ArticlePDF Available

Abstract

In this study, we investigate the effect of weight thresholding (WT) on the robustness of real-world complex networks. Here, we assess the robustness of networks after WT against various node attack strategies. We perform WT by removing a fixed fraction of weak links. The size of the largest connected component indicates the network's robustness. We find that real-world networks subjected to WT hold a robust connectivity structure to node attack even for higher WT values. In addition, we analyze the change in the top 30% of central nodes with WT and find a positive correlation in the ranking of central nodes for weighted node centralities. Differently, binary node centralities show a lower correlation when networks are subjected to WT. This result indicates that weighted node centralities are more stable indicators of node importance in real-world networks subjected to link sparsification.
Mathematics2023,11,3482.https://doi.org/10.3390/math11163482www.mdpi.com/journal/mathematics
Article
EectofWeightThresholdingontheRobustness
ofReal-WorldComplexNetworkstoCentralNodeAacks
JishaMariyamJohn
1,
*,MicheleBellingeri
2,3
,DivyaSindhuLekha
1
,DavideCassi
2,3
andRobertoAleri
2,3
1
IndianInstituteofInformationTec hn ol og y, Koayam686635,India;divyaslekha@iiitkoayam.ac.in
2
DipartimentodiScienzeMatematiche,FisicheeInformatiche,UniversitàdiParma,43124Parma,Italy;
michele.bellingeri@unipr.it(M.B.);davide.cassi@unipr.it(D.C.);roberto.aleri@unipr.it(R.A.)
3
GruppoCollegatodiParma,NationalInstituteofNuclearPhysics(INFN),43124Parma,Italy
*Correspondence:jishamariyam.phd201010@iiitkoayam.ac.in
Abstract:Inthisstudy,weinvestigatetheeectofweightthresholding(WT)ontherobustnessof
real-worldcomplexnetworks.Here,weassesstherobustnessofnetworksafterWTagainstvarious
nodeaackstrategies.WeperformWTbyremovingaxedfractionofweaklinks.Thesizeofthe
largestconnectedcomponentindicatesthenetwork’srobustness.Wendthatreal-worldnetworks
subjectedtoWTholdarobustconnectivitystructuretonodeaackevenforhigherWTvalues.In
addition,weanalyzethechangeinthetop30%ofcentralnodeswithWTandndapositive
correlationintherankingofcentralnodesforweightednodecentralities.Dierently,binarynode
centralitiesshowalowercorrelationwhennetworksaresubjectedtoWT.Thisresultindicatesthat
weightednodecentralitiesaremorestableindicatorsofnodeimportanceinreal-worldnetworks
subjectedtolinksparsication.
Keywords:complexnetwork;robustness;weightthresholding;nodeaackstrategies;weaklink
removal
MSC:05C82;68R10;90C35;05C90
1.Introduction
Thevulnerabilityofacomplexnetworkdenotesthedecreaseinnetworkfunctioning
duetodamagelikethelossofsomenodeorlink.Theabilityofanetworktowithstandor
overcomesuchsituationsiscalleditsrobustness.Overthelasttwodecades,several
studieshaveinvestigatedtherobustnessofcomplexnetworksusingseveraldierent
aackstrategies.Initialstudies[1–3]onthevulnerabilityofcomplexnetworksarebased
onbinarynetworksneglectingtheintensityofthelink/connection.However,real-world
networksbecomemorerealisticwhenweconsidertheintensityoflinks,i.e.,thelink
weights.Forexample,inacoauthorshipnetwork,theweightofthelinksconnecting
authorsisthenumberofco-authoredpapers.Forcommunicationnetworkslikethe
Internet,linkweightcanbetheamountofdatatransferred.
Theearlyresearchonnetworkvulnerabilityfocusedoncentrality-basednodeaack
strategies,ascriticalnodesmightbelocatedatcentralpositionsinthenetworks.Widely
usedcentrality-basednodeaacksarebasedonthenode’sdegreeandbetweenness[2–5].
Theweightedversionsoftheseaackstrategiesarestrength[6]andweighted
betweenness[7],respectively.Othernodeaackstrategiesarebasedondierent
topologicalpropertiesofthenetworks,likeeigenvectorcentrality[5,8],closeness
centrality[9,10],andclusteringcoecient[5].Inaddition,scientistsinvestigatedthese
aackstrategies’variations[4,11,12].Byanalyzingtheimpactoftheseaackstrategies,
wecanidentifythenodeimportanceinthenetwork.Apartfromthesecentralaack
Citation:John,J.M.;Bellingeri,M.;
Lekha,D.S.;Cassi,D.;Aleri,R.
EectofWeig htThresholdingonthe
RobustnessofReal-WorldComplex
NetworkstoCentralNodeAacks.
M
athematics2023,11,3482.hps://
doi.org/10.3390/math11163482
AcademicEditors:AndreyV.
AndreevandVictorB.Kazantsev
Received:12June2023
Revised:10Augu st 2023
Accepted:10August 2023
Published:11Augu st2023
Copyright:©2023bytheauthors.
LicenseeMDPI,Basel,Swierland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Aribution(CCBY)license
(hps://creativecommons.org/license
s/by/4.0/).
Mathematics2023,11,34822of12
strategies,inuentialnodescanbeidentiedbyvariousmethodssuchasmultiscalenode
importancemeasure[13]andclassiedneighborsalgorithm[14].
Theeectoftheaackstrategiesismeasuredbasedondegradationinnetwork
performance(networkfunctioning).Thecommonlyusednetworkfunctioningmeasures
arethesizeofthelargestconnectedcomponent(LCC)[2–4,15],globaleciency[3,16],
weightedeciency[7,17],diameter[9],andtotalow[15].
Apartfromthesenodeaackstrategies,therobustnessofcomplexnetworkshas
widelybeenstudiedindierentlinkremovalstrategies.Removingalinkcanbe
interpretedinseveralreal-worldevents,suchasmalfunctioningcommunicationcable,
damageofroadsconnectingtwocities,prohibitionofcontactbetweenindividualsfor
controllingepidemicspreading,etc.Likenoderemoval,thestudyoflinkremovalstarted
withlinkcentralityconceptsofbetweennessandthedegreeofthelink’sendnodes
[3,17,18].Thedegreeofalinkcanbedenedasanaggregate(product,sum,minimum,
andmaximum)ofthedegreeofendnodesofthatlink[3,18].Thebetweennessofalink
denotestheaveragenumberofshortestpathspassingthroughit[3,17,18].Theweighted
versionsoftheselinkcentralitiesaredenedin[17].
FromGranoveer’s“strengthofweaktieshypothesis”insocialnetworks[19],links
areclassiedaccordingtotheirweightsasweakorstrong.Severalstudiesinvestigated
theroleofstrongandweaklinksonnetworkrobustness.PajevicandPlenz[20]foundthat
theaverageclusteringofnodesisrobustagainsttheremovalofweaklinksbutvulnerable
whenremovingstronglinks.Linkweightheterogeneity[15]isanotherfactorthat
negativelyaectstherobustnessofcomplexnetworkstowardlinkremoval.
