Article

Light-Induced Orthogonal Fragmentation of Crosslinked Peptides

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Crosslinking mass spectrometry provides pivotal information on the structure and interaction of proteins. MS-cleavable crosslinkers are regarded as a cornerstone for the analysis of complex mixtures. Yet they fragment under similar conditions as peptides, leading to mixed fragmentation spectra of the crosslinker and peptide. This hampers selecting individual peptides for their independent identification. Here, we introduce orthogonal cleavage using ultraviolet photodissociation (UVPD) to increase crosslinker over peptide fragmentation. We designed and synthesized a crosslinker that can be cleaved at 213 nm in a commercial mass spectrometer configuration. In an analysis of crosslinked Escherichia coli lysate, the crosslinker-to-peptide fragment intensity ratio increases from nearly 1 for a conventionally cleavable crosslinker to 5 for the UVPD-cleavable crosslinker. This largely increased the sensitivity of selecting the individual peptides for MS3, even more so with an improved doublet detection algorithm. Data are available via ProteomeXchange with identifier PXD040267.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... However, an excess of cleavage sites can reduce the identification rate, as observed with DiSPASO in our study. Consequently, one of the two signal doublets resulting from crosslinker cleavage may be absent, possibly due to further fragmentation or decreased signal intensity caused by an excess of fragment species in the spectra 10, 35,36 . In contrast to the anticipated cleavage pattern, our findings reveal that DiSPASO exhibits unexpected additional cleavage sites beyond those expected for DSBSO, resulting in the formation of extra fragments. ...
Preprint
Full-text available
Cross-linking mass spectrometry (XL-MS) is a powerful technology that recently emerged as an essential complementary tool for elucidating protein structures and mapping interactions within a protein network. Crosslinkers which are amenable to post-linking backbone cleavage simplify peptide identification, aid in 3D structure determination and enable system-wide studies of protein-protein interactions (PPIs) in cellular environments. However, state-of-the-art cleavable linkers are fraught with practical limitations, including incomplete and harsh fragmentation operations. We herein introduce DiSPASO as a lysine-selective, MS-cleavable cross-linker with an alkynyl handle for affinity enrichment. DiSPASO was designed and developed for efficient cell membrane permeability and cross-linking while securing low cellular perturbation. We tested DiSPASO employing three different copper-based enrichment strategies using model systems with increasing complexity (Cas9-Halo, purified ribosomes, live cells). Fluorescence microscopy in-cell cross-linking experiments revealed a rapid uptake of DiSPASO into HEK 293 cells within 5 minutes. While DiSPASO represents progress in cellular PPI analysis, its limitations require a careful strategy, highlighting the complexity of developing effective XL-MS tools and the importance of continuous innovation in accurately mapping PPI networks within dynamic cellular environments. Graphical Abstract
Preprint
Full-text available
Crosslinking MS is currently transitioning from a routine tool in structural biology to enabling structural systems biology. MS-cleavable crosslinkers could substantially reduce the associated search space expansion by allowing an MS3-based approach for identifying crosslinked peptides. However, MS2-based approaches currently outperform approaches utilising MS3. We show here that MS3-trigger sensitivity and specificity were hampered algorithmically. Our four-step MS3-trigger algorithm greatly outperformed currently employed methods and comes close to reaching the theoretical limit.
Article
Full-text available
Cross-linking mass spectrometry has matured to a frequently used tool for the investigation of protein structures as well as interactome studies up to a system-wide level. The growing community generated a broad spectrum of applications, linker types, acquisition strategies and specialized data analysis tools, which makes it challenging to decide for an appropriate analysis workflow. Here, we report a large and flexible synthetic peptide library as reliable instrument to benchmark crosslink workflows. Additionally, we provide a tool, IMP-X-FDR, that calculates the real, experimentally validated, FDR, compares results across search engine platforms and analyses crosslink properties in an automated manner. We apply the library with 6 commonly used linker reagents and analyse the data with 6 established search engines. We thereby show that the correct algorithm and search setting choice is highly important to improve identification rate and reliability. We reach identification rates of up to ~70 % of the theoretical maximum (i.e. 700 unique lysine-lysine cross-links) while maintaining a real false-discovery-rate of <3 % at cross-link level with high reproducibility, representatively showing that our test system delivers valuable and statistically solid results.
