ArticlePDF Available

Studiul asupra sistemului fiabil pentru întreprinderile specializate în uscarea semințelor

Authors:
  • Technical University of Moldova utm.md

Abstract

This paper presents the results of a study conducted on a highly reliable system for agricultural enterprises specialised in drying seeds. The proposed system is an electrical system with a high level of operational reliability and has been designed to carry out research on the identification of solutions for significantly increasing the efficiency of the drying process of various agricultural plant seeds using the suspended layer treatment method. The main results of the study on the use of the system proposed by the authors, both in laboratory and in real conditions in specialized enterprises, highlighted an essential increase of the operational reliability, energy efficiency, process quality, and productivity, as well as cost reduction.
93
STUDIUL ASUPRA SISTEMULUI FIABIL PENTRU ÎNTREPRINDERILE
SPECIALIZATE ÎN USCAREA SEMINȚELOR
Victor POPESCU1*, ORCID: 0000-0002-4634-2255,
Oleg STIOPCA1, ORCID: 0000-0001-8357-5683,
Vitali VIȘANU1, ORCID: 0000-0002-2273-342X,
Dinu VOINESCO1, ORCID: 0000-0001-5004-0068,
Tatiana BALAN1, ORCID: 0000-0002-8897-105X,
Anatol CECAN1, ORCID: 0009-0005-7584-0906,
Tatiana TODIRAȘ1, ORCID: 0009-0004-6695-4808
1Universitatea Tehnică a Moldovei, Republica Moldova
*Corespondență: Victor POPESCU – e-mail: victor.popescu@ie.utm.md
Abstract. This paper presents the results of a study conducted on a highly reliable sys-
tem for agricultural enterprises specialised in drying seeds. The proposed system is
an electrical system with a high level of operational reliability and has been designed
to carry out research on the identication of solutions for signicantly increasing the
efciency of the drying process of various agricultural plant seeds using the suspended
layer treatment method. The main results of the study on the use of the system propo-
sed by the authors, both in laboratory and in real conditions in specialized enterprises,
highlighted an essential increase of the operational reliability, energy efciency, pro-
cess quality, and productivity, as well as cost reduction.
Key words: Electrical system; Reliability level; Energy efciency; Drying process.
Rezumat. În acest articol sunt prezentate rezultatele unui studiu realizat asupra sis-
temului cu abilitate înaltă, destinat întreprinderilor agricole specializate în uscarea
seminţelor. Modelul propus constituie un sistem electric, care are un nivel ridicat de
siguranţă în funcţionare şi a fost conceput pentru realizarea cercetărilor cu privire la
identicarea soluţiilor referitoare la sporirea semnicativă a ecienţei procesului de
uscare a diferitor seminţe de plante agricole, cu aplicarea metodei de tratare în strat
suspendat. Rezultatele principale ale studiului efectuat privind utilizarea sistemului
propus de autori, atât în condiţii de laborator, cât şi în condiţii reale la întreprinderi
specializate, sunt: sporirea abilităţii de funcţionare, a ecienţei energetice, a calităţii
procesului, a productivităţii şi reducerea costurilor.
Cuvinte-cheie: Sistem electric; Nivel de abilitate; Ecienţă energetică; Proces de uscare.
INTRODUCERE
La momentul actual, managementul ecient al complexului agroindustrial poate
 asigurat atât prin perfecţionarea tehnologiilor existente, cât şi prin elaborarea şi im-
plementarea noilor metode de procesare, bazate pe ecienţă energetică înaltă (Paiva
et al., 2020; Jajcevic et al., 2013). Cu toate acestea, efortul de cercetare şi dezvoltare este
absolut necesar pentru a soluţiona o serie de probleme din domeniu şi pentru identi-
carea procedeelor noi de prelucrare tehnologică, îndeosebi pentru produsele agricole
(Ranjbaran et al., 2014; Panzella, et al. 2020; Balan et al., 2022).
