Article

Simple Strategies to Get Your Clients and Athletes Moving Better Without Sacrificing Fitness

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Apply It! By reading this article, you will learn how to: • Challenge your clients' stability and mobility by incorporating exercises with offset positions and/or offset loading. • Improve your clients' ability to rotate by using exercises with alternating grips and/or alternating repetitions.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Although connections between cognitive deficits and age-associated brain differences have been elucidated, relationships with motor performance are less well understood. Here, we broadly review age-related brain differences and motor deficits in older adults in addition to cognition-action theories. Age-related atrophy of the motor cortical regions and corpus callosum may precipitate or coincide with motor declines such as balance and gait deficits, coordination deficits, and movement slowing. Correspondingly, degeneration of neurotransmitter systems-primarily the dopaminergic system-may contribute to age-related gross and fine motor declines, as well as to higher cognitive deficits. In general, older adults exhibit involvement of more widespread brain regions for motor control than young adults, particularly the prefrontal cortex and basal ganglia networks. Unfortunately these same regions are the most vulnerable to age-related effects, resulting in an imbalance of "supply and demand". Existing exercise, pharmaceutical, and motor training interventions may ameliorate motor deficits in older adults.
Article
Full-text available
The strength and stability of the knee plays an integral role in athletics and activities of daily living. A better understanding of knee joint biomechanics while performing variations of the squat would be useful in rehabilitation and exercise prescription. We quantified and compared tibiofemoral joint kinetics as well as muscle activity while executing front and back squats. Because of the inherent change in the position of the center of mass of the bar between the front and back squat lifts, we hypothesized that the back squat would result in increased loads on the knee joint and that the front squat would result in increased knee extensor and decreased back extensor muscle activity. A crossover study design was used. To assess the net force and torque placed on the knee and muscle activation levels, a combination of video and force data, as well as surface electromyographic data, were collected from 15 healthy trained individuals. The back squat resulted in significantly higher compressive forces and knee extensor moments than the front squat. Shear forces at the knee were small in magnitude, posteriorly directed, and did not vary between the squat variations. Although bar position did not influence muscle activity, muscle activation during the ascending phase was significantly greater than during the descending phase. The front squat was as effective as the back squat in terms of overall muscle recruitment, with significantly less compressive forces and extensor moments. The results suggest that front squats may be advantageous compared with back squats for individuals with knee problems such as meniscus tears, and for long-term joint health.
Article
Full-text available
The loss of muscle mass is considered to be a major determinant of strength loss in aging. However, large-scale longitudinal studies examining the association between the loss of mass and strength in older adults are lacking. Three-year changes in muscle mass and strength were determined in 1880 older adults in the Health, Aging and Body Composition Study. Knee extensor strength was measured by isokinetic dynamometry. Whole body and appendicular lean and fat mass were assessed by dual-energy x-ray absorptiometry and computed tomography. Both men and women lost strength, with men losing almost twice as much strength as women. Blacks lost about 28% more strength than did whites. Annualized rates of leg strength decline (3.4% in white men, 4.1% in black men, 2.6% in white women, and 3.0% in black women) were about three times greater than the rates of loss of leg lean mass ( approximately 1% per year). The loss of lean mass, as well as higher baseline strength, lower baseline leg lean mass, and older age, was independently associated with strength decline in both men and women. However, gain of lean mass was not accompanied by strength maintenance or gain (ss coefficients; men, -0.48 +/- 4.61, p =.92, women, -1.68 +/- 3.57, p =.64). Although the loss of muscle mass is associated with the decline in strength in older adults, this strength decline is much more rapid than the concomitant loss of muscle mass, suggesting a decline in muscle quality. Moreover, maintaining or gaining muscle mass does not prevent aging-associated declines in muscle strength.
