Article

Legacy community science data suggest reduced beached litter in response to a container deposit scheme at a local scale

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Marine debris is causing significant environmental harm. Legislation is being implemented to reduce litter, including schemes like container deposit legislation that incentivize the return of commonly littered items for recycling. While there is a suggestion that these schemes reduce litter, no study has examined the long-term impact on the local environment before and after implementation. This study analyses community science data from 8 years prior to the implementation of a container deposit scheme, paired with 3 years of data afterwards, to assess the scheme's effectiveness at a local scale. Although using legacy datasets limits the generalizability of the conclusions compared to dedicated studies, the findings strongly indicate that container deposit schemes effectively manage targeted containers but have little impact on overall waste abundances. Long-term datasets like these are invaluable for assessing the impact of management efforts.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... As expected, the implementation of the container deposit scheme was associated with a higher reported intention to recycle and a higher self-reported frequency of recycling drinking containers, which is in line with population-level data collected by the Queensland government and environmental groups following the implementation of the scheme [25,26]. Such an effect is likely expected, given the increased incentives available for recycling. ...
... The current study has several important strengths, including a novel test of the effect of wholesale legislative changes in recycling beliefs and behavior. These data, paired with population-level statistics [5,25,26], provide additional evidence in favor of the uptake of the container deposit scheme in Queensland, Australia. Further, by employing a theorydriven approach to assessing concomitant changes in recycling beliefs and behavior, the current research adds to data on the effectiveness of the scheme by highlighting potential mechanisms of change. ...
Article
Full-text available
Objective: Container deposit schemes are often hailed as a useful avenue to increase consumer recycling rates. Yet, there is little research investigating within-person changes in people’s beliefs and behavior following the implementation of these schemes, or tests of the mechanisms by which such change has occurred. Methods: The current study fills this knowledge gap and assessed container recycling behavior and habits as well as the social cognition factors of attitudes, subjective norms, perceived behavioral control, and intentions in a sample of 90 Queenslanders before the implementation of the container deposit scheme and one and three months post-implementation. Results: Analysis of variance indicated more frequent recycling behavior following the implementation of the scheme, as well as stronger habits, intentions, and perceived behavioral control. Conclusions: Such a concomitant change in behavior, beliefs, and habits provides support for behavior change theory, while also flagging potential targets for strategies that can be paired with container deposit schemes to enhance their efficacy and uptake.
Article
Full-text available
Plastic pollution poses environmental and socio-economic risks, requiring policy and management interventions. The evidence-base for informing management and evaluation of their effectiveness is limited. Partnerships with citizen scientists provide opportunities to increase the spatio-temporal scale of monitoring programs, where training and standardised protocols provides opportunities for the use of data in addressing multiple hypotheses. Here, we provide a baseline of debris trends and infer debris drivers of abundance across 18° of latitude, using 168 surveys from 17 beaches across Queensland, Australia through the ReefClean project. Plastics were the dominant material (87% of total debris, with hard, soft and foam plastics aggregated), although linking recovered debris to sources was limited, as 67% of items were fragmented. We tested potential drivers of specific debris types (i.e., plastics, commercial fishing items, items dumped at-sea, and single-use items) and identified significant relationships between debris accumulation with distance from the nearest population centre and site characteristics (modal beach state, beach orientation and across-beach section). Management efforts should consider beach type and orientation within site selection, as an opportunity to maximise the amount recovered, alongside other criteria such as the risks posed by debris on environmental, economic, and social values. This study demonstrates the utility of citizen science to provide baselines and infer drivers of debris, through data gathered at scales that are infeasible to most formal monitoring programs. The identified drivers of debris may also differ from regional and global studies, where monitoring at relevant scales is needed for effective management.
