ArticlePDF Available

Global shark fins in local contexts: multi-scalar dynamics between Hong Kong markets and Mid-Atlantic fisheries

Authors:

Abstract

We analyze multi-scalar social, economic, and policy dynamics of shark fin production and consumption through Hong Kong, the world's leading shark fin entrepôt, and U.S. Mid-Atlantic artisanal fisheries in New Jersey (NJ), a U.S. state that enacted a shark-fin retail ban in 2021. Trade statistics point to a rise in shark fin circulation to Hong Kong in recent years supplied through global pathways of production. Global discourses of overconsumption and shark finning in Asia have shaped U.S. state environmental policies banning shark fin retail. However, interviews with shark fin retailers and consumers in Hong Kong point not to undifferentiated Asian consumption, but instead indicate gendered, classed, and intergenerational dynamics that undergird consumption and bear on production elsewhere. New Jersey fisheries, once an exporter to Hong Kong, enacted a statewide shark fin retail ban in response to global defaunation and anxieties related to Asian fishing and consumption practices. Interviews and focus group discussions illustrate how the ban has resulted in a practice artisanal fishers call "reverse shark-finning," i.e., the discarding of fins post-landing. Moreover, local regulations neglect artisanal fishers' knowledge and capability to identify shark species at sea. The findings show how the totalizing ban diminishes economic returns but does not reduce total shark catches in the artisanal sector. To test fishers' knowledge at sea, the study uses a mitochondrial DNA barcoding method on post-landing shark fins (n = 47) to compare genetic identification with fishers' visual species identification. The findings illustrate artisanal fishers' knowledge is sufficient to accurately identify the shark species they catch. These findings are significant for environmental policies, biodiversity conservation, and global-local relations of production and consumption. We argue that more targeted efforts that take socioeconomic dynamics into account are needed to affect consumption, while more holistic policies that examine impacts rather than blanket bans may be more effective on the production and conservation side. Ecologically sustainable and socioeconomically sound shark conservation practices, therefore, require multi-scalar interdisciplinary and dialectical analyses of social, economic, and policy dynamics.
Copyright © 2023 by the author(s). Published here under license by the Resilience Alliance. Open Access. CC-BY 4.0
Rodenbiker, J., N. Overgaard Therkildsen, and C. Li. 2023. Global shark fins in local contexts: multi-scalar dynamics between Hong
Kong markets and Mid-Atlantic fisheries. Ecology and Society 28(3):5. https://doi.org/10.5751/ES-14229-280305
Research
Global shark fins in local contexts: multi-scalar dynamics between Hong
Kong markets and Mid-Atlantic fisheries
Jesse Rodenbiker 1 , Nina Overgaard Therkildsen 2 and Cheong Chun Li 3
ABSTRACT. We analyze multi-scalar social, economic, and policy dynamics of shark fin production and consumption through Hong
Kong, the world's leading shark fin entrepôt, and U.S. Mid-Atlantic artisanal fisheries in New Jersey (NJ), a U.S. state that enacted a
shark-fin retail ban in 2021. Trade statistics point to a rise in shark fin circulation to Hong Kong in recent years supplied through global
pathways of production. Global discourses of overconsumption and shark finning in Asia have shaped U.S. state environmental policies
banning shark fin retail. However, interviews with shark fin retailers and consumers in Hong Kong point not to undifferentiated Asian
consumption, but instead indicate gendered, classed, and intergenerational dynamics that undergird consumption and bear on
production elsewhere. New Jersey fisheries, once an exporter to Hong Kong, enacted a state-wide shark fin retail ban in response to
global defaunation and anxieties related to Asian fishing and consumption practices. Interviews and focus group discussions illustrate
how the ban has resulted in a practice artisanal fishers call "reverse shark-finning," i.e., the discarding of fins post-landing. Moreover,
local regulations neglect artisanal fishers' knowledge and capability to identify shark species at sea. The findings show how the totalizing
ban diminishes economic returns but does not reduce total shark catches in the artisanal sector. To test fishers' knowledge at sea, the
study uses a mitochondrial DNA barcoding method on post-landing shark fins (n = 47) to compare genetic identification with fishers'
visual species identification. The findings illustrate artisanal fishers' knowledge is sufficient to accurately identify the shark species they
catch. These findings are significant for environmental policies, biodiversity conservation, and global-local relations of production and
consumption. We argue that more targeted efforts that take socioeconomic dynamics into account are needed to affect consumption,
while more holistic policies that examine impacts rather than blanket bans may be more effective on the production and conservation
side. Ecologically sustainable and socioeconomically sound shark conservation practices, therefore, require multi-scalar interdisciplinary
and dialectical analyses of social, economic, and policy dynamics.
Key Words: conservation; environmental policy; fisheries; global consumption; Hong Kong; New Jersey; political economy; shark fins;
wildlife trade
INTRODUCTION
Human consumption of sharks is widely recognized as a threat
to biodiversity loss. Shark defaunation has risen precipitously
over a half a century of industrialized fishing. A recent study
estimates that shark populations have declined by 71% globally
since 1970 (Pacoureau et al. 2021). Another study estimates that
a median average of 38 million sharks are harvested annually for
human consumption (Clarke et al. 2006). Although the numbers
vary year-to-year, shark overfishing and consumption of shark
fins are widely recognized as a global problem.
Much of the global shark fin discourse revolves around shark
finning, i.e., the practice of removing fins at sea and discarding
the body. Shark fins are among the most economically valuable
of seafood commodities with a market value of approximately
US$400-550 million a year (Clark et al. 2006). Likewise, much of
the discourse around consumption focuses on Asian consumers.
Scholars argue that with growing economic affluence in East Asia,
there has been an increase in global trade and consumption of
shark fins (Fong and Anderson 2012). The epicenter of this high-
value commodity trade is Hong Kong, which cycles roughly half
of the global shark fin trade, a large portion of which consists of
threatened species (Cardeñosa et al. 2022).
Hong Kong’s role in shark fin consumption bears on production
elsewhere. Global concerns over shark finning and
overconsumption, for instance, have influenced environmental
policies internationally, such as in the United States where up until
2021 there were 15 states that had implemented totalizing bans
on shark fin retail markets. As of December 2022, U.S. Congress
passed the Shark Fin Sales Elimination Act, which bans shark fin
retail nationwide. These policies are rooted in widespread cultural
anxieties around Asian consumption and how so-called "wild"
tastes for animals pose a threat to global biodiversity (Byrnes
2020, Rodenbiker 2020, 2023). Conservation campaigns, for
instance, often portray Asian people as "super consumers" whose
rapacious appetites for wildlife spur species endangerment
(Marguiles et al. 2019). These discourses negatively portray acts
of consumption through tropes of "exotic" food preferences
(Clarke 2006, Teo 2015). Racialized anxieties surrounding global
biodiversity loss have come to shape environmental policies across
local contexts.
We analyzed multi-scalar dynamics of shark fin production and
consumption in an effort to move beyond reductive accounts of
Asian threat, which perpetuate cultural misrepresentations (King
2020). Toward this end, this study asks: What are the dynamic
interrelations of shark fin production and consumption across
geographical locations at global and local scales? How do global
processes bear on local practices and vice versa? We address these
questions through a dialectical analysis of the global shark fin
trade through two localized nodes, Hong Kong markets and U.
1Princeton University, Paul and Marcia Wythes Center on Contemporary China at the Princeton Institute for International and Regional Studies,
and Rutgers University, Department of Geography, 2Cornell University, Department of Natural Resources and the Environment, 3Cornell
University, Dyson School of Applied Economics
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
S. Mid-Atlantic fisheries in New Jersey (NJ). Examining global
shark fin production and consumption from these localities,
grounds the trade in local social relations, economies, policies,
and practices.
We first detail a dialectical conceptual framing for examining
global-local relationships, as well as the interdisciplinary methods
for the study. Drawing on trade data and interviews with retailers
and consumers in Hong Kong, we analyzed social dynamics
underlying local consumption and trade, particularly classed,
gendered, and intergenerational dimensions. Trade statistics
revealed that the fisheries contributing shark fins to the Hong
Kong market span five continents. Because demand is high,
production is geographically wide ranging. Widespread concerns
regarding shark defaunation bear on U.S. environmental policies,
specifically shark fin retail bans that, at the time of research,
affected the practices of Mid-Atlantic artisanal fishers, but are
now poised to transform practices nationwide in the U.S.
Interviews and focus group discussions with NJ fishers shed light
on the socioeconomic effects of the 2021 shark fin retail ban on
livelihoods and the emerging practice of "reverse shark finning,"
which entails the post-landing removal and discarding of fins.
Fishers claim significant economic losses, but also that total shark
catches remain the same. This suggests the retail ban is ineffective
in reducing total catches in the small-scale fisheries sector. Rather,
it produces biological waste and economic loss while failing to
incorporate local fishers’ knowledge in environmental policy.
Comparing mitochondrial DNA barcoding of shark fins (n = 47)
with fishers’ species identification at sea, the study finds that
artisanal fishers’ knowledge is sufficient to correctly identify the
shark species they catch. Identifying species at sea is important,
at the artisanal scale, because there are a number of endangered
shark species found in the region. However, some species remain
abundant and can sustain regulated harvest. Because local fishers’
knowledge and practices are sufficient to avoid harvesting species
of concern, they can be integrated into sustainable fisheries
management.
These findings call into question the disjuncture between global
defaunation and biodiversity loss and the local effects and
outcomes of totalizing shark fin retail bans. Furthermore, we
discuss the implications for U.S. environmental policy
surrounding the global shark fin trade. Without sufficient analysis
of local political economic contexts and interrelations, we
contend the "global" remains a scalar abstraction obscuring local
realities that bear on environmental policies. Therefore, effectively
intervening to advance shark conservation globally and foster
more socially equitable policies and practices require multi-scalar
interdisciplinary and dialectical analyses of social, economic, and
policy dynamics.
GLOBAL-LOCAL SCALAR DIALECTICS
Global biodiversity conservation inevitably faces a problem of
scale. Scale, as Sayre (2005) contended, is socially produced rather
than an a priori given. "Scale is an attribute of how one observes
something rather than the attribute observed" (Sayre 2005:280).
Global biodiversity conservation in fisheries, therefore, requires
attention to the social dimensions of scale. Campling and Havice
(2018) illustrated that fisheries systems over the last century are
not bound by national waters but instead bleed into distant waters
and international markets. Regarding global shark fin production
and consumption, for instance, questions of scale intersect at
numerous levels: national and state policies, international and
local fisheries practices, and the actions of various local market
actors, such as traders and consumers. Scholars have illustrated
how small-scale fisheries experience environmental degradation
propelled by global demand (Frawley et al. 2019). Attention to
multi-scalar processes and interactions across scale is required to
address crises of biodiversity loss.
Contrasting approaches to the global scale portray a variety of
conceptual frameworks. Research on shark conservation has
detailed the global scale of ocean sanctuaries through multi-sited
dive observations across national contexts (Ward-Paige and
Worm 2017). In this rendering, the global scale is a collection of
spatial containers bounded by nation-states, not a set of
interactions or processes. This scalar approach has been critiqued
as simply considering the global to be the sum of national parts
(Downing et. al. 2021). Nation-based imaginaries of the global
are common, popularized in part through work on global
economic relations. Friedman’s (2000) conceptualization of the
global as international economic connectivity bounded by nation-
states, likewise, has been critiqued as inattentive to localized
differentiation within and between states and contexts (Cox 2008).
Research on social-ecological relations, in contrast, has brought
attention to conceptual frameworks that integrate the global and
local in holistic systems.
Social-ecological systems research has produced conceptual
frameworks to examine multi-scalar relationships. Cash et al.
(2006) argued that the interplay within institutions, across
multiple levels, was crucial to defining cross-scalar and cross-level
dynamics. Solving complex social-ecological problems, the
authors contended, requires cross-level knowledge co-
production, mediation, and negotiation to overcome localized
knowledge gaps surrounding multi-scalar dynamics, processes,
and interactions. In a similar vein, Liu et al. (2013), advocated for
attention to feedbacks between places and processes through a
"telecoupling" framework, which refers to environmental and
socioeconomic interactions across distance. Emerging from
systems thinking, the telecoupling framework brings attention to
socio-ecologically coupled flows, agents, causes, and effects to
analyze component parts and their interrelationships. Dialectical
critiques of early social-ecological systems theories hold that they
tend toward reductionist assessments of the component parts that
constitute a holistic system; component parts and systems are
viewed as relatively static; and there is a general neglect of the
historically contingent contradictions internal to social-
ecological relationality (Lewontin and Levins 2007). "The way in
which a problem is framed, the selection of the system and
subsystem, is prior to systems theory but crucial to dialectics. A
dialectical approach recognizes that the ‘system’ is an intellectual
construct designed to elucidate some aspects of reality but
necessarily ignoring and even distorting others" (Lewontin and
Levins 2007:122).
We advance a dialectical conceptualization of global-local
processes and socioeconomic relations drawing from a tradition
of dialectical scientific reasoning (Lewis and Lewontin 1985) and
analyses of socio-environmental issues in the geographical
tradition (Marston 2000, Hart 2002, Watts 2013). Dialectical
approaches to socio-natural complexity emphasize the dynamic
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
and co-determinate character of organisms and environment,
relationships and processes, and society and nature. Dialectical
analyses revolve around processes, flows, and relations that
collectively constitute a system. But, in contrast to earlier social-
ecological systems approaches, noted above, dialectical reasoning
emphasizes historical contingency, contradictions and their
effects, and social relations of power and difference. Dialectical
approaches to social-ecological relations aim to elucidate "the
connection of that which, at first appears to be without
connection, the connection at the point of the origin of the
phenomena, which appears as disparate in the result" (Haug
2005:246).
Applying a dialectical framework to relationships between shark
fin production and consumption to reflect on global biodiversity
loss entails bringing attention to parts and relations within holistic
systems. It entails viewing relationships and processes across
multiple sites and dimensions, i.e., social, political, economic, and
ecological, as bounded internal relationships emergent from
historically contingent contradictions. In this regard, recent
advances in social-ecological systems analyses offer productive
insights. For instance, epistemological choices have been
identified as necessary to defining the boundaries of a given
coupled social-ecological system and the relationships that matter
to specific processes and their effects (Friis and Nielson 2017,
Meyfroidt 2019). Setting epistemic boundaries enables analysis
that incorporates how different actors and processes meditate
flows and interactions "independent of their ‘position’ in
geographical spaces" thereby developing an understanding of
"the uneven distribution of both direct and indirect positive and
negative effects" (Friis and Nielson 2017:3). Further, in response
to critiques of early systems analyses being relatively static and
reductionist, scholars have begun accounting for non-linear
relational dynamics of social-ecological systems. Specifically,
scholars have posited operating principles of complex adaptive
systems, such as context and radical openness (Preiser et. al. 2018).
In this regard, context is not a passive backdrop to a given system,
but rather an active agent shaping relationships across
geographical locations that are not isolated or closed off from
one another.
Dialectical analyses are crucial to elucidating the contexts and
radical openness that matter by identifying historical
contingencies and contradictions that lend structure to particular
processes and relations. Examining such contingencies and
contradictions unearths social-ecologic dynamics and their effects
within an ever-changing social-ecological structure. A dialectical
approach holds processes and outcomes, such as the production
and consumption of shark fins across distant spaces of the earth,
as internally related and constantly shifting according to
historically contingent contradictions that reconstitute
fluctuating social-ecological structures.
Global processes of shark fin production bear not only on fishers
and traders, but also on classed, gendered, and intergenerational
dynamics of consumption. Consumption of shark fins, as the
results show, is undergirded by expressions of social difference
and social distinction. Bourdieu (1984) argued that the power to
define “taste” is intimately bound up with social class and forms
of symbolic distinction. He identifies a complex set of interrelated
forms of capital, i.e., economic, cultural, and social, through
which taste emerges as a mode of distinguishing between social
groups. Individuals that attain certain levels of economic capital
and power can acquire objects with cultural capital that enhance
social capital. Shark fin, in the social context of Hong Kong, is a
prime example of a commodity with a high level of cultural
capital, what Bourdieu would call an "instrument" of "symbolic
wealth socially designated as worthy of being sought or possessed"
(Bourdieu 1984:488). The findings indicate that shark fins operate
as an historically contingent form of cultural capital that
articulates across forms of classed, gendered, and generational
difference.
These forms of cultural capital dialectically affect global
production and trade. Fisheries spanning five continents
contribute shark fins to the Hong Kong market. International
efforts to produce fins emerge in relation to demand and Hong
Kong’s entrepôt functionality. Artisanal fishers in the U.S. Mid-
Atlantic are dialectically interrelated with global processes of
shark defaunation that resulted in shark fin retail bans. Shark fin
retail bans have reshaped artisanal fishers’ practices and the local
political economy of shark fisheries. A global-local dialectical
framework attentive to social, political, and economic dynamics
of shark fins anchors our methods and analysis.
METHODS
We employed an interdisciplinary mixed-methods approach
crossing the social and natural sciences. A literature review was
conducted that identified factors relevant to the history of shark
fin production and consumption. One author analyzed trade data
from the Hong Kong Customs and Excise Department to
determine the leading countries contributing shark fins to the
Hong Kong market from 2013-2019, recent years for which there
were available data at the time of collection. Statistical data were
gathered with the support of Hong Kong’s Agriculture, Fisheries
and Conservation Department and Hong Kong’s Census and
Statistics Department in 2020[1]. Two authors, one fluent in
Cantonese and the other speaking both Mandarin and English,
used snowball sampling, an interactive participatory technique
as described by Noy (2008), to conduct semi-structured interviews
with shark fin retailers and consumers in Hong Kong (Appendix
5). Twenty-three interviews in Hong Kong with traders and
consumers focused on socioeconomic dynamics of shark fin
valuation. They were conducted in dried seafood retail shops and
markets from June to August in 2021 and January to February in
2023. In the Mid-Atlantic state of New Jersey, one author
conducted semi-structured interviews and focus group
discussions, as detailed by Hennink (2013), with artisanal fishers
on the effects of the 2021 state-wide shark fin retail ban on fishing
practices and local economies (Appendix 6). Altogether this
entailed 14 interviews and 2 focus groups with 4 and 6 participants,
respectively. Additionally, one author corresponded with local
fish and game agencies on shark fin policy and analyzed relevant
policy documents. Interview data were manually coded and
analyzed inductively to identify key themes and relationships.
Inductive reasoning is a post-positivist mode of analysis that
identifies empirical regularities between phenomena, key
relationships, and their possible causes and effects (Meyfroidt
2019). These interviews and correspondences were conducted
from June to December of 2021 and supplemented with data from
market reports.
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
We examined local knowledge and capacity of NJ artisanal fishers
to distinguish local shark species by comparing self-reported
species identification with results from mitochondrial DNA
barcoding tests of biological samples collected post-landing. This
comparison was conducted on 47 shark fins, identified as
belonging to 6 different species, collected by licensed fishers from
August to November 2021 within 20 miles of Barnegat Light, NJ.
Tissue samples from each individual were frozen soon after
landing and transferred to the laboratory. DNA was extracted
from each sample with magnetic beads, following the protocol
described by Kučka and Chan (2022), with overnight tissue lysis
at 60°C. We targeted the full ~650 bp barcoding region of the
mitochondrial Cytochrome C Oxidase Subunit I gene (COI) with
either the LCO1490 and HCO2198 primers developed by Folmer
et al. (1994) or the C_FishF1t1-C_FishR1t1 primer cocktail
described by Ivanova et al. (2007). Amplification was carried out
in 20 μl reactions containing 2 μl DNA extract, 0.2 μM each
primer, 10 μl 2x Qiagen Multiplex PCR Master Mix, and water.
For reactions with the Folmer primers, cycling conditions
included an initial denaturation at 95°C for 3 minutes, followed
by 40 cycles of 95°C for 1 minute, 46°C for 30s, and 72°C for 1
minute, and a final extension for 5 minutes at 72°C. For the
Ivanova primer cocktail, we used 35 cycles and an annealing
temperature of 55°C. Amplification success was confirmed by
visualizing the PCR products on agarose gels. Successful
amplicons were cleaned with Exo-Sap-IT (Thermo Fisher
Scientific) following the manufacturer’s instructions and were
Sanger sequenced in one direction with the HCO2198 primer for
Folmer amplicons and an M13F primer for the Ivanova
amplicons at the Cornell Institute of Biotechnology.
The chromatograms for the resulting sequence data were visually
inspected, and noisy sequence at the ends was trimmed off. To
generate a reference data set, we first compiled a list of shark
species found in the Northeast Atlantic (total of 56) based on the
inventory by Castro (2011) and encounter records from NOAA
surveys (H. Cook, personal communication; Appendix 1). We then
randomly selected two reference COI sequences for each species
from the Barcode of Life Data System (BOLD) public database
(Appendix 3). We queried each of our sequences (Appendix 4)
against this reference database using the web-based Nucleotide
Basic Local Alignment Search Tool (BLASTn) with default
parameter settings (not adjusted for short input sequences).
Almost all our sequences matched a single species from our
reference database with > 98.5% sequence similarity and showed
a much poorer match (> 2.5% lower sequence similarity) to the
second-closest species, so we assigned species based on the
unambiguous top hits (Appendix 2).
RESULTS
Hong Kong markets and Mid-Atlantic fisheries in historical
context
Hong Kong is the world’s leading shark fin trading entrepôt,
routinely cycling half of the global trade. Hong Kong emerged
as a global entrepôt, in part, because of its history forged between
empires and capital. During British colonization, Hong Kong
became a trade entrepôt with no import-export taxes, a feature
retained after 1997 independence from Britain and further
integration with mainland China from 2020 onward. This is
significant for the shark fin trade because Hong Kong functions
as a trade entrepôt. Many fins are imported only to be exported
elsewhere. It is common, however, across media, scholarship, and
conservation discourse to assert quintessential, historically
timeless Asian taste for so-called "wild" animal commodities, such
as shark fin. The discourse of "four treasures of the sea," including
shark fins, abalone, sea cucumber, and fish maw, for example, is
well known. Chief among these cultural explanations for "wild
tastes" (yewei) is the notion that certain foods can supplement
(bufa) human health, including organ functionality, and specific
parts of the human body (Anderson 1988, Simoon 1991, Newman
2004). Recent scholarship attests that many supposedly timeless
forms of Chinese wildlife consumption are, instead, relatively
recent phenomena linked to a burgeoning middle class, industrial
methods of production, and international trade (Chee 2021,
Rodenbiker 2023).
Although recipes for shark fin date back to the Song Dynasty
(960-1279; Fabinyi 2012), in most dynastic periods, shark fin
consumption was limited to elites. This historical feature
continues to apply today. Consuming shark fins is predominantly
an elite enterprise tethered to the projection of social status. Shark
fin consumption, therefore, functions as a form of social
distinction that expresses classed, gendered, and intergenerational
differences. Shark fins have often been served in lavish banquets
and weddings (Multiple interviews with consumers and retailers
in Hong Kong 2021, 2023). As such, weddings and banquets have
been key targets for intervention by conservation initiatives and
state policy (Shea and To 2017). The Chinese State, for instance,
banned shark fins at banquets in 2013. Although international
efforts to mitigate consumption of shark fins are predominantly
directed toward China and Hong Kong, the production of shark
fins for the market extends far beyond.
In 2021, the Mid-Atlantic U.S. State of New Jersey enacted a
state-wide shark fin retail ban in response to concerns of
overconsumption in Asia, shark finning, and global defaunation.
The state-wide shark fin retail ban, called NJ S2905, was approved
in January 2020 and took effect on January 1, 2021 (New Jersey
Senate 2020). The law states that no person shall sell, trade,
distribute, or offer for sale any shark fin or any shark fin that has
been separated before its lawful landing. The law does not apply
to fins used for scientific purposes, such as those in this study, or
to smooth (Mustelus canis) or spiny dogfish (Squalus acanthias).