Article
Full-text available
Proteome-wide crosslinking mass spectrometry studies have coincided with the advent of mass spectrometry (MS)-cleavable crosslinkers that can reveal the individual masses of the two crosslinked peptides. However, recently, such studies have also been published with noncleavable crosslinkers, suggesting that MS-cleavability is not essential. We therefore examined in detail the advantages and disadvantages of using the commonly used MS-cleavable crosslinker, disuccinimidyl sulfoxide (DSSO). Indeed, DSSO gave rise to signature peptide fragments with a distinct mass difference (doublet) for nearly all identified crosslinked peptides. Surprisingly, we could show that it was not these peptide masses that proved the main advantage of MS cleavability of the crosslinker, but improved peptide backbone fragmentation which reduces the ambiguity of peptide identifications. This also holds true for another commonly used MS-cleavable crosslinker, DSBU. We show furthermore that the more intricate MS3-based data acquisition approaches lack sensitivity and specificity, causing them to be outperformed by the simpler and faster stepped higher-energy collisional dissociation (HCD) method. This understanding will guide future developments and applications of proteome-wide crosslinking mass spectrometry.
Article
Full-text available
The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world's largest data repository of mass spectrometry-based proteomics data. PRIDE is one of the founding members of the global ProteomeXchange (PX) consortium and an ELIXIR core data resource. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2019. The number of submitted datasets to PRIDE Archive (the archival component of PRIDE) has reached on average around 500 datasets per month during 2021. In addition to continuous improvements in PRIDE Archive data pipelines and infrastructure, the PRIDE Spectra Archive has been developed to provide direct access to the submitted mass spectra using Universal Spectrum Identifiers. As a key point, the file format MAGE-TAB for proteomics has been developed to enable the improvement of sample metadata annotation. Additionally, the resource PRIDE Peptidome provides access to aggregated peptide/protein evidences across PRIDE Archive. Furthermore, we will describe how PRIDE has increased its efforts to reuse and disseminate high-quality proteomics data into other added-value resources such as UniProt, Ensembl and Expression Atlas.
Article
Full-text available
Protein-protein interactions govern most cellular pathways and processes, and multiple technologies have emerged to systematically map them. Assessing the error of interaction networks has been a challenge. Crosslinking mass spectrometry is currently widening its scope from structural analyses of purified multi-protein complexes towards systems-wide analyses of protein-protein interactions (PPIs). Using a carefully controlled large-scale analysis of Escherichia coli cell lysate, we demonstrate that false-discovery rates (FDR) for PPIs identified by crosslinking mass spectrometry can be reliably estimated. We present an interaction network comprising 590 PPIs at 1% decoy-based PPI-FDR. The structural information included in this network localises the binding site of the hitherto uncharacterised protein YacL to near the DNA exit tunnel on the RNA polymerase.
Article
Full-text available
Cross linking mass spectrometry (XL-MS) has matured into a potent tool to identify protein–protein interactions or to uncover protein structures in living cells, tissues, or organelles. The unique ability to investigate the interplay of proteins within their native environment delivers valuable complementary information to other advanced structural biology techniques. This Review gives a comprehensive overview of the current possible applications as well as the remaining limitations of the technique, focusing on cross-linking in highly complex biological systems like cells, organelles, or tissues. Thanks to the commercial availability of most reagents and advances in user-friendly data analysis, validation, and visualization tools, studies using XL-MS can, in theory, now also be utilized by nonexpert laboratories.
Article
Full-text available
We analyzed the backbone fragmentation behavior of tryptic peptides of a four protein mixture and of E. coli lysate subjected to Ultraviolet Photodissociation (UVPD) at 213 nm on a commercially available UVPD-equipped tribrid mass spectrometer. We obtained 15,178 unique high-confidence peptide UVPD spectrum matches by re-cording a reference beam-type collision-induced dissociation (HCD) spectrum of each precursor, ensuring our investigation includes a broad selection of peptides, including those that fragmented poorly by UVPD. Type a, b and y ions were most prominent in UVPD spectra and median sequence coverage ranged from 5.8% (at 5 ms laser excitation time) to 45.0% (at 100 ms). Overall sequence fragment intensity remained relatively low (median: 0.4% (5 ms) to 16.8% (100 ms) of total intensity) and remaining precursor intensity high. Sequence coverage and sequence fragment intensity ratio correlated with precursor charge density, suggesting that UVPD at 213 nm may suffer from newly formed fragments sticking together due to non-covalent interactions. UVPD fragmentation efficiency therefore might benefit from supplemental activation, as was shown for ETD. Aromatic amino acids, most prominently tryptophan, facilitated UVPD. This points at aromatic tags as possible enhancers of UVPD. Data are available via ProteomeXchange with identifier PXD018176 and on spectrumview-er.org/db/UVPD_213nm_trypPep.