Article
Full-text available
This study investigates the Covid-19 driven indiscriminate disposal of PPE wastes (mostly face mask and medical wastes) in Chittagong metropolitan area (CMA), Bangladesh. Based on the field monitoring, the mean PPE density (PPE/m²± SD) was calculated to be 0.0226 ± 0.0145, 0.0164 ± 0.0122, and 0.0110 ± 0.00863 for July, August, and September 2021, respectively (during the peak time of Covid-19 in Bangladesh). Moreover, gross information on PPE waste generation in the city was calculated using several parameters such as population density, face mask acceptance rate by urban population, total Covid-19 confirmed cases, quarantined and isolated patients, corresponding medical waste generation rate (kg/bed/day), etc. Moreover, the waste generated due to face mask and other PPEs in the CMA during the whole Covid-19 period (April 4, 2020 to September 5, 2021) were calculated to be 64183.03 and 128695.75 tons, respectively. It has been observed that the negligence of general people, lack of awareness about environmental pollution, and poor municipal waste management practices are the root causes for the contamination of the dwelling environment by PPE wastes. As a result, new challenges have emerged in solid waste management, which necessitates the development of an appropriate waste management strategy. The ultimate policies and strategies may help to achieve the SDG goals 3, 6, 11, 12, 13, and 15, and increase public perception on the use and subsequent disposal of PPEs, especially face masks.
Article
Full-text available
Significance Plastic waste causes harm to marine life and has become a major global environmental concern. The recent COVID-19 pandemic has led to an increased demand for single-use plastic, intensifying pressure on this already out-of-control problem. This work shows that more than eight million tons of pandemic-associated plastic waste have been generated globally, with more than 25,000 tons entering the global ocean. Most of the plastic is from medical waste generated by hospitals that dwarfs the contribution from personal protection equipment and online-shopping package material. This poses a long-lasting problem for the ocean environment and is mainly accumulated on beaches and coastal sediments. We call for better medical waste management in pandemic epicenters, especially in developing countries.
Article
Full-text available
Single use personal protective equipment (PPE) has played a major role in preventing COVID-19 infection. Since the beginning of the COVID-19 pandemic, over 4 million tonnes of polypropylene PPE waste has been disposed into the environment in uncontrolled manner causing significant and long-term ecological damage. This work also highlights several effective measures to alleviate the problem of polypropylene PPE waste. Short-term measures include knowledge sharing to minimise the use of single use PPE and to adapt innovative polypropylene recycling technologies. To prepare for a future pandemic, it is also essential to phase out polypropylene PPE using natural based polymers.
Article
Full-text available
The ingestion of plastic by marine turtles is now reported for all species. Small juvenile turtles (including post-hatchling and oceanic juveniles) are thought to be most at risk, due to feeding preferences and overlap with areas of high plastic abundance. Their remote and dispersed life stage, however, results in limited access and assessments. Here, stranded and bycaught specimens from Queensland Australia, Pacific Ocean (PO; n = 65; 1993–2019) and Western Australia, Indian Ocean (IO; n = 56; 2015–2019) provide a unique opportunity to assess the extent of plastic (> 1mm) ingestion in five species [green (Chelonia mydas), loggerhead (Caretta caretta), hawksbill (Eretmochelys imbricata), olive ridley (Lepidochelys olivacea), and flatback turtles (Natator depressus)]. In the Pacific Ocean, high incidence of ingestion occurred in green (83%; n = 36), loggerhead (86%; n = 7), flatback (80%; n = 10) and olive ridley turtles (29%; n = 7). There was an overall lower incidence in IO; highest being in the flatback (28%; n = 18), the loggerhead (21%; n = 14) and green (9%; n = 22). No macroplastic debris ingestion was documented for hawksbill turtles in either site although sample sizes were smaller for this species (PO n = 5; IO n = 2). In the Pacific Ocean, the majority of ingested debris was made up of hard fragments (mean of all species 52%; species averages 46–97%), whereas for the Indian Ocean these were filamentous plastics (52%; 43–77%). The most abundant colour for both sites across all species was clear (PO: 36%; IO: 39%), followed by white for PO (36%) then green and blue for IO (16%; 16%). The polymers most commonly ingested by turtles in both oceans were polyethylene (PE; PO-58%; IO-39%) and polypropylene (PP; PO-20.2%; IO-23.5%). We frame the high occurrence of ingested plastic present in this marine turtle life stage as a potential evolutionary trap as they undertake their development in what are now some of the most polluted areas of the global oceans.