Thestudyoflinkremovalintheeconomiccomplexsystemrevealsthatweak
connectionsaremoresignicantinsupportingtheoverallconnectivityofthesystem[21].
Groupstructuresofcomplexnetworksaremaintainedevenwhenmostlinksareremoved
accordingtotheirincreasingorderofweight[22].Inaddition,awidelyrecognizedresult
isthat“weaklinksaretheuniversalkeyforcomplexnetworkstability”[23].Thesestudies
revealtheroleofweakconnectionsinmaintainingfunctionalityinrealnetworks.
Thehighnumberoflinksmakestime-expensiveorcumbersomeanalysesonreal-
worldnetworks.Forthisreason,scholarsproposeddierenttechniquesforthe
sparsicationofnetworks(i.e.,toreducelinkdensity)intheseyears[22,24].Sparsificationis
afamilyofmethodstobuildnetworkswithasmallnumberoflinks,oftenleadingtoabetter
generalizationofthenetworks[25].Sparsenetworksalsohavesignificantlylower
computationalcoststhantheirdensercounterparts,oftentwoordersofmagnitudein
computationalcostreduction[26].Thisisespeciallyrelevantforthelargeanddensereal-
worldandmodelnetworksthatpresentprohibitivelycostlysimulationanalyses[27].Thus,
thesparsificationmethodsappliedtodensernetworksarehelpfulforreducingcomputational
costs.
Weightthresholding(WT)isasparsificationapproachtoreducelinkdensityindifferent
real-worldnetworks,suchasfinancial,brain,andbiologicalnetworks[28–30].WTremoves
alllinkswithaweightlessthanaparticularthresholdvalue.TheobjectiveoftheWT
procedureistoprunethehighestnumberoflinksavoidingdrasticallyalteringthecritical
featuresoftheoriginalnetwork.Unfortunately,manyconventionalnetworkproperties
quicklychangeundertheWTprocedure[22,31].
Linkshieldingidentiescriticallinksworthprotecting[32–34].AsWT,linkshielding
techniquesmaybehelpfultoreducethenetworklinks,thusimprovingcomputational
feasibilitybydecreasingthecomputationalcost.WTandlinkshieldingprocedurescanbe
viewedascomplementarymethodologiesfornetworksparsication.
ThispaperassesseshowWTimpactstherobustnessmeasurementofweightedreal-
worldnetworkswhensubjectedtodierentnodeaackstrategies.Forexample,letus
considerthescenariooftransportationsystems.Atransportationnetworkisanetwork
underlyingtheinfrastructurethatfacilitatesthemovementofpeople/goods/servicesfrom
onelocationtoanother.Thedemolitionofoneormorelocationsmayaectthe
functionalityoftheentireinfrastructure.Theoptimalplanningofsuchanavigation
Mathematics2023,11,34823of12
systemwithmultipleconnectionsiscomputationallychallenging.Nevertheless,this
couldbesimpliedbyremovingtrivialconnections(withlesstrac).Forthis
simplication,wecanadoptweightthresholding(WT),inwhichaxedfractionofweak
linksareremovedfromthenetwork.Thislinkpruningimprovesthecomputational
feasibility,butwearenowapprehensiveabouttherobustnessofthethresholdednetwork.
Isthetransportationnetworkstillrobustastheinitialnetwork?
Inthispaper,weassesswhethertheweightthresholdingalterstherobustnessof
networks.Weinvestigatethiswithafocusonrobustnessagainstnoderemovalaacks.
Ourresultshighlightthatreal-worldnetworksholdcomparablerobustness(intermsof
LCC)tonodeaackstrategiesevenafterremovingmanyweaklinks.Inaddition,we
assessedhowtherankingofcentralnodeschangeswiththeweightthresholding
procedure.Wefoundthatthenoderankingremainspositivelycorrelatedtotheinitial
networkwhenusingweightednotionsofnodecentralities.
2.Methods
2.1.RealWorldNetworks
Weimplementedvedierentaackstrategiesonninereal-worldnetworksfrom
dierentdomains.Thenetworksweusedareweighted.Theweightassociatedwiththe
linksdepictstheempiricalandspeciccharacteristicsofthenetworks.Forexample,inthe
caseoftheUSairportnetwork,thelinkweightindicatesthenumberofpassengers
traveledperyear[35].InthecoauthorshipnetworkNetscience,thelinkweightaccounts
forthenumberofpapersco-authoredbetweenscientists[36].Wesummarizethestatistics
ofreal-worldnetworksinTa ble 1,withnode,link,andlinkweightmeaning.Inaddition,
wefurnishthereferenceforfurtherinformationabouteachnetwork.
Tab le1.Statisticsofreal-worldnetworks.N—numberofnodes;L—numberoflinks;<w>—average
weight;<k>—averagedegree;LCC—sizeofthelargestconnectedcomponent.
NetworksKeyRef.TypeNodeLinkWeightNL<k><w>LCC
C.elegansEleg[37,38]BiologicalNeuronsNeurons
connection
Numberof
Connections297234415.83.761297
CargoshipCargo[39]TransportPortsRouteShipping
journeys834434810.497.709821
USairportAir[35]TransportAirportsRoutePassengers500297911.9152,320.2500
E.coliColi[39,40]BiologicalMetabolitesCommon
reaction
Numberof
Common
reactions
110036366.611.3641100
NetscienceNet[36]SocialauthorsCoauthorship
Numberof
Common
papers
146127413.750.434379
Human12aHum[41,42]BiologicalBrain
regions
Connection
between
regions
Connection
density501603824.10.01501
CaribbeanCarib[43,44]
Ecologica
lFood
web
SpeciesTrophic
relation
Amountof
biomass249350328.130.067249
CypDryCyp[45,46]
Ecologica
lFood
web
SpeciesTrophic
relation
Amountof
biomass6650315.240.35865
BudapestBuda[47]BiologicalBrain
regions
Neural
connection
Amountof
trackflow48010004.1675.024467
Mathematics2023,11,34824of12
2.2.AackStrategies
Wesimulatednetworkaacksbyremovingthenodesbasedontheircentrality
measures.Thenodecentralitymeasuresconsideredhereincludebinaryaswellas
weightedstructureofthenetworks.Thenodeaackstrategiesare:
Random(Ran):Nodesarerandomlyremoved.Randomremovalisanalogousto
errorsorfailuresoccurringinthenetwork.Randomfailuresarebenchmarkmodels
inthestudyofnetworkrobustness[1,2].
Degree(Deg):Thedegreeofanodeisasimplelocalcentralitymeasuredenedasthe
numberoflinksconnectedtoit.Thedegree𝑘ofnodeiisgivenby
𝑘=𝑎
 ,(1)
where𝑎 1indicatesthepresenceofalinkbetweennodesiandjandis0otherwise.
𝑁isthenumberofnodesinthenetwork.Thedegreeaackstrategyrstremovesnodes
withthehighestdegree(hubs).Earlierstudiesofnetworkrobustnesstotargetedaacks
arebasedonthisstrategy[1,3–5,48].
