/27°C to achieve high growth rates, excellent external quality, and produce superior S. miltiorrhiza plants.
Article
Full-text available
Peperomia, the commonly cultivated house plants, are known for their superior shade tolerance, and suitability as ornamental indoor plants. Here, the effects of different color temperatures of white light-emitting diodes (LEDs) were experimentally investigated on Peperomia. Three white LEDs with different color temperatures of 3000, 4100, and 6500 K, respectively, were used in the cultivation of Peperomia species and cultivars namely: P. obtusifolia, P. caperata cv. Napoli Nights (‘Napoli Nights’), and P. caperata cv. Eden Rosso (‘Eden Rosso’) for experimental purposes. Results showed that the sizes of the plants P. obtusifolia and ‘Napoli Nights’ were optimal under 4100 and 6500 K white LEDs, whereas, ‘Eden Rosso’ exhibited optimal growth under 6500 K white LED. Compared to the other plants, P. obtusifolia exhibited superior biomass production under 4100 K white LED. Conversely, ‘Eden Rosso’ and ‘Napoli Nights’ had the highest biomass under 6500 and 3000 K white LEDs, respectively. Regarding the leaf color, L* and b* values demonstrated an inverse relationship with plant biomass, suggesting that leaves turn yellow when the growth of a plant is inhibited. Fv/Fm ranged from 0.77 to 0.81 across all treatments, and these values are generally acceptable. Compared to the other plants, P. obtusifolia and ‘Eden Rosso’ had higher ΦDo, ABS/RC, and DIo/RC under 6500 and 3000 K white LEDs, respectively, contradicting the results observed for plant sizes. In addition, PIABS values were higher for P. obtusifolia under 4100 and 6500 K white LEDs and the highest for ‘Eden Rosso’ under 6500 K white LED. In conclusion, P. obtusifolia can be cultivated under 4100-6500 K white LEDs, whereas, ‘Eden Rosso’ and ‘Napoli Nights’, under 6500 and 4100 K white LEDs, respectively.
Article
Full-text available
Senecio haworthii is a succulent plant belonging to the Asteraceae family. Optimal growth conditions for this species have not been well-established. In this study, we investigated the optimal day/night temperature range for enhancing the growth and ornamental quality of S. haworthii. Four day/night temperature treatments were designed as follows: 20/15, 24/19, 28/23, and 32/27°C. Based on the plant sizes and biomass analysis, the best growth performance was determined to be achieved under a relatively low-temperature treatment of 20/15°C. Conversely, the 32/27°C treatment resulted in the lowest growth rates, likely attributed to decreased leaf function caused by prolonged exposure to high-temperature conditions. Additionally, leaf color analysis using the CIELAB color space revealed that CIELAB L* , representing lightness, and CIELAB a* , indicating green-red opponent colors, proportionally increased with the rise in day/night temperature levels. Previous studies have reported an inverse relationship between L* and plant growth parameters. Consistent with previous research, the treatment at 32/27°C, which exhibited the lowest growth, showed higher L* values. Conversely, the CIELAB b* value, representing blue-yellow opponent colors, was highest under the 20/15°C treatment, suggesting leaf-yellowing tendencies in relatively lower temperature conditions. Based on the color difference analysis using CIE76 color difference (ΔE*ab), temperatures of 20/15 and 24/19°C were used as reference points; under these conditions, the temperatures of 28/23 and 32/27°C were evaluated as having a ‘small color difference’. Therefore, even with significant differences in day/night temperatures, no noticeable differences were concluded to be found in leaf color. Based on these findings, cultivating S. haworthii in relatively low-temperature conditions of around 20/15°C is concluded to be advantageous for enhancing both plant growth and ornamental quality compared to higher temperature conditions such as 32/27°C.