Article
Full-text available
Although the ban on plastic bags is gaining in prominence as a policy option to manage plastic bag litter, there are mixed views on its rationale and effectiveness. This study employs a systematic literature review to understand considerations, benefits and unintended consequences of banning plastic bags. The review’s results pointed to the limited success of a plastic bag ban owing to lack of suitable alternatives, limited state capacity to monitor and enforce the ban, thriving black market, structural and instrumental power of the plastic industry. The power of the industry was manifested by the covert practice of deflecting accountability to consumers by focusing on business-oriented solutions, including an inclination towards self-regulation. The findings of this study underscored the need for a global treaty to address the transient nature of plastic bag litter and moving away from the symbolic gesture of targeting only plastic shopping bags but considering the environmental impact of all forms of plastic such as straws, foamed plastics, plastic bottles and caps. There is a general consensus in literature that the end of plastic shopping bags is not nigh due to their utilitarian benefits. This study therefore recommends the promotion of a circular economy focusing on ecological modernisation, sustainable plastic bag manufacturing and recovery strategies such as recycling as a long-term strategy. A significant strand of literature reviewed also recommends the adoption of community-driven approaches such as voluntary initiatives as opposed to a plastic bag ban as they proved to be effective in promoting environmental citizenship behaviours in countries such as Finland.
Article
Full-text available
This research takes a holistic approach to considering the consequences of marine plastic pollution. A semi-systematic literature review of 1191 data points provides the basis to determine the global ecological, social and economic impacts. An ecosystem impact analysis demonstrates that there is global evidence of impact with medium to high frequency on all subjects, with a medium to high degree of irreversibility. A novel translation of these ecological impacts into ecosystem service impacts provides evidence that all ecosystem services are im-pacted to some extent by the presence of marine plastic, with a reduction in provision predicted for all except one. This reduction in ecosystem service provision is evidenced to have implications for human health and wellbeing, linked particularly to fisheries, heritage and charismatic species, and recreation.
Article
Full-text available
This study measured spatial distribution of marine debris stranded on beaches in South Eleuthera, The Bahamas. Citizen science, fetch modeling, relative exposure index and predictive mapping were used to determine marine debris source and abundance. Citizen scientists quantified debris type and abundance on 16 beaches within three coastal exposures (The Atlantic Ocean, Great Bahama Bank and The Exuma Sound) in South Eleuthera. Marine debris, (~2.5 cm or larger) on each beach was monitored twice between March-May and September-November 2013 at the same locations using GPS. Approximately, 93% of all debris items were plastic with plastic fragments (≤2.5 cm) being the most common. There were spatial differences (p ≤ 0.0001) in plastic debris abundance between coastal exposures. Atlantic Ocean beaches had larger quantities of plastic debris by weight and by meter (m) of shoreline. Stranded plastic may be associated with Atlantic Ocean currents associated with leakage from the North Atlantic subtropical gyre.
Article
Full-text available
Cleaning is a fundamental concern of beach managers in many destinations as well as an important requirement in beach quality awards. However, it has been largely neglected in the literature. This paper provides an overview of empirical studies on beach cleaning and analyzes cleaning-related requirements of 11 beach awards that generate controversy in the literature. This study comments on key aspects of beach cleaning, resolves various misconceptions, and provides new perspectives by integrating related topics drawn from a wide range of literature. The arguments based on both the ecological and tourism managerial perspectives are presented, indicating the gaps and proposing research solutions. The paper calls for empirical studies with regard to the efficiency of different cleaning approaches on beaches with varying levels of use intensity and for methodological designs that separate the impacts of mechanical grooming from those of trampling, dune destruction, shore armoring, artificial lighting, among others.