DOI: 10.55505/sa.2023.1.10
UDC: 66.047.31.5:663.26
Agricultural Science no. 1 (2023), pp. 93-98
Știința Agricolă ISSN 1857-0003 E-ISSN 2587-3202
Victor POPESCU, Oleg STIOPCA, Vitali VIȘANU, Dinu VOINESCO, Tatiana BALAN, Anatol CECAN, Tatiana TODIRAȘ
94
Trebuie de remarcat faptul procesul de uscare este cel mai des întâlnit pro-
ces în industria produselor agricole, îndeosebi în industria de prelucrare primară a
seminţelor. Reieşind din aceasta, la momentul actual sunt utilizate o serie de metode
de uscare, însă nici una nu este ideală sau perfectă, după cum indică cercetătorii din
domeniu, astfel, ecare din ele avânt dezavantajele sale (Pagotto et al., 2016; Esposito
et al., 2020; Roberts et al., 2008; Popescu et al., 2019; Oliveira et al., 2016).
Este destul de important faptul, că, procesul de uscare trebuie să aibă loc strict
până la atingerea umidităţii optime de păstrare a produsului, ca să frâneze dezvoltarea
microorganismelor pe durata de păstrare (Figiel, 2010; Scram et al., 1993; Askarishahi et
al., 2020, Popescu & Malai, 2019; Kaensup, 1998).
Una dintre problemele principale cu care se confruntă întreprinderile din dome-
niul uscării seminţelor de plante agricole este cea a abilităţii de funcţionare a utila-
jului care asigură procesul tehnologic (Jittanit et al., 2010, Popescu et al., 1993; Tirsu et
al., 2022).
O altă problemă caracteristică proceselor de uscare a seminţelor de plante agrico-
le este durata mare de tratare termică, care în consecinţă, duce la diminuarea indicilor
de calitate a produselor nite (Horabik et al., 2020). Problema dată se acutizează pentru
cazul uscării produselor oleaginoase, care sunt bogate în acizi graşi şi sunt sensibile la
procesele de prelucrare tehnologică (Pagotto & Halog, 2016).
Totodată, în afară de cele menţionate, o altă problemă acută cu care se confruntă
întreprinderile agricole din domeniu, este reducerea consumului de energie în procesul
de uscare a seminţelor (Paiva et al., 2022).
Astfel, pentru creşterea ecienţei procesului de uscare a seminţelor de plante
agricole, a fost elaborat un sistem electric cu abilitate înaltă şi în rezultatul cercetă-
rilor în direcţia identicării soluţiilor de ecientizare a procesului de uscare, au fost
stabilite regimurile optime de tratare tehnologică, în baza procedeului de procesare
termică în strat suspendat.
Aşadar, rezultatele principale obţinute privind aplicarea sistemului elaborat la us-
carea seminţelor de plante agricole sunt: sporirea semnicativă a abilităţii de func-
ţionare şi a vitezei procesului de uscare a seminţelor, reducerea timpului de tratare
termică şi a consumului de energie electrică, creşterea calităţii seminţelor şi reducerea
cheltuielilor de prelucrare.
MATERIALE ȘI METODE
Sistemul, elaborat pentru realizarea studiului experimental cu privire la uscarea
seminţelor de plante agricole, este prezentat în Figura 1.
Acest sistem permite cercetarea procesului de uscare a seminţelor de diverse
plante agricole, atât prin metoda clasică, cât şi prin metoda propusă de autori cu
aplicarea tratării în strat suspendat.
Totodată, sistemul elaborat este suplinit cu mijloace tehnice de automatizare,
care permit atât dirijarea automată a procesului, cât şi monitorizarea riguroasă a para-
metrilor tehnologici.
În baza acestui sistem a fost estimată ecienţa procesului de uscare cu aplicarea
metodei propuse, iar rezultatele au fost comparate cu cele obţinute prin metoda de
uscare clasică.
STUDIUL ASUPRA SISTEMULUI FIABIL PENTRU ÎNTREPRINDERILE SPECIALIZATE ÎN USCAREA SEMINȚELOR
95
Figura 1. Prezentare foto a sistemului elaborat pentru studiul procesului
de uscare a semințelor de plante agricole
REZULTATE ȘI DISCUȚII
În rezultatul cercetării procesului de uscare a seminţelor de plante agricole în baza
sistemului elaborata fost stabilită cinetica de uscare şi a fost comparată ecienţa pro-
cesului de uscare prin metoda propusă, în raport cu procesul de uscare clasic.