Article
Full-text available
The genus Sempervivum plants are members of the Crassulaceae family that is widely distributed in Eurasia and North Africa. Various species in Sempervivum have shown the potential to be used as medicinal crops in several studies in the past. Nowadays, succulents under this genus have gained popularity as ornamental plants. To increase its ornamental value and determine proper cultivation practices, a basic investigation of indoor factors, especially on lighting conditions is deemed necessary. This study aims to determine the effects of types of LED light qualities on the growth and leaf color of S. ‘Black Top’ (hereinafter referred to as ‘Black Top’) which could increase its market value. ‘Black Top’ were grown under three types of LED light qualities for indoor cultivation for 18 weeks. Results indicated that the tallest plants were grown under 3000 K white LED (peak 455, 600 nm) while the highest leaf length of plants was grown in purple LED (peak 450, 650 nm) treatments. Leaf width was not significantly affected by treatments. On the other hand, fresh weight was found to be highest under 6500 K white LED (peak 450, 545 nm), while dry weight was found that 3000 K white LED and 6500 K white LED had the same significance level. The highest chlorophyll content was taken from those grown under 6500 K white LED and the lowest in the purple LED, which suggests that balanced spectral distribution relatively produces increased chlorophyll content. In the analysis of CIELAB leaf color reading values, L* (color lightness) was found highest in the purple LED which suggests that if the spectrum was biased to one wavelength, it would produce unfavorable leaf color quality of ‘Black Top’. Based on these results, ‘Black Top’ are recommended to be grown under 3000 K and 6500 K white LED compared to purple LED to increase plant sizes and improve leaf color quality.
Article
Full-text available
Kalanchoe pumila is a succulent species belonging to the family Crassulaceae, which is highly valued for its ornamental pink flowers despite being relatively unknown in academic circles. In this study, we investigated the growth and flowering characteristics of K. pumila under different temperature treatments. Day/night temperatures were applied at 20/15, 24/19, 28/23, and 32/27℃, respectively. The results showed that K. pumila exhibited the highest values for shoot width, stem diameter, ground cover, number of leaves, leaf length, leaf width, shoot and root biomass, flower stem length, number of flowers, flower length, and flower width under the 20/15℃ treatment. Therefore, it can be speculated that K. pumila performs carbon assimilation more effectively under relatively low-temperature conditions. Additionally, the 24/19℃ treatment showed the highest values for shoot height and normalized difference vegetation index (NDVI), while the 28/23℃ treatment exhibited the highest values for root length and anthocyanin reflectance index 2 (ARI2). Most parameters were lowest under the 32/27℃ treatment, indicating that plant growth was almost suspended. Specifically, CIELAB L* and b*, which have been used as stress indices in previous studies, showed the highest values under the 32/27℃ treatment. In the correlation analysis, L* was negatively correlated with shoot and root biomass, suggesting that leaf lightness increases when plant growth is negatively impacted by the relatively high temperature. Similarly, b* showed similar results. Therefore, for significant increases in plant sizes of K. pumila and to promote high-quality flowering for maximum ornamental value, we recommend cultivation at 20/15℃. This temperature range is considered relatively favorable for the desired outcomes.
Article
Full-text available
Sedum album is a succulent species that has a creeping growth habit and blooms in groups in its native habitat. S. album is known to produce many flavonol glycoside compounds that are useful in the pharmaceutical industry. This succulent also has a high resistance to abiotic stressors and is thus widely used in green roof systems. Aside from its medical use, it has the potential as an ideal ornamental indoor plant due to its high vitality and unique appearance. However, in order to be utilized as an indoor plant, a suitable light quality for the succulent is deemed necessary. In this study, commercially available 3000, 4100, and 6500 K white T5 LEDs were used as artificial light sources to determine the growth and leaf color changes of S. album cv. Athoum. Results indicated that the plant sizes, i.e. shoot length, shoot width, ground cover, root length, and the number of branches, were significantly increased when grown under 4100 K white LED treatment. Likewise, the fresh weight and moisture content of plants increased in 4100 K white LED, however, the dry weight increased in 3000 K white LED. Among CIELAB color values, L* value (lightness), was highest in 4100 K white LED, which may be attributed to the expansion of cells due to the high moisture content of plants or the development of epicuticular waxes. The CIE76 color difference (ΔE* ab) was found highest between 4100 and 6500 K white LED treatments, with ΔE* ab = 5.51. Upon RHS values analysis, all treatment groups were determined to be in color groups N137A and 147A. Based on the results, it is recommended to use 4100 K white LED for the purpose of selling large-sized succulents or to improve its ornamental value. On the other hand, when extracting secondary metabolites for medicinal purposes, it is recommended to use 4100 K white LED for fresh plants, and 3000 K white LED for dried by-products.