Article
Full-text available
A simple hypothesis-driven model of how floating marine plastic litter is blown onto a beach, and then moved on and off the beach by winds and rising and falling water levels is implemented in a computer simulation. The simulation applied to Aberdeen beach, Scotland, suggests that the interaction between varying winds and water levels alone, coupled to an assumed constant offshore floating litter density, can account for 1) the order of magnitude of the long term average (2000−2010) beach plastic litter loading (observed=127 np/100 m, simulated=114 np/100 m); 2) the observed frequency spectrum of low water beach plastic litter loadings; 3) the magnitude of the ratio between offshore floating plastic litter densities and onshore beach plastic litter loadings; 4) zero overall net beach plastic litter accumulation. Results are relevant to beach survey design, designing methods to estimate litter accumulation rates and the setting of MSFD beach litter targets.
Article
Full-text available
Corals wrapped in plastic Coral reefs provide vital fisheries and coastal defense, and they urgently need protection from the damaging effects of plastic waste. Lamb et al. surveyed 159 coral reefs in the Asia-Pacific region. Billions of plastic items were entangled in the reefs. The more spikey the coral species, the more likely they were to snag plastic. Disease likelihood increased 20-fold once a coral was draped in plastic. Plastic debris stresses coral through light deprivation, toxin release, and anoxia, giving pathogens a foothold for invasion. Science , this issue p. 460
Article
Full-text available
Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005–2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be possible due to logistical and financial constraints of running government-funded sampling programmes on such large scales.
Article
Full-text available
Marine wildlife faces a growing number of threats across the globe, and the survival of many species and populations will be dependent on conservation action. One threat in particular that has emerged over the last 4 decades is the pollution of oceanic and coastal habitats with plastic debris. The increased occurrence of plastics in marine ecosystems mirrors the increased prevalence of plastics in society, and reflects the high durability and persistence of plastics in the environment. In an effort to guide future research and assist mitigation approaches to marine conservation, we have generated a list of 16 priority research questions based on the expert opinions of 26 researchers from around the world, whose research expertise spans several disciplines, and covers each of the world’s oceans and the taxa most at risk from plastic pollution. This paper highlights a growing concern related to threats posed to marine wildlife from microplastics and fragmented debris, the need for data at scales relevant to management, and the urgent need to develop interdisciplinary research and management partnerships to limit the release of plastics into the environment and curb the future impacts of plastic pollution.
Article
Full-text available
Marine wildlife faces a growing number of threats across the globe, and the survival of many species and populations will be dependent on conservation action. One threat in particular that has emerged over the last 4 decades is the pollution of oceanic and coastal habitats with plastic debris. The increased occurrence of plastics in marine ecosystems mirrors the increased prevalence of plastics in society, and reflects the high durability and persistence of plastics in the environment. In an effort to guide future research and assist mitigation approaches to marine conservation, we have generated a list of 16 priority research questions based on the expert opinions of 26 researchers from around the world, whose research expertise spans several disciplines, and covers each of the world’s oceans and the taxa most at risk from plastic pollution. This paper highlights a growing concern related to threats posed to marine wildlife from microplastics and fragmented debris, the need for data at scales relevant to management, and the urgent need to develop interdisciplinary research and management partnerships to limit the release of plastics into the environment and curb the future impacts of plastic pollution.
Article
Full-text available
Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.
Article
Full-text available
Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades.
Article
Full-text available
This paper describes the implementation in R of a method for tabular or graphical display of terms in a complex generalised linear model. By complex, I mean a model that contains terms related by marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised linear model. Fitted values under the model are computed for each such term. The lower-order "relatives" of a high-order term (e.g., main effects marginal to an interaction) are absorbed into the term, allowing the predictors appearing in the high-order term to range over their values. The values of other predictors are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the data, or to equal proportions in its several levels. Variations of effect displays are also described, including representation of terms higher-order to any appearing in the model.