Strength(Str):Anode’sstrengthisthesumoftheweightsoflinksconnectedtothat
node.Itisaweightedversionofthedegreecentrality[6].
Mathematically,thestrength 𝑠ofnodeiis:
𝑠 𝑎
 .𝑤,(2)
where𝑎 1indicatesthepresenceofalinkbetweennodesiandjandis0otherwise.
𝑤istheweightofthelinkbetweeniandj.Inthisaackstrategy,nodeswiththehighest
strengthareremovedrst.
Betweenness(Bet):Betweennessofanodeisthenumberofshortestpaths(between
allthepairsofnodes)passingthroughit[3–5].Thisbinarymetricdenestheshortest
pathbetweentwonodesastheminimumnumberoflinksneededtotravelfromone
nodetoanother.Mathematically,betweenness𝑏 ofnodeiis:
𝑏=󰇛󰇜

, (3)
where𝜎󰇛𝑖󰇜isthenumberofshortestpathsbetweennodessandtpassingthroughthe
nodei. 𝜎 isthetotalnumberofshortestpathsbetweennodessandt.Basedonthisglobal
metric,aackstrategiesremovenodeswiththehighestbetweennessrst.
Wei gh tedbetweenness(WBet):We ightedbetweennessofanodeisdenedasthe
numberofweightedshortestpathspassingthroughthatnode[7].
Wei gh te dbetweenness𝑏
ofnodeiis:
𝑏
=
󰇛󰇜

, ,(4)
where𝜎
󰇛𝑖󰇜 isthenumberofweightedshortestpathsbetweennodessandtpassingthrough
thenodei. 𝜎
isthetotalnumberofweightedshortestpathsbetweennodessandt.
Whilecomputingbetweenness,itisessentialtodierentiatewhetherthelinkweight
correspondstoows”or“costs”[49].Iflinkweightmeansow,suchasthenumberof
passengersintransportationnetworksorthenumberofcommonpapersinauthorship
networks,thentheshortestpathiscomputedbysummingtheinverseoflinkweights.If
linkweightsarecostssuchasdistanceortimeofinformationdeliverybetweentwo
stations,shortestpathsarecomputeddirectlybysummingthelinkweights.
Theseaacksareperformedbyremovingallnodesandthelinksincidentonthem.
Weperformedinitial(notrecalculated)andrecalculated(alsonamedadaptive)aack
strategiesforeachnodecentrality.Theterminitialaackmeanswecomputethenode
rankontheinitialnetworkandremovethenodesinthatorder.Here,noderanksarenot
updatedduringthenoderemovalprocess[3].Ontheotherhand,inrecalculatedaack
Mathematics2023,11,34825of12
strategies,nodecentralityvaluesarerecalculatedaftertheremovalofeachnode[3].Inthe
caseofties(i.e.,nodeswithequalcentralityvalue),werandomlyselectthenodeto
remove.Thesenodetiesarerandomizedbyaveragingtheoutcomesover100simulations.
2.3.NetworkRobustnessIndicator
Thelargestconnectedcomponent(LCC)isdefinedasthenumberofnodesinthegiant
componentofthenetwork,i.e.,thelargestnumberofconnectednodes[1,2,48].Itisa
commonlyusedbinarymeasurefornetworkrobustness.Itonlygivesatopological
descriptionofthenetworks.Here,normalizedLCC(oninitialLCCvalue),asafunctionofthe
fraction(q)ofremovalofnodes,isusedasthemeasurefornetworkdamage.NormalizedLCC
allowsthecomparisonofrobustnessacrossdifferentnetworks.Theattackstrategiesterminate
whenthenetworkbecomeswhollydestructed(LCCbecomes1).
Tocomparetheresponseofthenetworkstoeachaackstrategy,weusedthe
robustnessR[16].Itisasinglenumber[15]indicatingtheareaunderthecurveofthe
networkfunctioningagainstafractionofnodesorlinksremoved.Here,LCCisusedasa
networkfunctioningindicator.ThetheoreticalrangeofRisfrom0to0.5.Forexample,
Figure1leftchartshowstheLCCplotasafunctionoffractionqofremovalsforvenode
aackstrategies(initialaack)ontheC.elegansnetwork.TherightchartinFigure1
reportstherobustnessoutcomeRofeachaackstrategycomputedbytheareaunderthe
LCCcurve.
Figure1.Leftchart:LCCsizeasafunctionofthefractionofnodesremovedqforinitialaacksin
C.elegansnetwork.Rightchart:RobustnessRofeachaackstrategy.
2.4.WeightThresholding
Weinvestigatedtheeectofweaklinkremovalontherobustnessofreal-world
networksundervariousnodeaackstrategies.Thisanalysiswasperformedbytheweight
thresholding(WT)technique.GivenaweightednetworkGwithNnumberofnodes,and
Lnumberoflinks,therststepistorankthelinksinincreasingorderofweight.Thelinks
oflowerweightareconsideredweaklinks.Then,weperformedtheWTbyremovinga
fractionoftheweaklinks.Forexample,forWT=0.05,weremovedtherst5%weaker
linksintherank.Consideranetworkwithtenlinksofthefollowingdiscreteweights:1,
1,2,2,4,6,7,8,8,and9.Then,byWT=0.5,weremovethelinksofweights1,1,2,2,and
4,inthatorder.
Inourstudy,wetooknineteendiscretethresholdvaluesWT={0.0,0.05,0.1,0.15,0.2,
0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9}(i.e.,from0%to90%of
weaklinksremoval).Inthecaseofties(linkswiththesameweight),weselectedthelinks
randomly.Thesetiesarerandomizedbyaveragingtheoutcomesover100simulations.
ThethresholdednetworkG’willbethesubgraphofGwiththesamenumberofnodesN
andnumberoflinks,L’=(1−WT)L.Then,thenodeaackstrategiesonG’areappliedby
identifyingthenodesinthedecreasingorderoftheircentralitymeasures(Deg,Bet,Str,
Mathematics2023,11,34826of12
andWBet)computedfromG’.ThisprocedureisrepeatedforeachWT.Theoverall
methodologyisdepictedinAlgorithm1.ThevariablesmandninAlgorithm1represent
thenumberofiterationstobreakthelinkandnodeties.
Algorithm1:MethodologyofWTanalysis.