Article
Full-text available
Synaptic transmission is the predominant form of communication in the brain. It requires functionally specialized molecular machineries constituted by thousands of interacting synaptic proteins. Here, we made use of recent advances in cross-linking mass spectrometry (XL-MS) in combination with biochemical and computational approaches to reveal the architecture and assembly of synaptic protein complexes from mouse brain hippocampus and cerebellum. We obtained 11,999 unique lysine-lysine cross-links, comprising connections within and between 2362 proteins. This extensive collection was the basis to identify novel protein partners, to model protein conformational dynamics, and to delineate within and between protein interactions of main synaptic constituents, such as Camk2, the AMPA-type glutamate receptor, and associated proteins. Using XL-MS, we generated a protein interaction resource that we made easily accessible via a web-based platform ( http://xlink.cncr.nl ) to provide new entries into exploration of all protein interactions identified.
Article
Full-text available
Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most commonly employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.
Article
Full-text available
Abstract We present a concise workflow to enhance the mass spectrometric detection of crosslinked peptides by introducing sequential digestion and the crosslink identification software xiSEARCH. Sequential digestion enhances peptide detection by selective shortening of long tryptic peptides. We demonstrate our simple 12‐fraction protocol for crosslinked multi‐protein complexes and cell lysates, quantitative analysis, and high‐density crosslinking, without requiring specific crosslinker features. This overall approach reveals dynamic protein–protein interaction sites, which are accessible, have fundamental functional relevance and are therefore ideally suited for the development of small molecule inhibitors.
Article
Full-text available
Ultraviolet photodissociation or UVPD is an increasingly popular option for tandem-mass spectrometry experiments. UVPD can be carried out at many wavelengths, and it is important to understand how the results will be impacted by this choice. Here, we explore the utility of 213 nm photons for initiating bond-selective fragmentation. It is found that bonds previously determined to be labile at 266 nm, including carbon-iodine and sulfur-sulfur bonds, can also be cleaved with high selectivity at 213 nm. In addition, many carbon-sulfur bonds that are not subject to direct dissociation at 266 nm can be selectively fragmented at 213 nm. This capability can be used to site-specifically create alaninyl radicals that direct backbone dissociation at the radical site, creating diagnostic d-ions. Furthermore, the additional carbon-sulfur bond fragmentation capability leads to signature triplets for fragmentation of disulfide bonds. Absorption of amide bonds can enhance dissociation of nearby labile carbon-sulfur bonds and can be used for stochastic backbone fragmentation typical of UVPD experiments at shorter wavelengths. Several potential applications of the bond-selective fragmentation chemistry observed at 213 nm are discussed. Graphical Abstractᅟ ᅟ
Article
Full-text available
We describe optimized fragmentation schemes and data analysis strategies substantially enhancing the depth and accuracy in identifying protein cross-links using non-restricted whole proteome databases. These include a novel hybrid data acquisition strategy to sequence cross-links at both MS2 and MS3 level and a new algorithmic design XlinkX v2.0 for data analysis. As proof-of-concept we investigated proteome-wide protein interactions in E. coli and HeLa cell lysates, respectively, identifying 1,158 and 3,301 unique cross-links at ∼1% false discovery rate. These protein interaction repositories provide meaningful structural information on many endogenous macromolecular assemblies, as we showcase on several protein complexes involved in translation, protein folding and carbohydrate metabolism.