Although spiny dogfish are listed as globally vulnerable on the
IUCN Red List of Threatened Species, with reduced abundance
in the Northeast Atlantic and Mediterranean (IUCN 2015),
artisanal fishers report that they remain numerous. In contrast
with the IUCN, NOAA supports the position that Atlantic
dogfish are not overfished, although there may be a shortage of
sexually mature females (NOAA 2019). Despite these
discrepancies, shark fishing continues in NJ fisheries with the
dogfish catch historically peaking in November (Fisher 1, 3, and
6, NJ, 2021). In addition, other species such as spinners
(Carcharhinus brevipinna), scalloped hammerheads (Sphyrna
lewini), makos (Isurus oxyrinchus), blacktip (Carcharhinus
limbatus), sandbars (Carcharhinus plumbeus), sharpnose
(Rhizoprionodon terraenovae), and thresher (Alopias vulpinus) can
be caught locally. The number of sharks caught through long-line
commercial fishing has been estimated to be less than recreational
shark fishing (Gallagher et. al 2017).
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
In the decades preceding the shark fin retail ban, NJ artisanal
fishers sold all parts of the sharks they caught. The meat was
exported to England, France, Spain, and Germany for fish and
chips, often called “rock salmon” on European menus. New Jersey
historically catches and supplies dogfish for the global market.
Most prominently, the U.K. leads the world in dogfish
consumption (Hobbs et. al. 2019). Shark belly flaps were used in
Germany for smoked jerky. The head and internal organs were
used in the U.S. for pig feed. Vitamins and supplements were made
from shark cartilage. The fins, however, were largely exported to
East and Southeast Asia via Hong Kong (Fisher 1, 2, 5, NJ, July
2021).
New Jersey Fish and Game opposed the ban stating that shark
fins "are not a New Jersey problem; they are a global problem"
(personal communication, March 2021). New Jersey Fish and
Game representatives repeatedly noted that although there is a
precedent of landing sharks and selling fins, there is no precedence
for shark finning in NJ’s highly regulated coastal waters. Instead,
shark finning was something associated with "Asian" fishing
practices and underregulated fisheries (personal communication,
March 2021). New Jersey Fish and Wildlife representatives stated
that shark fins are "more of a global issue and, if anything, the
regulation just confused matters and made life more difficult for
legitimate commercial fishermen in New Jersey. Recent
regulations created to protect sharks actually hurt U.S. fishermen
without improving shark conservation" (personal communication,
March 2021). Corroborating this claim, NOAA Fisheries
Assistant Administrator, Chris Oliver (2020), released a public
statement against shark fin retail bans, contending that totalizing
bans would not improve conservation in U.S. fisheries, which are
among the most sustainably managed globally. Additionally, NJ
local seafood associations and NOAA opposed the retail ban, as
did the Garden State Seafood Association (personal
communication, July 2021). Despite concerted opposition, NJ
S2905 took effect in 2021 reorienting the political economy of
sharks and spurring the practice of "reverse shark finning."
"Reverse shark finning"
Artisanal fishers, in interviews and focus group discussions,
describe how the retail ban altered how they process shark catches.
Fishers remove and discard fins post-landing, a process they refer
to as "reverse shark finning," which results in biological waste and
economic losses (Fisher 1, 3, 5, 6, NJ July 2021; Fisher 1, 4, 6 8,
9, 12, NJ, November 2021). This reflects a dialectical
contradiction wherein concerns over global defaunation, shark
finning, and overconsumption in Asia have affected local
environmental policy and practice.
Instead of de-finning sharks and selling the fins on the market as
they have done historically, fishers are required to de-fin sharks
post-landing and discard the fins. Since NJ S2905 began, fishers
began to throw the fins into the garbage or simply back into the
ocean from the dock. As one fisher stated:
We are all scared to death about getting in trouble. So,
it is best to throw them out before you get in a fight with
the game warden... The smoothies [smooth dogfish], we
just toss them in the garbage... The law still states that
you have to bring the shark in whole. So, we don’t dare
take the fins off before landing. But now it’s like we are
reverse shark finning. We are just wasting the fins. (Fisher
1, NJ, July 2021).
Artisanal fishers’ concerns revolve around the production of
biological waste and the economic losses from not selling fins,
and a broader uncertainty, shared by fishers and game wardens,
about the retail ban.
The game wardens come in and say that you don’t have
to throw the fins away. You’ just can’t sell them on the
retail market. Well, what is the ‘retail’ market? The game
wardens don’t even know. They don’t know what ‘retail’
means (Fisher 2, NJ, June 2021).
An NJ game warden noted that fishers could legally obtain and
keep the fins but clarified that they cannot sell them or gift them
to others (personal communication, August 2021). Before the ban,
NJ fisheries supplied fins for the Hong Kong market through U.
S. export retailers.
Since the ban took effect, the most valuable parts of the shark,
the fins, are removed and discarded resulting in economic loss for
NJ artisanal fisheries. This economic loss is dialectically
connected to regulatory policies justified in relation to global
processes of defaunation. Despite the economic losses, the total
number of sharks caught by artisanal fisheries remains the same
as before the retail band (Multiple interviews with Fishers, NJ,
July, August, and November 2021). This suggests low efficacy of
a totalizing shark fin retail ban for reducing local catches. From
the standpoint of artisanal fishers, the retail ban has resulted in
detrimental economic effects and additional labor hardships in
processing shark catches. A fisher, discussing the shark fin retail
ban stated:
Shark fisheries used to be really great for us. But now
they are not that great anymore... If I were able to sell
the fins maybe I would get 1.75$US or 2.00$US per
pound - and that is a good price - so it sucks [pause]. You
know we need those fins. (Fisher 3, NJ, July 2021)
Sharks with the most desirable characteristics found in NJ waters
are hammerheads, sandbars, and spinners. These species also
fetch the highest prices on the market. An artisanal fisher
described the economic losses in terms of a percentage of profits
lost from a given catch.
If we caught 4,000 pounds of [shark] meat, at the best
of it, we probably got 60 cents for it [the meat per pound].
But the fins, if you were catching nice sandbars, most of
them would be eight feet so you would be averaging north
of 20 bucks a pound for fins. So, you’re talking a lot of
times the fins would be worth almost 4,000 dollars, you
know, at best 2,400 worth of meat. So, the fins were 60%
or better of the income. So now that is a 60% loss... We
have just been whittled down by these kinds of
regulations. It’s death by a thousand cuts. (Fisher 6, NJ,
November 2021)
Artisanal fishers characterized the retail ban as one among many
regulatory apparatuses that bring about economic losses or in
their commonly used expression "death by a thousand cuts."
According to local fishers, shark fins are valued for their size,
morphological characteristics, and their consistency when
rehydrated. New Jersey fishers refer to the consistency as
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
“noodles” because rehydrated cartilage appears like noodles
(Fisher 1, NJ, August 2021). Although NJ artisanal fishers have
historically contributed to the Hong Kong market, their
contributions are relatively limited when compared to the global
production of shark fins.
Global shark fin production and circulation through Hong Kong
We draw on statistical data to highlight global shark fin
production and circulation through Hong Kong markets from
2013-2019, the most recent years for which there were available
data at the time of collection. Trade statistics reveal three facets
of global trade and circulation through Hong Kong. Figure 1
reveals that the top sources contributing shark fins to Hong Kong
span five continents including Europe, North America, Africa,
Asia, and South America. Second, trade statistics, highlighted in
Figure 2, reveal that Hong Kong is a dynamic trade entrepôt not
only importing shark fins for domestic consumption, but also
exporting fins to supply markets elsewhere. Third, statistics
highlighted in Figure 3 reveal inter-regional trade of shark fins
within East Asia, Southeast Asia, and to a lesser extent in Canada
and the United States.
Fig. 1. Top 12 countries exporting shark fins to Hong Kong
from 2013-2019 (Hong Kong Customs and Excise Department
2020).
Previous studies identified that between 1998 and 2013, the top
volumes of shark fins to Hong Kong were supplied by Spain,
Taiwan, Indonesia, and the United Arab Emirates (Shea and To
2017). Picking up where this study leaves off in 2013, Figure 1
illustrates Hong Kong’s sources for shark fins continue to span
the globe. Spain, until 2015, was the leading supplier of shark fins
to the Hong Kong market. Spain has the largest number of long
liners in the EU fisheries arsenal, and they routinely fish for sharks
in international waters. Shark fin landings, however, have been
decreasing due to local regulations on shark fishing. For instance,
the EU has been limiting the catch of specific species, such as
makos since 2021 (Sims et al. 2021). Taiwan was the leading
supplier in 2015 and 2016. From 2018, Singapore became the
leading shark fin supplier. Other leading importers include
Senegal, Taiwan, Indonesia, Peru, and Mexico. The decrease in
imports from 5,746,460 kg in 2014 to 2,805,422 kg in 2015 is in
part due to effective anti-shark consumption campaigns in Hong
Kong, which began during the early 2010s (Consumer 1, 2, Hong
Kong, June 2021; Retailer 1, 4, 8, 10, 15, Hong Kong, February
2023). The late 2010s, however, saw a resurgence of shark fin
imports with a peak of 4,979,983 kg in 2017.
Fig. 2. Volumes of shark fins internationally traded through
Hong Kong from 2013-2019 (Hong Kong Customs and Excise
Department 2020).
Fig. 3. Top nine countries importing shark fins from Hong
Kong between 2013-2019 (Hong Kong Customs and Excise
Department 2020).
Although Hong Kong leads the world in shark fin imports, they
also export a significant number of fins. Figure 2 shows that Hong
Kong routinely exports roughly two-fifths of annual imports. The
practice of exporting fins imported from elsewhere, reflected in
Figure 2, was corroborated by local conservation officials at Hong
Kong’s Agriculture, Fisheries and Conservation Department
(AFCD 1, 2, Hong Kong, February 2023). Annual fluctuations
are the result of shifts in supply and demand in partner countries.
Nonetheless, the figure illustrates the volumes and inter-regional
relations embedded in Hong Kong’s entrepôt functionality. These
figures reveal a constantly fluctuating global trade in shark fins.
The absence of import and export taxes bolsters Hong Kong’s
advantage as a trading intermediary between countries. Hong
Kong can hold fins on the market until shifts in price or demand
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
make export economically viable. As visible in Figure 3, the bulk
of exports go to subregional markets within Southeast and East
Asia. Vietnam is Hong Kong’s leading export destination,
followed by mainland China, Macao, Taiwan, Singapore, Japan,
and Thailand. The U.S. and Canada receive fewer than 20,000 kg
of shark fins annually, making them the lowest export destinations
within Hong Kong’s top trading partner countries.
Contrary to the predominant focus on consumers within
conservation groups, the global production of shark fins
implicates fisheries across the world in biodiversity loss. Fisheries
that supply Hong Kong span the globe. Viewing the shark fin
trade through global-local scalar dynamisms points to the need
for participating countries to consider their contribution to
defaunation in relation to national regulations. Taking stock of
international and regional contributions to the market illustrates
the role of Hong Kong as an entrepôt in a global network. Its
function as a trade entrepôt requires international participation.
Although subregional geographies of trade play key roles in the
circulation of shark fins, consumption cannot be reduced to
historically timeless cultural practices. On the contrary, classed,
gendered, and intergenerational dynamics undergird shark fin
consumption.
Classed, gendered, and intergenerational dynamics of shark fin
consumption
Contrary to popular discourse of timeless cultural practices of
consuming shark fins, interviews in Hong Kong and
supplementary data indicate classed, gendered, and intergenerational
dynamics underly shark fin consumption. Shark fins are high-
price commodities that function as instruments of symbolic
wealth. In the language of Bourdieu (1984), shark fins are
desirable in the pursuit of social distinction.
Interviewees claimed that shark fin consumption signifies class
status and that most often shark fins are served at banquets and
weddings in prestigious hotels (Consumer 1, 2, Hong Kong, July
2021; Retailers 4, 5, 9, 12, 15, 18, 21, Hong Kong, February 2023).
Shark fins served at wedding banquets are highly visible displays
of cultural capital that strengthen the social capital of those who
purchase the fins. Social capital, for Bourdieu (1984), refers to the
strengthening of a durable network of people and mutual
acquaintances who recognize the cultural capital and credentialed
distinction of the purchaser of shark fins, in the case of wedding
banquets those being married and their families. As a Hong Kong
consumer remarked during an interview, "there is a relation
between shark fins, seafood, and wealth or class because people
show off to others by serving them these high-value items"
(Consumer 3, Hong Kong, July 2021). Claims that class matters
were nearly universal in interviews with Hong Kong retailers and
consumers.
The role of social status is further corroborated by written
accounts on shark fin consumption. In an account about the
generational differences in consuming shark fin soup, for instance,
the author describes shark fin as intimately linked to generational
notions of economic success. The author reflects:
Much of my grandfather’s life was built around that
[shark fin] soup, built around the idea that he could show
the world and himself that he’d finally made it, that he
could literally feed his family his success... The cultural
import of the dish is as much about status as anything
else (Lam 2011).
Accounts, such as this, highlight shark fin consumption as a
gastronomical expression of class difference and upward
socioeconomic mobility, particularly for those of older
generations.
Within this context, interviewees claimed that there is a
generational divide in shark fin consumption.
For now, it is probably only the older generation who
would cook or buy shark fins. The younger generation,
like me, does not really know how to cook them and how
to buy them. (Consumer 2, Hong Kong, July 2021).
Another interviewee claimed:
There is a generational divide in consuming shark fins...
it is something that the younger generation would avoid
because it will take up a lot of time to prepare and cook.
The trend now in Hong Kong would be eating something
fast and cheap... Shark fins are slow and expensive. The
younger generation is following a different trend.
(Consumer 4, Hong Kong, August 2021).
Interviewees stressed there is a generational shift underway in
consuming shark fins. Wherein older consumers maintain strong
associations with shark fins and social distinction, younger
generations do not necessarily value shark fin consumption in the
same way.
Shark fin consumption articulates not only with class and age,
but also with gender. Historically, shark fin consumption has been
a masculinist endeavor. Fins were historically reserved for the
emperor and later exclusively consumed as part of high-class
cuisine (Fabinyi 2012). Gendered social imaginaries continue to
motivate consumption. Interviewees stated that the consumption
of shark fins supplements (buyang) functions within the body and
health more generally (Retailer 1, 7, 10, 12, Hong Kong, February
2023). Interviewees associated shark fin consumption with health,
skin elasticity for women, and enhanced virility in men (Retailer
1, 7, 10, 12, Hong Kong, February 2023). Moreover, the
association of shark fin with health benefits and virility is
corroborated by other studies (Vannuccini 1999, Teo 2015).
Associations of shark fin consumption with supplementing
bodily qualities index forms of gendered differentiation that
dialectically propel shark fin production globally, including in
coastal New Jersey.
Local fishers’ knowledge and participation in sustainable
management
Artisanal NJ fishers, in interviews and focus group discussions,
did not oppose fisheries regulations. Instead, they discussed the
importance of incorporating their knowledge and practices into
fisheries management for greater ecological sustainability.
Fisher 4:
As fishermen, as a whole, we don’t want to catch the last
fish. We are into sustainability. We want to see
sustainability because there is no future in unsustainable
fishing for us. We are making our living from fishing. We
want to continue to be able to fish. We don’t want to go
out there and catch every fish in the ocean and have no living.
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
Fisher 3:
That is how we are portrayed.
Fisher 4:
So we want to see fishing regulated because you don’t
want to catch every fish in the ocean and get paid shit
money for it. We would rather fish sustainably, get paid
good money for a quality product and keep on keeping
on... We want to be here for the long run. And,
unfortunately, it looks like the end of the road for that.
To have real sustainable fishing, you have to work with
fisheries in places where fishermen have been for a long
time. (NJ, November 2021)
This highlights artisanal fishers’ support for incorporating their
knowledge and experience to work toward more sustainable
fisheries management.
Artisanal fishers felt that their local knowledge and experience
were not being included because of widespread associations of
shark fins with overconsumption and shark finning. A fisher, in
this regard, framed shark finning as predominantly carried out
by Chinese fisheries.
The guys who are fishing responsibly are taking it on the
chin. These industrial scale Chinese fisheries are bad you
know... We get the blame for what China is doing. We
are victims of poor practices in other countries, and we
just get lumped in as ‘one of them guys.’ (Fisher 3, NJ,
August 2021)
This quote draws attention to how orientalizing discourses
surrounding shark finning bear on perceptions of U.S. fisheries.
Global orientalist discourses have come to shape U.S. state
fisheries policies, like NJ S2905, and national-level policies that
ban shark fin retail, which were approved in December 2022. On
a national level, however, removing shark fins at sea and
discarding the carcass has been banned in U.S. waters since 2000.
There have been no reports of Mid-Atlantic fishers finning sharks
over the last several decades. The perception of global threat to
shark populations, nonetheless, has resulted in statewide retail
bans with substantive effects on artisanal fisheries without
evaluating how local knowledge could be used in conservation
efforts.
Artisanal NJ fishers, in response, participated in our comparative
study wherein the authors tested their ability to identify shark
species they caught at sea. From July-November 2021, fishers self-
reported visual species identifications of sharks caught while
gillnetting. Biological samples from fins were collected from fins
discarded through reverse shark finning. Comparing the self-
reported species identifications with results from DNA barcoding
supports the claim that artisanal fishers’ knowledge is sufficient
to identify shark species at sea with high accuracy.
We obtained at least 651 bp of COI sequence for each of our 47
samples and for all but 1 sample, the species identification
determined with DNA barcoding matched the visual species
assignment by fishers (Appendix 2). The one mismatch occurred
for a sample that the fisher had identified as a spiny dogfish, but
the DNA barcoding data (with multiple independently generated
DNA sequences from both the Folmer and Ivanova primer pairs)
strongly suggested it was a spinner shark (Appendix 2). Given
that these two shark species look very different, this mismatch
could have resulted from an error in data recording or sample
mislabeling rather than misclassification to the wrong species
based on visual examination. But either way, data suggest that in
at least 46 out of 47 cases, artisanal fishers were able to correctly
identify the harvested species (Table 1).
Table 1. Overview of how the 47 analyzed shark samples were
distributed among species based on fisher species assignment
(“visual identification”) and for which samples the species
assignment was confirmed with DNA barcoding (“species
correct”) or conflicted with DNA barcoding species assignment
(“species incorrect”).
Number of samples
Common name Scientific name Visual
identifica
tion
Species
correct
Species
incorrect
Atlantic sharpnose
shark
Rhizoprionodon
terraenovae
6 6 0
Blacktip shark Carcharhinus limbatus 6 6 0
Scalloped
hammerhead
Sphyrna lewini 6 6 0
Spinner shark Carcharhinus
brevipinna
15 15 0
Spiny dogfish Squalus acanthias 5 4 1
Thresher shark Alopias vulpinus 9 9 0
Total 47 46 1
DISCUSSION
These findings point to the enduring disjuncture between global
processes and local policies and practices with implications for
environmental policies, biodiversity conservation, and global-
local relations of production and consumption. First, there are
implications for state- and national-level environmental policies
regarding shark fisheries and shark fin trade regulation. Although
the U.S. has had a federal ban on shark finning since 2000, U.S.
congress passed a nation-wide shark fin retail ban in December
2022, called the Shark Fin Retail Elimination Act, which aims to
effectively ban the sale of all shark fins within U.S. national
territories. There is an exception in the bill for the sale of fins from
some types of dogfish. These bans have been advanced, in part,
due to perceptions of global biodiversity loss linked with
overconsumption and shark finning (Duong 2021). Global
concerns over biodiversity loss due to shark finning and
overconsumption underly these national environmental policies.
However, state-wide shark fin bans in the U.S. Mid-Atlantic have
not resulted in a decrease in local shark catches in the artisanal
sector. Moreover, state-wide bans have given rise to reverse shark
finning, a practice that produces biological waste and economic
loss without affecting regional shark catch numbers. Our findings,
therefore, call for renewed attention to how anxieties around
Asian consumption, global fishing practices, and biodiversity loss
are shaping local and national policy frameworks, which appear
to be ineffective in improving biodiversity conservation.
In the context of the U.S., there is widespread support for
totalizing shark fin retail bans despite a growing number of
studies that challenge the empirical grounds upon which such
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
policies are made and the efficacy of bans (Shiffman and Hueter
2017, Heuter and Shiffman 2019, Porcher et. al. 2019). New
Jersey’s state-wide ban, as the results indicate, didn’t reduce shark
catches within the artisanal fishing sector. The ban did, however,
precipitate economic losses. The economic effects of totalizing
bans are not currently prioritized in state- and national-level
policies. A ban that targets specific species and incorporates local
fishers’ knowledge and practices, conversely, could address
biodiversity conservation within U.S. coastal waters while
mitigating economic losses. In addition, the policy focus on shark
fin retail overlooks the ways that international trade through U.
S. port cities facilitates the global market. The Natural Resources
Defense Council estimates that between 591 to 701 metric tons of
shark fins passed through U.S. port cities over a 7-year period
from 2010-2017 (NRDC 2019) en route to Hong Kong and South
China’s cities. Fins that transit through the U.S. often come from
Latin American countries including Peru, Mexico, Ecuador,
Panama, and Costa Rica. The role of U.S. port infrastructures in
the global shark fin trade receives comparatively little attention.
More robust port management is key to localized policies that
support global biodiversity conservation.
Furthermore, our findings point to the need to reorient discourses
and regulatory practices with a dialectical understanding of the
multi-scalar dynamics surrounding shark fin production and
consumption. The notion of historically timeless Asian
consumption of shark fins, common in conservation discourse,
obfuscates specific social dynamics underlying shark fin
consumption, specifically classed, gendered, and generational
dynamics. Public outreach campaigns that directly engage elite
consumers and generational interests would more accurately
represent social dynamisms fueling demand for shark fins and
may prove more effective in reducing consumption. These
localized social dynamics articulate dialectically with
international fisheries to constitute a global system of shark fin
production and consumption. Because the production of shark
fins to supply Hong Kong’s market is global in character, coming
from five continents, locally specific environmental policies are
key to regulating shark fishing. A Hong Kong policy to import
solely from countries with regulatory mechanisms to support
sustainable fishing, mitigate overfishing, and shark finning locally
would incentivize countries to implement more robust regulatory
measures.
CONCLUSION
Effective interventions to advance shark conservation globally
and foster more socially equitable policies and practices require
multi-scalar interdisciplinary and dialectical analyses of social,
economic, and policy dynamics. Analyzing global-local
relationships and dynamics that constitute social-ecological
systems are crucial for effective biodiversity conservation. We
examined relationships between fisheries in NJ, regional policies,
and social dynamics of consumption in Hong Kong. In this case,
more targeted efforts that consider socioeconomic dynamics are
needed to affect consumption, while more holistic policies that
investigate actual impacts rather than blanket bans may be more
effective on the production side. The disjuncture between local
practices, processes, and policies are not isolated to Hong Kong
and the Mid-Atlantic, however. The widespread association of
shark fin consumption with timeless Asian tastes obfuscates key
social dynamics that drive of consumption, such as classed,
gendered, and intergenerational social dynamics, which bear on
production the world over. Within the dialectical relationships
between production and consumption of shark fins, or other
nature-based commodities for that matter, there are myriad
opportunities for interventions. Further studies that examine the
global-local scalar dynamics of production and consumption in
a dialectical register are required to shape interventions that more
fully account for social-ecological relationships across
geographical locations. [1]Customs and excise statistical data can
be found at https://www.customs.gov.hk/en/statistics/index.html.
Acknowledgments:
We greatly appreciate those in Hong Kong and New Jersey who
participated in this research. Additionally, we thank Harmony
Borchardt-Wier for valuable assistance with laboratory processing
of the shark samples, Heath Cook for help with compiling the list
of shark species found in the North Atlantic, Amelia Chung for
assistance with acquiring Hong Kong trade data, and Douglas
Zemeckis for assistance with extension services to NJ fisheries. This
research was supported by a faculty collaboration grant from the
Cornell Atkinson Center for Sustainability. This publication was
supported by the Princeton University Library Open Access Fund.