Astfel, s-au stabilit pentru ecare metodă curbele reducerii umidităţii şi, reieşind
din seriile de experimente realizate pentru ecare metodă, s-au obţinut gracele vitezei
de uscare.
În aşa mod, s-a conrmat faptul că produsul nit, obţinut în urma procesului de
uscare tradiţională, posedă o neuniformitate a uscării pe întregul volum, ceea ce inu-
enţează negativ calităţile organoleptice, iar uscarea cu aplicarea sistemului elaborat
permite înlăturarea acestui neajuns.
Totodată, procesul tradiţional de uscare a seminţelor de plante agricole, are o
viteză mai mică şi necesită un timp mai mare pentru prelucrare, pe când procedeul pro-
pus de prelucrare oferă posibilitatea de a reduce semnicativ durata uscării.
Aşadar, au fost examinate cinci regimuri de uscare a diferitor tipuri de seminţe,
atât prin metoda clasică, cât şi prin metoda propusă, şi anume: 200W, 300W, 450W,
600W, 750W. Respectiv, ecare regim având o durată de 144 de minute, 114 minute, 84
de minute, 59 de minute, 39 de minute.
În gura 2, ca exemplu, sunt reprezentate grac curbele de uscare prin metoda
clasică, pentru ecare regim tehnologic examinat, pentru un tip de produs sămânţos
selectat arbitrar pentru exemplicare.
Victor POPESCU, Oleg STIOPCA, Vitali VIȘANU, Dinu VOINESCO, Tatiana BALAN, Anatol CECAN, Tatiana TODIRAȘ
96
Figura 2. Curbele vitezei de uscare a semințelor prin metoda clasică
Astfel s-a demonstrat viteza maximă de uscare prin această metodă, pentru
regimul cel mai intens cu puterea de 750W, este de 2 %/min.
În gura 3 se reprezintă curbele reducerii umidităţii în timp la uscarea prin meto-
da propusă, pentru acelaşi tip de produs sămânţos selectat pentru exemplicare şi, la
fel, pentru aceleaşi cinci regimuri de uscare examinate: 200W, 300W, 450W, 600W, 750W.
Respectiv, ecare regim având o durată de 99 de minute, 74 de minute, 49 de minute, 39
de minute, 29 de minute.
Figura 3. Curbele vitezei de uscare a semințelor prin metoda propusă
Aşadar, rezultatele obţinute au demonstrat că, viteza maximă de uscare prin aceas-
tă metodă, pentru regimul cel mai intens cu puterea de 750W, este de 2,5 %/min.
Totodată, s-a stabilit că regimul optim de tratare tehnologică este de 450W, deoa-
rece pentru regimurile cu intensitate mai mică, este necesar un timp mai mare de pre-
lucrare, ceea ce afectează calitatea seminţelor, din cauza oxidării substanţelor sensibile
pe duratele mai mari de procesare, iar pentru regimurile cu intensitate mai mare de
tratare, se formează suri în stratul supercial al seminţelor, ceea ce intensică şi mai
mult procesul de oxidare.
Examinând rezultatele obţinute, observăm la uscarea prin metoda propusă,
pentru regimul optim de tratare tehnologică, durata de uscare este mai redusă decât la
metoda clasică cu circa 41,4%.
STUDIUL ASUPRA SISTEMULUI FIABIL PENTRU ÎNTREPRINDERILE SPECIALIZATE ÎN USCAREA SEMINȚELOR
97
Trebuie de evidenţiat faptul că la uscarea cu aplicarea sistemului elaborat consu-
mul de energie electrică este mai redus decât la uscarea prin metoda clasică cu circa
40,9%, iar pe parcursul funcţionării în perioada de 5 ani, atât pe durata realizării cer-
cetărilor de laborator, cât şi în condiţii reale, la întreprinderi specializate, sistemul a
demonstrat o abilitate sporită, fără nici un refuz în procesul de funcţionare.