ProcedureWeightThresholding(G,N,L)
1:WT={0.0,0.05,0.1,………….,0.85,0.9}
2:foreachWT
3:fori=1tom
4: link_set={linksintheincreasingorderoftheirweight}
5: weak_linkset={WTfractionofweaklinksfromlink_set}
6: G’=G−weak_linkset
7: Initialattack(G’,N,L’)
8:Recalculatedattack(G’,N,L’)
ProcedureInitialattack(G’,N,L’)
1:FindInitialLCC
2:fori=1ton
3:node_set={nodesofG’inthedecreasingorderofcentralitymeasure}
4:while(LCC!=1)
5: RemoveanodexfromtheG’(intheorderofnode_set)
6: FindLCCofnewnetwork
7: node_set=node_set−x
ProcedureRecalculatedattack(G’,N,L’)
1:FindInitialLCC
2:fori=1ton
3:while(LCC!=1)
4: Calculatecentralitymeaures
5: node_set={nodesofG’inthedecreasingorderofcentralitymeasure}
6: RemoveanodexfromtheG’(intheorderofnode_set)
7: FindLCCofnewnetwork
8: node_set=node_set−x
3.ResultsandDiscussion
Removalofanentityofanetwork(eithernodeorlink)mayresultinchangesinthe
networkfunctionalityafteraparticularfractionofremovals.However,anentityis
signicantifitsremovaltriggersarapiddecreaseinthenetworkfunctioningmeasure.For
example,theblackcurveinFigure2indicatesasharpdecreaseinthenetworkfunctioning
alongwiththeremovalprocess.Incontrast,gentlechangesinthebluecurveindicatethe
network’sabilitytowithstandcomparablefunctionality.Theabilityofanetworkto
continuewithcomparablefunctionalitycanbeanindicatorofthenetwork’srobustness.
Figure2.Steeper(black)andgentle(blue)degradationofanetworkfunctionalityalongtheremoval
offraction(q)ofcomponents(eithernodesorlinks)ofthenetwork.
Mathematics2023,11,34827of12
Here,weinvestigatetheroleofweaklinksintherobustnessofnetworkstodierent
nodeaackstrategies.TheanalysisappliedtheWTproceduretotheninerealnetworks.
Wesimulatedvenodeaackstrategies,suchasRan,Deg,Str,Bet,andWBet,onthese
thresholdednetworks.Foreachstrategy,weperformedbothinitialandrecalculated
aacks.TheWTprocedureisperformedbyremovingaxedfractionofweaklinks.
Figures3and4showtheLCCandrobustness(R)asafunctionofWTvaluefordierent
nodeaackstrategiesandeachreal-worldnetwork.
Figure3.LCCaftereachweightthresholding(WT)value(leftcolumn),robustness(R)ofthe
networkunderinitial(middlecolumn),andrecalculatedaackstrategies(rightcolumn)asa
functionofweightthresholding(WT)valueforthenetworksC.elegans(Eleg),Caribbean(Carib),
Human12a(Hum),Cypdry(Cyp),andE.coli(Coli).
Mathematics2023,11,34828of12
Figure4.LCCaftereachweightthresholding(WT)value(leftcolumn),robustness(R)ofthe
networkunderinitial(middlecolumn),andrecalculatedaack(rightcolumn)strategiesasa
functionofweightthresholding(WT)valueforthenetworksBudapest(Buda),Cargoship(Cargo),
USAirports(Air),andNetscience(Net).
ThenetworksC.elegans,Caribbean,andHuman12ashowtheslowestLCCdecrease
whensubjectedtotheWTprocedure.Specically,C.elegansandtheCaribbeanhave
almostthesameLCCaftereachthresholdingevenuptoWT=0.60,andHuman12adoes
notshowanydegradationinLCCforWT≤0.55.
Thesmallestnetworkinourstudy,Cypdry,also(N=66)maintainscomparableLCC
uptoWT=0.45.Theothernetworks,suchasE.coli,Budapest,Cargoship,andUS
Airports,presentlowrobustnessagainstWTprocedure,showingafasterLCCdecrease
thanothernetworks.Inparticular,USAirportsandBudapestnetworksshowfasterLCC
disruptionundertheWTprocedure.
Insummary,exceptforBudapestandUSAirportsnetworks,thereal-worldnetworks
understudyarerobusttotheWTprocedure.TheWTprocedurecorrespondstoweaklink
removal[15,17];forthisreason,thereal-worldnetworksunderstudyunveilgeneral
robustnesstoweaklinkremoval.
Wecanseetherobustness(R)ofdierentnodeaackstrategiesasafunctionofWT
inFigures3and4.RgenerallydoesnotshowasteeperdecreasewithWTformostnode
aackstrategies,bothinitialandrecalculatedaacks.Thetransformationofrobustness
fromtheoriginalnetworktothethresholdednetworkafter90%removaloftheweaklink
isevidentbutgradual.Therefore,inthereal-worldnetworksunderstudy,wendgeneral
robustnessagainstnodeaackswhensubjectedtotheWTprocedure.Whileincreasing
theWTvalue,weobserveaveryslightdecreaseintherobustnessRtorandomnode
removal(Ran)(Figures3and4,greencurves).Thisresultindicatesthatnetworksmaintain
thewell-known“errorresistance”feature[2]evenwhensubjectedtotheWTprocedure.
Mathematics2023,11,34829of12
Thegradualchangeintherobustnessofeachthresholdednetworktovariousnode
aackstrategiesfurnishesinterestinginsights.Ontheonehand,itmayindicatethatthe
remainingnetworkshowsarobustconnectivitystructuretonodeaacks.SincetheWT
proceduredecreasestheLCC,wecanarguethattheremainingLCCisrobusttonode
aack.Ontheotherhand,theWTproceduredoesnotcauseanoderankchangetoward
amoreharmfulnodeaacksequence.Thislastresultindicatesthatthenodecentralities
rankingisstabletotheWTprocedure.
Thereareexceptions.InCypdryandCaribbeannetworks,therobustnessRoftheStr
strategydecreasesfasterthanotherstrategies(Figure3,purpleline).Strremovesnodes
accordingtotheirstrength,i.e.,thesumofthelinkweightsofthatnode[6].Further,we
observeasimilardecreaseinnetworkrobustnessRfortheWBet(Figure3,yellowline)
strategythatremovesnodesaccordingtotheirweightedbetweenness[7].Therefore,[46]
theWTprocedureenhancestheecacyoftheStrandWBetnodeaacktodismantlefood
webs.ThehigherecacyofStrandWBetcanbeduetoachangeinnoderankingforthese
strategiestuningdierentWTvalues,withmoreeectivenoderankingwhenincreasing
WT.Foodwebsareecologicalnetworksdescribing“whoeatswhom”inecosystems,i.e.,
inthesenetworks,nodesarebiologicalspecies,andlinksdepicttrophicinteractions
amongthem[46,50].Theseresultssuggestthatremovingweaklinksinfoodweb
ecologicalnetworksmayunveilessentialnodesintheseecologicalnetworks.
InNetscience,wecanobserveariseintherobustnesstowardstheendofthe
thresholdingforbetweenness-basedaackstrategies(BetandWBet).Betweenness-based
aackstrategiesshowlowefficacywhentuninghigherWT.TheLCCoftheNetscienceis
only24.9%oftheoverallsizeofthenetwork(seeTable1),andthenetworkcontainsalarge
numberofcomponentsC(atWT=0,C=268,andatWT=0.9,Cis1211).TheLCCcontains
manynodeswithlowbetweennesscentralityvalues,attackstrategiesremovenodesfrom
othercomponents,andLCCremainsunchangedwhenremovingnodesaccordingtotheir
betweenness.Thisresultindicatesthenecessityofconditionalbetweennessattackstrategies
[51].