Writing was supported by the Paul and Marcia Wythes Center on
Contemporary China. Anonymous reviewers provided substantive
comments that improved the manuscript. All errors remain our own.
Data Availability:
We have made all relevant data available in the figures, table, and
supplementary files.
LITERATURE CITED
Anderson, E. N. 1988. The food of China. Yale University Press,
New Haven, Connecticut, USA.
Bourdieu, P. 1984. Distinction: a social critique of the judgement
of taste. Harvard University Press, Cambridge, Massachusetts,
USA.
Byrnes, C. 2020. Transpacific maladies. Social Text 38(3):1-26.
https://doi.org/10.1215/01642472-8352223
Campling, L., and E. Havice. 2018. The global environmental
politics and political economy of seafood systems. Global
Environmental Politics 18(2):72-92. https://doi.org/10.1162/
glep_a_00453
Cardeñosa, D., S. K. Shea, H. Zhang, G. A. Fischer, C. A.
Simpfendorfer, and D. D. Chapman. 2022. Two thirds of species
in a global shark fin trade hub are threatened with extinction:
conservation potential of international trade regulations for
coastal sharks. Conservation Letters 15(5):e12910. https://doi.
org/10.1111/conl.12910
Cash, D. W., W. N. Adger, F. Berkes, P. Garden, L. Lebel, P. Olsson,
L. Pritchard, and O. Young. 2006. Scale and cross-scale dynamics:
governance and information in a multilevel world. Ecology and
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
Society 11(2):8. http://www.ecologyandsociety.org/vol11/iss2/
art8/
Castro, J. I. 2011. The sharks of North America. Oxford
University Press, Oxford, UK.
Clarke, S. 2006. Trade in shark products in Malaysia, Singapore
and Thailand. Secretariat, Southeast Asian Fisheries
Development Center, Bangkok, Thailand. https://repository.
seafdec.org/handle/20.500.12066/5474
Clarke, S. C., M. K. McAllister, E. J. Milner‐Gulland, G. P.
Kirkwood, C. G. J. Michielsens, D. J. Agnew, E. Pikitch, H.
Nakano, and M. S. Shivji. 2006. Global estimates of shark catches
using trade records from commercial markets. Ecology Letters 9
(10):1115-1126. https://doi.org/10.1111/j.1461-0248.2006.00968.
x
Chee, L. P. Y. 2021. Mao’s bestiary: medicinal animals and modern
China. Duke University Press, Durham, North Carolina, USA.
Cox, K. R. 2008. Globalization, uneven development and capital:
reflections on reading Thomas Friedman’s The World Is Flat.
Cambridge Journal of Regions, Economy and Society 1
(3):389-410. https://doi.org/10.1093/cjres/rsn017
Downing, A. S., G. Y. Wong, M. Dyer, A. P. Aguiar, O. Selomane,
and A. J. Aceituno. 2021. When the whole is less than the sum of
all parts - tracking global-level impacts of national sustainability
initiatives. Global Environmental Change 69:102306. https://doi.
org/10.1016/j.gloenvcha.2021.102306
Duong, T. 2021. Senate bans shark fin trade and addresses forced
labor and illegal fishing. 18 June EcoWatch. https://www.
ecowatch.com/shark-fin-trade-senate-ban-2653447114.html
Fabinyi, M. 2012. Historical, cultural and social perspectives on
luxury seafood consumption in China. Environmental
Conservation 39(1):83-92 https://doi.org/10.1017/S0376892911000609
Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994.
DNA primers for amplification of mitochondrial cytochrome
coxidase subunit I from diverse metazoan invertebrates.
Molecular Marine Biology and Biotechnology 3(5):294-299.
Fong, Q. S. W., and J. L. Anderson. 2002. International shark fin
markets and shark management: an integrated market preference-
cohort analysis of the blacktip shark (Carcharhinus limbatus).
Ecological Economics 40(1):117-130. https://doi.org/10.1016/
S0921-8009(01)00273-7
Frawley, T. H., E. M. Finkbeiner, and L. B. Crowder. 2019.
Environmental and institutional degradation in the globalized
economy: lessons from small-scale fisheries in the Gulf of
California. Ecology and Society 24(1):7. https://doi.org/10.5751/
ES-10693-240107
Friedman, T. L. 2000. The lexus and the olive tree: understanding
globalization. Anchor Books, New York, New York, USA.
Friis, C., and J. Ø. Nielsen. 2017. On the system. Boundary
choices, implications, and solutions in telecoupling land use
change research. Sustainability 9(6):974. https://doi.org/10.3390/
su9060974
Gallagher, A. J., N. Hammerschlag, A. J. Danylchuk, and S. J.
Cooke. 2017. Shark recreational fisheries: status, challenges, and
research needs. Ambio 46(4):385-398. https://doi.org/10.1007/
s13280-016-0856-8
Hart, G. P. 2002. Disabling globalization: places of power in post-
Apartheid South Africa. University of California Press, Berkeley,
California, USA.
Haug, W. F. 2005. Dialectics. Historical Materialism 13
(1):241-266. https://doi.org/10.1163/1569206053620843
Hennink, M. M. 2013. Focus group discussions. Oxford
University Press, Oxford, UK.
Hobbs, C. A. D., R. W. A. Potts, M. B. Walsh, J. Usher, and A.
M. Griffiths. 2019. Using DNA barcoding to investigate patterns
of species utilisation in UK shark products reveals threatened
species on sale. Scientific Reports 9(1):1028. https://doi.
org/10.1038/s41598-018-38270-3
Hong Kong Customs and Excise Department. 2020. Publications
and useful information. Hong Kong Customs and Excise
Department, Hong Kong, China. https://www.customs.gov.hk/
en/statistics/index.html
Hueter, R. E., and D.S. Shiffman. 2019. Rebuttal to “Response
to ‘A United States shark fin ban would undermine sustainable
shark fisheries’ IF Porcher et al., Marine Policy 104 (2019) 85-89”.
Marine Policy 110:103601. https://doi.org/10.1016/j.marpol.2019.103601
International Union for Conservation of Nature (IUCN). 2015.
IUCN media brief: spiny dogfish: the mainstay of British ‘fish
and chips.’ IUCN, Gland, Switzerland. https://www.yumpu.com/
en/document/view/35238398/iucn-media-brief-spiny-dogfish
Ivanova, N. V., T. S. Zemlak, R. H. Hanner, and P. D. N. Hebert.
2007. Universal primer cocktails for fish DNA barcoding.
Molecular Ecology Notes 7(4):544-548. https://doi.org/10.1111/
j.1471-8286.2007.01748.x
King, M. T. 2020. Say no to bat fried rice: changing the narrative
of coronavirus and Chinese food. Food and Foodways 28
(3):237-249. https://doi.org/10.1080/07409710.2020.1794182
Kučka, M., and Chan, Y. F. 2022. HMW DNA extraction using
magnetic beads. protocols.io https://dx.doi.org/10.17504/protocols.
io.b46bqzan
Lam, F. 2011. Is it racist to ban shark fin soup? All three western
states eliminate the Chinese delicacy, but is it pro-environment or
anti-Asian? 7 March, Salon. https://www.salon.com/2011/03/07/
sharks_fin_soup_ban/
Levins, R., and R. Lewontin. 1985. The dialectical biologist.
Harvard University Press, Cambridge, Massachusetts, USA.
Lewontin, R. C., and R., Levins. 2007. Biology under the
influence: dialectical essays on ecology, agriculture, and health.
Monthly Review, New York, New York, USA.
Liu, J., V. Hull, M. Batistella, R. DeFries, T. Dietz, F. Fu, T. W.
Hertel, R. C. Izaurralde, E. F. Lambin, S. Li, L. A. Martinelli, W.
J. McConnell, E. F. Moran, R. Naylor, Z. Ouyang, K. R. Polenske,
A. Reenberg, G. de Miranda Rocha, C. S. Simmons, P. H. Verburg,
P. M. Vitousek, F. Zhang, and C. Zhu. 2013. Framing
sustainability in a telecoupled world. Ecology and Society 18
(2):26. http://dx.doi.org/10.5751/ES-05873-180226
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
Margulies, J. D., R. W. Y. Wong, and R. Duffy. 2019. The
imaginary Asian Super Consumer’: a critique of demand
reduction campaigns for the illegal wildlife trade. Geoforum
107:216-219. https://doi.org/10.1016/j.geoforum.2019.10.005
Marston, S. A. 2000. The social construction of scale. Progress
in Human Geography 24(2):219-242. https://doi.
org/10.1191/030913200674086272
Meyfroidt, P. 2019. Explanations in telecoupling research. Pages
69-86 in C. Friis and J. Nielsen, editors. Telecoupling. Palgrave
Studies in Natural Resource Management. First edition. Palgrave
Macmillan, Cham, Switzerland. https://doi.org/10.1007/978-3-0
30-11105-2_4
National Oceanic and Atmospheric Administration (NOAA).
2019. Atlantic spiny dogfish. NOAA, Silver Spring, Maryland,
USA. https://www.fisheries.noaa.gov/species/atlantic-spiny-dogfish
Natural Resources Defense Council (NRDC). 2019. Unintentional
partners: how the United States helps the illegal shark fin market.
Natural Resources Defense Council Report. Natural Resources
Defense Council, New York, New York, USA. https://www.nrdc.
org/resources/unintentional-partner-how-united-states-helps-illegal-
shark-fin-market
New Jersey Senate. 2020. NJ Senate Bill S2905: prohibits certain
possession, sale, trade, distribution, or offering for sale of shark
fins. New Jersey Senate, Trenton, New Jersey, USA. https://
legiscan.com/NJ/text/S2905/2018
Newman, J. M. 2004. Food culture in China. Greenwood,
London, UK.
Noy, C. 2008. Sampling knowledge: the hermeneutics of snowball
sampling in qualitative research. International Journal of Social
Research Methodology 11(4):327-344. https://doi.
org/10.1080/13645570701401305
Oliver, C. 2020. Shark fin sale bans would hurt U.S. fisherman
without improving shark conservation, management. NOAA,
Silver Spring, Maryland, USA. https://www.fisheries.noaa.gov/
leadership-message/shark-fin-sale-bans-would-hurt-us-fishermen-
without-improving-shark-conservation
Pacoureau, N., C. L. Rigby, P. M. Kyne, R. B. Sherley, H. Winker,
J. K. Carlson, S. V. Fordham, R. Barreto, D. Fernando, M. P.
Francis, R. W. Jabado, K. B. Herman, K.-M. Liu, A. D. Marshall,
R. A. Pollom, E. V. Romanov, C. A. Simpfendorfer, J. S. Yin, H.
K. Kindsvater, and N. K. Dulvy. 2021. Half a century of global
decline in oceanic sharks and rays. Nature 589:567-571. https://
doi.org/10.1038/s41586-020-03173-9
Porcher, I. F., B. W. Darvell, and G. Cuny. 2019. Response to “A
United States shark fin ban would undermine sustainable shark
fisheries” D. S. Shiffman & R. E. Hueter, Marine Policy 85 (2017)
138-140. Marine Policy 104:85-89. https://doi.org/10.1016/j.
marpol.2019.02.058
Preiser, R., R. Biggs, A. De Vos, and C. Folke. 2018. Social-
ecological systems as complex adaptive systems. Ecology and
Society 23(4):46. https://doi.org/10.5751/ES-10558-230446
Rodenbiker, J. 2020. China’s global reach: urban social lives of
the more-than-human. Society and Space (4)8. https://www.
societyandspace.org/articles/chinas-global-reach-urban-social-lives-
of-the-more-than-human
Rodenbiker, J. 2023. Urban oceans: social differentiation in the
city and the sea. Environment and Planning E: Nature and Space
6(1):412-432. https://doi.org/10.1177/25148486221078690
Sayre, N. F. 2005. Ecological and geographical scale: parallels and
potential for integration. Progress in Human Geography 29
(3):276-290. https://doi.org/10.1191/0309132505ph546oa
Shea, K. H., and A. W. L. To. 2017. From boat to bowl: patterns
and dynamics of shark fin trade in Hong Kong implications
for monitoring and management. Marine Policy 81:330-339.
https://doi.org/10.1016/j.marpol.2017.04.016
Shiffman, D. S., and R. E. Hueter. 2017. A United States shark
fin ban would undermine sustainable shark fisheries. Marine
Policy 85:138-140. https://doi.org/10.1016/j.marpol.2017.08.026
Simoons, F. J. 1991. Food in China: a cultural and historical
perspective. Taylor and Francis, Boca Raton, Florida, USA.
https://doi.org/10.1201/9781482259322
Sims, D. W., G. Mucientes, and N. Queiroz. 2021. Shortfin mako
sharks speeding to the brink. Science 371(6527):355-355. https://
doi.org/10.1126/science.abg2355
Teo, P. 2015. Man eating shark: unravelling the debate on the (un)
ethical consumption of shark’s fin in Singapore. Thesis. National
University Singapore, Singapore.
Vannuccini, S. 1999. Shark utilization, marketing and trade. Food
and Agriculture Organization of the United Nations, Rome, Italy.
https://www.fao.org/3/x3690e/x3690e.pdf
Ward-Paige, C. A., and B. Worm. 2017. Global evaluation of
shark sanctuaries. Global Environmental Change 47:174-189.
https://doi.org/10.1016/j.gloenvcha.2017.09.005
Watts, M. J. 2013. Silent violence: food, famine, and peasantry in
northern Nigeria. University of Georgia Press, Athens, Georgia,
USA.
Appendix 1. List of shark species that may occur in Northeast Atlantic.
Please click here to download file ‘appendix1.xlsx’.
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
Appendix 2. Summary of results from DNA barcoding analysis for each shark sample.
Please click here to download file ‘appendix2.xlsx’.
Ecology and Society 28(3): 5
https://www.ecologyandsociety.org/vol28/iss3/art5/
Appendix 3
>FMVIC592-08|Chlamydoselachus anguineus|COI-5P
-----------
TTTTTGGTGCCTGAGCCGGTATAGTAGGTACAGCCCTAAGCTTACTTATTCGCGCAGAACTTAGTCAACC
CGGAACATTTCTGGGGGATGACCAGATTTATAATGTGATTGTAACTGCCCATGCGTTTGTTATAATTTTCT
TTATAGTTATACCCGTAATAATTGGGGGATTTGGAAATTGACTAGTGCCATTAATAATTGGCGCCCCAGA
TATAGCTTTTCCACGAATAAATAATATAAGTTTTTGACTTCTCCCTCCATCCTTTCTACTCCTTTTAGCTTCC
GCTGGCGTTGAAGCCGGAGCCGGAACTGGTTGAACAGTCTACCCGCCCCTTGCAGGTAATCTTGCCCAC
GCAGGAGCATCCGTAGATTTAACTATTTTTTCATTACATTTAGCCGGTATTTCCTCAATTCTAGCATCAATT
AATTTCATTACTACTATTATTAATATAAAACCACCAGCTATTTCACAATATCAAACACCCCTTTTCGTTTGA
TCAATTCTTGTTACTACCATTCTTCTTCTACTTTCCCTTCCCGTCCTTGCAGCTGCAATCACTATATTATTAA
CTGACCGTAATTTAAATACCACATTCTTCGACCCTGCAGGGGGAGGAGAACCCATTCTCTATCAACA----
>FOAL599-10|Chlamydoselachus anguineus|COI-5P|HQ956289
CCTTTATTTAATTTTTGGTGCCTGAGCAGGTATAGTAGGTACAGCCCTAAGCTTACTTATTCGCGCAGAAC
TTAGTCAACCCGGAACATTTCTGGGGGATGACCAGATTTATAATGTGATTGTAACTGCCCATGCGTTTGT
TATAATTTTCTTTATAGTTATACCCGTAATAATTGGGGGATTTGGAAATTGACTAGTGCCATTAATAATTG
GTGCCCCAGATATAGCTTTTCCACGAATAAATAATATAAGTTTTTGACTTCTCCCTCCATCCTTTCTACTCC
TTTTAGCTTCCGCTGGCGTTGAAGCCGGAGCCGGAACTGGTTGAACAGTCTACCCTCCCCTTGCAGGTAA
TCTTGCCCACGCAGGAGCATCCGTAGATTTAACTATTTTTTCATTACATTTAGCCGGTATTTCCTCAATTCT
AGCATCAATTAATTTCATTACTACTATTATTAATATAAAACCACCAGCTATTTCACAATATCAAACACCCCT
TTTCGTTTGATCAATTCTTGTTACTACCATTCTTCTTCTACTTTCCCTTCCCGTCCTTGCAGCTGCAATCACT
ATATTATTAACTGACCGTAATTTAAATACCACATTCTTCGACCCTGCAGGGGGAGGAGATCCTATTCTCTA
CCAACA----
>ANGBF11590-15|Hexanchus griseus|COI-5P|KF899464
CCCTATATTTAATTTTTGGTGCCTGAGCAGGAATAGTGGGTACAGCCCTGAGTCTACTTATTCGAACAGA
ATTAAGTCAACCCGGAACACTTTTAGGAGATGATCAGATTTACAATGTAATTGTTACTGCCCACGCTTTC
GTAATAATCTTCTTCATAGTAATACCCGTAATAATTGGTGGGTTCGGAAATTGACTAGTACCCTTAATGAT
CGGTGCTCCAGATATAGCTTTCCCACGAATAAATAATATAAGCTTCTGATTATTACCCCCTTCTTTCTTACT
CCTTTTAGCCTCAGCTGGTGTAGAGGCAGGTGCCGGCACCGGTTGAACAGTCTATCCACCACTTGCAGG