Mai mult decât atât, cercetările au conrmat metoda propusă permite asigu-
rarea păstrării calităţii seminţelor bogate în uleiuri vegetale şi pot ulterior utilizate
ecient în industria alimentară, medicina tradiţională, cosmetologie, farmaceutică etc.
CONCLUZII
Studiul realizat a demonstrat că aplicarea sistemului elaborat la uscarea seminţe-
lor de diverse plante agricole permite creşterea vitezei procesului pentru ecare regim
de tratare examinat.
În baza rezultatelor cercetărilor efectuate s-a constatat că sistemul propus oferă
posibilitatea de a reduce durata de tratare termică cu circa 41,4%, asigurând astfel o
creştere a productivităţii şi a calităţii seminţelor procesate.
Mai mult ca atât, sistemul elaborat are o abilitate înaltă şi un consum mai redus
de energie electrică cu circa 40,9%, fapt ce permite micşorarea semnicativă a cheltu-
ielilor de exploatare a sistemului în procesul de uscare a seminţelor.
REFERINȚE BIBLIOGRAFICE
1. ASKARISHAHI, M., MAUS, M., SCHRÖDER, D., SLADE, D.,, MARTINETZ, M., JAJCEVIC, D. (2020). Mecha-
nistic modelling of uid bed granulation. In: International Journal of Pharmaceutics, vol. 573, pp.
8837-8845. http://doi.org/10.1016/j.ijpharm.2019.118837
2. BALAN, Mihail, ȚISLINSCAIA, Natalia, VIŞANU, Vitali, MELENCIUC, Mihail, POPESCU, Victor (2022). De-
vice for uniform air distribution in a tunnel dryer. In: Modern Technologies, in the Food Industry
– 2022: proceedings of the International Conference, 20-22 October 2022, Chisinau, pp. 17-19. ISBN
978-9975-45-851-1.
3. ESPOSITO, B., SESSA, M., SICA, D., MALANDRINO, O. (2020). Towards Circular Economy in the Agri-Fo-
od Sector: A Systematic Literature Review. In: Sustainability, vol. 12 (18), pp. 95-107. http://doi.
org/10.3390/su12187401
4. FIGIEL, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective
and vacuum-microwave methods. In: Journal of Food Engineering, nr. 98, pp. 461-470.
5. JAJCEVIC, D., SIEGMANN, E., RADEKE, C., KHINAST, J. (2013). Large-scale CFD–DEM simulations of
uidized granular systems. In: Chemical Engineering Science, vol. 98, pp. 298-310. http://doi.or-
g/10.1016/j.ces.2013.05.014
6. JITTANIT, W., SRZEDNICKI, G., DRISCOLL, R. (2010). Seed Drying in Fluidized and Spouted Bed Dryers.
In: Drying Technology, vol. 28 (10), pp. 1213-1219. http://doi.org/10.1080/07373937.2010.483048
7. HORABIK, J., MOLENDA, M. (2016). Parameters and contact models for DEM simulations of agricul-
tural granular materials: A review. In: Biosystems Engineering, vol. 147(2), pp. 206-225. http://doi.
org/10.1016/j.biosystemseng.2016.02.017
8. KAENSUP, W., WONGWISES, S., CHUTIMA, S. (1998). Drytng of pepper seeds using a combin-
ed microwave/uidized bed dryer. In: Drying Technology, vol. 16 (3-5), pp. 853-862. http://doi.
org/10.1080/07373939808917440
9. OLIVEIRA, S., BRANDÃO, T., SILVA, C. (2016). Inuence of drying processes and pretreatments on nu-
tritional and bioactive characteristics of dried vegetables: a review. In: Food Engineering Reviews,
vol. 8 (2), pp. 134-163.
10. PAIVA, T., RIBEIRO, M., COUTINHO, P. (2020). R&D Collaboration, Competitiveness Development, and
Open Innovation in R&D. In: Journal of Open Innovation: Technology, Market, and Complexity, vol.