Theresultsfoundinotherstudies,suchasrecalculatedaackstrategiesaremore
ecientthaninitialaackstrategies,arealsoconrmedinourresults.Ininitialaacks,
binarystrategiesoutperformweightedaacks.Inrecalculatedaackstrategy,Betand
theirweightedversion,WBet,aremoreecientthanDegandStrfordestroyingLCC.With
theincreaseinthefractionofweaklinkremoval,theeciencyofaackstrategiesbecomes
closer.Itindicatesthattheweightedstructurehaslesssignicanceinthresholded
networkscomparedtooriginalnetworks.Inaddition,allthenetworksarerobustto
randomaacks(R0.5).
AnalyzingNodeCentralityRankingunderWTbyKendall’sTauCoecient
Kendall’staucoecient(τ)isusedtoanalyzethechangeinnoderankafterweight
thresholding[52].Itisameasureofthedegreeofcorrespondencebetweentworanked
data.Kendall’staucoecientbetweentwoarraysofrankingAandBis
𝜏=󰇛󰇜
󰇛󰇛󰇜 󰇛󰇜󰇜, (5)
where𝑛and𝑛arethenumbersofconcordantanddiscordantpairs,respectively;𝑛
isthenumberoftiesonlyinA;and𝑛isthenumberoftiesonlyinB.Ifatieoccursfor
thesamepairinbothAandB,itisnotaddedto𝑛 or𝑛.ThehigherKendall’stau
coecient,themoresimilarthetworankingsequences.TherangeofKendall’stau
coecientisfrom−1to1.
Thispaperanalyzedthecorrelationbetweenthecentralityrankingoftheinitial
network’stop30%centralnodeswitheachthresholdednetwork(SeeFigure5).We
measuredthecorrelationforfourcentralitiesDeg,Str,Bet,andWBet.Whenwecompare
thecorrelationofdierentcentralitymeasuresamongallthenetworksalongWTvalues,
Str(purpleline)isthemorestablenoderanking,followedbyWBet.Onthecontrary,Bet
Mathematics2023,11,348210of12
(redline)andDeg(blueline)showhighervarianceinthecentralitymeasure.Therefore,
whensubjectedtotheWTprocedure,theweightednodecentralityrankings(Strand
WBet)aremorestablethanthebinarycounterparts(DegandBet).Forexample,the
networksCaribbean,Human12a,Cypdry,Cargoship,andUSAirportsholdacorrelationfor
weightednodecentralitiesapproximatelyabove0.4.
TheDegofNetscienceshowsadeepvariationforinitialWTsupto0.3.Thisisbecause
thenumberofconnectedcomponentsintheNetscienceishigh,andthetop30%ofDegcentral
nodesaredistributedamongvariouscomponents.Nonetheless,theothernodecentralities
rankingaremorestabletotheWTprocedure.
Whentakingtheseresultstogether,wecanpointoutthatnodecentralitiesbasedon
weightedfeaturesofthenetworkshowamorestablenoderankingwiththeWTprocedure.
Figure5.Kendall’staucoecient(𝜏󰇜forcentralitymeasuresDeg,Str,Bet,andWBet.Correlationis
measuredbetweenthetop30%ofnodesoftheinitialnetworkwitheachthresholdednetwork.
4.Conclusions
Weperformedweightthresholdingonreal-worldweightednetworks.Here,weight
thresholdingcorrespondstotheremovalofweaklinks.We analyzedtheWTimpacton
thenetwork’srobustnesstonodeaackstrategiesininitialandrecalculatedscenarios.In
general,networksmaintaintheirrobustnessstructureregardingLCCalongtheWT
procedure.Inotherwords,weaklinkremovaldoesnotimpacttheLCCofthenetwork,
andtheresultingthresholdednetworksshowrobustconnectivitystructuresagainstnode
aacks.Inadditiontothis,weightednodecentralitiesholdapositivecorrelationwiththe
rankingofmostcentralnodesinthenetworksfordierentWTvalues.Dierently,binary
nodecentralitiesshowlowcorrelationwhennetworksaresubjectedtoWT.
Withthisresult,weaklinkremovalcanbeusedasamethodforthesparsicationof
thenetworksinwhichrobustnesstonodeaackiscrucial.
Anotherinterestingnetworksparsicationapproachis“linkshielding”(LS),which
isamethodofidentifyingcriticallinksworthprotecting[32–34].Theweightthresholding
Mathematics2023,11,348211of12
investigatedhereisacomplementaryapproachofLSfornetworksparsication.WT
removeslinksunderacertainweightthreshold,whereasLSholdsimportantlinksforthe
network.Bothtechniquesimprovecomputationalfeasibilitybyreducingsimulationcosts.
Forthisreason,itwouldbeveryinterestingtoanalyzetherobustnessagainstnode
removalofnetworkssubjectedtoLSandcomparetheoutcomeswiththeresultspresented
inthisresearch.
Lastly,adoptingLCCasameasureofthenetworkisone-sided.Therefore,asa
follow-uptothiswork,wecanextendourstudywithotherrobustnessindicators,suchas
eciency.Also,wecanextendthestudybyanalyzingtheimpactofstronglinkremoval
onthenetwork’srobustnesstovariousnodeaackstrategies.
Aut ho rContributions:Conceptualization,M.B.andD.C.;methodology,J.M.J.andM.B.;formal
analysis,J.M.J.;investigation,J.M.J.andD.S.L.;writing—originaldraft,J.M.J.andM.B.;writing—
review&editing,M.B.,D.S.L.,D.C.andR.A.;visualization,J.M.J.;supervision,D.S.L.Allauthors
havereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisresearchisfundedbytheIITPalakkadTechnologyIHubFoundationDoctoral
FellowshipIPTIF/HRD/DF/019andEcosisterproject,fundedundertheNationalRecoveryand
ResiliencePlan(NRRP),Mission4Component2Investment1.5—CallfortenderNo.3277of30
December2021ofItalianMinistryofUniversityandResearchfundedbytheEuropeanUnion—
NextGenerationEU[2]AwardNumber:ProjectcodeECS00000033,ConcessionDecreeNo.1052of
23June2022adoptedbytheItalianMinistry.
DataAvailabilityStatement:Allrequireddataareprovidedinthemanuscript.
ConictsofInterest:Theauthorsdeclarenoconictofinteres.
References
1. Albert,R.;Jeong,H.;Barabasi,A.-L.Errorandaacktoleranceofcomplexnetworks.Nature2000,406,378–382.
2. Albert,R.;Barabasi,A.-L.Statisticalmechanicsofcomplexnetworks.Rev.Mod.Phys.2002,74,47–97.
3. Holme,P.;Kim,B.J.;Yoon ,C.N.;Han,S.K.Aackvulnerabilityofcomplexnetworks.Phys.Rev.E2002,65,056109.
4. Bellingeri,M.;Cassi,D.;Vincenzi,S.Eciencyofaackstrategiesoncomplexmodelandreal-worldnetworks.Phys.AStat.
Mech.ItsAppl.2014,414,174–180.
5. Iyer,S.;Killingback,T.;Sundaram,B.;Wang,Z.Aackrobustnessandcentralityofcomplexnetworks.PLoSONE2013,8,
e59613.