Article
Full-text available
There are about 20 known species of Hylotelephium distributed within Eurasia and North America. Some Hylotelephium species have been reported to have a potential medicinal effect and have been used to remove cadmium from soil. Additionally, various cultivars have been sold and used as ornamental plants for aesthetic purposes. Although Hylotelephium species are used as indoor plants and are considered high shade tolerance, literature to support this information is lacking. Hence, this study investigated the growth and leaf color response of Hylotelephium cultivars, namely H. telephium cv. Lajos and H. sieboldii cv. Mediovariegatum (hereinafter referred to as ‘Lajos’ and ‘Mediovariegatum’) are grown under various shading environments using polyethylene shade films. It was shown by the results of the analysis that the use of a 75% shading level significantly affected the highest plant size, including its shoot, root, and leaf parameters for both cultivars compared to other shading levels. For the fresh and dry weight, ‘Lajos’ favored a 45% shading level, while ‘Mediovariegatum’ favored a 75% shading level. The chlorophyll content in ‘Lajos’ showed the highest at 75% shading level, while ‘Mediovariegatum’ showed the highest values at 35% shading level. In the CIELAB analysis of the leaves, L* and b* values of ‘Lajos’ were highest at 99% shading level, which significantly differed from other shading levels indicating a more yellow tint and a lightness of leaf color. On the other hand, ‘Mediovariegatum’ had the highest L* and b* values at a 60% shading level. In the evaluation of the RHS values, 'Lajos' was evaluated as 146A and 147B at the shading levels from 0% to 75%. Therefore, the leaf color can be maintained uniformly in those shading levels. On the other hand, ‘Mediovariegatum’ was evaluated as 194A and 195A at the 0% shading level and 148A and 152A at the 99% shading level. If the light intensity is too high or too low, the distribution rate of the variegated pattern seems to have decreased. The conclusion is that ‘Lajos’ is recommended to be cultivated at shading levels between 45–75%, and ‘Mediovariegatum’ is recommended to be cultivated at a shading level of 75% after the above information was combined.
Article
Full-text available
Phedimus takesimensis is a succulent species indigenous to the Korean Peninsula and is found in Ulleungdo and Dokdo islands. It has potential medicinal properties; thus, it should be protected in South Korea. However, the optimal shading level for mass cultivation of P. takesimensis is unknown. In this study, we subjected P. takesimensis cv. Atlantis, a variegated leaf cultivar, to different shading levels (0, 35, 45, 60, 75, and 99%) and investigated its effect on the growth and leaf color of the plants. The results revealed that the potted plants grown under 45% shading exhibited the highest shoot length, width, and shoot fresh and dry weights. Moreover, the plants grown under 0-45% shading exhibited the highest root length and root fresh and dry weights. However, leaf length and width were higher in the plants grown under 35-60% shading, and the moisture content of the shoot and root was the highest in the plants grown under 60% and 75% shading, respectively. Chlorophyll content analysis revealed a subsequent increase as the shading level decreased; the L* and b* CIELAB values were higher as the shading levels increased. The CIE76 color difference (ΔE* ab) was the highest at 75% shading (ΔE* ab = 7.08) compared to that at 0% shading level. The plants that were grown under 0-45%, 60%, and 75% shading had the following RHS values: 147B and 148A; 147B and 148B; and 147C and 148B, respectively. This suggests that the leaves of the plants were relatively yellow at 60-75% shading. Thus, potted plants of P. takesimensis cv. Atlantis should be grown under 45% shading to attain a significant increase in plant size and improve leaf color.
Article
Full-text available
An endemic plant to South Korea, Sedum zokuriense Nakai, has medical and floricultural potential and is of ecological importance. Today, many species under the genus Sedum are used as green-roofing systems, sold as ornamental plants, and studied for breeding programs. As such, optimization studies should be conducted to identify key environmental and cultivation factors that would affect their survival and vegetative growth. In this study, shading levels (50%, 65%, 80%, 95%, and 98%), potting mixes (decomposed granite, fertilizer-amended media, perlite, river sand, burnt husk, and vermiculite), and fertilization rates [(control, 0 ppm), 500, 750, 1,000, and 2,000 ppm] were investigated and the responses of S. zokuriense in terms of their survival rate, plant growth and development, CIELAB color reading, and chlorophyll content under greenhouse conditions. Results showed that these stonecrop species are shade-loving and thrive in low-light conditions. Although the fertilizer use had minimal impacts, growing plants at 65% shading, planted with RS:VL:PL (6:2:2, v/v/v) potting media have substantially produced a high survival rate in propagation using stem cuttings. Furthermore, this allowed plants to be established while supporting high vegetative growth, green and healthy plants with high chlorophyll content.