Article
Full-text available
Cross-linking/mass spectrometry is an increasingly popular approach to obtain structural information on proteins and their complexes in solution. However, methods for error assessment are under current development. We note that false-discovery rates can be estimated at different points during data analysis, and are most relevant for residue or protein pairs. Missing this point led in our example analysis to an actual 8.4% error when 5% error was targeted. In addition, pre-filtering of peptide-spectrum matches and of identified peptide pairs substantially improved results. In our example, this pre-filtering increased the number of residue pairs (5% FDR) by 33% (n=108 to n=144). This number improvement did not come at the expense of reduced accuracy as the added data agreed with an available crystal structure. We provide an open-source tool, xiFDR (https://github.com/lutzfischer/xiFDR), that implements our observations for routine application. Data are available via ProteomeXchange with identifier PXD004749.
Article
Full-text available
After raw data have been captured by mass spectrometers in biological LC-MS/MS experiments, they must be converted from vendor-specific binary files to open-format files for manipulation by most software. This protocol details the use of ProteoWizard software for this conversion, taking format features, coding options, and vendor particularities into account. This protocol will aid researchers in preparing their data for analysis by database search engines and other bioinformatics tools. Curr. Protoc. Bioinform. 46:13.24.1-13.24.9. © 2014 by John Wiley & Sons, Inc.
Article
Full-text available
Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS(3) analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS(3)) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.
Article
Cross-linking mass spectrometry (MS) is currently transitioning from a routine tool in structural biology to enabling structural systems biology. MS-cleavable cross-linkers could substantially reduce the associated search space expansion by allowing a MS³-based approach for identifying cross-linked peptides. However, MS² (MS/MS)-based approaches currently outperform approaches utilizing MS³. We show here that the sensitivity and specificity of triggering MS³ have been hampered algorithmically. Our four-step MS³-trigger algorithm greatly outperformed currently employed methods and comes close to reaching the theoretical limit.
Article
Cross-linking mass spectrometry (XL-MS) is an efficient technique for uncovering structural features and interactions of the in-solution state of the proteins under investigation. Distance constraints obtained by this technique are highly complementary to classical structural biology approaches like X-ray crystallography and cryo-EM and have successfully been leveraged to shed light on protein structures of increasing size and complexity. To accomplish this, small reagents are used that typically incorporate two amine reactive moieties connected by a spacer arm and that can be applied in solution to protein structures of any size. Over the years, many reagents initially developed for different applications were adopted, and others were specifically developed for XL-MS. This has resulted in a vast array of options, making it difficult to make the right choice for specific experiments. Here, we delve into the previous decade of published XL-MS literature to uncover which workflows have been predominantly applied. We focus on application papers as these represent proof that biologically valid results can be extracted. This ignores some more recent approaches that did not have sufficient time to become more widely applied, for which we supply a separate discussion. From our selection, we extract information on the types of samples, cross-linking reagent, prefractionation, instruments, and data analysis, to highlight widely used workflows. All of the results are summarized in an easy-to-use flow chart defined by selection points resulting from our analysis. Although potentially biased by our own experiences, we expect this overview to be useful for novices stepping into this rapidly expanding field.
Article
Cross-linking mass spectrometry (XLMS) is becoming increasingly popular, and current advances are widening the applicability of the technique so that it can be utilized by non-specialist laboratories. Specifically, the use of novel mass spectrometry-cleavable (MS-cleavable) reagents dramatically reduces complexity of the data by providing i) characteristic reporter ions and ii) the mass of the individual peptides, rather than that of the cross-linked moiety. However, optimum acquisition strategies to obtain the best quality data for such cross-linkers with higher energy C-trap dissociation (HCD) alone is yet to be achieved. Therefore, we have carefully investigated and optimized MS parameters to facilitate the identification of disuccinimidyl sulfoxide (DSSO)- based cross-links on HCD-equipped mass spectrometers. From the comparison of 9 different fragmentation energies we chose several stepped- HCD fragmentation methods that were evaluated on a variety of cross-linked proteins. The optimal stepped-HCD-method was then directly compared with previously described methods using an Orbitrap Fusion™ Lumos™ Tribrid™ instrument using a high-complexity sample. The final results indicate that our stepped-HCD method is able to identify more cross-links than other methods, mitigating the need for multistage MS (MSn) enabled instrumentation and alternative dissociation techniques. Data are available via ProteomeXchange with identifier PXD011861.