6, nr. 4, pp. 416–424. http://doi.org/10.3390/joitmc6040116
Victor POPESCU, Oleg STIOPCA, Vitali VIȘANU, Dinu VOINESCO, Tatiana BALAN, Anatol CECAN, Tatiana TODIRAȘ
98
11. PANZELLA, L., MOCCIA, F., NASTI, R., MARZORATI, S., VEROTTA, L., NAPOLITANO, A. (2020). Bioactive
Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Me-
thodologies. In: Frontiers in Nutrition, vol. 7, pp. 60-68. http://doi.org/10.3389/fnut.2020.00060
12. PAGOTTO, M., HALOG, A. (2016). Towards a Circular Economy in Australian Agri-food Industry: an
application of input-output oriented approaches for analyzing resource efciency and competiti-
veness potential. In: Journal of Industrial Ecology, vol. 20, nr. 5, pp. 1176-1186. http://doi.org/10.1111/
jiec.12373
13. POPESCU, Victor, MALAI, Leonid (2019). Estimarea parametrilor sistemului abil pentru prelucrarea
produselor agricole. In: Ştiinţa agricolă, nr. 2, pp. 109-113. ISSN 1857-0003.
14. POPESCU, V., MALAI, L., ROTARI, V., VOLCONOVICI, O. (2019). Reliable system for processing agricultu-
ral products. In: National Interagency Scientic and Technical Collection of Works - Design, produc-
tion and exploitation of agricultural machines, Issue 49, pp. 200-204. (In Russian)
15. POPESCU, V., POPA, A. BANTAŞ, R. (2013). Reliability analysis of systems for distribution of electricity.
In: Acta Electrotehnica, vol. 54 (5), pp. 387-389.
16. POPESCU, V., TIRSU, M., TSISLINSCAIA, N., VISHANU, V., BALAN, M., MELENCHUK, M. (2022). Increasing
the efciency of the drying process of fruits treated using SHF method. In: Problems of the Regional
Energetics, n. 3(55), pp. 130-139.
17. RANJBARAN, M., EMADI, B., ZARE, D. (2014). Simulation of Deep-Bed Paddy Drying Process and Per-
formance. In: Drying Technology, vol. 32(8), pp. 919-934. http://doi.org/10.1080/07373937.2013.875561
18. ROBERTS, J., KIDD, D., PADILLA-ZAKOUR, O. (2008). Drying kinetics of grape seeds. In: Journal of Food
Engineering, vol. 89 (4), pp. 460-465. http://doi.org/10.1016/j.jfoodeng.2008.05.030
19. SCRAM, J., HALL, D., STUCKEY, D. (1993). Bioethanol from grapes in the European community. In: Bio-
mass and Bioenergy, vol. 5 (5), pp. 347-358. http://doi.org/10.1016/0961-9534(93)90014-U
20. TÎRŞU, Mihai, POPESCU, Victor, BALAN, Mihail, KURDOV, Igor, BALAN, Tatiana, ROTARI, Viorel (2022).
Fluidized Bed Seed Dewatering System. In: Problems of the Regional Energetics, n. 2 (54), p. 114-122.
http://doi.org/10.52254/1857-0070.2022.2-54.10
21. TSUJI, Y., KAWAGUCHI, T., TANAKA, T. (1993). Discrete particle simulation of two-dimensional uidi-
zed bed. In: Powder Technology, vol. 77(1), pp. 79-87. http://doi.org/10.1016/0032-5910(93)85010-7
Conict of interests
The authors declare that they have no conict of interests.
Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the nal
manuscript.
Paper history
Received 10 May 2023; Accepted 14 June 2023
© 2023 by the author(s). This is an open access article distributed under the Creative Commons Attribu-
tion License (CC BY 4.0).
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The aim of this work is to increase the efficiency of the fruit drying process with the SHF treatment in a uniform rectilinear movement. In order to achieve the purpose of the work, an experimental installation for fruit drying was developed with the application of the SHF treatment in the uniform rectilinear movement, on the basis of which the research was carried out. The efficiency of the drying process with the application of the experimental installation was estimated for 3 types of fruits: peaches, pears and apples. These types of fruit have been selected for the study because their drying is currently problematic, and they are of great interest to consumers and to processing and marketing businesses. The main results obtained regarding the application of the plant developed for fruit drying are: the drying process speed increase, the heat processing time decrease, the electricity consumption reduction, the dried fruit quality improvement and the processing costs reduction. Moreover, the installation is simple in terms of construction, low cost and easy use. At the same time, the installation allows the automation of the process, and during the research it demonstrated a high level of safety. The significance of the results obtained lies in solving a number of current problems faced by primary agri-food processing companies, by streamlining the process of drying fruit in rounds, mainly by reducing the technological processing costs and improving the quality of dried fruit for storage, marketing and use in nutrition.