6. Bellingeri,M.;Cassi,D.Robustnessofweightednetworks.Phys.AStat.Mech.ItsAppl.2018,489,47–55.
7. Nguyen,Q.;Nguyen,N.K.K.;Cassi,D.;Bellingeri,M.Newbetweennesscentralitynodeaackstrategiesforreal-worldcomplex
weightednetworks.Complexity2021,2021,1677445.
8. Allesina,S.;Pascual,M.Googlingfoodwebs:Cananeigenvectormeasurespecies’importanceforcoextinctions?PLoSComput.
Biol.2009,5,e1000494.
9. Lekha,D.S.;Balakrishnan,K.Centralaacksincomplexnetworks:Arevisitwithnewfallbackstrategy.Phys.AStat.Mech.Its
Appl.2020,549,124347.
10. Divya,P.B.;Lekha,D.S.;Johnson,T.;Balakrishnan,K.Vulnerabilityoflink-weightedcomplexnetworksincentralaacksand
fallbackstrategy.Phys.AStat.Mech.ItsAppl.2021,590,126667.
11. Nie,T.;Guo,Z.;Zhao,K.;Lu,Z.-M.Newaackstrategiesforcomplexnetworks.Phys.AStat.Mech.ItsAppl.2015,424,248–253.
12. Nie,T.;Guo,Z.;Zhao,K.;Lu,Z.-M.Thedynamiccorrelationbetweendegreeandbetweennessofcomplexnetworkunder
aack.Phys.AStat.Mech.ItsAppl.2016,457,129-137.
13. Zhang,J.;Xu,X.-K.;Li,P.;Zhang,K.;Small,M.Nodeimportancefordynamicalprocessonnetworks:Amultiscale
characterization.Chaos2011,21,016107.
14. Li,C.;Wang,L.;Sun,S.;Xia,C.Identicationofinuentialspreadersbasedonclassiedneighborsinrealworldcomplex
networks.Appl.Math.Comput.2018,320,512–523.
15. Bellingeri,M.;Bevacqua,D.;Scotognella,F.;Cassi,D.Theheterogeneityinlinkweightsmaydecreasetherobustnessofreal-
worldcomplexweightednetworks.Sci.Rep.2019,9,10692.
16. Crucii,P.;Latora,V.;Marchiori,M.;Rapisarda,A.Eciencyofscale-freenetworks:Errorandaacktolerance.Phys.AStat.
Mech.ItsAppl.2003,320,622–642.
17. Bellingeri,M.;Bevacqua,D.;Scotognella,F.A.;Aleri,R.;Cassi,D.Acomparativeanalysisoflinkremovalstrategiesinreal
complexweightednetworks.Sci.Rep.2020,10,3911.
18. He,S.;Li,S.;Ma,H.Eectofedgeremovalontopologicalandfunctionalrobustnessofcomplexnetworks.Phys.AStat.Mech.
ItsAppl.2009,388,2243–2253.
19. Granoveer,M.S.Thestrengthofweakties.Am.J.Sociol.1973,78,1360–1380.
Mathematics2023,11,348212of12
20. Pajevic,S.;Plenz, D.Theorganizationofstronglinksincomplexnetworks.Nat.Phys.2012,8,429–436.
21. Garas,A.;Argyrakis,P.;Havlin,S.Thestructuralroleofweakandstronglinksinanancialmarketnetwork.Eur.Phys.J.B
2008,63,265–271.
22. Yan, X.;Jeub,L.G.S.;Flammini,A.;Radicchi,F.;Fortunato,S.We ig ht thresholdingoncomplexnetworks.Phys.Rev.E2018,98,
042304.
23. Csermely,P.Weak Links:TheUniversalKeytotheStabilityofNetworksandComplexSystems;Springer:Berlin/Heidelberg,Germany,2009.
24. Radicchi,F.;Ramasco,J.J.;Fortunato,S.Informationlteringincomplexweightednetworks.Phys.Rev.E2011,83,046101.
25. Bartoldson,B.;Morcos,A.;Barbu,A.;Erlebacher,G.Thegeneralization-stabilitytradeoinneuralnetworkpruning.Adv.Neural
Inf.Process.Syst.2020,33,20852–20864.
26. Freund,A.J.;Giabbanelli,P.J.Anexperimentalstudyonthescalabilityofrecentnodecentralitymetricsinsparsecomplex
networks.Front.BigData2022,5,797584.
27. Srinivasan,S.;Das,S.;Bhowmick,S.ApplicationofGraphSparsicationinDevelopingParallelAlgorithmsforUpdating
ConnectedComponents.InProceedingsoftheIEEEInternationalParallelandDistributedProcessingSymposiumWorkshops,
Chicago,IL,USA,23–27May2016.
28. Namaki,A.;Shirazi,A.H.;Raei,R.;Jafari,G.Networkanalysisofanancialmarketbasedongenuinecorrelationandthreshold
method.Phys.AStat.Mech.ItsAppl.2011,390,3835–3841.
29. Lynall,M.-E.;Basse,D.S.;Kerwin,R.;McKenna,P.J.;Kibichler,M.;Muller,U.;Bullmore,E.Functionalconnectivityandbrain
networksinschizophrenia.J.Neurosci.2010,30,9477–9487.
30. Allesina,S.;Bodini,A.;Bondavalli,C.Secondaryextinctionsinecologicalnetworks:Bolenecksunveiled.Ecol.Model.2006,194,
150–161.
31. Garrison,K.A.;Scheinost,D.;Finn,E.S.;Shen,X.;Constable,R.T.The(in)stabilityoffunctionalbrainnetworkmeasuresacross
thresholds.Neuroimage2015,118,651–661.
32. Zhang,J.;Eytan,M.;David,H.Enhancingnetworkrobustnessviashielding.IEEE/ACMTrans.Netw.2017,25,2209–2222.
33. Liu,M.;Xiaogang,Q.;Hao,Optimizingcommunicationnetworkgeodiversityfordisasterresiliencethroughshielding
approach.Reliab.Eng.Syst.Saf.2022,228,108800.
34. Xiao,S.;Xiao,G.Onimperfectnodeprotectionincomplexcommunicationnetworks.J.Phys.AMath.Theor.2011,44,055101.
35. Colizza,V.;Pastor-Satorras,R.;Vespignani,A.Reaction-diusionprocessesandmetapopulationmodelsinheterogeneous.Nat.
Phys.2007,3,276–282.
36. Newman,M.E.J.Findingcommunitystructureinnetworksusingtheeigenvectorsofmatrices.Phys.Rev.2006,74,036104.
37. Was,D.J.;Stroga,S.H.Collectivedynamicsof‘small-world’networks.Nature1998,393,440–442.
38. Latora,V.;Nicosia,V.;Russo,G.ComplexNetworks:Principles,MethodsandApplications;CambridgeUniversityPress:Cambridge,
UK,2017.
39. Allard,A.;Serrano,M.A.;Garcia-Perez,G.;Boguna,M.Thegeometricnatureofweightsinrealcomplexnetworks.Nat.Commun.2017,
8,14103.