Article
Stormwater drains act as a pathway for anthropogenic debris from land to sea, particularly in urbanised estuaries where impervious surfaces expedite the process. Debris type and abundance in stormwater drains may vary due to land use and human activity, and knowledge of this variation is necessary to manage the growing threat of debris. Surveys of stormwater debris can inform targeted reduction and remediation efforts by intercepting and identifying pollutants near their source. We surveyed replicate stormwater gross pollutant traps across four land use zones (city centre, shopping centre, transportation hub, industrial precinct) before and during COVID-19 measures to assess the effects of changing human activities. Gross pollutant traps were installed in 120 drains in Greater Melbourne, Australia, and citizen scientists trained by Tangaroa Blue Foundation weighed and classified debris at 6-week intervals between October 2019 and October 2020. Four survey cycles were conducted before lockdowns were implemented, then another four during lockdowns. COVID-19 lockdowns and patterns of debris type and abundance across land use revealed how changes in human activity might impact the flow of debris. Cigarette butts were the most abundant macro debris (>5 mm) item in every survey cycle, regardless of lockdowns. Industrial land use zones had the lowest macro debris counts but contained over 90 % of the micro debris (1-5 mm). The amount of total macro debris decreased during lockdowns, however the most abundant and problematic debris items such as cigarettes and single-use plastics did not decrease as much as might be expected from the concomitant reductions in human activity. Occupational health and safety items, such as masks and gloves, increased (144 %) during COVID-19 lockdowns. Micro debris counts did not change in industrial zones during lockdowns, suggesting that workplace interventions may be necessary to reduce this debris leakage. Tracing the pathway of debris from source to sea can inform reduction and long-term management strategies.
Article
Regardless of where plastic pollution originates, the management interventions made at the local level are crucial to the global success of reducing plastic pollution. Reduced plastic consumption and pollution have been observed in communities with plastic taxes and educational programs. However, there is currently a lack of a quantitative framework that connects local actions to measurable reductions of plastic loads in the nearby coastal environment. Here, we explore whether changes in municipal waste management efforts corresponded to decreases in coastal plastic pollution across the continent of Australia. Our research shows that local strategies can result in large-scale benefits. We observed an average reduction in coastal litter of 29% over 6 years at the continental scale. Strategies that encouraged stewardship of coastal areas and economically motivated appropriate waste disposal were correlated with reductions in plastic pollution. This work can guide the efforts of policymakers and citizens alike to reduce plastic pollution at local, national, and global scales.
Article
The ongoing COVID-19 pandemic has driven massive consumption of personal protective equipment (PPE) worldwide. Single-use face masks are one of the most used PPE to prevent the transmission of the virus. However, mismanagement of such materials threatens the environment with a new form of plastic pollution. Researchers argue that it is necessary to develop and implement innovative ways to manage and recycle PPE in order to reduce their impacts on the environment. In the present work, we have reviewed and discussed the recent development of sustainable face mask alternatives and recycling and repurposing routes under the COVID-19 pandemic context. Moreover, we have conducted estimations of the daily face mask waste generation in Peru, a developing country struggling with a poor solid waste management framework and infrastructure. Unlike previous studies, our equation incorporates the “economically active population” variable in order to provide more precise estimations, while evaluating single-use and reusable scenarios. The scenarios of incorporating reusable face masks significantly reduced the amount of solid waste generated in Peru. In situ evidence shows that face masks are polluting the streets and beaches of Peru, probably driven by mismanagement and poor environmental awareness.
Chapter
Plastics and plastic packaging have become increasingly dominant in the consumer marketplace since their commercial development in the 1930 and 1940s and are now a ubiquitous part of 21st century life. According to Jambeck et al. (2015), at least eight million tons of plastics leak into the oceans every year. There is over 150 million tons of plastic waste in the oceans today, and without significant intervention, there could be more plastic than fish in the seas, by weight, by 2050 (Ocean Conservancy, 2015). The problems start on land. After being discarded, plastic is often inefficiently managed and therefore leaks into the oceans. Of the eight million tons of plastic that enters the world's ocean every year, less than 20% comes from ocean-based sources like fisheries and fishing vessels; the remaining 80% originates from land-based sources (GESAMP, 2015). This massive increase in plastic-waste leakage derives primarily from the increase in the use of plastics in fast-growing economies with underdeveloped waste management systems. The study by Jambeck et al. on 192 coastal countries estimates that they create 275 million tons of garbage annually, of which 4.8 to 12.7 million tons of plastics end up in the oceans. Currently. there are no effective tools available to collect and clean up the accumulation of plastics and microplastics once they have reached the oceans. Prevention at source is therefore the key action required to deal with plastics pollution and its associated impacts. A short list of six critical actions that need to be taken is included in the article. In response to growing concern over plastic waste in the oceans, individuals, community groups, businesses, and governments have initiated a wide range of programs to try and curtail the growth rate of plastics leakage from land sources. Some of these initiatives are detailed in the body of this article. In addition, a range of international, regional, and European agreements and conventions have been developed to protect the oceans from dumping and contamination. These important protocols typically require the adoption of measures aimed at controlling, reducing, and preventing pollution from land-based activities, from ships, from seabed and land-based activities, and from airborne pollution. These are useful frameworks that help governments of coastal countries to jointly work on these problems, but to date, they have not halted the continued increase in plastics pollution of the oceans.