TAATCTAGCTCACGCAGGGGCATCCGTAGACCTAACTATTTTTTCATTACATCTAGCTGGTATTTCCTCAA
TTCTAGCATCAATTAATTTCATCACCACTATTATTAATATGAAACCCCCAGCTATTTCCCAATACCAAACCC
CTCTTTTTGTTTGATCAATTTTTGTCACTACTATTCTTCTCCTCCTTTCCCTCCCTGTCCTTGCAGCTGGAAT
TACTATACTATTAACTGATCGTAATTTAAATACAACATTCTTTGACCCTTCAGGGGGAGGAGATCCTATTC
TCTATCAACAT
>SCAFB410-07|Hexanchus griseus|COI-5P|KC015461
CCTATATTTAATTTTTGGTGCCTGAGCAGGAATAGTGGGTACAGCCCTGAGTCTACTTATTCGAACAGAA
TTAAGTCAACCCGGAACACTTTTAGGAGATGATCAGATTTACAATGTAATTGTTACTGCCCACGCTTTCGT
AATAATCTTCTTCATAGTAATACCCGTAATAATTGGTGGGTTCGGAAATTGACTAGTACCCTTAATGATC
GGTGCTCCAGATATAGCTTTCCCACGAATAAATAATATAAGCTTCTGATTATTACCCCCTTCTTTCTTACTC
CTTTTAGCCTCAGCTGGTGTAGAGGCAGGTGCCGGCACCGGTTGAACAGTCTATCCACCACTTGCAGGT
AATCTAGCTCACGCAGGGGCATCCGTAGACCTAACTATTTTTTCATTACATCTAGCTGGTATTTCCTCAAT
TCTAGCATCAATTAATTTCATTACCACTATTATTAATATGAAACCCCCAGCTATTTCCCAATACCAAACCCC
TCTTTTTGTTTGATCAATTTTTGTCACTACTATTCTTCTCCTCCTTTCCCTCCCTGTCCTTGCAGCTGGAATT
ACTATACTATTAACTGATCGTAATTTAAATACAACATTCTTTGACCCTTCAGGGGGAGGAGATCCTATTCT
CTATCAACATCTA
>ANGBF11594-15|Heptranchias perlo|COI-5P|KF899460
CTATATTTAATTTTTGGTGCCTGAGCAGGAATAGTGGGTACAGCCCTAAGTCTACTTATTCGAACGGAAT
TAAGTCAACCCGGAACACTTTTAGGGGATGATCAGATTTATAATGTAATCGTTACTGCCCACGCTTTCGT
AATAATTTTCTTCATGGTAATACCCGTAATAATTGGTGGATTCGGAAATTGACTAGTACCCTTAATAATTG
GTGCTCCAGATATAGCTTTTCCACGAATAAATAATATAAGCTTCTGATTATTACCACCCTCATTCCTACTCC
TTTTAGCCTCAGCTGGTGTAGAAGCAGGCGCCGGTACCGGTTGAACAGTTTATCCTCCACTTGCAAGCAA
TCTCGCTCATGCAGGAGCATCCGTAGACTTAACTATTTTTTCATTACATCTAGCTGGTATTTCCTCAATTCT
AGCATCAATTAATTTCATCACCACTATCATTAATATAAAACCCCCAGCTATCTCCCAATACCAGACCCCTCT
TTTTGTTTGATCTATTTTCGTCACTACTATTTTACTTCTCCTTTCTCTCCCAGTCCTTGCAGCTGGAATTACT
ATATTATTAACTGATCGTAATCTAAATACAACATTCTTTGACCCCTCGGGAGGGGGAGATCCCATTCTCTA
CCAACAT
>FCFPI046-06|Heptranchias perlo|COI-5P|EU869819
CTATATTTAATTTTTGGTGCCTGAGCAGGAATAGTGGGTACAGCCCTAAGTCTACTTATTCGAACGGAAT
TAAGTCAACCCGGAACACTTTTAGGGGATGATCAGATTTATAATGTAATCGTTACTGCCCACGCTTTCGT
AATAATTTTCTTCATGGTAATACCCGTAATAATTGGTGGATTCGGAAATTGACTAGTACCCTTAATAATTG
GTGCTCCAGATATAGCTTTTCCACGAATAAATAATATAAGCTTCTGATTATTACCACCCTCATTCCTACTCC
TTTTAGCCTCAGCTGGTGTAGAAGCAGGCGCCGGTACCGGTTGAACAGTTTATCCTCCACTTGCAAGCAA
TCTCGCTCATGCAGGAGCATCCGTAGACTTAACTATTTTTTCATTACATCTAGCTGGTATTTCCTCAATTCT
AGCATCAATTAATTTCATCACCACTATCATTAATATAAAACCCCCAGCTATCTCCCAATACCAGACCCCTCT
TTTTGTTTGATCTATTTTCGTCACTACTATTTTACTTCTCCTTTCTCTCCCAGTCCTTGCAGCTGGAATTACT
ATATTATTAACTGATCGTAATCTAAATACAACATTCTTTGACCCCTCGGGAGGGGGAGATCCCATTCTCTA
CCAACATCTC
>ESNDT006-07|Carcharias taurus|COI-5P|FJ519794
CCTATACTTAATCTTTGGTGCATGGGCAGGAATAGTAGGAACAGCCCTAAGCCTTCTAATTCGAGCTGAA
CTAGGACAACCCGGATCACTCCTAGGAGATGATCAGATTTATAATGTTATTGTAACCGCCCATGCATTTG
TAATAATTTTCTTCATGGTCATACCTGTAATAATTGGTGGGTTCGGGAACTGACTAGTGCCCTTAATAATT
GGTGCACCAGACATGGCCTTCCCCCGAATAAACAATATAAGCTTTTGACTTCTTCCCCCCTCTTTTCTTTTA
CTCCTAGCTTCAGCCGGAGTCGAAGCTGGAGCCGGCACCGGTTGGACAGTGTATCCTCCTTTAGCCGGT
AACTTAGCCCATGCCGGAGCATCCGTTGACTTAGCTATCTTTTCTCTTCATTTAGCAGGTATTTCATCAATC
TTAGCCTCAATCAACTTCATTACAACCATTATTAACATAAAACCCCCAGCTATCTCTCAATATCAAACACCA
TTATTTGTATGATCAATTTTAGTAACAACTATCCTCCTCCTCCTGTCCCTTCCAGTACTTGCAGCTGGCATC
ACTATACTTCTTACGGACCGAAACTTAAACACAACATTCTTTGACCCAGCTGGGGGAGGAGATCCAATCC
TCTATCAACATCTA
>AMS022-06|Carcharias taurus|COI-5P
CCTATACTTAATCTTTGGTGCATGGGCAGGAATAGTAGGAACAGCCCTAAGCCTTCTAATTCGAGCTGAA
CTAGGACAACCCGGATCACTCCTAGGAGATGATCAGATCTATAATGTTATTGTAACCGCCCATGCATTTG
TAATAATTTTCTTCATGGTTATACCTGTAATAATTGGTGGATTCGGAAACTGACTAGTGCCCTTAATAATT
GGTGCACCAGACATAGCCTTCCCCCGAATAAACAATATAAGCTTTTGACTTCTTCCCCCCTCTTTTCTTTTA
CTCCTAGCTTCAGCTGGAGTCGAAGCTGGAGCCGGCACCGGTTGAACGGTGTATCCTCCTTTAGCCGGT
AACTTAGCCCATGCCGGAGCATCCGTTGACTTAGCTATCTTTTCTCTTCATTTAGCAGGCATTTCATCAAT
CTTAGCCTCAATCAACTTCATTACAACCATTATTAACATAAAACCCCCAGCTATCTCTCAGTACCAAACAC
CATTATTTGTATGATCAATTTTAGTAACAACTATCCTCCTCCTTCTATCCCTTCCAGTACTTGCAGCTGGTA
TCACTATACTTCTTACGGACCGAAACTTAAACACAACATTCTTTGACCCGGCTGGGGGAGGAGACCCAAT
CCTCTATCAACATCTA
>ANGBF12683-15|Carcharodon carcharias|COI-5P|KJ934896
GTGGCAATTAATCGATGACTATTTTCTACAAACCACAAAGATATTGGTACCCTTTATTTAATTTTTGGTGC
ATGAGCAGGAATAGTGGGAACAGCCCTAAGCCTTTTAATCCGTGCCGAGCTGGGTCAACCAGGTTCCCT
CCTCGGAGATGACCAGATTTATAATGTTATTGTGACCGCCCATGCCTTCGTAATAATCTTCTTCATGGTAA
TGCCCATCATAATTGGGGGTTTTGGGAATTGACTAATCCCATTAATAATTGGTGCCCCGGACATAGCCTT
CCCCCGAATAAATAACATAAGCTTCTGACTCCTTCCCCCTTCCTTTTTACTACTTCTAGCTTCAGCCGGAGT
TGAAGCAGGAGCCGGCACTGGTTGAACAGTCTACCCTCCCCTGGCCGGTAATTTAGCACACGCAGGAGC
ATCCGTTGACCTGGCTATCTTCTCCCTTCACCTAGCAGGTATTTCCTCAATCTTGGCCTCAATTAACTTTAT
TACAACTATCATCAATATGAAACCCCCAGCAATCTCCCAATACCAAACACCCCTGTTCGTATGATCCATCT
TAGTAACAACCATCCTTCTTCTCCTAGCCCTTCCAGTGCTCGCAGCCGGCATCACAATGTTACTTACTGAC
CGAAATCTAAACACAACATTCTTTGATCCAGCAGGAGGAGGAGACCCTATTCTCTACCAACATCTTTTCT
GATTTTTTGGTCACCCTGAAGTCTACATTCTCATCCTTCCTGGTTTTGGTATAATCTCCCATATTGTGGCTT
ATTATTCTGGTAAAAAAGAACCATTTGGTTATATAGGAATGGTTTGGGCAATAATAGCAATTGGCCTACT
TGGGTTTATTGTCTGAGCCCACCACATATTTACCGTGGGAATGGACGTTGATACACGGGCCTACTTTACC
TCAGCAACGATAATTATTGCTATCCCCACAGGTGTAAAAGTCTTCAGCTGATTAGCTACCCTTCATGGAG
GCTCAGTTAAATGAGAAACCCCCTTACTATGGGCTCTCGGATTCATTTTCCTATTTACAGTAGGGGGTTTA
ACAGGAATTGTCCTAGCTAACTCTTCTCTCGATATTGTTCTCCACGATACTTACTATGTAGTAGCCCACTTT
CACTATGTTCTTTCAATAGGGGCAGTATTTGCTATCATGGCAGGCTTTATCCACTGATTCCCATTAATAAC
GGGTTATACACTCCATTCAACCTGAACAAAAATCCAATTCGCAGTTATGTTTATTGGGGTAAATTTAACAT
TCTTCCCTCAACACTTCCTAGGCCTCGCCGGTATGCCACGACGTTACTCAGACTACCCAGACGCTTACACT
TTATGAAATACAGTTTCCTCTATTGGCTCTTTAATCTCACTTGTAGCAGTAATTATACTATTATTTATTATTT
GAGAAGCATTCGCCTCAAAACGAGAAGTTCTGTCTGTTGAGCTACCCCACACAAACGTTGAATGACTCC
ATGGTTGCCCCCCACCCTATCACACATACGAAGAACCAGCGTTTGTTCAAGTCCAACGAAACCTT
>ANGBF14762-19|Carcharodon carcharias|COI-5P|KX389266
GTGGCAATTAATCGATGACTATTTTCTACAAACCACAAAGATATTGGTACCCTTTATTTAATTTTTGGTGC
ATGAGCAGGAATAGTGGGAACAGCCCTAAGCCTTTTAATCCGTGCCGAGCTGGGTCAACCAGGTTCCCT
CCTCGGAGATGACCAGATTTATAATGTTATTGTGACCGCCCATGCCTTCGTAATAATCTTCTTCATGGTAA
TGCCCATCATAATTGGGGGTTTTGGGAATTGACTAATCCCGTTAATAATTGGTGCCCCGGACATAGCCTT
CCCCCGAATAAATAACATAAGCTTCTGACTCCTTCCCCCTTCCTTTTTACTACTCCTAGCTTCAGCCGGAGT
TGAAGCAGGAGCCGGCACTGGTTGAACAGTCTACCCTCCCCTGGCCGGTAATTTAGCACACGCAGGAGC
ATCCGTTGACCTGGCTATCTTCTCCCTTCACCTAGCAGGTATTTCCTCAATCTTGGCCTCAATTAACTTTAT
TACAACTATCATCAATATGAAACCCCCAGCAATCTCCCAATACCAAACACCCCTGTTCGTATGATCCATCT
TAGTAACAACCATCCTTCTTCTCCTAGCCCTTCCAGTGCTCGCAGCCGGTATCACAATGTTACTTACTGAC
CGAAATCTAAACACAACATTCTTTGATCCAGCAGGAGGAGGAGACCCTATTCTTTACCAACATCTTTTCT
GATTTTTTGGTCACCCTGAAGTCTACATTCTCATCCTTCCTGGTTTTGGTATAATCTCCCATATTGTGGCTT
ATTATTCTGGTAAAAAAGAACCATTTGGTTATATAGGAATGGTTTGGGCAATAATAGCAATTGGCCTACT
TGGGTTTATTGTCTGAGCCCACCACATATTTACCGTAGGAATGGACGTTGATACACGGGCCTACTTTACC
TCAGCAACGATAATTATTGCCATCCCCACAGGTGTAAAAGTCTTCAGCTGATTAGCTACCCTCCATGGAG
GCTCAGTTAAATGAGAAACCCCCTTACTATGGGCTCTCGGATTCATTTTCCTATTTACAGTAGGGGGTTTA
ACAGGAATTGTCCTAGCTAACTCTTCTCTCGATATTGTTCTCCACGATACTTACTATGTAGTAGCCCACTTT
CACTATGTTCTTTCAATAGGGGCAGTATTTGCTATCATGGCAGGCTTTATCCACTGATTCCCATTAATAAC
GGGTTACACACTCCATTCAACCTGAACAAAAATCCAATTCGCAGTTATGTTTATTGGGGTAAATTTAACA
TTCTTCCCTCAACACTTCCTAGGCCTCGCCGGTATGCCACGACGTTACTCAGACTACCCAGACGCTTACAC
TTTATGAAATACAGTTTCCTCTATTGGCTCTTTAATCTCACTTGTAGCAGTAATTATACTATTATTTATTATT
TGAGAAGCATTCGCCTCAAAACGAGAAGTTCTGTCTATTGAGCTACCCCACACAAACGTTGAATGACTCC
ATGGTTGCCCCCCGCCCTATCACACATACGAAGAACCAGCGTTTGTTCAAGTCCAACGAAACCTT
>EPORB041-07|Lamna nasus|COI-5P|FJ519687
CCTCTATTTAATCTTTGGTGCATGGGCAGGAATAGTGGGAACAGCCCTAAGCCTTTTAATTCGCGCTGAG
CTGGGTCAGCCTGGTTCCCTCCTAGGCGACGATCAGATTTATAATGTTATTGTAACCGCCCATGCATTTGT
AATGATTTTCTTTATAGTAATGCCTGTGATAATTGGGGGCTTTGGAAACTGACTAGTACCATTAATAATT
GGTGCACCAGATATGGCCTTCCCTCGAATAAATAACATAAGTTTCTGACTCCTCCCTCCTTCTTTTCTCCTA
CTCCTAGCTTCGGCCGGAGTCGAAGCAGGGGCTGGCACTGGCTGAACGGTTTACCCTCCCCTAGCTGGC
AACTTAGCACATGCCGGGGCCTCCGTTGATCTGGCTATCTTTTCCCTTCACCTAGCGGGTATCTCTTCAAT
CTTAGCTTCAATTAACTTCATTACAACTATCATTAATATAAAACCACCAGCAATTTCCCAGTACCAGACGC
CCCTATTTGTGTGATCCATTCTAGTAACAACTATTCTCCTTCTTTTAGCCCTCCCAGTACTTGCAGCCGGCA
TCACAATACTACTCACTGACCGAAATCTAAATACAACTTTCTTTGACCCAGCAGGAGGGGGAGACCCTAT
TCTCTACCAACACTTG
>EPORB003-07|Lamna nasus|COI-5P|FJ519725
CCTCTATTTAATCTTTGGTGCATGGGCAGGAATAGTGGGAACAGCCCTAAGCCTTTTAATTCGCGCTGAG
CTGGGTCAGCCTGGTTCCCTCCTAGGCGACGATCAGATTTATAATGTTATTGTAACCGCCCATGCATTTGT
AATGATTTTCTTTATAGTAATGCCTGTGATAATTGGGGGCTTTGGAAACTGACTAGTACCATTAATAATT
GGTGCACCAGATATGGCCTTCCCTCGAATAAATAACATAAGTTTCTGACTCCTCCCTCCTTCTTTTCTCCTA
CTCCTAGCTTCGGCCGGAGTCGAAGCAGGGGCTGGCACTGGCTGAACGGTTTACCCTCCCCTAGCTGGC
AACTTAGCACATGCCGGGGCCTCCGTTGATCTGGCTATCTTTTCCCTTCACCTAGCGGGTATCTCTTCAAT
CTTAGCTTCAATTAACTTCATTACAACTATCATTAATATAAAACCACCAGCAATTTCCCAGTACCAGACGC
CCCTATTTGTGTGATCCATTCTAGTAACAACTATTCTCCTTCTTTTAGCCCTCCCAGTACTTGCAGCCGGCA
TCACAATACTACTCACTGACCGAAATCTAAATACAACTTTCTTTGACCCAGCAGGAGGGGGAGACCCTAT
TCTCTACCAACACTTG
>ANGBF10931-15|Isurus oxyrinchus|COI-5P|KF771232
ACCCTGTATNTWATCTTTGGTGCATGAGCAGGAATGGTAGGAACAGCCCTAAGCCTTTTAATTCGTGCC
GAACTGGGTCAGCCTGGTTCCCTCCTAGGGGATGATCAGATTTATAATGTTATTGTACCCGCCCATGCAT
TTGTAATAATTTTCTTTATGGTTATGCCCGTAATAATTGGAGGCTTTGGAAATTGACTAGTGCCTTTAATG
ATCGGAGCACCAGACATAGCCTTCCCCCGAATAAATAACATAAGTTTCTGGCTCCTACCCCCTTCTTTCCT
TTTACTCTTGGCCTCAGCCGGAGTTGAGTCAGGAGCCGGCACTGGTTGAACAGTCTACCCTCCCCTAGCT
GGCAACTTAGCACACGCCGGAGCATCTGTTGATCTAGCCATTTTCTCCCTCCACCTGGCTGGTATCTCGTC
CATCCTAGCTTCCATTAACTTCATTACAACCATCATCAACATAAAACCCCCAGCAATCTCCCAATACCAAA
CACCCCTGTTTGTGNCCNNNATTCTAGTGACAACCATCCTCCTTCTTTTAGCACTCCCAGTGCTCGCCGCT
GGCATTACAATACTACTTACGGACSGAAACCTAAACACAACATTCTTTGATCCGGCCGGAGGAGGNGAC
CCTATCMTCTACCAGCA
>ANGBF14942-19|Isurus oxyrinchus|COI-5P|KY909425
AGCCCTAAGCCTTTTAATTCGTGCCGAACTGGGTCAGCCTGGTTCCCTCCTAGGGGATGATCAGATTTAT
AATGTTATTGTAACCGCCCATGCATTTGTAATAATTTTCTTTATGGTCATGCCCGTAATAATTGGAGGCTT
TGGAAATTGACTAGTACCTTTAATGATCGGAGCACCAGACATAGCCTTCCCCCGAATAAATAACATAAGT
TTCTGGCTCCTACCCCCTTCTTTCCTTCTACTCTTGGCCTCAGCCGGAGTTGAGTCAGGAGCCGGCACTGG
CTGAACAGTCTACCCTCCCCTAGCTGGCAACTTAGCACACGCCGGAGCATCTGTTGATCTAGCCATTTTCT
CCCTCCACCTGGCTGGTATCTCGTCCATCCTAGCTTCCATTAACTTCATTACAACCATCATCAACATAAAAC
CCCCAGCAATCTCCCAATACCAAACACCCCTGTTTGTCTGGTCCATTCTAGTGACAACCATCCTCCTTCTTT
TAGCACTCCCAGTGCTCGCCGCTGGCATTACAATATTACTTACGGACCGAAACCTAAACACAACATTCTTT
GATCCGGCCGGAGGAGGTGATCCTATCCTCTACCAGCATCTG
>ESHKB037-07|Isurus paucus|COI-5P|FJ519019
CCTGTATTTAATCTTTGGTGCATGAGCAGGGATAGTGGGAACAGCCCTAAGCCTTCTAATTCGCGCCGAA
CTGGGTCAGCCAGGTTCTCTTCTAGGGGACGATCAGATTTATAATGTTATTGTAACCGCCCATGCATTTG
TAATGATTTTCTTCATGGTAATGCCCGTGATAATTGGGGGCTTTGGGAACTGACTGGTGCCTTTAATGAT
CGGTGCACCCGATATGGCCTTCCCCCGAATAAACAACATGAGCTTCTGACTCCTCCCCCCTTCTTTTCTCTT
ACTGCTAGCCTCAGCCGGGGTTGAATCAGGGGCTGGAACTGGCTGGACAGTTTACCCTCCCCTAGCTGG
TAACTTAGCACATGCTGGGGCATCTGTTGACTTAGCTATCTTCTCCCTTCACCTAGCAGGTATCTCGTCAA
TTCTGGCCTCTATTAACTTCATCACAACAATCATCAACATAAAACCACCAGCAATTTCTCAGTACCAAACA
CCCCTATTTGTGTGATCCATCCTAGTAACAACTATCCTGCTCCTTCTAGCCCTCCCAGTACTCGCCGCCGG
CATTACAATACTACTTACGGACCGAAACCTGAACACAACATTCTTTGACCCGGCAGGAGGGGGAGATCC
TATCCTCTACCAACACCTA
>ANGBF11534-15|Isurus paucus|COI-5P|KF899544
CCTGTATTTAATCTTTGGTGCATGAGCAGGGATAGTGGGAACAGCCCTAAGCCTTCTAATTCGCGCCGAA
CTGGGTCAGCCAGGTTCTCTTCTAGGGGACGATCAGATTTATAATGTTATTGTAACCGCCCATGCATTTG
TAATGATTTTCTTCATGGTAATGCCCGTGATAATTGGGGGCTTTGGGAACTGACTGGTGCCTTTAATGAT
CGGTGCACCCGATATGGCCTTCCCCCGAATAAACAACATGAGCTTCTGACTCCTCCCCCCTTCTTTTCTCTT
ACTGCTAGCCTCAGCCGGGGTTGAATCAGGGGCTGGAACTGGCTGGACAGTTTACCCTCCCCTAGCTGG
TAACTTAGCACATGCTGGGGCATCTGTTGACTTAGCTATCTTCTCCCTTCACCTAGCAGGTATCTCGTCAA
TTCTGGCCTCTATTAACTTCATCACGACAATCATCAACATAAAACCACCAGCAATTTCTCAGTACCAAACA
CCCCTATTTGTGTGATCCATCCTAGTAACAACTATCCTGCTCCTTCTAGCCCTCCCAGTACTCGCCGCCGG
CATTACAATACTACTTACGGACCGAAACCTGAACACAACATTCTTTGACCCGGCAGGAGGGGGAGATCC
TATCCTCTACCAACATCTA
>ESHKB012-07|Alopias vulpinus|COI-5P|FJ518987
CCTTTATTTAATCTTTGGTGCATGAGCAGGAATAGTGGGAACAGCCCTAAGCCTTCTAATTCGAGCTGAA
TTAGGACAACCCGGATCACTTCTAGGAGATGATCAAGTCTATAATGTTATTGTAACCGCCCATGCATTTG
TAATAATCTTCTTCATGGTTATACCCGTAATAATTGGTGGATTTGGAAATTGACTAGTGCCCTTAATAATT
GGTGCACCAGATATAGCTTTCCCGCGAATAAATAACATAAGCTTTTGACTACTTCCCCCTTCTTTTCTTTTA
CTTCTGGCCTCAGCTGGAGTTGAAGCCGGAGCTGGCACTGGTTGAACAGTTTATCCTCCCTTAGCGGGA
AATCTAGCACATGCTGGAGCATCCGTTGATTTAGCCATTTTCTCCCTCCATTTAGCAGGTATCTCATCAAT
TTTAGCTTCCATTAATTTTATTACAACTATCATTAACATAAAACCACCGGCCATCTCTCAATACCAAACACC
ATTATTTGTATGATCAATTCTAGTTACAACTATCCTTCTTCTATTATCCCTCCCAGTGCTCGCAGCCGGTAT
TACAATATTACTTACTGATCGAAACCTAAACACAACATTCTTTGATCCGGCAGGAGGGGGAGATCCAATT
CTTTACCAACATCTA
>ESHKB004-07|Alopias vulpinus|COI-5P|FJ518995
CCTTTATTTAATCTTTGGTGCATGAGCAGGAATAGTGGGAACAGCCCTAAGCCTTCTAATTCGAGCTGAA
TTAGGACAACCCGGATCACTTCTAGGAGATGATCAAGTCTATAATGTTATTGTAACCGCCCATGCATTTG
TAATAATCTTCTTCATGGTTATACCCGTAATAATTGGTGGATTTGGAAATTGACTAGTGCCCTTAATAATT
GGTGCACCAGATATAGCTTTCCCGCGAATAAATAACATAAGCTTTTGACTACTTCCCCCTTCTTTTCTTTTA
CTTCTGGCCTCAGCTGGAGTTGAAGCCGGAGCTGGCACTGGTTGAACAGTTTATCCTCCCTTAGCGGGA
AATCTAGCACATGCTGGAGCATCCGTTGATTTAGCCATTTTCTCCCTCCATTTAGCAGGTATCTCATCAAT
TTTAGCTTCCATTAATTTTATTACAACTATCATTAACATAAAACCACCGGCCATCTCTCAATACCAAACACC
ATTATTTGTATGATCAATTCTAGTTACAACTATCCTTCTTCTATTATCCCTCCCAGTGCTCGCAGCCGGTAT
TACAATATTACTTACTGATCGAAACCTAAACACAACATTCTTTGATCCGGCAGGAGGGGGAGATCCAATT
CTTTACCAACATCTA
>ESHKB068-07|Alopias superciliosus|COI-5P|FJ518979
CCTTTATTTAATCTTTGGTGCATGAGCAGGAATAGTGGGAACAGCCCTCAGCCTTCTAATTCGAGCCGAG
TTAGGCCAGCCCGGATCACTCCTAGGGGATGATCAGGTCTATAATGTTATCGTAACCGCCCATGCATTTG
TAATAATCTTCTTCATGGTTATACCCGTAATAATTGGGGGATTTGGAAACTGATTAGTACCCTTAATAATT
GGTGCACCAGACATGGCCTTCCCGCGAATAAATAACATAAGCTTTTGACTCCTTCCCCCTTCTTTTCTCTT
ACTCCTAGCTTCAGCTGGGGTTGAAGCTGGAGCTGGCACTGGTTGAACAGTTTATCCCCCCTTAGCTGGC
AACTTAGCACATGCTGGGGCATCTGTTGACTTGGCCATTTTCTCGCTTCATTTAGCAGGTATCTCATCAAT
TTTAGCTTCAATTAACTTTATTACAACTATCATTAATATAAAACCACCAGCCATCTCTCAATATCAAACACC
ATTATTTGTATGATCAATCCTAGTAACAACCATCCTCCTCCTCTTATCCCTCCCAGTACTCGCAGCCGGCAT
CACAATATTATTAACTGATCGAAACCTAAACACAACATTCTTTGACCCAGCAGGAGGAGGAGATCCAATT
CTTTACCAACATCTA
>ESHKB066-07|Alopias superciliosus|COI-5P|FJ518981
CCTTTATTTAATCTTTGGTGCATGAGCAGGAATAGTGGGAACAGCCCTCAGCCTTCTAATTCGAGCCGAG
TTAGGCCAGCCCGGATCACTCCTAGGGGATGATCAGGTCTATAATGTTATCGTAACCGCCCATGCATTTG
TAATAATCTTCTTCATGGTTATACCCGTAATAATTGGGGGATTTGGAAACTGATTAGTACCCTTAATAATT
GGTGCACCAGACATGGCCTTCCCGCGAATAAATAACATAAGCTTTTGACTCCTTCCCCCTTCTTTTCTCTT
ACTCCTAGCTTCAGCTGGGGTTGAAGCTGGAGCTGGCACTGGTTGAACAGTTTATCCCCCCTTAGCTGGC
AACTTAGCACATGCTGGGGCATCTGTTGACTTGGCCATTTTCTCGCTTCATTTAGCAGGTATCTCATCAAT
TTTAGCTTCAATTAACTTTATTACAACTATCATTAATATAAAACCACCAGCCATCTCTCAATATCAAACACC
ATTATTTGTATGATCAATCCTAGTAACAACCATCCTCCTCCTCTTATCCCTCCCAGTACTCGCAGCCGGCAT
CACAATATTATTAACTGATCGAAACCTAAACACAACATTCTTTGACCCAGCAGGAGGAGGAGATCCAATT
CTTTACCAACATCTA
>EBASK015-07|Cetorhinus maximus|COI-5P|FJ519327