Article
Cross-linking mass spectrometry (XL-MS) has received considerable interest, owing to its potential to investigate protein–protein interactions (PPIs) in an unbiased fashion in complex protein mixtures. Recent developments have enabled the detection of thousands of PPIs from a single experiment. A unique strength of XL-MS, in comparison with other methods for determining PPIs, is that it provides direct spatial information for the detected interactions. This is accomplished by the use of bifunctional cross-linking molecules that link two amino acids in close proximity with a covalent bond. Upon proteolytic digestion, this results in two newly linked peptides, which are identifiable by MS. XL-MS has received the required boost to tackle more-complex samples with recent advances in cross-linking chemistry with MS-cleavable or reporter-based cross-linkers and faster, more sensitive and more versatile MS platforms. This protocol provides a detailed description of our optimized conditions for a full-proteome native protein preparation followed by cross-linking using the gas-phase cleavable cross-linking reagent disuccinimidyl sulfoxide (DSSO). Following cross-linking, we demonstrate extensive sample fractionation and substantially simplified data analysis with XlinkX in Proteome Discoverer, as well as subsequent protein structure investigations with DisVis and HADDOCK. This protocol produces data of high confidence and can be performed within ~10 d, including structural investigations.
Article
Over the past decade, cross-linking mass spectrometry (CLMS) has developed into a robust and flexible tool that provides medium-resolution structural information. CLMS data provide a measure of the proximity of amino acid residues and thus offer information on the folds of proteins and the topology of their complexes. Here, we highlight notable successes of this technique as well as common pipelines. Novel CLMS applications, such as in-cell cross-linking, probing conformational changes and tertiary-structure determination, are now beginning to make contributions to molecular biology and the emerging fields of structural systems biology and interactomics.
Article
Biological processes supporting life are orchestrated by a highly dynamic array of protein structures and interactions comprising the interactome. Defining the interactome, visualizing how structures and interactions change and function to support life is essential to improved understanding of fundamental molecular processes, but represents a challenge unmet by any single analytical technique. Chemical cross-linking with mass spectrometry provides identification of proximal amino acid residues within proteins and protein complexes, yielding low resolution structural information. This approach has predominantly been employed to provide structural insight on isolated protein complexes, and has been particularly useful for molecules that are recalcitrant to conventional structural biology studies. Here we discuss recent developments in cross-linking and mass spectrometry technologies that are providing large-scale or systems-level interactome data with successful applications to isolated organelles, cell lysates, virus particles, intact bacterial and mammalian cultured cells and tissue samples.
Article
With the advent of new crosslinking chemistries, mass spectrometry methods, and search algorithms, crosslinking has become an increasingly popular strategy for evaluating tertiary and quaternary structures of proteins. Collisional activated dissociation remains the primary MS/MS method for identification of peptide crosslinks in high throughput workflows. 193 nm ultraviolet photodissociation (UVPD) has emerged as an alternative ion activation method well-suited for characterization of peptides and has been found in some cases to identify different peptides or provide distinctive sequence information than obtained by collisional activation methods. High energy collision dissociation (HCD) and UVPD were used in the present study to characterize protein crosslinking for bovine serum albumin, hemoglobin, and E. coli ribosome. Crosslinks identified by HCD and UVPD using bis(sulfosuccinimidyl)suberate (BS3), a homobifunctional amine-to-amine crosslinker, and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), a heterofunctional amine-to-carboxylic acid crosslinker, were evaluated. While more unique BS3 crosslinks were identified by HCD, UVPD and HCD provided a complementary panel of DMTMM crosslinks which extended the degree of structural insight obtained for the proteins.