Article
The environmental, social and cultural importance of beaches permeates human society, yet the risk of human injury associated with increasing exposure to anthropogenic beach litter remains an unknown. While the impact of marine debris and beach litter on marine and coastal fauna and flora is a widely reported global issue, we investigate the impact on human health in New Zealand. Anthropogenic beach litter is ubiquitous, few beaches remain pristine, which consequently influences tourist choices and potentially negatively interacts with humans. Human impacts are not well-investigated, with no quantitative studies of impact but many studies qualitatively inferring impact. New Zealand has a socialised medical system allowing a quantitative, decadal assessment of medical insurance claims to determine patterns and trends across ecosystems and causes. We demonstrate for the first time that anthropogenic beach litter poses a common and pervasive exposure hazard to all ages, with specific risk posed to young children. The New Zealand system allows these hazards to be investigated to determine the true effects and costs across a nation, providing an evidence base for decision-makers to address this ubiquitous environmental issue.
Article
The prevalence of marine debris in global oceans is negatively impacting the marine environment. In Australia, marine debris has been an increasing concern for sensitive marine environments, such as coral reefs. Citizen science can contribute data to explore patterns of subtidal marine debris loads. This study uses data from Reef Check Australia to describe patterns of debris abundance on reef tourism sites in two Queensland regions, the Great Barrier Reef (GBR) and Southeast Queensland (SEQ). Debris was categorized into three groups, fishing line, fishing net, and general rubbish. Overall, debris abundance across reefs was relatively low (average 0.5–3.3 items per survey (400 m²)), but not absent on remote reefs surveyed in the GBR region. Highest debris loads were recorded in SEQ near cities and high use areas. These results indicate the presence of marine debris on remote and urban reefs, and the applicability of using citizen science to monitor debris abundance.
Article
We describe an approach to environmental monitoring that has been developed to deal with future pulp mills in Australia. We propose decision criteria that balance the chance of missing impacts and the chance of falsely accusing a proponent of environmental damage. Rather than focusing on either Type I or Type II statistical errors, we fix the ratio of the two error rates according to perceived costs of making each error. As monitoring is scaled up or down, risks of both errors rise and fall proportionately, in contrast to more traditional approaches, in which one error rate is fixed. We describe the steps necessary to implement a monitoring program using these criteria. Our emphasis is on guidelines that allow the flexibility to deal with monitoring a range of point source discharges in coastal environments that vary widely.
Article
Mismanaged waste and marine debris have significant detrimental effects on wildlife, public health, and the economy. Container deposit legislation (CDL) is one of the many legislative actions proposed by lawmakers to curb the amount of debris entering the ocean. Beverage containers are consistently among the most commonly littered items, so effective legislation could prove a significant lever to reduce debris inputs to the marine environment. The effectiveness of CDL at reducing the amount of beverage container litter on the coasts of two countries, Australia and the United States, was evaluated by comparing results of debris surveys in states with and without cash incentives for returned beverage containers. The proportion of containers found in coastal debris surveys in states with CDL was approximately 40% lower than in states without CDL. Additionally, CDL states had a higher ratio of lids to bottles, further demonstrating the effectiveness of the incentives in removing bottles from the waste stream. The reduction in beverage containers in the presence of CDL was greater in areas with low socio-economic status, where debris loads are highest. These results provide strong evidence that fewer beverage containers end up as mismanaged coastal waste in states that provide a cash refund for returned beverage containers. Findings are discussed in the context of global governance, social license and opportunities to reduce land-based litter inputs to the ocean.