CCTGTATTTAATCTTTGGTGCATGAGCAGGAATAGTAGGGACAGCCCTAAGCCTCCTAATTCGAGCCGA
ATTAGGCCAACCCGGATCACTTCTTGGTGATGATCAAATTTATAATGTTATTGTGACAGCTCATGCATTTG
TAATAATCTTCTTCATGGTTATACCCGTAATAATTGGGGGTTTTGGGAACTGATTAGTACCATTAATAATT
GGTGCGCCAGACATAGCCTTCCCACGAATAAATAATATAAGCTTTTGACTCCTCCCTCCTTCTTTTCTCTTA
CTCCTGGCCTCAGCCGGAGTTGAAGCTGGAGCCGGAACTGGCTGAACAGTATACCCTCCCCTAGCTGGC
AATCTAGCACACGCTGGAGCATCCGTTGATTTAGCCATCTTTTCTCTCCATTTAGCAGGCATCTCATCAAT
TCTAGCTTCAATTAACTTTATTACAACCATTATTAATATGAAGCCACCAGCCATCTCCCAGTATCAAACAC
CATTATTCGTGTGATCAATCCTAGTCACAACCATCCTTCTTCTTTTAGCCCTCCCAGTACTTGCAGCCGGCA
TCACAATATTGCTTACCGATCGGAACCTAAACACAACATTCTTTGACCCAGCAGGGGGAGGGGACCCTA
TTCTCTACCAACACCTG
>EBASK010-07|Cetorhinus maximus|COI-5P|FJ519330
CCTGTATTTAATCTTTGGTGCATGAGCAGGAATAGTAGGGACAGCCCTAAGCCTCCTAATTCGAGCCGA
ATTAGGCCAACCCGGATCACTTCTTGGTGATGATCAAATTTATAATGTTATTGTGACAGCTCATGCATTTG
TAATAATCTTCTTCATGGTTATACCCGTAATAATTGGGGGTTTTGGGAACTGATTAGTACCATTAATAATT
GGTGCGCCAGACATAGCCTTCCCACGAATAAATAATATAAGCTTTTGACTCCTCCCTCCTTCTTTTCTCTTA
CTCCTGGCCTCAGCCGGAGTTGAAGCTGGAGCCGGAACTGGCTGAACAGTATACCCTCCCCTAGCTGGC
AATCTAGCACACGCTGGAGCATCCGTTGATTTAGCCATCTTTTCTCTCCATTTAGCAGGCATCTCATCAAT
TCTAGCTTCAATTAACTTTATTACAACCATTATTAATATGAAGCCACCAGCCATCTCCCAGTATCAAACAC
CATTATTCGTGTGATCAATTCTAGTCACAACCATCCTTCTTCTTTTAGCCCTCCCAGTACTTGCAGCCGGCA
TCACAATATTGCTTACCGATCGGAACCTAAACACAACATTCTTTGACCCAGCAGGGGGAGGGGACCCTA
TTCTCTACCAACACCTG
>ANGBF11710-15|Squalus acanthias|COI-5P|KJ128627
TTAATCTTTGGTGCATGAGCAGGAATAGTAGGTACCGCCCTTAGCTTACTTATTCGCGCAGAATTAAGCC
AACCCGGAACACTTCTGGGAGATGATCAAATCTATAATGTTATCGTGACTGCTCACGCTTTTGTAATAAT
CTTTTTTATAGTTATGCCTGTAATAATTGGTGGATTCGGAAACTGATTGGTGCCCTTAATAATCGGCGCAC
CAGATATGGCTTTTCCACGAATAAATAATATAAGCTTTTGACTATTACCCCCCTCCCTCCTATTACTTTTAG
CCTCAGCTGGTGTTGAGGCAGGAGCCGGAACCGGCTGAACAGTCTACCCTCCCCTCGCAGGTAACATAG
CCCATGCTGGCGCATCTGTAGATCTAGCCATCTTCTCACTCCATTTAGCTGGTATTTCCTCAATTTTAGCCT
CTATTAATTTTATCACAACTATTATTAACATAAAACCACCTGCCATTTCTCAGTATCAAACACCACTCTTTG
TTTGATCCATTCTTGTAACCACCATTCTTCTTCTTCTTTCTCTTCCTGTTCTCGCAGCCGCAATTACGATACT
ATTAACTGACCGTAATTTAAACACAACATTTTTTGACCCTGCCGGAGGGGGAGATCCAATTCTTTACCAA
CATTTA
>ANGBF12855-15|Squalus acanthias|COI-5P|KT075312
TAGGTACCGCCCTTAGCTTACTTATTCGCGCAGAATTAAGCCAACCCGGAACACTTCTGGGAGATGATCA
AATCTATAATGTTATCGTGACTGCTCACGCTTTTGTAATAATCTTTTTTATAGTTATGCCTGTAATAATTGG
TGGATTCGGAAACTGATTGGTGCCCTTAATAATCGGCGCACCAGATATGGCTTTTCCACGAATAAATAAT
ATAAGCTTTTGACTATTACCCCCCTCCCTCCTATTACTTTTAGCCTCAGCTGGTGTTGAGGCAGGAGCCGG
AACCGGCTGAACAGTCTACCCCCCTCTCGCAGGTAACATAGCCCATGCTGGCGCATCTGTAGATCTAGCC
ATCTTCTCACTCCATTTAGCTGGTATTTCCTCAATTTTAGCCTCTATTAATTTTATCACAACTATTATTAACA
TAAAACCACCTGCCATTTCTCAGTATCAAACACCACTCTTTGTTTGATCCATTCTTGTAACCACCATCCTTC
TTCTTCTTTCTCTTCCTGTTCTCGCAGCCGCAATTACGATACTATTAACTGACCGTAATTTAAACACAACAT
TTTTTGACCCTGCCGGAGGGGGAGACCCAATTCTTTACCAACATTTA
>ANGBF11427-15|Echinorhinus brucus|COI-5P|KJ749661
GTGGGCACCGCCCTAAGCCTGCTCATCCGGATAGAGCTCGGCCAGCCGGGCACGCTCTTGGGGGACGA
TCAAATCTACAATGTAATTGTAACCGCCCATGCTTTCGTAATAATCTTTTTCATAGTTATACCAATCATAAT
CGGGGGGTTCGGAAACTGACTAGTGCCTCTAATGATCGGCGCTCCTGACATGGCCTTCCCACGAATAAA
TAACATAAGCTTTTGACTCTTGCCCCCGGCCCTCTTGCTTCTATTGGCCTCAGCGGGGGTAGAAGCGGGG
GCCGGAACAGGCTGAACAGTCTATCCCCCCCTTGCGGGCAATCTGGCCCACGCTGGGGCGTCCGTGGAT
TTGGCTATCTTCTCCCTCCACTTAGCCGGAATTTCCTCAATCCTGTCCGCTGTAAATTTTATTACAACTATT
ATTAATATAAAACCACCAGCCATTTCTCAGTATCAAACACCACTCTTTGTTTGATCTATTCTCGTAACCATG
GTTCTCCTCCTACTGGCCCTGCCTGTTCTTGCAGCCGCAATCACAATACTGCTAACCGACCGCAACCTAAA
CACAACATTCTTTGATCCAGCTGGAGGCGGGGACCCCATTCTCTATCAACAC
>PHANT701-08|Echinorhinus brucus|COI-5P
CCTATATCTAATCTTTGGTGCCTGAGCAGGGATGGTGGGCACCGCCCTAAGCCTACTCATCCGAATAGA
GCTCGGCCAGCCAGGCACGCTCTTGGGAGACGATCAAATCTACAATGTAATTGTAACCGCCCATGCTTTC
GTAATAATCTTTTTCATAGTTATACCAATCATAATCGGGGGGTTCGGAAACTGACTAGTCCCTCTAATGAT
CGGCGCTCCTGACATGGCCTTCCCACGAATAAATAACATAAGCTTTTGACTCTTACCTCCGGCCCTCTTGC
TTCTATTAGCCTCTGCGGGGGTAGAAGCGGGGGCCGGAACCGGCTGAACAGTTTATCCCCCCCTTGCAG
GCAATCTGGCCCACGCCGGGGCATCCGTGGATTTGGCTATCTTCTCCCTCCACTTAGCCGGAATTTCCTC
AATCCTGTCCGCTGTAAATTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCTCAGTATCAAAC
ACCACTCTTTGTTTGATCTATTCTCGTAACCATAGTCCTTCTCCTACTAGCCCTACCTGTTCTTGCAGCCGC
AATCACAATACTGCTAACCGACCGCAACCTAAACACAACATTCTTTGATCCAGCCTGGGG------------------
----------
>ELAME131-09|Dalatias licha|COI-5P|GU805153
CCTTTACTTAATCTTTGGTGCATGAGCAGGAATAGTAGGTACAGCCCTTAGCTTGCTTATTCGAGCAGAA
TTAAGCCAACCTGGCACACTCCTGGGAGACGATCAGATCTACAATGTTATCGTAACTGCTCACGCTTTTG
TAATAATTTTTTTTATGGTTATACCTGTAATAATTGGTGGGTTCGGAAACTGATTAGTGCCTTTAATAATT
GGTGCACCGGACATAGCTTTCCCACGAATAAATAACATAAGCTTTTGACTGCTACCCCCCTCCCTCCTATT
ACTTTTGGCCTCTGCTGGAGTTGAAGCCGGAGCCGGAACTGGTTGAACAGTTTATCCCCCCCTCGCAAGT
AATATAGCCCACGCTGGGGCATCAGTAGACTTAGCTATTTTCTCGCTCCATTTAGCTGGTATTTCCTCAAT
TCTTGCCTCTATCAACTTTATTACAACCATTATTAATATAAAACCGCCTGCCATCTCTCAATATCAAACACC
CCTTTTTGTTTGATCTATTCTTGTAACCACAGTCCTACTCCTCCTTTCACTTCCTGTTCTTGCAGCCGCAATT
ACAATACTACTTACCGACCGTAATTTAAACACAACATTTTTTGATCCTGCTGGTGGGGGTGACCCAATTCT
TTACCAACATTTA
>ANGBF419-12|Dalatias licha|COI-5P|GU130676
CTTTACTTAATCTTTGGTGCATGAGCAGGAATAGTAGGTACAGCCCTTAGCTTGCTTATTCGAGCAGAAT
TAAGCCAACCTGGCACACTCCTGGGAGACGATCAGATCTACAATGTTATCGTAACTGCTCACGCTTTTGT
AATAATTTTTTTTATGGTTATACCTGTAATAATTGGTGGGTTCGGAAACTGATTAGTGCCTTTAATAATTG
GTGCACCGGACATAGCTTTCCCACGAATAAATAACATAAGCTTTTGACTGCTACCCCCCTCCCTCCTATTA
CTTTTGGCCTCTGCTGGAGTTGAAGCCGGAGCCGGAACTGGTTGAACAGTTTATCCCCCCCTCGCAAGTA
ATATAGCCCACGCTGGGGCATCAGTAGACTTAGCTATTTTCTCGCTCCATTTAGCTGGTATTTCCTCAATT
CTTGCCTCTATCAACTTTATTACAACCATTATTAATATAAAACCGCCTGCCATCTCTCAATATCAAACACCC
CTTTTTGTTTGATCTATTCTTGTAACCACAGTCCTACTCCTCCTTTCACTTCCTGTTCTTGCAGCCGCAATTA
CAATACTACTTACCGACCGTAATTTAAACACAACATTTTTTGATCCTGCTGGTGGGGGTGACCCAATTCTT
TACCAACATTTATTT
>ANGBF11648-15|Etmopterus spinax|COI-5P|KJ128486
TTAATCTTTGGTGCATGAGCAGCAATAGTGGGCACAGCCTTAAGCTTGCTTATTCGAGCTGAGCTGAGTC
AGCCGGGAACTCTTCTGGGGGACGATCAGATCTATAATGTTATTGTAACTGCCCATGCATTTGTAATAAT
CTTTTTCATAGTTATACCAGTAATAATCGGTGGATTTGGAAATTGATTAGTACCTTTAATAATCGGTGCAC
CGGATATAGCTTTTCCACGAATAAATAATATAAGCTTCTGACTACTACCACCAGCACTACTTCTGCTTTTA
GCCTCTGCCGGTGTTGAAGCAGGAGCCGGAACTGGCTGAACAGTTTACCCCCCCCTTGCAGGAAATATA
GCCCATGCCGGGGCATCCGTAGACTTGGCCATTTTCTCGCTTCACTTAGCTGGCATCTCCTCAATTTTAGC
CTCCGTCAATTTTATTACAACCATTATTAATATAAAACCCCCAGCTATCTCTCAATACCAAACACCACTATT
TGTTTGATCAATCCTTGTAACTACTGTCCTTCTCCTCCTTGCCCTCCCCGTACTTGCAGCTGCAATTACAAT
ACTACTTACTGACCGTAATTTAAACACAACATTTTTTGACCCTTCCGGTGGGGGGGACCCCATTTTATATC
AACACTTA
>ANGBF1153-12|Etmopterus sp. NS-2010|COI-5P|HM998628
CTATACTTAATCTTTGGTGCATGAGCAGGAATAGTGGGCACAGCCCTAAGCCTGCTTATTCGAGCTGAAC
TGAGTCAGCCTGGAACTCTTCTGGGAGACGATCAGATCTATAATGTTATTGTAACTGCCCATGCATTTGT
AATAATCTTTTTCATAGTTATACCGGTAATAATCGGTGGCTTTGGAAATTGATTAGTGCCTTTAATAATTG
GTGCACCGGATATAGCTTTTCCACGAATAAATAATATAAGCTTCTGACTGCTACCACCAGCACTACTTCTG
CTTTTAGCCTCTGCCGGTGTTGAAGCAGGAGCCGGAACTGGCTGAACAGTTTACCCCCCTCTTGCAGGA
AATATAGCCCATGCCGGGGCATCCGTAGACTTGGCCATTTTCTCGCTTCACTTAGCTGGTATCTCCTCAAT
TTTAGCCTCCGTTAATTTTATTACAACCATTATTAATATAAAACCCCCAGCTATTTCTCAATATCAAACACC
ACTATTTGTTTGATCAATCCTTGTAACTACCGTCCTTCTCCTCCTTGCCCTCCCCGTACTTGCAGCTGCAAT
TACGATACTACTTACTGACCGTAATTTAAACACAACATTTTTTGACCCTTCCGG
>EWKU051-07|Etmopterus princeps|COI-5P|FJ519565
CCTATACTTAATCTTTGGTGCATGAGCAGCAATAGTGGGCACAGCCTTAAGCTTGCTTATTCGTGCTGAG
CTGAGTCAGCCGGGAACTCTTCTGGGGGACGATCAGATCTATAATGTTATTGTAACTGCCCATGCATTTG
TAATAATCTTTTTCATAGTTATACCAGTAATAATTGGTGGGTTTGGAAATTGATTAGTACCTTTAATAATC
GGTGCGCCGGATATAGCTTTTCCACGAATAAATAATATAAGCTTCTGACTTCTACCACCAGCACTACTTCT
GCTTTTAGCCTCTGCCGGTGTTGAAGCAGGAGCCGGAACTGGCTGAACAGTTTACCCCCCCCTTGCAGG
AAATATAGCCCATGCCGGGGCGTCCGTAGACTTGGCCATTTTCTCACTTCACTTAGCTGGCATCTCCTCAA
TCTTAGCCTCCGTTAATTTTATTACAACCATTATTAATATAAAACCCCCAGCTATTTCTCAATACCAAACAC
CACTATTTGTTTGATCAATCCTTGTGACTACTGTTCTTCTCCTCCTTGCCCTACCCGTACTTGCAGCTGCAA
TTACAATACTACTTACTGACCGTAATTTAAACACAACATTTTTTGACCCTTCCGGTGGGGGAGACCCCATT
TTATATCAACACTTA
>ANGBF47884-19|Etmopterus princeps|COI-5P|GU130727
CTATACTTAATCTTNGGTGCATGAGCAGCAATAGTGGGCACAGCCTTAAGCTTGCTTATTCGTGCTGAGC
TGAGTCAGCCGGGAACTCTTCTGGGGGACGATCAGATCTATAATGTTATTGTAACTGCCCATGCATTTGT
AATAATCTTTTTCATAGTTATACCAGTAATAATTGGTGGGTTTGGAAATTGATTAGTACCTTTAATAATCG
GTGCGCCGGATATAGCTTTTCCACGAATAAATAATATAAGCTTCTGACTTCTACCACCAGCACTACTTCTG
CTTTTAGCCTCTGCCGGTGTTGAAGCAGGAGCCGGAACTGGCTGAACAGTTTACCCCCCCCTTGCAGGA
AATATAGCCCATGCCGGGGCGTCCGTAGACTTGGCCATTTTCTCACTTCACTTAGCTGGCATCTCCTCAAT
CTTAGCCTCCGTTAATTTTATTACAACCATTATTAATATAAAACCCCCAGCTATTTCTCAATACCAAACACC
ACTATTTGTTTGATCAATCCTTGTGACTACTGTTCTTCTCCTCCTTGCCCTACCCGTACTTGCAGCTGCAAT
TACAATACTACTTACTGACCGTAATTTAAACACAACATTTTTTGACCCTTCCGGTGGGGGAGACCCCATTT
TATATCAACACTTATTC
>BCOLL338-06|Etmopterus gracilispinis|COI-5P
CCTATACTTAATCTTTGGTGCATGAGCAGGAATAGTGGGCACAGCCCTAAGCTTACTTATTCGAGCAGAA
TTAAGCCAACCTGGGACTCTTCTGGGTGATGACCAGATCTATAATGTAATTGTAACTGCCCATGCATTTG
TAATAATTTTTTTTATAGTAATACCAGTAATAATCGGCGGATTTGGAAACTGACTAGTACCTTTAATAATT
GGCGCACCAGATATAGCTTTTCCACGAATAAATAACATAAGCTTCTGATTATTACCTCCAGCACTACTTCT
ACTCTTAGCCTCCGCTGGAGTTGAAGCAGGAGCTGGAACTGGTTGAACAGTTTATCCACCCCTTGCAGG
AAATATAGCCCATGCCGGAGCATCCGTAGACTTAGCCATTTTTTCACTTCATTTAGCTGGCATCTCCTCAA
TTTTGGCCTCTGTAAACTTTATTACAACCATTATTAATATAAAACCACCAGCTATTTCTCAATACCAAACAC
CACTATTTGTTTGATCAATTCTTGTAACTACTATTCTACTTCTACTTGCCCTTCCCGTACTTGCAGCTGCAA
TTACAATATTACTTACTGACCGTAATTTAAACACAACATTCTTTGATCCTTCAGGGGGTGGAGATCCAATC
CTATATCAACATCTA
>BCOLL336-06|Etmopterus gracilispinis|COI-5P
CCTATACTTAATCTTTGGTGCATGAGCAGGAATAGTGGGCACAGCCCTAAGCTTACTTATTCGAGCAGAA
TTAAGCCAACCTGGTACTCTTCTGGGTGATGACCAAATCTATAATGTAATTGTAACTGCCCATGCATTTGT
AATAATTTTTTTTATAGTAATACCAGTAATAATCGGCGGATTTGGAAACTGACTAGTACCTTTAATAATTG
GCGCACCAGATATAGCTTTTCCACGAATAAATAACATAAGCTTCTGATTATTACCTCCAGCACTACTTCTA
CTCTTAGCCTCCGCTGGAGTTGAAGCAGGAGCTGGAACTGGTTGAACAGTTTATCCACCCCTTGCAGGA
AATATAGCCCATGCCGGAGCATCCGTAGACTTAGCCATTTTTTCACTTCATTTAGCTGGCATCTCCTCAAT
TTTGGCCTCTGTAAACTTTATTACAACCATTATTAATATAAAACCACCAGCTATTTCTCAATACCAAACACC
ACTATTTGTTTGATCAATTCTTGTAACTACTATTCTACTCCTCCTTGCCCTTCCCGTACTTGCAGCTGCAATT
ACAATATTACTTACTGACCGTAATTTAAACACAACATTCTTTGATCCTTCAGGGGGTGGAGATCCAATCCT
ATATCAACATTTA
>SCAFB499-07|Centroscyllium fabricii|COI-5P|KC015269
CCTATACTTAATCTTTGGTGCATGAGCAGGTATAGTAGGCACAGCCTTAAGCTTACTTATTCGAGCAGAA
CTATCCCAACCTGGCTCTCTCCTGGGAGATGATCAGATCTACAATGTTATTGTAACCGCCCATGCTTTTGT
AATAATCTTTTTTATAGTAATACCAGTAATAATCGGCGGATTTGGAAACTGATTAGTACCTTTAATGATTG
GTGCACCTGATATAGCTTTTCCACGGATAAATAACATAAGCTTCTGATTATTACCTCCTGCACTTCTTCTAC
TCCTAGCCTCTGCTGGTGTTGAAGCAGGGGCCGGAACTGGTTGAACAGTTTATCCCCCACTTGCAGGAA
ACATAGCCCATGCCGGAGCATCTGTAGACTTGGCCATTTTTTCCCTTCATTTAGCCGGTATCTCTTCAATT
TTAGCTTCCGTTAACTTTATCACAACTATTATTAATATAAAACCCCCTGCTATCTCTCAATACCAGACGCCA
CTCTTTGTCTGATCAATTCTTGTAACAACAGTCCTCCTTCTACTTGCCCTCCCTGTTCTTGCAGCTGCAATT
ACAATATTATTAACAGACCGTAATTTAAATACTACATTTTTTGACCCTTCTGGAGGGGGGGACCCCATTCT
ATATCAACACTTA
>PHANT433-08|Centroscyllium fabricii|COI-5P
CCTATACTTAATCTTTGGTGCATGAGCAGGTATAGTAGGCACAGCCTTAAGCTTACTTATTCGAGCAGAA
CTATCCCAACCTGGCTCTCTCCTGGGAGATGATCAGATCTACAATGTTATTGTAACCGCCCATGCTTTTGT
AATAATCTTTTTTATAGTAATACCAGTAATAATCGGCGGATTTGGAAACTGATTAGTACCTTTAATGATTG
GTGCACCTGATATAGCTTTTCCACGGATAAATAACATAAGCTTCTGATTATTACCTCCTGCACTTCTTCTAC
TCCTAGCCTCTGCTGGTGTTGAAGCAGGGGCCGGAACTGGTTGAACAGTTTATCCCCCACTTGCAGGAA
ACATAGCCCATGCCGGAGCATCTGTAGACTTGGCCATTTTTTCCCTTCATTTAGCCGGTATCTCTTCAATT
TTAGCTTCCGTTAACTTTATCACAACTATTATTAATATAAAACCCCCTGCTATCTCTCAATACCAGACGCCA
CTCTTTGTCTGATCAATTCTTGTAACAACAGTCCTCCTTCTACTTGCCCTCCCTGTTCTTGCAGCTGCAATT
ACAATATTATTAACAGACCGTAATTTAAATACTACATTTTTTGACCCTTCTGGAGGGGGGGACCCCATTCT
ATATCAACACTTA
>DSFIB678-15|Somniosus microcephalus|COI-5P
CTATATTTAATCTTTGGTGCCTGAGCAGGGATAGTAGGCACAGCCCTGAGTTTACTTATTCGAACAGAAT
TAAGCCAACCAGGAACACTTCTAGGAGATGATCAAATCTACAATGTTATTGTTACTGCTCACGCTTTCGT
AATAATCTTTTTTATAGTAATGCCTGTAATAATTGGCGGGTTCGGAAATTGATTAGTCCCTCTAATAATTG
GCGCACCCGACATAGCTTTCCCGCGAATAAATAACATAAGCTTTTGATTACTTCCCCCCTCTCTCCTACTA
CTTTTAGCCTCTGCCGGGGTTGAAGCAGGAGCCGGAACCGGCTGAACGGTCTATCCCCCCCTTGCAGGT
AATATAGCCCACGCAGGCGCATCCGTAGACTTAGCCATCTTCTCACTCCACTTGGCTGGTATTTCATCAAT
TTTAGCCTCTGTTAACTTCATCACAACTATTATTAATATAAAACCACCTGCCATTTCTCAATATCAAACACC
ACTCTTTGTCTGATCCATCCTTGTAACTACAGTCCTCCTACTCCTTTCCCTTCCTGTTCTTGCAGCTGCAATC
ACAATACTATTAACCGACCGTAATTTAAACACAACATTTTTTGACCCTGCTGGAGGAGGAGACCCAATTC
TCTATCAACACCTG
>ANGBF420-12|Somniosus microcephalus|COI-5P|GU130677
CTATATTTAATCTTTGGTGCCTGAGCAGGGATAGTAGGCACAGCCCTGAGTTTACTTATTCGAACAGAAT
TAAGCCAACCAGGAACACTTCTAGGAGATGATCAAATCTACAATGTTATTGTTACTGCTCACGCTTTCGT
AATAATCTTTTTTATAGTAATGCCTGTAATAATTGGCGGGTTCGGAAATTGATTAGTCCCTCTAATAATTG
GCGCACCTTACATAGCTTTCCCGCGAATAAATAACATAAGCTTTTGATTACTCCCCCCCTCTCTCCTACTAC
TTTTAGCCTCTGCCGGGGTTGAAGCAGGAGCCGGAACCGGCTGAACGGTCTATCCCCCCCTTGCAGGTA
ATATAGCCCACGCCGGCGCATCCGTAGACTTAGCCATCTTCTCACTCCACTTGGCTGGTATTTCATCAATT
TTAGCCTCTGTTAACTTCATCACAACTATTATTAATATAAAACCACCTGCCATTTCTCAATATCAAACACCA
CTATTTGTCTGATCCATCCTTGTAACTACAGTCCTCCTACTCCTTTCCCTTCCTGTTCTTGCAGCTGCAATCA
CAATACTATTAACCGACCGTAATTTAAACACAACATTTTTTGACCCTGCTGGAGGAGGAGACCCAATTCT
CTATCAACACCTA
>ANGBF47386-19|Somniosus rostratus|COI-5P|KY909544
AGCCCTGAGTTTACTTATTCGAACAGAATTAAGCCAACCAGGAACACTCCTAGGAGATGATCAAATCTAC
AATGTTATTGTTACTGCTCACGCTTTCGTAATAATCTTTTTTATAGTAATGCCTGTAATAATTGGTGGGTTC
GGAAATTGATTAGTCCCTTTAATAATCGGCGCACCCGACATAGCCTTTCCACGAATAAATAACATAAGCT
TTTGATTACTTCCACCCTCTCTCCTACTACTTTTAGCCTCTGCCGGGGTTGAAGCAGGAGCCGGAACCGG
CTGAACGGTCTATCCCCCCCTTGCAGGTAATATAGCCCACGCAGGCGCATCCGTAGACTTAGCCATCTTC
TCACTCCACTTGGCTGGTATTTCATCAATTTTAGCCTCTGTTAACTTCATTACAACTATTATTAATATAAAA
CCACCTGCCATTTCTCAATATCAAACACCACTATTTGTCTGATCCATCCTTGTAACTATAGTTCTCCTACTA
CTTTCCCTTCCTGTTCTTGCAGCTGCCATCACGATACTATTAACCGACCGTAATTTAAACACAACATTTTTT
GATCCTGCAGGAGGAGGAGACCCAATTCTCTATCAACACCTA
>ANGBF47385-19|Somniosus rostratus|COI-5P|KY909543
AGCCCTGAGTTTACTTATTCGAACAGAATTAAGCCAACCAGGAACACTCCTAGGAGATGATCAAATCTAC
AATGTTATTGTTACTGCTCACGCTTTCGTAATAATCTTTTTTATAGTAATGCCTGTAATAATTGGTGGGTTC
GGAAATTGATTAGTCCCTTTAATAATCGGCGCACCCGACATAGCCTTTCCACGAATAAATAACATAAGCT
TTTGATTACTTCCACCCTCTCTCCTACTACTTTTAGCCTCTGCCGGGGTTGAAGCAGGAGCCGGAACCGG
CTGAACGGTCTATCCCCCCCTTGCAGGTAATATAGCCCACGCAGGCGCATCCGTAGACTTAGCCATCTTC
TCACTCCACTTGGCTGGTATTTCATCAATTTTAGCCTCTGTTAACTTCATTACAACTATTATTAATATAAAA
CCACCTGCCATTTCTCAATATCAAACACCACTATTTGTCTGATCCATCCTTGTAACTATAGTTCTCCTACTA
CTTTCCCTTCCTGTTCTTGCAGCTGCCATCACGATACTATTAACCGACCGTAATTTAAACACAACATTTTTT
GATCCTGCAGGAGGAGGAGACCCAATTCTCTATCAACACCTA
>ELAMO035-15|Centroscymnus coelolepis|COI-5P|KT307165
CTCTTAGTCTACTTATTCGAGCAGAATTAAGCCAACCTGGTACACTTTTAGGAGATGATCAAATCTACAAT
GTTATTGTAACTGCTCACGCTTTCGTAATAATCTTTTTTCTAGTAATGCCTGTAATAATTGGTGGATTCGG
AAATTGACTAGTGCCTTTAATAATTGGTGCACCAGATATAGCTTTCCCACGAATAAATAATATAAGCTTTT