Article
Chemical cross-linking combined with mass spectrometry (MS) and computational modeling has evolved as an alternative method to address fundamental questions in structural biology. The constraints revealed by the cross-links yield valuable distance information and allow one to deduce three-dimensional structural information on very large and transient protein complexes. During the past few years, technical advances in the cross-linking/MS approach have been enormous, mainly owing to the fantastic advances in MS technology, and it is easily overlooked that significant progress has been made in the design of novel cross-linking reagents. In this review, the advent of cleavable cross-linking reagents will be highlighted. In particular, gas-phase (MS-) cleavable cross-linkers offer unique properties for an automated, data-dependent assignment of cross-linked products based on the generation of characteristic fragment ion signatures in MS/MS and MS3 spectra. Therefore, MS-cleavable cross-linkers are envisioned to hold the key for proteome-wide applications of the chemical cross-linking/MS approach, not only to delineate the conformation of single proteins but also to decipher protein interaction networks. Graphical AbstractOutline of the analytical strategy using cleavable cross-linkers in combination with MS to conduct protein conformational and protein interaction studies
Article
Chemical cross-linking combined with a subsequent enzymatic cleavage of the created cross-linked complex and a mass spectrometric analysis of the resulting cross-linked peptide mixture presents an alternative approach to high-resolution analysis, such as NMR spectroscopy or X-ray crystallography, to obtain low-resolution protein structures and to gain insight into protein interfaces. Here, we describe a novel urea-based cross-linker, which allows distinguishing different cross-linking products by collision-induced dissociation (CID) tandem MS experiments based on characteristic product ions and constant neutral losses. The novel cross-linker is part of our ongoing efforts in developing collision-induced dissociative reagents that allow an efficient analysis of cross-linked proteins and protein complexes. Our innovative analytical concept is exemplified for the Munc13-1 peptide and the recombinantly expressed ligand binding domain of the peroxisome proliferator-activated receptor alpha, for which cross-linking reaction mixtures were analyzed both by offline nano-HPLC/MALDI-TOF/TOF mass spectrometry and by online nano-HPLC/nano-ESI-LTQ-orbitrap mass spectrometry. The characteristic fragment ion patterns of the novel cross-linker greatly simplify the identification of different cross-linked species, namely, modified peptides as well as intrapeptide and interpeptide cross-links, from complex mixtures and drastically reduce the potential of identifying false-positive cross-links. Our novel urea-based CID cleavable cross-linker is expected to be highly advantageous for analyzing protein 3D structures and protein-protein complexes in an automated manner.
Article
Unraveling of all of the information contained in proteomes poses a tremendous chemical challenge, which is balanced by the promise of potentially transformational knowledge. Mass spectrometry offers an unprecedented arsenal of tools for diverse proteomic investigations. Recently, it was demonstrated that ultraviolet light can be utilized to initiate unique and potentially useful fragmentations in peptides and proteins. Either nonspecific dissociation or highly specific dissociation at engineered chromophoric sites is possible following photon absorption. The level of specificity and control over fragmentation in these experiments is greater than with other fragmentation methods. Novel techniques made possible by this technology are poised to make substantial contributions to the field of proteomics.
Article
Ultraviolet photodissociation (UVPD) at 355 nm was used to rapidly identify peptides which had been chemically conjugated through bis-aryl hydrazone (BAH) moieties. The two biomolecules of interest were separately tagged to introduce either an aldehyde or a hydrazine and then conjugated together through these functional groups to from the UV-chromogenic BAH-group. In a mock mixture of peptides, UVPD was used to screen for the BAH-conjugated peptides in direct infusion ESI-UVPD-MS and online LC-UVPD-MS methods by comparing the abundances of the ions with the laser off and with the laser on. Only the BAH-conjugated peptides were observed to photodissociate upon exposure to UV irradiation, thus affording excellent selectivity for the pinpointing the relevant conjugated peptides in a complex mixture of nonconjugated peptides. UVPD analysis of conjugated model peptides indicated that the UVPD efficiencies of these species were charge state dependent. BAH-conjugated peptides that had a mobile proton which could protonate the basic BAH-moiety underwent more efficient photodissociation than the peptide ions with sequestered protons. Ultraviolet photodissociation of BAH-cross-linked peptides also yielded more diagnostic sequence ions than CID to unambiguously locate the site of conjugation.
Article
Site-specific fragmentation of peptides at phosphorylated serine or threonine residues is demonstrated. This radical directed cleavage is accomplished by a two-step procedure. First the phosphate is replaced with naphthalenethiol using well established Michael Addition chemistry. Second, the modified peptide is electrosprayed and subjected to irradiation at 266 nm. Absorption at naphthalene causes homolytic cleavage of the connecting carbon-sulfur bond yielding a radical in the beta-position. Subsequent rearrangement cleaves the peptide backbone yielding a d-type fragment. This chemistry is generally applicable as demonstrated by experiments with several different peptides. Assignment of phosphorylation sites is greatly facilitated by this approach, particularly for peptides containing multiple serine or threonine residues.