Article
Baltic amber, adored for its beauty already in Homer's Odyssey (ca. 800 B.C.E), has its material density close to that of wide-spread plastics like polyamide, polystyrene, or acrylic. Migrations of amber stones in the sea and their massive washing ashore have been monitored by Baltic citizens for ages. Based on the collected information, we present the hypothesis on the behaviour of microplastic particles in sea coastal zone. Fresh-to-strong winds generate surface waves, currents and roll-structures, whose joint effect washes ashore from the underwater slope both amber stones and plastics – and carries them back to the sea in a few days. Analysis of underlying hydrophysical processes suggests that sea coastal zone under stormy winds plays a role of a mill for plastics, and negatively buoyant pieces seem to repeatedly migrate between beaches and underwater slopes until they are broken into small enough fragments that can be transported by currents to deeper areas and deposited out of reach of stormy waves. Direct observations on microplastics migrations are urged to prove the hypothesis.
Article
Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.
Article
Microscopic plastic debris, termed "microplastics", are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL(-1)) and cultured algae ([250 μg C L(-1)) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6-12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.
Article
We examined if there is truth to the preconceptions that non-resident workers (including FIFO/DIDO's) detract from communities. We used marine debris to test this, specifically focussing on littering behaviour and evidence of awareness of local environmental programs that focus on marine debris. Littering was most common at recreational areas, then beaches and whilst boating. Twenty-five percent of respondents that admit to littering, reported no associated guilt with their actions. Younger respondents litter more frequently. Thus, non-resident workers litter at the same rate as permanent residents, visitors and tourists in this region, within this study. Few respondents are aware of the environmental programs that operate in their local region. Awareness was influenced by a respondent's residency (non-residents are less aware), age, and level of education. To address this failure we recommend that industries, that use non-resident workers, should develop inductions that expose new workers to the environmental programs in their region.
Article
We describe an approach to environmental monitoring that has been developed to deal with future pulp mills in Australia. We propose decision criteria that balance the chance of missing impacts and the chance of falsely accusing a proponent of environmental damage. Rather than focusing on either Type I or Type II statistical errors, we fix the ratio of the two error rates according to perceived costs of making each error. As monitoring is scaled up or down, risks of both errors rise and fall proportionately, in contrast to more traditional approaches, in which one error rate is fixed. We describe the steps necessary to implement a monitoring program using these criteria. Our emphasis is on guidelines that allow the flexibility to deal with monitoring a range of point source discharges in coastal environments that vary widely.
Article
This study attempts to establish a system for the sequential monitoring of beach litter using webcams placed at the Ookushi beach, Goto Islands, Japan, to establish the temporal variability in the quantities of beach litter every 90 min over a one and a half year period. The time series of the quantities of beach litter, computed by counting pixels with a greater lightness than a threshold value in photographs, shows that litter does not increase monotonically on the beach, but fluctuates mainly on a monthly time scale or less. To investigate what factors influence this variability, the time derivative of the quantity of beach litter is compared with satellite-derived wind speeds. It is found that the beach litter quantities vary largely with winds, but there may be other influencing factors.
Independent review of container deposit legislation in New South Wales; volume II costs and benefits of container deposit legislation in New South Wales (independent review of container deposit legislation in New South Wales
  • S White
  • E Aisbett
  • I Awad
  • K Bubna-Litic
  • F Calvert
  • D Cordell
  • C Hendriks
  • N Lee
  • A O'rourke
  • J Palmer
  • J Robinson
  • K Sarac
  • E Young
White, S., Aisbett, E., Awad, I., Bubna-Litic, K., Calvert, F., Cordell, D., Hendriks, C., Lee, N., O'Rourke, A., Palmer, J., Robinson, J., Sarac, K., Young, E., 2001. Independent review of container deposit legislation in New South Wales; volume II costs and benefits of container deposit legislation in New South Wales (independent review of container deposit legislation in New South Wales). https://opus.lib.uts. edu.au/bitstream/10453/35030/1/whiteetal2001depositsNSWvol2.pdf.