40. Serrano,A.M.;Boguna,M.;Sagues,F.Uncoveringthehiddengeometrybehindmetabolicnetworks.Mol.BioSyst.2012,8,843–850.
41. Avena-Koenigsberger,A.;Goni,J.;Beel,R.F.;Heuvel,M.P.V.D.;Gria,A.;Hagmann,P.;Thiran,J.-P.;Sporns,O.UsingPareto
optimalitytoexplorethetopologyanddynamicsofthehumanconnectome.Philos.Trans.R.Soc.Lond.BBiol.Sci.2014,369,
20130530.
42. Hagmann,P.;Cammoun,L.;Gigandet,X.;Meuli,R.;Honey,C.J.;Wede en,V.J.;Sporns,O.Mappingthestructuralcoreofhuman
cerebralcortex.PLoSBiol.2008,6,1479–1493.
43. Bellingeri,M.;Bodini,A.Foodweb’sbackbonesandenergydeliveryinecosystems.Oikos2016,125,586–594.
44. Opi,S.TrophicInteractionsinCaribbeanCoralReefs;InternationalCenterforLivingAquaticResourcesManagement(ICLARM):
Penang,Malaysia,1996.
45. Heymans,J.J.;Ulanowicz,R.E.;Bondavalli,C.NetworkanalysisoftheSouthFloridaEvergladesgraminoidmarshesand
comparisonwithnearbycypressecosystems.Ecol.Model.2002,149,5–23.
46. Bellingeri,M.;Vincenzi,S.Robustnessofempiricalfoodwebswithvaryingconsumer’ssensitivitiestolossofresources.J.Theor.
Biol.2013,333,18–26.
47. Szalkai,B.;Kerepesi,C.;Varga, B.;Grolmusz,V.TheBudapestReferenceConnectomeServerv2.0.Neurosci.Lett.2015,595,60–62.
48. Cohen,R.;Erez,K.;Ben-Avraham,D.;Havlin,S.Breakdownoftheinternetunderintentionalaack.Phys.Rev.Le.2001,86,
3682–3685.
49. Brandes,U.Afasteralgorithmforbetweennesscentrality.J.Math.Sociol.2004,25,163–177.
50. Jordán,F.KeystoneSpeciesandFoodWebs. Philos.Trans.R.Soc.Lond.Ser.BBiol.Sci.2009,364,1733–1741.
51. Nguyen,Q.;Pham,H.-D.;Cassi,D.;Bellingeri,M.Conditionalaackstrategyforreal-worldcomplexnetworks.Phys.AStat.
Mech.ItsAppl.2019,530,121561.
52. Kendall,M.G.Thetreatmentoftiesinrankingproblems.Biometrika1945,33,239–251.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividual
author(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjury
topeopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.
... Weight thresholding is a simple technique that aims to reduce the number of edges in weighted networks that are otherwise too dense for applying standard graph-theoretical methods [1]. WT is a methodology in sparsification approaches to reduce link density in different real-world networks [2]. WT has many real-world applications, such as sparsifying ecological, financial, brain, and biological networks [3][4][5]. ...
... Here, we show that WT performed with strong link removal changes the efficacy of the attack strategies. Therefore, strong WT is likely affecting the node rank in the network [2]. To test how WT affects the rank of the different node centralities, we use Kendall's tau coefficient (τ) to evaluate the change in node rank after weight thresholding [39]. ...
... The τ coefficient decreases by increasing WT, indicating changes in the node rank after the WT procedure. Comparing the τ coefficient for strong WT (Figure 8, solid lines) with the τ coefficient discovered in a previous work by applying weak WT [2] (Figure 8, dashed lines), we find that strong WT produces a faster decrease in the τ coefficient. John et al. [2] found that applying the WT weak link removal decreases the τ coefficient to around 0.3 for most networks. ...
Article
Full-text available
Weight thresholding (WT) is a method intended to decrease the number of links within weighted networks that may otherwise be excessively dense for network science applications. WT aims to remove links to simplify the network by holding most of the features of the original network. Here, we test the robustness and the efficacy of the node attack strategies on real-world networks subjected to WT that remove links of higher weight (strong links). We measure the network robust-ness along node removal with the largest connected component (LCC). We find that the real-world networks under study are generally robust when subjected to WT. Nonetheless, WT with strong link removal changes the efficacy of the attack strategies and the rank of node centralities. Also, WT with strong link removal may trigger a more significant change in the node centrality rank than WT by removing weak links. Network science research with the aim to find important/influential nodes in the network has to consider that simplifying the network with WT methodologies may change the node centrality.
Article
Full-text available
Node centrality measures are among the most commonly used analytical techniques for networks. They have long helped analysts to identify “important” nodes that hold power in a social context, where damages could have dire consequences for transportation applications, or who should be a focus for prevention in epidemiology. Given the ubiquity of network data, new measures have been proposed, occasionally motivated by emerging applications or by the ability to interpolate existing measures. Before analysts use these measures and interpret results, the fundamental question is: are these measures likely to complete within the time window allotted to the analysis? In this paper, we comprehensively examine how the time necessary to run 18 new measures (introduced from 2005 to 2020) scales as a function of the number of nodes in the network. Our focus is on giving analysts a simple and practical estimate for sparse networks. As the time consumption depends on the properties in the network, we nuance our analysis by considering whether the network is scale-free, small-world, or random. Our results identify that several metrics run in the order of O ( nlogn ) and could scale to large networks, whereas others can require O ( n ² ) or O ( n ³ ) and may become prime targets in future works for approximation algorithms or distributed implementations.
Article
Full-text available
In this work, we introduce a new node attack strategy removing nodes with the highest conditional weighted betweenness centrality (CondWBet), which combines the weighted structure of the network and the node’s conditional betweenness. We compare its efficacy with well-known attack strategies from literature over five real-world complex weighted networks. We use the network weighted efficiency (WEFF) like a measure encompassing the weighted structure of the network, in addition to the commonly used binary-topological measure, i.e., the largest connected cluster (LCC). We find that if the measure is WEFF, the CondWBet strategy is the best to decrease WEFF in 3 out of 5 cases. Further, CondWBet is the most effective strategy to reduce WEFF at the beginning of the removal process, whereas the Strength that removes nodes with the highest sum of the link weights first shows the highest efficacy in the final phase of the removal process when the network is broken into many small clusters. These last outcomes would suggest that a better attacking in weighted networks strategy could be a combination of the CondWBet and Strength strategies.
Article
Full-text available
In this report we offer the widest comparison of links removal (attack) strategies efficacy in impairing the robustness of six real-world complex weighted networks. We test eleven different link removal strategies by computing their impact on network robustness by means of using three different measures, i.e. the largest connected cluster (LCC), the efficiency (Eff) and the total flow (TF). We find that, in most of cases, the removal strategy based on the binary betweenness centrality of the links is the most efficient to disrupt the LCC. The link removal strategies based on binary-topological network features are less efficient in decreasing the weighted measures of the network robustness (e.g. Eff and TF). Removing highest weight links first is the best strategy to decrease the efficiency (Eff) in most of the networks. Last, we found that the removal of a very small fraction of links connecting higher strength nodes or of highest weight does not affect the LCC but it determines a rapid collapse of the network efficiency Eff and the total flow TF. This last outcome raises the importance of both to adopt weighted measures of network robustness and to focus the analyses on network response to few link removals.