Article
Full-text available
The competitiveness of the agro-industrial sector depends not only on its specific performance but also on the character and degree of the innovation performance, vital to added value development and differentiation in the biobased value-chain. This work intends to show, how through research and development (R&D), collaboration is possible to improve agri-food companies’ competitiveness, helping them to integrate biotechnology and offer innovative products. The method used to support the R&D collaboration model developed involves a diagnosis of biotechnological tools use, for developing appropriate solutions from food safety to food quality, improving health, and achieving new ingredients and/or food products within an agri-food Association partners survey results were integrated into the study of R&D collaboration practice. Results show that the companies (wine culture, fruticulture, and olive culture subsectors) inquired do not develop biotechnology research. They were all micro-business with a low volume of commercial billing, and only 27.3% claimed to have developed research activities in partnership with external research centres, but were not associated with higher education institutions. The barriers to the implementation of biotechnology techniques considered more relevant by respondents were access to capital and specialized human resources, which led to reinforcing the R&D collaboration strategy design.
Article
Full-text available
Over the last decade, the unsustainability of the current economic model, based on the so-called take-make-dispose paradigm, has emerged. In particular, the agro-food sector (AFS) has been severely affected by such problems as resource scarcity and food loss and waste generation along the supply chain. In addition, climate change and biodiversity loss have helped to define an imperative paradigm shift towards a circular economy. Recently, with the publication of Sustainable Development Goals (SDGs), the scientific research examining the adoption of circular economy (CE) models and tools has increased. In this context, the importance of shifting towards a circular economy has become urgent. In this paper, a systematic literature review (SLR) was performed to investigate the state-of-the-art research related to the adoption of circular economy models and tools along the agro-food supply chain. Furthermore, this review highlights that, due to the complexity of the agri-food supply chain, it is almost utopian to define a unique circular economy model for the whole sector. In addition, it emerges that future researches should be concentrated on the integration of different stages of the supply chain with circular economy models and tools in order to create a closed-loop agri-food system.
Article
Full-text available
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Article
Full-text available
The discrete element method has been in development since 1970s and has recently found practical application in simulations of granular assemblies to investigate natural phenomena as well as a design tool for technology. Agriculture and food engineering harvests, stores, handles or processes an enormous amount of particulate material of biological origin. Unlike mineral or plastic granular materials, these materials are usually hygroscopic and change their mechanical properties through the absorption of moisture. Information regarding material properties of granular materials of biological origin is insufficient, uncertain and dispersed across various journals. This review presents a collection of material properties that are useful for discrete element method, DEM, simulations gathered from contributions of various laboratories around the world. Peculiar behaviour of materials of biological origin requires not only a specific approach in determining the parameters but also a specific setup of simulations. This article presents findings that appear efficient at the current stage of development of granular mechanics and DEM simulations. Emerging trends in the evolution of DEM are also presented.
Article
Full-text available
Drying has been applied to vegetables in order to preserve, store and transport these food products. However, drying implies not only physical changes, easily detectable by the consumer through visual assessment, but also chemical modifications. These are not always visible, but are responsible for alterations in colour, flavour and nutritional value, which compromise the overall quality of the final product. The main chemical changes associated with drying are related to the degradation of phytochemicals, such as vitamins, antioxidants, minerals, pigments and other bioactive compounds sensitive to heat, light and oxygen. Moreover, nutrient losses are inevitably associated with leaching as a result of the water removal from the vegetable during the drying process. In order to prevent or reduce nutrient losses and thus improve the quality of dried products, pretreatments are often applied. In this review, an overview of the procedures developed for dehydration of vegetables applying heat by convection, conduction or radiation is presented. The influence of pretreatments on nutritional and bioactive characteristics of dried vegetables is discussed. Blanching with steam, water or chemical solutions is the most commonly used, but power ultrasound, ohmic blanching, osmotic and edible coatings pretreatments have also been reported. The influence of the drying processes and conditions on nutritional contents and bioactive characteristics is also presented.