Article
Full-text available
Foliage plants are considered as an integral part of adding aesthetic and functional purposes in public places. Nowadays, various foliage plants are used to decorate and enhance the aesthetics of several government and private establishments which offer and run services non-stop that involve medical/police emergencies, entertainment, and travel. Under these conditions, indoor foliage plants are subjected to continuous lighting conditions. Thus, this study aimed to determine the growth and physiological response of common foliage plants (Hoya carnosa f. variegata, Epipremnum aureum f. variegata, Rhapis excelsa, Hedera helix, Chamaedorea elegans, and Spathiphyllum wallisii) under continuous light conditions with varying light intensity levels (60, 120, and 180 µmol m-2 s -1). Plant responses were evaluated using growth parameters and the chlorophyll fluorescence analysis of the OJIP curve and its specific energy flux parameters. Results showed that foliage plants showed positive growth and increase in mass yield in higher light intensities and had a minor impact on color quality. Chlorophyll fluorescence analysis suggested that strong stress responses were evident in low light conditions, whereas in fluorescence parameters, continuous lighting conditions with high light intensities showed stress due to excess light to shade-tolerant plants.
Article
Full-text available
Humans have a close relationship with nature, and so integrating the nature world into indoor space could effectively increase people’s engagement with nature, and this in turn may benefit their health and comfort. Since people spend 80–90% of their time indoors, the indoor environment is very important for their health. Indoor plants are part of natural indoor environment, but their effect on the indoor environment and on humans has not been quantified. This review provides a comprehensive summary of the role and importance of indoor plants in human health and comfort according to the following four criteria: photosynthesis; transpiration; psychological effects; and purification. Photosynthesis and transpiration are important mechanisms for plants, and the basic functions maintaining the carbon and oxygen cycles in nature. Above all have potential inspiration to human’s activities that people often ignored, for example, the application of solar panel, artificial photosynthesis, and green roof/facades were motivated by those functions. Indoor plants have also been shown to have indirect unconscious psychological effect on task performance, health, and levels of stress. Indoor plants can act as indoor air purifiers, they are an effective way to reduce pollutants indoor to reduce human exposure, and have been widely studied in this regard. Indoor plants have potential applications in other fields, including sensing, solar energy, acoustic, and people’s health and comfort. Making full use of various effects in plants benefit human health and comfort.
Article
Full-text available
This study was conducted to determine the effects of light intensity on the growth and development as well as the anthocyanin content of two Echeveria species, namely Echeveria agavoides and E. marcus. Three light intensity levels (high, 150 μmol・m-2s-1; intermediate, 75 μmol・m-2s-1; and low, 35 μmol・m-2s-1) served as the treatments, which were replicated four times. The results revealed that the tallest and largest plants were those under low light conditions. It was observed that there was a decline as the light intensity increased, which is attributed to the coping mechanisms of plants to search for light sources, which has a similar effect to bolting or an increase in the node-to-node distance. CIELAB color values of L* and a* for both species were significantly affected by the light intensity, indicating changes in the lightness of hue and green-to-red color pigmentation in plants. These results were strongly reflected in those of the anthocyanin content analysis, where a direct increase in the concentration was observed with increasing light intensity. The results of the anthocyanin analysis were also supported by the histogram, smart segmentation images, as well as the ratio of red and green pigments found in the images. Thus, a high light intensity should be used to increase the quality and provide conducive growing conditions for both succulent species.
Conference Paper
Green or living walls are active bio-filters developed to enhance air quality. Often, these walls form the base from which plants are grown; and the plant-wall system helps to remove both gaseous and particulate air pollutants. A green wall can be found indoors as well as outdoors, and could be assembled from modules in an arrangement similar to tiling. The module is a rectangular plastic box (dimensions about 500 mm × 500 mm × 130 mm) that holds a permeable bag containing a plant-growing medium (replacement for soil). The front face of the module has multiple openings for plants to protrude out from the bag inside. Plant roots are imbedded in the medium. A fan positioned at a central opening on the module’s back face drives air through the medium-plant-roots mix and then onward through the plants′ canopy; and these would help remove both gaseous and particulate pollutants from the air. Volatile Organic compounds (VOCs) and particulate matters PMs are both reduced by passing through the plant-growing medium, thus reducing the percentage of air flow that passes through the open top face of the module is essential to maximize the capacity of bio-filtration. Drip-irrigation water is dispensed from a tube running along the open top-face of the module. The module has also a small drainage hole on its bottom face. Pressure drop across the module as well as air-flow rate through it have been obtained in a previous work [1], air-flow distribution through the module and the effect of introducing a cover to the module’s open top face are investigated in this work to improve the design of the module and achieve more appropriate flow rate and flow distribution. The top cover essentially includes small holes of 10 mm diameter to allow the necessary irrigation. The measurements help to determine the pattern of flow resistances which in turn will be used in a future CFD (Computational Fluid Dynamics) analysis.