Article
Full-text available
Here we report a comprehensive analysis of the robustness of seven high-quality real-world complex weighted networks to errors and attacks toward nodes and links. We use measures of the network damage conceived for a binary (e.g. largest connected cluster LCC, and binary efficiency Eff bin) or a weighted network structure (e.g. the efficiency Eff, and the total flow TF). We find that removing a very small fraction of nodes and links with respectively higher strength and weight triggers an abrupt collapse of the weighted functioning measures while measures that evaluate the binary-topological connectedness are almost unaffected. These findings unveil a problematic response-state where the attack toward a small fraction of nodes-links returns the real-world complex networks in a connected but inefficient state. Our findings unveil how the robustness may be overestimated when focusing on the connectedness of the components only. Last, to understand how the networks robustness is affected by link weights heterogeneity, we randomly assign link weights over the topological structure of the real-world networks and we find that highly heterogeneous networks show a faster efficiency decrease under nodes-links removal: i.e. the robustness of the real-world complex networks against nodes-links removal is negatively correlated with link weights heterogeneity.
Article
Full-text available
Weight thresholding is a simple technique that aims at reducing the number of edges in weighted networks that are otherwise too dense for the application of standard graph-theoretical methods. We show that the group structure of real weighted networks is very robust under weight thresholding, as it is maintained even when most of the edges are removed. This appears to be related to the correlation between topology and weight that characterizes real networks. On the other hand, the behavior of other properties is generally system dependent.
Article
The communication network is the critical infrastructure and backbone of modern society. On the other hand, regional failures, including natural disasters and malicious attacks, pose a major threat to its capacity and quality of service. Therefore, it is important to design a communication network that is resilient enough to withstand disasters. A key factor of network resilience is diversity, as multiple unrelated elements prevent them from sharing the same fate. This paper focuses on the geodiversity of the network and takes it as the resilience metric for the network under geographically highly correlated regional failures. The communication networks with high geodiversity are designed by shielding critical components, where the shielded ones can survive disasters. One of the attractive advantages of the approach is its implementability, more than just a theoretical technique. Meanwhile, we develop an integer nonlinear programming (INLP) model to obtain the minimum cost shielding for communication networks with desired geodiversity. Since the problem is difficult to solve in polynomial time, a genetic-based heuristic algorithm is applied to get a near-optimal solution in a shorter time. Finally, simulation experiments are performed to illustrate our methodology and its effectiveness, and the results highlight the collective role of network elements.
Article
In this work, we study the vulnerability of link-weighted networks against different central-attack strategies. We simulate simultaneous and sequential attacks on networks based on three network centralities, viz. degree (DC), betweenness (BC) and closeness (CC) centralities. We observed two network properties, the disintegration of giant components and updates in the average geodesic distance, to assess the severity of attacks. If the severity of attacks is calculated based on the first property alone, BC and DC-based attacks are the most hazardous. But, if the severity is computed based on the latter property, the average geodesic distance, the CC-based attacks found to be equally relevant. We show that sequential attacks based on CC are effective in crippling link-weighted networks. Also, suppose that the critical nodes (nodes with high BC and DC) in the network are protected. In such a circumstance, we show that the fallback strategy based on profile closeness is indeed a reasonable approach for attacking protected, link-weighted networks.
Article
In this work, we revisit central attacks in complex networks. We simulate simultaneous as well as sequential attacks on networks based on degree (DC), betweenness (BC) and closeness (CC) centralities. We observed the disintegration of giant components and updates in average geodesic distance, in order to assess the vulnerability of networks. There is ample literature depicting the high severity of BC and DC attacks. However, this severity is calculated based on the size of the giant component in residue networks. We show that CC attacks are also equally hazardous when the severity is calculated based on average geodesic distance. This confirms the relevance of CC in central attacks. Attacks on nodes with high BC and DC can lead to faster collapse of the network system. So, protecting these critical nodes can improve the robustness of system. If they are protected, then an attacker needs to find other targets which can impart an equal / near-to equal destruction to the network. We propose a fallback strategy (a plan B) to attack a network in such a protected environment. We show that this strategy is the best approach when the prominent nodes are protected.
Article
When attacking a real-world complex network, the removing strategy based on recalculated nodes betweenness centrality (Bet) is usually the best strategy for reducing the size of the largest connected component (LCC). In particular during the early stage of the removing process, the Bet strategy can reduce the size of LCC by a order of magnitude smaller than all other common strategies. However, near the end of this process, it can be less efficient and fail to completely break the network before other strategies. We found that this limit has origin from the nature of the betweenness centrality’s definition: when a subgraph is very well connected, the betweenness of their nodes is very small and if it is a complete subgraph (a clique), the betweenness centrality of all nodes is zero. In consequence, when the network becomes fragmented and the largest connected component is (or closed to) a complete graph, the betweenness strategy will almost ignore it and remove nodes elsewhere, thus making the size of the LCC unchanged. Therefore, we propose a modified strategy that remove the highest betweenness node (global) conditioned on whether the node is in the LCC. If it is not, the strategy will seek inside the LCC and remove the one with the highest betweenness (local). We analyzed the efficacy of this strategy for several real-world complex networks and found that it is consistently the most efficient for all networks and for all time during the attacking process. Finally, we analyze the relationship between the relative efficiency of the betweenness centrality with respect to other strategies and the network’s clustering structure. We found that real-world complex networks owing to higher clustering are more vulnerable to the Bet attack strategy. We show this relation by comparing different social networks, and then comparing two financial networks (SP500) sampled at different times that present the same number of nodes but different clustering coefficient level. This work sheds light on the design of a more robust network and as an initial speculative example, we propose a “toy model network” that after an initial node attack presents peculiar robustness properties against to both degree and betweenness attack.
Article
Identifying the influential spreaders in complex network is a very important topic, which is conducive to deeply understanding the role of nodes in the information diffusion and epidemic spreading among a population. To this end, in this paper, we propose a novel classified neighbors algorithm to quantify the nodal spreading capability and further to differentiate the influence of various nodes. Here, we believe that the contribution of different neighbors to their focal node is different, and then classify the neighbors of the focal node according to the removal order of the neighbor in the process of k-shell decomposition. By assigning different weights for each class of neighbors and summing up the neighbors’ contributions, the spreading capacity of the focal node can be accurately characterized. Through extensive simulation experiments over 9 real-world networks, the weight distribution of different types of neighbors has been optimized, and the results strongly indicate that the current algorithm has the higher ranking accuracy and differentiation extent when compared to other algorithms, such as degree centrality, k-shell decomposition method and mixed degree decomposition approach. Current results can help to greatly reduce the cost of sales promotion, considerably suppress the rumor dissemination and effectively control the outbreak of epidemics within many real-world systems.