Article
Full-text available
Computational Fluid Dynamics (CFD) was applied threedimensionally to simulate the drying behavior of paddy in a deep-bed dryer. The commercial CFD software Fluent 6.3.26 was used. The deep-bed paddy drying process and performance were studied by incorporating user-defined function (UDF) in Fluent written in C language. The predicted drying parameters were compared with experimental data of deep-bed drying of paddy. The values of mean relative deviation (MRD), standard error of prediction (SEP), and maximum error of prediction (MEP) for prediction of grain moisture content, air temperature, and absolute humidity were less than 6, 10, and 9%; 0.33% (d.b), 1.24�C, and 0.06% (kg/kg of dry air); and 2.25% (d.b), 6.8�C, and 0.37% (kg/kg of dry air), respectively, which reflect reasonable accuracy. Moreover, the energetic and exergetic performance of deep-bed paddy drying were simulated and analyzed. The effects of inlet air temperature and mass flow rate on the performance parameters were investigated. It was shown that the application of higher levels of inlet air temperature and lower mass flow rates yielded higher exergy efficiencies of deep-bed paddy drying.
Article
The food industry in Australia (agriculture and manufacturing) plays a fundamental role in contributing to socioeconomic sectors nationally. However, alongside the benefits, the industry also produces environmental burdens associated with the production of food. Sectorally, agriculture is the largest consumer of water. Additionally, land degradation, greenhouse gas emissions, energy consumption, and waste generation are considered the main environmental impacts caused by the industry. The research project aims to evaluate the eco-efficiency performance of various subsectors in the Australian agri-food systems through the use of input-output-oriented approaches of data envelopment analysis and material flow analysis. This helps in establishing environmental and economic indicators for the industry. The results have shown inefficiencies during the life cycle of food production in Australia. Following the principles of industrial ecology, the study recommends the implementation of sustainable processes to increase efficiency, diminish undesirable outputs, and decrease the use of nonrenewable inputs within the production cycle. Broadly, the research outcomes are useful to inform decision makers about the advantages of moving from a traditional linear system to a circular production system, where a sustainable and efficient circular economy could be created in the Australian food industry.
Article
The combination of Computational Fluid Dynamics (CFD) and Discrete Element Model (DEM) is a powerful tool for studying fluidized particulate systems and granular flows. In DEM, the individual interaction forces between particles are treated on a particle–particle pair basis, and therefore, this method is computational expensive. In addition, the CFD-calculation of the fluid flow increases the computational effort. Thus, current CFD–DEM simulations are limited to systems with particle numbers not exceeding 105. In order to simulate realistic systems, the recently available Compute Unified Device Architecture (CUDA) technology can be applied, which can perform massively-parallel DEM-simulations with several million particles on a single desk-side Graphics Processing Unit (GPU). The objective of this work is to present a new hybrid approach to solve CFD–DEM problems in gas–solid fluidized beds systems applying an efficient coupling method suitable for large-scale simulations. We are using the CUDA technology for the particle simulation and introducing a coupling methodology with a commercial CFD-code. The coupling method between a CFD-code, running on the CPU and our CUDA-based DEM-code running on the GPU, is introduced and discussed. The numerical results are compared to the CFD–DEM and the experimental results of Van Buijtenen et al. (2011). A good agreement was achieved. Finally, fluidized system simulations with up to 25 million particles are presented, which is an unprecented number.
Article
The drying rates curves in terms of moisture content versus elapsed drying time for white pepper seeds were obtained experimentally using a fluidized bed and a combined microwave/fluidized bed. The combined microwave/fluidized bed employs a microwave field to assist convective drying. For both procedures, the drying rates were found to be dependent on the inlet air temperature and velocity. Significantly improved drying rates were achieved utilized a combined microwave/fluidized bed drying compared with a conventional fluidized bed.