Article
Fragala, MS, Cadore, EL, Dorgo, S, Izquierdo, M, Kraemer, WJ, Peterson, MD, and Ryan, ED. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res XX(X): 000-000, 2019-Aging, even in the absence of chronic disease, is associated with a variety of biological changes that can contribute to decreases in skeletal muscle mass, strength, and function. Such losses decrease physiologic resilience and increase vulnerability to catastrophic events. As such, strategies for both prevention and treatment are necessary for the health and well-being of older adults. The purpose of this Position Statement is to provide an overview of the current and relevant literature and provide evidence-based recommendations for resistance training for older adults. As presented in this Position Statement, current research has demonstrated that countering muscle disuse through resistance training is a powerful intervention to combat the loss of muscle strength and muscle mass, physiological vulnerability, and their debilitating consequences on physical functioning, mobility, independence, chronic disease management, psychological well-being, quality of life, and healthy life expectancy. This Position Statement provides evidence to support recommendations for successful resistance training in older adults related to 4 parts: (a) program design variables, (b) physiological adaptations, (c) functional benefits, and (d) considerations for frailty, sarcopenia, and other chronic conditions. The goal of this Position Statement is to a) help foster a more unified and holistic approach to resistance training for older adults, b) promote the health and functional benefits of resistance training for older adults, and c) prevent or minimize fears and other barriers to implementation of resistance training programs for older adults.
Article
Regular participation in resistance training is important for older people to maintain their health and independence, yet participation rates are low. The study aimed to identify motivators and barriers to older people participating in resistance training. A systematic review was conducted including quantitative, qualitative and mixed-method studies. Searches generated 15,920 citations from six databases, with 14 studies (n=1,937 participants) included. In total, 92 motivators and 24 barriers were identified. Motivators specific to participating in resistance training included preventing deterioration (disability), reducing risk of falls, building (toning) muscles, feeling more alert and better concentration. Looking too muscular and thinking participation increased the risk of having a heart attack, stroke or death, despite the minimal likelihood of these occurring, were barriers. The analysis indicates that increasing participation in resistance training among older people should focus on the specific benefits valued by older people and the dissemination of accurate information to counter misperceptions.
Article
The dorsal muscles of the lower torso and extremities have often been denoted the 'posterior chain.' These muscles are used to support the thoracic and lumbar spine as well as peripheral joints including the hip, knee, and ankle on the dorsal aspect of the body. This study investigated relative muscle activity of the hamstring group and selected surrounding musculature during the leg curl, good morning, glute-ham raise, and Romanian deadlift (RDL). Twelve healthy, weight trained men performed duplicate trials of single repetitions at 85% 1RM for each lift in random order, during which surface electromyography and joint angle data were obtained. Repeated measures analysis of variance (RMANOVA) across the four exercises was performed to compare activity from the erector spinae (ES), gluteus medius (GMed), semitendinosus (ST), biceps femoris (BF), and medial gastrocnemius (MGas). Significant differences (p<0.05) were noted in eccentric muscle activity between exercise for the MGas (p<0.027), ST (p<0.001), BF (p<0.001), and ES (p=0.032), and in concentric muscle activity for the ES (p<0.001), BF (p=0.010), ST (p=0.009), MGas (p<0.001), and the GMed (p=0.018). Bonferroni post hoc analysis revealed significant pairwise differences during eccentric actions for the BF, ST, and MGas. Post hoc analysis also revealed significant pairwise differences during concentric actions for the ES, BF, ST, MGas, and GMed. Each of these showed effect sizes that are large or greater. The main findings of this investigation are that the ST is substantially more active than the BF among all exercises, and hamstring activity was maximized in the RDL and glute-ham raise. Therefore, athletes and coaches who seek to maximize involvement of the hamstring musculature should consider focusing on the glute-ham raise and RDL.
Article
To analyze the effects of a water-based exercise program on peak torque (PT) and rate of torque development (RTD) during maximal voluntary ballistic isometric contractions of the lower limb muscles and the performance of a number of functional tests in the elderly. Thirty-seven elderly were randomly assigned to water-based training (3 d/wk for 12 wk) or a control group. Extensor and flexor PT and RTD of the ankle, knee, and hip joints and functional tests were evaluated before and after training. PT increased after training for the hip flexors (18%) and extensors (40%) and the plantar-flexor (42%) muscles in the water-based group. RTD increased after training for the hip-extensor (10%), knee-extensor (11%), and ankle plantar-flexor (27%) muscles in the water-based group. Functional tests also improved after training in the water-based group (p < .05). The water-based program improved PT and RTD and functional performance in the elderly.