GATTATTACCCCCGTCCCTCCTTCTACTTCTAGCCTCCGCTGGTGTAGAAGCAGGAGCCGGAACTGGCTG
AACAGTATACCCTCCTCTTGCAAGTAATATAGCTCATGCAGGAGCATCTGTAGATTTAGCCATCTTTTCCC
TCCATTTGGCTGGTATTTCCTCAATTCTAGCCTCTATTAATTTTATTACAACTATTATTAATATGAAACCAC
CAGCTATTTCCCAATATCAAACACCACTTTTTGTTTGATCTATCCTTGTAACTACTGTCCTCCTTCTCCTAGC
TCTTCCCGTCCTTGCAGCTGCAATTACAATATTATTAACCGACCGTAATTTAAACACGACATTTTTTGATCC
AGCGGGGGGAGGGGACCCCATTCTCTATCAACATTTATTCTGATTCTTCGGTCACCCTGAAG
>PHANT435-08|Centroscymnus coelolepis|COI-5P
CCTTTACCTGATCTTTGGTGCATGAGCAGGAATAGTGGGCACGGCTCTTAGTCTACTTATTCGAGCAGAA
TTAAGCCAACCTGGTACACTTTTAGGAGATGATCAAATCTACAATGTTATTGTAACTGCTCACGCTTTCGT
AATAATCTTTTTTCTAGTAATGCCTGTAATAATTGGTGGATTCGGAAATTGACTAGTGCCTTTAATAATTG
GTGCACCAGATATAGCTTTCCCACGAATAAATAATATAAGCTTTTGATTATTACCCCCGTCCCTCCTTCTA
CTTCTAGCCTCCGCTGGTGTAGAAGCAGGAGCCGGAACTGGCTGAACAGTATACCCTCCTCTTGCAAGT
AATATAGCTCATGCAGGAGCATCTGTAGATTTAGCCATCTTTTCCCTCCATTTGGCTGGTATTTCCTCAAT
TCTAGCCTCTATTAATTTTATTACAACTATTATTAATATGAAACCACCAGCTATTTCCCAATATCAAACACC
ACTTTTTGTTTGATCTATCCTTGTAACTACTGTCCTCCTTCTCCTAGCTCTTCCCGTCCTTGCAGCTGCAATT
ACAATATTATTAACCGACCGTAATTTAAACACGACATTTTTTGATCCAGCGGGGGGAGGGGACCCCATTC
TCTATCAACATTTA
>FNZA569-08|Centroscymnus crepidater|COI-5P
CCTATACTTAATCTTTGGTGCATGAGCAGGAATAGTAGGCACAGCCCTTAGCCTACTTATTCGGGCAGAA
CTAAGCCAACCTGGAACACTTTTAGGCGACGATCAAATCTACAATGTTATTGTGACCGCTCACGCTTTCG
TAATAATCTTTTTTCTAGTAATGCCTGTGATAATTGGCGGATTTGGAAATTGACTAGTACCTTTAATAATT
GGTGCACCAGATATAGCTTTTCCACGAATAAATAATATAAGCTTTTGATTATTACCCCCCTCCCTACTTCT
ACTTCTAGCCTCTGCTGGTGTAGAGGCGGGAGCCGGAACTGGCTGAACAGTGTACCCCCCACTTGCAAG
CAACATAGCTCATGCAGGAGCATCTGTAGATTTAGCTATCTTTTCACTTCATTTGGCCGGTATTTCATCAA
TTTTAGCCTCTATTAATTTTATTACAACTATTATCAATATAAAACCGCCCGCTATCTCTCAATATCAAACAC
CACTCTTTGTCTGATCTATTCTTGTAACTACTGTTCTTCTCCTTCTGGCCCTTCCCGTTCTTGCAGCTGCAAT
TACAATACTATTAACCGACCGTAATTTAAACACGACATTTTTTGATCCGGCAGGGGGAGGAGATCCTATT
CTCTACCAACATTTA
>FOAK436-10|Centroscymnus crepidater|COI-5P|HM902512
CCTATACTTAATCTTTGGTGCATGAGCAGGAATAGTAGGCACAGCCCTTAGCCTACTTATTCGGGCAGAA
CTAAGCCAACCTGGAACACTTTTAGGCGACGATCAAATCTACAATGTTATTGTGACCGCTCACGCTTTCG
TAATAATCTTTTTTCTAGTAATGCCTGTGATAATTGGCGGATTTGGAAATTGACTAGTACCTTTAATAATT
GGTGCACCAGATATAGCTTTTCCACGAATAAATAATATAAGCTTTTGATTATTACCCCCCTCCCTACTTCT
ACTTCTAGCCTCTGCTGGTGTAGAGGCGGGAGCCGGAACTGGCTGAACAGTGTACCCCCCACTTGCAAG
CAACATAGCTCATGCAGGAGCATCTGTAGATTTAGCTATCTTTTCACTTCATTTGGCCGGTATTTCATCAA
TTTTAGCCTCTATTAATTTTATTACAACTATTATCAATATAAAACCGCCCGCTATCTCTCAATATCAAACAC
CACTCTTTGTCTGATCTATTCTTGTAACTACTGTTCTTCTCCTTCTGGCCCTTCCCGTTCTTGCAGCTGCAAT
TACAATACTATTAACCGACCGTAATTTAAACACGACATTTTTTGATCCGGCAGGGGGAGGAGATCCTATT
CTCTACCAACATTTA
>PHANT057-08|Ginglymostoma cirratum|COI-5P
CCTTTATTTAATTTTTGGTGCATGAGCAGGAATAGTGGGTTTAGCCCTTAGCCTTCTGATTCGAGCTGAG
TTAAGCCAACCCGGATCTCTCTTAGGAGATGATCAGATTTATAATGTGATTGTAACAGCTCATGCTTTTGT
AATAATCTTCTTTATAGTGATACCAGTAATAATTGGTGGATTTGGAAACTGGCTAGTACCTCTAATAATTG
GTGCACCTGACATAGCTTTTCCACGAATAAATAACATAAGTTTTTGACTACTTCCTCCTTCATTCTTATTAC
TATTAGCTTCTGCAGGAGTAGAGGCTGGAGCAGGAACAGGTTGAACTGTATATCCACCATTAGCAGGTA
ACCTAGCCCATGCAGGAACATCAGTTGATCTTACTATTTTTTCCTTACATCTAGCAGGAATTTCATCAATTT
TAGCTTCTATTAATTTCATCACAACTATCATCAACATAAAACCACCAGCCATCTCCCAATATCAGACACCA
TTATTCGTTTGATCAATTCTCGTAACTACCATCCTCCTACTACTCTCACTACCAGTATTAGCAGCAGGAATT
ACAATATTACTCACAGACCGAAATCTTAATACAACCTTCTTTGATCCAGCAGGAGGAGGAGATCCYATTC
TATATCAACACTTA
>PHANT069-08|Ginglymostoma cirratum|COI-5P
CCTTTATTTAATTTTTGGTGCATGAGCAGGAATAGTGGGTTTAGCCCTTAGCCTTCTGATTCGAGCTGAG
TTAAGCCAACCCGGATCTCTCTTAGGAGATGATCAGATTTATAATGTGATTGTAACAGCTCATGCTTTTGT
AATAATCTTCTTTATAGTGATACCAGTAATAATTGGTGGATTTGGAAACTGGCTAGTACCTCTAATAATTG
GTGCACCTGACATAGCTTTTCCACGAATAAATAACATAAGTTTTTGACTACTTCCTCCTTCATTCTTATTAC
TATTAGCTTCTGCAGGAGTAGAGGCTGGAGCAGGAACAGGTTGAACTGTATATCCACCATTAGCAGGTA
ACCTAGCCCATGCAGGAACATCAGTTGATCTTACTATTTTTTCCTTACATCTAGCAGGAATTTCATCAATTT
TAGCTTCTATTAATTTCATCACAACTATCATCAACATAAAACCACCAGCCATCTCCCAATATCAGACACCA
TTATTCGTTTGATCAATTCTCGTAACTACCATCCTCCTACTACTCTCACTACCAGTATTAGCAGCAGGAATT
ACAATATTACTCACAGACCGAAATCTTAATACAACCTTCTTTGATCCAGCAGGAGGAGGAGATCCTATTC
TATATCAACACTTA
>SCFAD448-09|Apristurus profundorum|COI-5P|KC015199
CCTATACTTAATTTTTGGTGCATGAGCAGGCATGGTTGGAATAGCCTTAAGTTTATTAATCCGTGCGGAG
CTGGGTCAACCCGGATCACTCTTAGGCGATGACCAGATTTATAATGTAGTCGTAACTGCCCATGCTTTTG
TAATAATCTTTTTTATGGTTATACCAGTAATAATTGGCGGCTTTGGAAATTGACTCGTCCCTTTAATAATT
GGTGCACCAGACATAGCATTCCCACGAATAAATAATATAAGTTTTTGACTTCTTCCTCCTTCTTTTTTACTT
CTCCTGGCTTCCGCGGGGGTAGAGGCAGGGGCTGGAACAGGATGAACAGTTTACCCGCCTTTAGCGGG
CAACCTGGCACACGCCGGACCCTCCGTAGACTTAGCTATCTTCTCCCTTCATTTAGCTGGTATTTCATCCA
TCTTGGCCTCAATTAATTTTATTACAACAATTATTAATATAAAACCCCCAGCTATCTCTCAATATCAAACAC
CCTTGTTTGTTTGATCAATCCTTATTACCACTGTTCTTCTTCTTCTCGCCCTCCCAGTTCTTGCAGCCGGAAT
TACAATATTACTTACAGACCGAAACCTTAATACCACTTTCTTTGACCCCGCGGGAGGGGGGGACCCAATC
CTTTATCAACACCTA
>EWKU048-07|Apristurus profundorum|COI-5P|FJ519554
CCTATACTTAATTTTTGGTGCATGAGCAGGCATGGTTGGAATAGCCTTAAGTTTATTAATCCGTGCGGAG
CTGGGTCAACCCGGATCACTCTTAGGCGATGACCAGATTTATAATGTAGTCGTAACTGCCCATGCTTTTG
TAATAATCTTTTTTATGGTTATACCAGTAATAATTGGCGGCTTTGGAAATTGACTCGTCCCTTTAATAATT
GGTGCACCAGACATAGCATTCCCACGAATAAATAATATAAGTTTTTGACTTCTTCCTCCTTCTTTTTTACTT
CTCCTGGCTTCCGCGGGGGTAGAGGCAGGGGCTGGAACAGGATGAACAGTTTACCCGCCTTTAGCGGG
CAACCTGGCACACGCCGGACCCTCCGTAGACTTAGCTATCTTCTCCCTTCATTTAGCTGGTATTTCATCCA
TCTTGGCCTCAATTAATTTTATTACAACAATTATTAATATAAAACCCCCAGCTATCTCTCAATATCAAACAC
CCTTGTTTGTTTGATCAATCCTTATTACCACTGTTCTTCTTCTTCTCGCCCTCCCAGTTCTTGCAGCCGGAAT
TACAATATTACTTACAGACCGAAACCTTAATACCACTTTCTTTGACCCCGCGGGAGGGGGGGACCCAATC
CTTTATCAACACCTA
>MAECO381-09|Apristurus manis|COI-5P
CATAAAGATATTGGCACCCTATACCTAATTTTTGGTGCATGAGCAGGTATGGTTGGAATAGCCTTAAGTT
TATTAATCCGTGCGGAGCTGGGTCAACCCGGGTCGCTCTTAGGTGATGACCAGATTTATAATGTAGTCGT
AACTGCCCATGCTTTTGTAATAATCTTTTTTATGGTTATACCAGTAATAATTGGCGGCTTTGGAAATTGAC
TCGTCCCTTTAATAATTGGTGCACCAGACATAGCATTCCCACGAATAAATAATATAAGTTTTTGACTTCTT
CCTCCTTCTTTCTTACTTCTCCTGGCTTCCGCGGGAGTAGAGGCAGGGGCTGGAACAGGGTGAACGGTT
TACCCACCTTTAGCGGGCAACCTGGCACACGCCGGGCCCTCCGTAGATTTGGCTATCTTCTCCCTTCATTT
AGCTGGTATTTCATCCATCTTGGCCTCAATTAATTTTATTACAACAATTATTAATATAAAACCACCAGCTAT
CTCTCAATATCAAACACCCTTGTTTGTTTGATCAATCCTTATTACCACTGTTCTTCTTCTTCTTGCCCTCCCA
GTTCTTGCAGCCGGAATTACAATATTGCTCACAGACCGAAACCTTAACACCACCTTCTTTGACCCCGCTG
GAGGGGGGGACCCAATCCTTTACCAACACCTGTTTTGATTTTTTGGTCACC
>CMNAF071-06|Apristurus manis|COI-5P
CCTATACTTAATTTTTGGTGCATGAGCAGGCATGGTTGGAATAGCCTTAAGTTTATTAATCCGTGCGGAG
CTGGGTCAACCCGGATCACTCTTAGGCGATGACCAGATTTATAATGTAGTCGTAACTGCCCATGCTTTTG
TAATAATCTTTTTTATGGTTATACCAGTAATAATTGGCGGCTTTGGAAATTGACTCGTCCCTTTAATAATT
GGTGCACCAGACATAGCATTCCCACGAATAAATAATATAAGTTTTTGACTTCTTCCTCCTTCTTTTTTACTT
CTCCTGGCTTCCGCGGGGGTAGAGGCAGGGGCTGGAACAGGATGAACAGTTTACCCGCCTTTAGCGGG
CAACCTGGCACACGCCGGACCCTCCGTAGACTTAGCTATCTTCTCCCTTCATTTAGCTGGTATTTCATCCA
TCTTGGCCTCAATTAATTTTATTACAACAATTATTAATATAAAACCCCCAGCTATCTCTCAATATCAAACAC
CCTTGTTTGTTTGATCAATCCTTATTACCACTGTTCTTCTTCTTCTCGCCCTCCCAGTTCTTGCAGCCGGAAT
TACAATATTACTTACAGACCGAAACCTTAATACCACTTTCTTTGACCCCGCGGGAGGGGGGGACCCAATC
CTTTATCAACACCTA
>IEOBG016-13|Apristurus melanoasper|COI-5P|KJ202075
ATTCGTGCTGAACTAGGTCAACCCGGGTCTCTTTTAGGAGATGATCAGATTTACAATGTGATCGTCACCG
CCCATGCCTTTGTAATAATCTTTTTTATAGTTATGCCGGTAATAATTGGTGGTTTTGGGAATTGACTTGTT
CCTTTAATAATTGGTGCGCCAGACATAGCGTTCCCGCGTATAAATAATATAAGCTTCTGACTACTCCCCCC
CTCTTTCTTACTTCTCTTGGCTTCTGCAGGCGTTGAAGCAGGAGCAGGAACCGGGTGAACTGTTTACCCC
CCCTTGGCTGGTAACTTGGCACACGCTGGGCCCTCCGTTGACCTAGCTATCTTTTCCCTCCATTTGGCCGG
TGTTTCATCTATTTTAGCCTCAATTAATTTTATTACAACCATTATTAATATAAAACCCCCAGCCATTTCCCA
ATATCAAACCCCCCTATTTGTTTGGTCAATTCTTATTACCACCGTTCTCCTTCTTCTCTCTCTCCCCGTTCTT
GCAGCCGGAATTACAATATTACTTACAGACCGCAACCTTAATACCACATTTTTTGATCCTGCGGGCGGGG
GGGACCCAATCCTCTACCAACACCTA
>FNZ708-06|Apristurus melanoasper|COI-5P
CCTCTACCTAATTTTTGGTGCATGAGCAGGAATGGTTGGAATGGCTTTAAGCTTATTAATTCGTGCTGAA
CTAGGTCAACCCGGGTCTCTTTTAGGAGATGATCAGATTTACAATGTGATCGTCACCGCCCATGCCTTTG
TAATAATCTTTTTTATGGTTATGCCAGTAATAATTGGTGGTTTTGGGAATTGACTTGTTCCTTTAATAATT
GGTGCGCCAGACATAGCGTTCCCGCGTATAAATAATATAAGCTTCTGACTCCTCCCCCCCTCTTTCTTACT
TCTCTTGGCTTCTGCAGGCGTTGAAGCAGGAGCAGGAACCGGGTGAACTGTTTACCCCCCCCTAGCTGG
TAACTTGGCACACGCTGGGCCCTCCGTTGACCTAGCTATCTTTTCCCTCCATCTGGCCGGTGTTTCATCTA
TTTTAGCCTCAATTAATTTTATTACAACCATTATTAATATAAAACCCCCAGCCATTTCCCAATATCAAACCC
CCCTATTTGTTTGGTCAATTCTTATTACCACCGTTCTCCTTCTTCTATCTCTCCCCGTTCTTGCAGCCGGAAT
TACAATATTACTTACAGACCGCAACCTTAATACCACATTTTTTGATCCTGCGGGCGGGGGAGACCCAATC
CTCTACCAACACCTA
>BCOLL219-06|Scyliorhinus retifer|COI-5P
CCTATACTTAATCTTTGGTGCATGAGCAGGCATAGTCGGAACAGCCTTAAGCCTCCTAATTCGAGCTGAA
TTAGGTCAGCCGGGTTCACTTTTAGGTGATGATCAGATTTACAATGTAATCGTAACTGCCCATGCTTTCGT
AATAATTTTCTTTATGGTTATACCAGTAATAATCGGCGGATTTGGAAACTGACTAGTACCCCTAATGATTG
GGGCACCAGATATAGCCTTCCCTCGAATAAACAACATAAGCTTTTGACTCCTTCCACCCTCCTTTCTTCTCC
TATTGGCCTCAGCTGGGGTAGAAGCTGGGGCGGGAACTGGATGAACAGTCTATCCCCCATTAGCTGGTA
ATATAGCCCATGCCGGGGCATCCGTTGATTTAACTATCTTCTCTCTCCACCTAGCTGGTATTTCATCAATCT
TAGCTTCAATTAATTTTATTACAACTATTATTAATATAAAACCCCCAGCTGTATCACAGTACCAAACACCCT
TATTTGTATGGTCAATTCTCGTGACTACCGTCCTTCTTCTTCTATCCCTCCCTGTCCTTGCAGCCGGAATTA
CAATATTATTAACAGATCGAAATCTTAATACAACATTCTTTGACCCAGCAGGAGGAGGAGACCCTATTCT
TTATCAACATCTA
>ANGBF12460-15|Scyliorhinus retifer|COI-5P|KT075309
CCTATACTTAATCTTTGGTGCATGAGCAGGCATAGTCGGAACAGCCTTAAGCCTCCTAATTCGAGCTGAA
TTAGGTCAGCCGGGTTCACTTTTAGGTGATGATCAGATTTACAATGTAATCGTAACTGCCCATGCTTTCGT
AATAATTTTCTTTATGGTTATACCAGTAATAATCGGCGGATTTGGAAACTGACTAGTACCCCTAATGATTG
GGGCACCAGATATAGCCTTCCCTCGAATAAACAACATAAGCTTTTGACTCCTTCCACCCTCCTTTCTTCTCC
TATTGGCCTCAGCTGGGGTAGAAGCTGGGGCGGGAACTGGATGAACAGTCTATCCCCCATTAGCTGGTA
ATATAGCCCATGCCGGGGCATCCGTTGATTTAACTATCTTCTCTCTCCACCTAGCTGGTATTTCATCAATCT
TAGCTTCAATTAATTTTATTACAACTATTATTAATATAAAACCCCCAGCTGTATCACAGTACCAAACACCCT
TATTTGTATGGTCAATTCTCGTGACTACCGTCCTTCTTCTTCTATCCCTCCCTGTCCTTGCAGCCGGAATTA
CAATATTATTAACAGATCGAAATCTTAATACAACATTCTTTGACCCAGCAGGAGGAGGAGACCCTATTCT
TTATCAACATCTA
>EWTGS011-06|Galeocerdo cuvier|COI-5P|FJ519864
CCTTTATCTTATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCTCTAAGTCTTCTAATTCGAGCTGAAC
TCGGACAACCAGGATCACTCTTAGGGGACGATCAAATCTATAATGTAATCGTAACTGCCCATGCTTTCGT
AATAATCTTTTTTATAGTTATACCAATCATAATTGGTGGCTTCGGAAATTGACTAGTTCCGTTAATAATTG
GTGCACCAGATATAGCTTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTTC
TACTAGCCTCTGCTGGAGTAGAGGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGTA
ACCTAGCTCATGCTGGACCATCTGTTGATTTAGCAATTTTCTCTCTTCACTTAGCTGGTGTTTCATCAATTT
TAGCCTCAATTAACTTTATTACAACTATCATTAATATAAAACCCCCAGCTATCTCCCAATATCAAACACCAT
TATTTGTATGATCCATTCTTGTTACTACTATTCTCCTTCTTCTTTCACTTCCAGTTCTTGCAGCAGGAATTAC
AATACTACTTACAGACCGTAACCTTAATACTACATTCTTTGATCCAGCGGGTGGAGGAGATCCAATCCTT
TATCAGCACTTA
>EWTGS008-06|Galeocerdo cuvier|COI-5P|FJ519867
CCTTTATCTTATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCTCTAAGTCTTCTAATTCGAGCTGAAC
TCGGACAACCAGGATCACTCTTAGGGGACGATCAAATCTATAATGTAATCGTAACTGCCCATGCTTTCGT
AATAATCTTTTTTATAGTTATACCAATCATAATTGGTGGCTTCGGAAATTGACTAGTTCCGTTAATAATTG
GTGCACCAGATATAGCTTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTTC
TACTAGCCTCTGCTGGAGTAGAGGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGTA
ACCTAGCTCATGCTGGACCATCTGTTGATTTAGCAATTTTCTCTCTTCACTTAGCTGGTGTTTCATCAATTT
TAGCCTCAATTAACTTTATTACAACTATCATTAATATAAAACCCCCAGCTATCTCCCAATATCAAACACCAT
TATTTGTATGATCCATTCTTGTTACTACTATTCTCCTTCTTCTTTCACTTCCAGTTCTTGCAGCAGGAATTAC
AATACTACTTACAGACCGTAACCTTAATACTACATTCTTTGATCCAGCGGGTGGAGGAGATCCAATCCTT
TATCAGCACTTA
>ESHKD047-07|Rhizoprionodon terraenovae|COI-5P|FJ519280
CCTTTACTTAATTTTTGGTGCATGGGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCCGAA
CTCGGTCAACCTGGATCTCTCTTAGGAGATGATCAGATTTATAATGTGATCGTAACTGCCCACGCTTTTGT
AATAATCTTCTTTATGGTAATGCCAATTATAATTGGTGGTTTCGGAAATTGACTGGTTCCCTTAATAATTG
GTGCACCAGATATAGCCTTCCCACGAATAAATAACATGAGCTTTTGACTCCTTCCACCTTCATTCCTTCTTC
TCCTAGCTTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCCCCATTAGCTAGTAA
CATAGCTCACGCTGGACCATCTGTTGATCTGGCTATTTTCTCCCTTCATTTAGCCGGTGTTTCATCAATTTT
AGCCTCAATTAACTTTATTACAACCATTATCAACATAAAACCACCAGCTATTTCCCAATATCAAACACCTTT
ATTTGTTTGATCTATTCTTGTAACTACTATTCTCCTTCTCCTTTCACTTCCAGTCCTTGCAGCAGGAATTACA
ATATTACTTACAGATCGCAACCTTAATACCACATTCTTTGATCCTGCAGGTGGGGGAGACCCAATTCTTTA
CCAACACCTA
>ANGBF12418-15|Rhizoprionodon terraenovae|COI-5P|KT075313
ATAGTTGGAACAGCCCTAAGTCTTCTAATTCGAGCCGAACTCGGTCAACCTGGATCTCTCTTAGGAGATG
ATCAGATTTATAATGTGATCGTAACTGCCCACGCTTTTGTAATAATCTTCTTTATGGTAATACCAATTATA
ATTGGTGGTTTCGGAAATTGACTGGTTCCCTTAATAATTGGTGCACCAGATATAGCCTTCCCACGAATAA
ATAACATGAGCTTTTGACTCCTTCCACCTTCATTCCTTCTTCTCCTAGCTTCTGCTGGAGTAGAAGCTGGA
GCAGGTACTGGTTGAACAGTCTATCCCCCATTAGCTAGTAACATAGCTCACGCTGGACCATCTGTTGATC
TGGCTATTTTCTCCCTTCATTTAGCCGGTGTTTCATCAATTTTAGCCTCAATTAACTTTATTACAACCATTAT
CAACATAAAACCACCAGCTATTTCCCAATATCAAACACCTTTATTTGTTTGATCTATTCTTGTAACTACTAT
TCTCCTTCTCCTTTCACTTCCAGTCCTTGCAGCAGGAATTACAATATTACTTACAGATCGCAACCTTAATAC
CACATTCTTTGACCCTGCAGGTGGGGGAGACCCAATTCTTTACCAACACCTA
>ESHKA003-07|Carcharhinus obscurus|COI-5P|FJ518936
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GAGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGCAA
TCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTTTCTCTTCACTTAGCCGGTGTTTCATCAATTTT
AGCTTCAATTAATTTTATCACAACCATTATTAATATAAAACCACCAGCTATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGACCCAATCCTTT
ATCAACATTTA
>ESHKA001-07|Carcharhinus obscurus|COI-5P|FJ518938
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GAGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGCAA
TCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTTTCTCTTCACTTAGCCGGTGTTTCATCAATTTT
AGCTTCAATTAATTTTATCACAACCATTATTAATATAAAACCACCAGCTATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGACCCAATCCTTT
ATCAACATTTA
>ESHKB024-07|Carcharhinus leucas|COI-5P|FJ518999
CCTTTATCTGATTTTTGGTGCATGAGCAGGTATAGTTGGTACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGACAACCTGGATCACTTTTAGGAGATGATCAGATCTACAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GTGCACCAGACATAGCCTTTCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCTCCATTAGCTAGCAA
TCTAGCACATGCTGGGCCATCTGTTGACTTAGCTATCTTCTCCCTTCACTTAGCTGGTGTTTCATCAATTTT
AGCTTCAATTAATTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCATT
ATTTGTTTGATCCATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTCCCAGTCCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGACCCAATCCTTT
ATCAACACTTA
>ESHKB013-07|Carcharhinus leucas|COI-5P|FJ519009
CCTTTATCTGATTTTTGGTGCATGAGCAGGTATAGTTGGTACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGACAACCTGGATCACTTTTAGGAGATGATCAGATCTACAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GTGCACCAGACATAGCCTTTCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCTCCATTAGCTAGCAA
TCTAGCACATGCTGGGCCATCTGTTGACTTAGCTATCTTCTCCCTTCACTTAGCTGGTGTTTCATCAATTTT
AGCTTCAATTAATTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCATT
ATTTGTTTGATCCATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTCCCAGTCCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGACCCAATCCTTT
ATCAACACTTA
>EWKU070-07|Carcharhinus plumbeus|COI-5P|FJ519558
CCTTTACCTNATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGACAACCTGGATCACTTTTAGGGGATGATCAGATTTATAATGTAATTGTAACCGCCCACGCTTTTG
TAATAATCTTTTTTATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GTGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCCCCATTAGCTAGTAA
CCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTATTTCATCAATTTT
AGCTTCAATTAATTTTATTACAACAATTATTAACATAAAACCACCAGCCATTTCACAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTNGCAGCNGGGATTAC
AATACTNCTTACAGATCGTAACCTCAACACNACATTCTTGGNCCCTGCAGGTGGAGGNNNNNNNNNNN
NNNNNNNNNNNNNN
>ESHKC126-07|Carcharhinus plumbeus|COI-5P|FJ519156
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGACAACCTGGATCACTTTTAGGGGATGATCAGATTTATAATGTAATTGTAACCGCCCACGCTTTTG
TAATAATCTTTTTTATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GTGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCCCCATTAGCTAGTAA
CCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTATTTCATCAATTTT
AGCTTCAATTAATTTTATTACAACAATTATTAACATAAAACCACCAGCCATTTCACAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATACTACTTACAGATCGTAACCTCAACACTACATTCTTTGACCCTGCGGGTGGAGGAGATCCAATTCTTT
ATCAACATTTA
>CFSAN122-11|Carcharhinus acronotus|COI-5P|KF461148
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTTCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATCTACAATGTAATCGTAACCGCCCACGCTTTCG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGACTAGTTCCCTTAATAATTG
GTGCGCCAGATATAGCCTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGCTGAACAGTTTATCCTCCATTAGCTAGCAA
CCTAGCACATGCTGGACCATCTGTTGACTTAGCTATTTTCTCTCTTCACTTAGCCGGTGTTTCATCAATTTT
AGCTTCAATTAATTTTATCACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACTACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTACA
ATACTACTTACAGATCGCAACCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGACCCAATCCTTTA
TCAACAC
>ESHKC063-07|Carcharhinus acronotus|COI-5P|FJ519037
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTTCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATCTACAATGTAATCGTAACCGCCCACGCTTTCG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGACTAGTTCCCTTAATAATTG
GTGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGCTGAACAGTTTATCCTCCATTAGCTAGCAA
CCTAGCACATGCTGGACCATCTGTTGACTTAGCTATTTTCTCTCTTCACTTAGCCGGTGTTTCATCAATTTT
AGCTTCAATTAATTTTATCACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACTACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTACA
ATACTACTTACAGATCGCAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGACCCAATCCTTTA
TCAACACCTA
>KERRI015-08|Carcharhinus altimus|COI-5P
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGGGATGATCAGATTTACAATGTAATTGTAACCGCCCACGCTTTTG
TAATAATCTTTTTTATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GTGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCCCCATTAGCTAGTAA
CCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTATTTCATCAATTTT
AGCTTCAATTAATTTTATTACAACAATTATTAACATAAAACCACCAGCCATTTCACAATATCAAACACCAC
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATACTACTTACAGATCGTAACCTCAACACTACATTCTTTGACCCTGCAGGTGGAGGAGATCCAATTCTTT
ATCAACATTTA
>ESHKC099-07|Carcharhinus altimus|COI-5P|FJ519049
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGGGATGATCAGATTTACAATGTAATTGTAACCGCCCACGCTTTTG
TAATAATCTTTTTTATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GTGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCCCCATTAGCTAGTAA
CCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTATTTCATCAATTTT
AGCTTCAATTAATTTTATTACAACAATTATTAACATAAAACCACCAGCCATTTCACAATATCAAACACCAC
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATACTACTTACAGATCGTAACCTCAACACTACATTCTTTGACCCTGCAGGTGGAGGAGATCCAATTCTTT
ATCAACATTTA
>GMSHK068-11|Carcharhinus falciformis|COI-5P
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTTCTAATTCGAGCTGAG
CTTGGACAACCTGGATCACTTTTAGGGGATGATCAGATTTACAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTTATGGTTATGCCAATCATAATTGGTGGTTTCGGAAATTGACTAGTTCCTTTAATAATT
GGTGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTT
CTCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGTA
ACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTGTATCATCTATTC
TAGCTTCAATTAATTTTATTACAACTATTATCAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTCCTCCTATCACTTCCAGTTCTTGCAGCAGGGATTA
CAATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGACCCAATCCTT
TATCAACATTTATTC
>ESHKC116-07|Carcharhinus falciformis|COI-5P|FJ519088
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTTCTAATTCGAGCTGAG
CTTGGACAACCTGGATCACTTTTAGGGGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTTATGGTTATGCCAATCATAATTGGTGGTTTCGGAAATTGACTAGTTCCTTTAATAATT
GGTGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTT
CTCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGTA
ACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTGTGTCATCTATTC
TAGCTTCAATTAATTTTATTACAACTATTATCAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTCCTCCTATCACTTCCAGTTCTTGCAGCAGGGATTA
CAATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGACCCAATCCTT
TATCAACATTTA
>GBMNB11437-20|Carcharhinus limbatus|COI-5P|MN883243
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTCGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGGGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTTATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGACTAGTTCCTCTAATAATTG
GTGCACCAGACATAGCCTTTCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTCC
TTCTCGCCTCTGCTGGAGTAGAAGCTGGGGCAGGTACTGGTTGAACAGTATATCCTCCATTAGCTAGCA
ACTTAGCACATGCTGGACCATCTGTTGATTTAGCCATTTTCTCTCTTCACTTAGCTGGTGTTTCATCAATTT
TAGCTTCAATTAATTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACTACTATTCTTCTTCTCCTTTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTCAATACCACATTCTTTGATCCTGCAGGTGGAGGAGATCCAATCCTTT
ATCAACATTT
>NOSMF041-08|Carcharhinus limbatus|COI-5P|FJ519614
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTCGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGGGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTTATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGACTAGTTCCTCTAATAATTG
GTGCACCAGACATAGCCTTTCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTCC
TTCTCGCCTCTGCTGGAGTAGAAGCTGGGGCAGGTACTGGTTGAACAGTATATCCTCCATTAGCTAGCA
ACTTAGCACATGCTGGACCATCTGTTGATTTAGCCATTTTCTCTCTTCACTTAGCTGGTGTTTCATCAATTT
TAGCTTCAATTAATTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACTACTATTCTTCTTCTCCTTTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTCAATACCACATTCTTTGATCCTGCAGGTGGAGGAGATCCAATCCTTT
ATCAACATTTA
>ESHKA034-07|Carcharhinus longimanus|COI-5P|FJ518925
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTCCCTTTAATAATTG
GAGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCGTCATTTCTTCTC
CTTCTCGCCTCTGCTGGAGTAGAGGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGCA
ACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTGTTTCATCAATTT
TAGCTTCAATTAATTTTATCACAACCATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGACCGTAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGACCCAATCCTTT
ATCAACATTTA
>ESHKA038-07|Carcharhinus longimanus|COI-5P|FJ518921
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTCCCTTTAATAATTG
GAGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCGTCATTTCTTCTC
CTTCTCGCCTCTGCTGGAGTAGAGGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGCA
ACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTGTTTCATCAATTT
TAGCTTCAATTAATTTTATCACAACCATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGACCGTAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGACCCAATCCTTT
ATCAACATTTA
>PHANT147-08|Carcharhinus perezii|COI-5P
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGCCTCCTAATTCGAGCTGAG
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATTTACAATGTAATCGTAACCGCCCACGCTTTCG
TAATAATCTTTTTCATGGTAATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GAGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTT
CTTCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGCACCGGCTGAACAGTTTATCCTCCATTAGCTAGCA
ACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATCTTTTCTCTTCACTTAGCCGGTGTTTCATCAATTT
TAGCTTCAATTAATTTTATCACAACTATTATTAACATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTCAATACTACATTCTTCGACCCTGCAGGTGGAGGAGACCCAATCCTTT
ATCAACATTTA
>NOSMF043-08|Carcharhinus perezii|COI-5P|FJ519622
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGCCTCCTAATTCGAGCTGAG
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATTTACAATGTAATCGTAACCGCCCACGCTTTCG
TAATAATCTTTTTCATGGTAATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCTTTAATAATTG
GAGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTT
CTTCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGCACCGGCTGAACAGTTTATCCTCCATTAGCTAGCA
ACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATCTTTTCTCTTCACTTAGCCGGTGTTTCATCAATTT
TAGCTTCAATTAATTTTATCACAACTATTATTAACATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTCAATACTACATTCTTCGACCCTGCAGGTGGAGGAGACCCAATCCTTT
ATCAACATTTA
>PHANT267-08|Carcharhinus porosus|COI-5P
CCTCTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCTTTAAGTCTCCTAATCCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGGGATGATCAAATCTATAATGTAATCGTAACAGCCCACGCTTTTG
TAATAATCTTTTTCATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCCTTAATAATTG
GTGCTCCAGATATAGCCTTTCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTTGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCTCCATTAGCTAGCAA
CCTAGCACATGCTGGACCATCTGTTGACTTAGCTATTTTCTCCCTCCACTTAGCCGGTGTTTCATCAATCTT
AGCTTCAATCAACTTTATTACAACTATTATTAACATAAAACCACCAGCAATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACTACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTACA
ATATTACTTACAGATCGTAATCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGATCCAATCCTTTA
TCAACATTTA
>KERRI067-08|Carcharhinus porosus|COI-5P
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCTTAAGTCTCCTAATCCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGGGATGATCAAATCTATAATGTAATCGTAACAGCCCACGCTTTTG
TAATAATCTTTTTCATAGTTATACCAATTATAATTGGTGGTTTCGGAAATTGATTAGTTCCCTTAATAATTG
GTGCTCCAGATATAGCCTTTCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTTGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCTCCATTAGCTAGCAA
CCTAGCACATGCTGGACCATCTGTTGACTTAGCTATTTTCTCCCTCCACTTAGCCGGTGTTTCATCAATCTT
AGCTTCAATCAACTTTATTACAACTATTATTAACATAAAACCACCAGCAATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACTACTATTCTTCTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTACA
ATATTACTTACAGATCGTAATCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGATCCAATCCTTTA
TCAACATTTA
>NOSMF005-08|Carcharhinus brevipinna|COI-5P|FJ519606
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTTATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGGGATGATCAGATCTATAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAACTGACTAGTTCCCTTAATAATT
GGTGCACCAGATATAGCCTTCCCACGGATAAATAACATAAGCTTCTGACTCCTTCCACCATCATTTCTTCT
TCTCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGC
AACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTGTTTCATCAATC
TTAGCTTCAATTAATTTTATCACAACTATTATTAACATAAAACCACCAGCCATTTCCCAATATCAAACACCA
TTATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTTTCACTTCCAGTCCTTGCAGCAGGGATTA
CAATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGACCCTGCAGGCGGAGGAGACCCAATCCTT
TATCAACATTTA
>PHANT262-08|Carcharhinus brevipinna|COI-5P
CCTTTACCTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTTATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGGGATGATCAGATCTACAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAACTGACTAGTTCCCTTAATAATT
GGTGCACCAGATATAGCCTTCCCACGGATAAATAACATAAGCTTCTGACTCCTTCCACCATCATTTCTTCT
TCTCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGC
AACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTGTTTCATCAATC
TTAGCTTCAATTAATTTTATCACAACTATTATTAACATAAAACCACCAGCCATTTCCCAATATCAAACACCA
TTATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTTTCACTTCCAGTCCTTGCAGCAGGGATTA
CAATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGACCCTGCAGGCGGAGGAGACCCAATCCTT
TATCAACATTTA
>ESHKC115-07|Carcharhinus isodon|COI-5P|FJ519096
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTAGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATCTACAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGACTAGTTCCCTTAATAATTG
GTGCGCCGGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCGTCATTTCTTCTT
CTCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGCTGAACAGTCTATCCTCCATTAGCTAGCA
ACCTAGCACATGCTGGACCATCTGTTGACTTAGCTATCTTCTCTCTTCACTTAGCTGGTGTTTCATCAATTT
TAGCTTCAATTAATTTTATCACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTTTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATACTACTTACAGATCGCAACCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGACCCAATTCTTT
ATCAACACCTA
>ESHKC106-07|Carcharhinus isodon|COI-5P|FJ519105
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTAGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCACTTTTAGGAGATGATCAGATCTACAATGTAATCGTAACCGCCCACGCTTTTG
TAATAATCTTTTTCATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGACTAGTTCCCTTAATAATTG
GTGCGCCGGATATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCGTCATTTCTTCTT
CTCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGCTGAACAGTCTATCCTCCATTAGCTAGCA
ACCTAGCACATGCTGGACCATCTGTTGACTTAGCTATCTTCTCTCTTCACTTAGCTGGTGTTTCATCAATTT
TAGCTTCAATTAATTTTATCACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTTTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATACTACTTACAGATCGCAACCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGACCCAATTCTTT
ATCAACACCTA
>ESHKC038-07|Carcharhinus signatus|COI-5P|FJ519162
CCTTTACCTAATTTTTGGTGCCTGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGACAACCTGGATCTCTTTTAGGAGATGATCAGATTTATAATGTAATCGTAACCGCTCACGCTTTTGT
AATAATCTTTTTTATGGTTATACCAATTATAATTGGTGGTTTCGGAAATTGACTAGTTCCCTTAATAATTG
GTGCACCAGACATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCTCCATTAGCTAGTAA
CCTAGCACATGCCGGACCATCTGTTGATTTAGCTATTTTTTCCCTTCACTTAGCTGGTGTTTCATCAATTTT
AGCTTCAATTAATTTCATCACAACTATTATTAATATAAAACCACCAGCTATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACTACTATTCTCCTTCTCCTTTCACTTCCAGTTCTTGCAGCAGGGATTACA
ATACTACTTACAGATCGTAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGATCCAATCCTTTA
TCAACATTTA
>ESHKC035-07|Carcharhinus signatus|COI-5P|FJ519165
CCTTTACCTAATTTTTGGTGCCTGAGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCTGAA
CTTGGACAACCTGGATCTCTTTTAGGAGATGATCAGATTTATAATGTAATCGTAACCGCTCACGCTTTTGT
AATAATCTTTTTTATGGTTATACCAATTATAATTGGTGGCTTCGGAAATTGACTAGTTCCCTTAATAATTG
GTGCACCAGACATAGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAAGCTGGAGCAGGTACTGGTTGAACAGTCTATCCTCCATTAGCTAGTAA
CCTAGCACATGCCGGACCATCTGTTGATTTAGCTATTTTTTCCCTTCACTTAGCTGGTGTTTCATCAATTTT
AGCTTCAATTAATTTCATCACAACTATTATTAATATAAAACCACCAGCTATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATTCTTGTAACTACTATTCTCCTTCTCCTTTCACTTCCAGTTCTTGCAGCAGGGATTACA
ATACTACTTACAGATCGTAACCTTAATACTACATTCTTTGATCCTGCAGGTGGAGGAGATCCAATCCTTTA
TCAACATTTA
>ANGBF10930-15|Prionace glauca|COI-5P|KF771233
ACCCTTTATCTTNTTTTTGGTGCATGAGCAGGTATAGTTGGGACAGCCCTAAGCCTCCTAATTCGAGCTG
AACTTGGGCAACCTGGATCTCTTTTAGGAGATGATCAGATTTATAATGTAATTGTAACCGCCCACGCTTTT
GTAATAATCTTTTTTATGGTTATACCAATCATAATTGGTGGTTTCGGAAATTGACTAGTTCCTTTAATAATT
GGAGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCT
CCTCCTCGCCTCTGCTGGAGTTGAAGCCGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGT
AACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTATTTCATCAATT
TTAGCTTCAATTAACTTTATTACAACCATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCA
TTATTTGATTATTCTATTCTTGTAACCACTATTCTTCTTCTCCTAGCACTTCCAGTTCTTGCAGCAGGTATTA
CAATATTACTTACAGATCGTAACCTNWATACTACATTCTTTGACCCTGCAGGNGGAGGAGATCCAAT
>ANGBF11061-15|Prionace glauca|COI-5P|KF899652
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGGACAGCCCTAAGCCTCCTAATTCGAGCTGAA
CTTGGGCAACCTGGATCTCTTTTAGGAGATGATCAGATTTATAATGTAATTGTAACCGCCCACGCTTTTGT
AATAATCTTTTTTATGGTTATACCAATCATAATTGGTGGTTTCGGAAATTGACTAGTTCCTTTAATAATTG
GAGCACCAGATATAGCCTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTC
CTCCTCGCCTCTGCTGGAGTTGAAGCCGGAGCAGGTACTGGTTGAACAGTTTATCCTCCATTAGCTAGTA
ACCTAGCACATGCTGGACCATCTGTTGATTTAGCTATTTTCTCTCTTCACTTAGCCGGTATTTCATCAATTT
TAGCTTCAATTAACTTTATTACAACCATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCAT
TATTTGTTTGATCTATTCTTGTAACCACTATTCTTCTTCTCCTAGCACTTCCAGTTCTTGCAGCAGGTATTAC
AATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGATCCAATCCTTT
ATCAGCACTTA
>ESHKD034-07|Negaprion brevirostris|COI-5P|FJ519230
CCTTTACTTGATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTTAGTCTTTTGATTCGGGCTGAA
CTTGGCCAACCTGGATCACTTTTAGGGGATGACCAAATTTATAATGTAATCGTAACTGCCCACGCTTTTGT
AATGATCTTTTTTATAGTTATGCCAATCATAATTGGTGGTTTCGGAAACTGACTAGTTCCATTAATAATTG
GTGCACCAGATATAGCCTTCCCACGAATAAACAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAGGCTGGAGCAGGTACTGGCTGAACAGTATATCCTCCATTAGCTAGTA
ACCTAGCCCATGCTGGACCATCTGTTGATTTAGCTATCTTCTCTCTTCACTTAGCCGGTGTTTCATCAATTT
TAGCTTCAATTAACTTCATTACAACCATTATTAATATAAAACCACCAGCTATCTCCCAATATCAAACACCAT
TATTTGTTTGATCCATCCTTGTAACTACTATTCTCCTTCTCCTTTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGATCCAATCCTTT
ATCAACATTTA
>PHANT030-08|Negaprion brevirostris|COI-5P
CCTTTACTTAATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTTAGTCTTTTGATTCGGGCTGAA
CTTGGCCAACCTGGATCACTTTTAGGGGATGACCAAATTTATAATGTAATCGTAACTGCCCACGCTTTTGT
AATGATCTTTTTTATAGTTATGCCAATCATAATTGGTGGTTTCGGAAACTGACTAGTTCCATTAATAATTG
GTGCACCAGATATAGCCTTCCCACGAATAAACAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTTC
TCCTCGCCTCTGCTGGAGTAGAGGCTGGAGCAGGTACTGGCTGAACAGTATATCCTCCATTAGCTAGTA
ACCTAGCCCATGCTGGACCATCTGTTGATTTAGCTATCTTCTCTCTTCACTTAGCCGGTGTTTCATCAATTT
TAGCTTCAATTAACTTCATTACAACCATTATTAATATAAAACCACCAGCTATCTCCCAATATCAAACACCAT
TATTTGTTTGATCCATCCTTGTAACTACTATTCTCCTTCTCCTTTCACTTCCAGTTCTTGCAGCAGGGATTAC
AATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGACCCTGCAGGTGGAGGAGATCCAATCCTTT
ATCAACATTTA
>EWHHS156-06|Sphyrna tiburo|COI-5P|FJ519495
CCTTTATCTAATTTTTGGTGCATGAGCAGGAATAATTGGAACAGCCCTAAGTCTTTTAATTCGAGCTGAA
CTTGGGCAACCAGGTTCTCTTTTAGGAGATGATCAGATTTATAATGTAATTGTAACTGCCCACGCTTTTGT
AATAATCTTTTTTATAGTTATACCAATCATAATTGGTGGCTTTGGAAACTGACTGGTTCCTTTAATAATTG
GTGCACCAGACATGGCCTTCCCACGAATAAATAACATAAGCTTCTGGCTCCTTCCACCATCATTCCTTCTA
CTACTAGCTTCTGCTGGGGTAGAAGCTGGAGCAGGCACCGGCTGAACAGTCTACCCTCCATTAGCTAGC
AACTTAGCTCATGCTGGGCCATCTGTTGATTTAGCTATCTTTTCTCTCCATCTGGCTGGAGTATCGTCAAT
TCTAGCTTCAATCAATTTTATTACAACTATTATTAACATAAAACCCCCAGCCATTTCCCAGTACCAAACGCC
ATTATTTGTTTGATCTATCCTTGTGACTACTATTCTGCTACTCCTTTCCCTCCCAGTTCTTGCAGCAGGAAT
TACAATATTACTCACAGACCGCAACCTTAATACTACATTCTTTGATCCTGCAGGAGGAGGAGATCCAATC
CTTTATCAACACCTA
>EWHHS126-06|Sphyrna tiburo|COI-5P|FJ519522
CCTTTATCTAATTTTTGGTGCATGAGCAGGAATAATTGGAACAGCCCTAAGTCTTTTAATTCGAGCTGAA
CTTGGGCAACCAGGTTCTCTTTTAGGAGATGATCAGATTTATAATGTAATTGTAACTGCCCACGCTTTTGT
AATAATCTTTTTTATAGTTATACCAATCATAATTGGTGGCTTTGGAAACTGACTGGTTCCTTTAATAATTG
GTGCACCAGACATGGCCTTCCCACGAATAAATAACATAAGCTTCTGGCTCCTTCCACCATCATTCCTTCTA
CTACTAGCTTCTGCTGGGGTAGAAGCTGGAGCAGGCACCGGCTGAACAGTCTACCCTCCATTAGCTAGC
AACTTAGCTCATGCTGGGCCATCTGTTGATTTAGCTATCTTTTCTCTCCATCTGGCTGGAGTATCGTCAAT
TCTAGCTTCAATCAATTTTATTACAACTATTATTAACATAAAACCCCCAGCCATTTCCCAGTACCAAACGCC
ATTATTTGTTTGATCTATCCTTGTGACTACTATTCTGCTACTCCTTTCCCTCCCAGTTCTTGCAGCAGGAAT
TACAATATTACTCACAGACCGCAACCTTAATACTACATTCTTTGATCCTGCAGGAGGAGGAGATCCAATC
CTTTATCAACACCTA
>ANGBF12582-15|Sphyrna zygaena|COI-5P|KP177224
CATTTACCTATTTTTGGTGCATGAGCAGGTATAGTTGGGACAGCCCTAAGTCTCTTAATTCGAGCTGAAC
TTGGGCAACCAGGATCTCTTCTAGGAGATGACCAGATTTATAATGTAATTGTAACCGCCCACGCTTTCGT
AATAATCTTTTTTATAGTTATGCCAATCATAATTGGTGGCTTCGGGAATTGATTAGTTCCTTTAATAATTG
GTGCACCAGACATGGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCTC
CTCCTAGCTTCTGCTGGGGTAGAAGCTGGAGCAGGAACTGGTTGAACAGTTTATCCTCCATTAGCTAGC
AATTTAGCCCATGCTGGACCATCCGTTGACTTAGCTATTTTTTCTCTTCATTTAGCTGGTGTATCATCAATC
TTAGCCTCAATCAATTTTATTACAACTATTATCAATATAAAACCCCCAGCCATCTCCCAATATCAAACACCA
CTATTTGTTTGATCTATCCTTGTAACTACTATTTTACTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTA
CAATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGATCCCGCAGGAGGAGGAGATCCAATTCTT
TATCAACACTTATTCTGATTCTTCGGTCCCTACCGACTGGGGGCAAACTGCCCCCTCTCCTTTTTCTCCTTT
TCCCCCCTGCTTATCTTT
>AMS043-06|Sphyrna zygaena|COI-5P
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGGACAGCCCTAAGTCTCTTAATTCGAGCTGAA
CTTGGGCAACCAGGATCTCTTCTAGGAGATGACCAGATTTATAATGTAATTGTAACCGCCCACGCTTTCG
TAATAATCTTTTTTATAGTTATGCCAATCATAATTGGTGGCTTCGGGAATTGATTAGTTCCTTTAATAATT
GGTGCACCAGACATGGCCTTCCCACGAATAAATAACATAAGTTTCTGACTTCTTCCACCATCATTTCTTCT
CCTCCTAGCTTCTGCTGGGGTAGAAGCTGGAGCAGGAACTGGTTGAACAGTTTATCCTCCATTAGCTAGC
AATTTAGCCCATGCTGGACCATCCGTTGACTTAGCTATTTTTTCTCTTCATTTAGCTGGTGTATCATCAATC
TTAGCCTCAATCAATTTTATTACAACTATTATCAATATAAAACCCCCAGCCATCTCCCAATATCAAACACCA
CTATTTGTTTGATCTATCCTTGTAACTACTATTTTACTTCTCCTCTCACTTCCAGTTCTTGCAGCAGGGATTA
CAATATTACTTACAGATCGTAACCTTAATACTACATTCTTTGATCCCGCAGGAGGAGGAGATCCAATTCTT
TATCAACA----
>ANGBF12524-15|Sphyrna lewini|COI-5P|KP177290
CCTTTACTATTTTTGGTGCATGAGCAGGAATAATTGGAACAGCCCTAAGTCTTTTAATTCGAGCTGAACTT
GGACAACCAGGCTCTCTTTTAGGAGATGATCAGATTTATAATGTAATTGTAACTGCCCACGCTTTCGTAA
TAATCTTTTTCATAGTTATACCAATTATAATTGGTGGTTTTGGGAATTGGCTCGTGCCTTTAATAATTGGT
GCGCCAGATATGGCCTTCCCACGAATAAACAACATAAGCTTTTGGCTTCTTCCACCATCATTCCTTCTCCT
CTTAGCTTCCGCTGGGGTAGAAGCTGGAGCAGGTACTGGCTGAACAGTTTACCCTCCATTAGCTAGCAA
CTTAGCTCATGCTGGACCATCTGTTGACCTAGCTATCTTTTCCCTACACCTAGCCGGTGTATCATCAATCTT
AGCCTCAATTAATTTCATTACAACTATTATTAACATGAAACCTCCAGCCATCTCTCAATATCAAACACCATT
ATTTGTTTGATCCATTCTTGTAACTACTATCCTACTTCTCCTCTCACTTCCAGTTCTCGCAGCAGGAATTAC
AATATTACTCACAGATCGTAACCTTAATACTACATTCTTTGATCCTGCAGGGGGAGGAGATCCAATCCTTT
ATCAACACTTATTCT
>ANGBF12522-15|Sphyrna lewini|COI-5P|KP177288
CCTTTCCTAATTTTTGGTGCATGAGCAGGAATAATTGGAACAGCCCTAAGTCTTTTAATTCGAGCTGAACT
TGGACAACCAGGCTCTCTTTTAGGAGATGATCAGATTTATAATGTAATTGTAACTGCCCACGCTTTCGTA
ATAATCTTTTTCATAGTTATACCAATTATAATTGGTGGTTTTGGGAATTGGCTCGTGCCTTTAATAATTGG
TGCGCCAGATATGGCCTTCCCACGAATAAACAACATAAGCTTTTGGCTTCTTCCACCATCATTCCTTCTCC
TCTTAGCTTCCGCTGGGGTAGAAGCTGGAGCAGGTACTGGCTGAACAGTTTACCCTCCATTAGCTAGCA
ACTTAGCTCATGCTGGACCATCTGTTGACCTAGCTATCTTTTCCCTACACCTAGCCGGTGTATCATCAATC
TTAGCCTCAATTAATTTCATTACAACTATTATTAACATGAAACCTCCAGCCATCTCTCAATATCAAACACCA
TTATTTGTTTGATCCATTCTTGTAACTACTATCCTACTTCTCCTCTCACTTCCAGTTCTCGCAGCAGGAATT
ACAATATTACTCACAGATCGTAACCTTAATACTACATTCTTTGATCCTGCAGGGGGAGGAGATCCAATCC
TTTATCAACACTTATTC
>EWHHS088-06|Sphyrna mokarran|COI-5P|FJ519481
CCTTTACCTAATTTTTGGNGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTTTTAATTCGAGCTGAA
CTTGGGCAACCAGGATCCCTTTTAGGAGATGATCAGATTTACAATGTAATTGTAACCGCCCACGCTTTCG
TAATAATCTTTTTTATGGTAATGCCAATTATAATTGGTGGTTTTGGGAATTGACTAGTTCCTTTAATAATT
GGTGCACCAGATATAGCTTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTT
CTCCTAGCTTCTGCTGGAGTAGAAGCTGGAGCAGGCACTGGCTGAACAGTCTATCCTCCATTAGCTAGC
AACCTAGCTCATGCTGGACCATCCGTTGATCTAGCCATCTTCTCTCTCCACTTAGCTGGTATCTCATCAATC
CTGGCCTCAATTAATTTCATCACAACTATTATTAACATAAAACCCCCAGCTATTTCTCAATACCAAACACCA
TTATTTGTCTGATCTATTCTTGTAACTACTATTCTACTTCTCCTTTCACTTCCAGTCCTTGCAGCAGGAATTA
CAATATTACTTACAGATCGCAACCTTAATACTACATTCTTTGACCCTGCAGGAGGAGGAGATCCAATTCTT
TATCAACATTTA
>EWHHS012-06|Sphyrna mokarran|COI-5P|FJ519487
CCTTTACCTAATTTTTGGTGCATGAGCAGGTATAGTTGGAACAGCCCTAAGTCTTTTAATTCGAGCTGAA
CTTGGGCAACCAGGATCCCTTTTAGGAGATGATCAGATTTACAATGTAATTGTAACCGCCCACGCTTTCG
TAATAATCTTTTTTATGGTAATGCCAATTATAATTGGTGGTTTTGGGAATTGACTAGTTCCTTTAATAATT
GGTGCACCAGATATAGCTTTCCCACGAATAAATAACATAAGCTTCTGACTTCTTCCACCATCATTTCTTCTT
CTCCTAGCTTCTGCTGGAGTAGAAGCTGGAGCAGGCACTGGCTGAACAGTCTATCCTCCATTAGCTAGC
AACCTAGCTCATGCTGGACCATCCGTTGATCTAGCCATCTTCTCTCTCCACTTAGCTGGTATCTCATCAATC
CTGGCCTCAATTAATTTCATCACAACTATTATTAACATAAAACCCCCAGCTATTTCTCAATACCAAACACCA
TTATTTGTCTGATCTATTCTTGTAACTACTATTCTACTTCTCCTTTCACTTCCAGTCCTTGCAGCAGGAATTA
CAATATTACTTACAGATCGCAACCTTAATACTACATTCTTTGACCCTGCAGGAGGAGGAGATCCAATTCTT
TATCAACATTTA
>EWHHS123-06|Sphyrna tudes|COI-5P|FJ519524
CCTTTATCTAATTTTTGGTGCATGAGCAGGAATAATTGGAACAGCCCTAAGTCTTTTAATTCGAGCTGAA
CTTGGGCAACCAGGTTCTCTCTTAGGAGACGATCAGATTTATAATGTAATTGTAACTGCCCACGCTTTTGT
AATAATCTTTTTTATAGTAATACCAATTATAATTGGTGGCTTTGGGAATTGACTAGTTCCTTTAATAATTG
GTGCACCAGACATGGCCTTCCCACGAATAAATAACATAAGCTTCTGGCTTCTTCCACCATCATTTCTTCTA
TTATTAGCCTCTGCTGGGGTAGAGGCTGGAGCAGGTACTGGCTGAACAGTTTACCCTCCATTAGCTAGC
AATTTAGCCCATGCTGGGCCATCTGTTGATTTAGCTATCTTTTCTCTCCATTTAGCCGGGGTATCATCAAT
TCTAGCTTCAATCAATTTTATTACAACCATTATTAACATAAAACCTCCATCCATTTCCCAATATCAAACACC
ATTATTTGTTTGATCTATCCTTGTAACTACCATCCTACTCCTCCTCTCCCTTCCAGTTCTTGCAGCAGGAAT
TACAATATTACTCACAGATCGTAACCTTAATACTACATTTTTTGATCCTGCAGGAGGAGGAGACCCAATC
CTCTATCAGCACCTA
>ANGBF16042-19|Sphyrna tudes|COI-5P|MH911319
CTTTATCTAATTTTTGGTGCATGAGCAGGAATAATTGGAACAGCCCTAAGTCTTTTAATTCGAGCTGAACT
TGGGCAACCAGGTTCTCTCTTAGGAGACGATCAGATTTATAATGTAATTGTAACTGCCCACGCTTTTGTA
ATAATCTTTTTTATAGTAATACCAATTATAATTGGTGGCTTTGGGAATTGACTAGTTCCTTTAATAATTGG
TGCACCAGACATGGCCTTCCCACGAATAAATAACATAAGCTTCTGGCTTCTTCCACCATCATTTCTTCTATT
ATTAGCCTCTGCTGGGGTAGAGGCTGGAGCAGGTACTGGCTGAACAGTTTACCCTCCATTAGCTAGCAA
TTTAGCCCATGCTGGGCCATCTGTTGATTTAGCTATCTTTTCTCTCCATTTAGCCGGGGTATCATCAATTCT
AGCTTCAATCAATTTTATTACAACCATTATTAACATAAAACCTCCATCCATTTCCCAATATCAAACACCATT
ATTTGTTTGATCTATCCTTGTAACTACCATCCTACTCCTCCTCTCCCTTCCAGTTCTTGCAGCAGGAATTAC
AATATTACTCACAGATCGTAACCTTAATACTACATTTTTTGATCCTGCAGGAGGAGGAGACCCAATCCTCT
ATCAGCACCTA
>ESHKD111-07|Mustelus canis|COI-5P|FJ519221
CCTTTACTTGATTTTTGGTGCATGAGCAGGCATAGTTGGGACAGCTCTAAGCCTTCTAATTCGAGCCGAA
CTTGGGCAGCCAGGTTCACTCTTAGGTGATGATCAGATTTATAATGTGATCGTAACCGCCCATGCTTTTG
TAATAATCTTCTTTATGGTTATACCAATCATGATCGGAGGCTTTGGGAATTGACTGGTCCCCTTGATAATT
GGTGCTCCAGATATAGCTTTCCCACGTATGAATAACATAAGCTTCTGACTCCTCCCACCATCATTTCTCCTT
CTCCTTGCTTCTGCAGGAGTGGAAGCCGGTGCAGGCACCGGCTGAACAGTATATCCACCACTAGCTAGC
AACCTAGCCCATGCTGGACCATCTGTTGATTTAGCCATCTTCTCCCTTCATTTAGCCGGTATTTCATCAATC
TTAGCCTCAATTAACTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCA
TTATTTGTTTGATCAATTCTCGTGACTACTGTTCTTCTTCTTCTCTCCCTGCCAGTTCTTGCAGCAGGGATT
ACAATATTACTCACAGACCGAAACCTTAATACTACATTCTTTGACCCCGCTGGGGGAGGGGATCCCATCC
TTTACCAACACTTA
>ANGBF12597-15|Mustelus canis canis|COI-5P|KT075316
CCTTTACTTGATTTTTGGTGCATGAGCAGGCATAGTTGGGACAGCTCTAAGCCTTCTAATTCGAGCCGAA
CTTGGGCAGCCAGGTTCACTCTTAGGTGATGATCAGATTTATAATGTGATCGTAACCGCCCATGCTTTTG
TAATAATCTTCTTTATGGTTATACCAATCATGATCGGAGGCTTTGGGAATTGACTGGTCCCCTTGATAATT
GGTGCTCCAGATATAGCTTTCCCACGTATGAATAACATAAGCTTCTGACTCCTCCCACCATCATTTCTCCTT
CTCCTTGCTTCTGCAGGAGTGGAAGCCGGTGCAGGCACCGGCTGAACAGTATATCCACCACTAGCTAGC
AACCTAGCCCATGCTGGACCATCTGTTGATTTAGCCATCTTCTCCCTTCATTTAGCCGGTATTTCATCAATC
TTAGCCTCAATTAACTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACCA
TTATTTGTTTGATCAATTCTCGTGACTACTGTTCTTCTTCTTCTCTCCCTGCCAGTTCTTGCAGCAGGGATT
ACAATATTACTCACAGACCGAAACCTTAATACTACATTCTTTGACCCCGCTGGGGGAGGGGATCCCATC
>GNSHK039-08|Mustelus norrisi|COI-5P
CCTTTATTTGATTTTTGGTGCATGAGCAGGCATAGTTGGGACAGCCCTAAGCCTTCTAATTCGAGCCGAA
CTTGGGCAGCCAGGATCACTCTTAGGTGATGATCAGATTTACAATGTGATCGTTACCGCCCATGCTTTTG
TAATAATCTTCTTTATGGTTATACCAATCATAATTGGAGGCTTTGGGAATTGACTGGTCCCCTTGATAATT
GGTGCTCCAGATATGGCTTTCCCACGTATGAATAACATAAGCTTCTGACTCCTCCCACCATCATTTCTCCT
TCTCCTTGCTTCTGCAGGAGTAGAAGCCGGTGCAGGCACCGGCTGAACAGTATATCCGCCTCTAGCTAG
CAATCTGGCCCATGCTGGGCCATCTGTTGATTTAGCCATCTTCTCCCTTCATTTAGCCGGTATTTCATCAAT
CTTAGCCTCAATTAACTTTATCACAACTATTATTAATATAAAACCACCAGCCATTTCCCAATATCAAACACC
ATTATTTGTTTGATCAATTCTCGTAACTACTATTCTTCTTCTTCTCTCCCTGCCAGTTCTTGCGGCAGGAAT
TACAATATTACTTACAGACCGAAACCTCAATACTACATTCTTTGACCCCGCAGGGGGAGGGGACCCNNN
NNNNNNNNNNNNNNNN
>MAECO246-06|Pseudotriakis microdon|COI-5P|EU148299
CCTCTACCTTATTTTTGGTGCATGAGCAGGAATAGTTGGAACAGCTCTAAGTCTTCTTATTCGAGCTGAAC
TAGGTCAGCCTGGTTCTCTTTTAGGAGATGATCAGATTTATAATGTAATCGTAACCGCTCATGCTTTTGTA
ATAATCTTTTTTATGGTAATACCAGTAATGATTGGTGGCTTTGGAAATTGACTAGTTCCATTAATAATTGG
TGCACCAGACATAGCCTTTCCTCGAATAAATAATATAAGCTTCTGACTTCTCCCCCCATCCTTCCTTCTTCT
TCTGGCTTCAGCCGGAGTTGAAGCTGGAGCAGGGACCGGCTGAACAGTTTATCCTCCACTAGCAAGCAA
CTTAGCACATGCCGGACCTTCTGTAGACTTGGCCATCTTCTCCCTTCACTTAGCTGGAATTTCCTCAATTTT
GGCCTCAATTAACTTTATTACAACTATTATTAATATAAAACCACCAGCTATTTCTCAATACCAGACACCACT
ATTTGTTTGATCAATTCTCGTGACTACTGTTCTTCTCCTTCTAGCCCTCCCTGTTCTTGCAGCTGGAATTAC
AATATTACTTACAGACCGTAATCTCAACACCACATTCTTTGACCCAGCAGGTGGAGGGGACCCAATTCTT
TA
>MAECO245-06|Pseudotriakis microdon|COI-5P|EU148300
CCTCTACCTTATTTTTGGTGCATGAGCAGGAATAGTTGGAACAGCTCTAAGTCTTCTTATTCGAGCTGAAC
TAGGTCAGCCTGGTTCTCTTTTAGGAGATGATCAGATTTATAATGTAATCGTAACCGCTCATGCTTTTGTA
ATAATCTTTTTTATGGTAATACCAGTAATGATTGGTGGCTTTGGAAATTGACTAGTTCCATTAATAATTGG
TGCACCAGACATAGCCTTTCCTCGAATAAATAATATAAGCTTCTGACTTCTCCCCCCATCCTTCCTTCTTCT
TCTGGCTTCAGCCGGAGTTGAAGCTGGAGCAGGGACCGGCTGAACAGTTTATCCTCCACTAGCAAGCAA
CTTAGCACATGCCGGACCTTCTGTAGACTTGGCCATCTTCTCCCTTCACTTAGCTGGAATTTCCTCAATTTT
GGCCTCAATTAACTTTATTACAACTATTATTAATATAAAACCACCAGCTATTTCTCAATACCAGACACCACT
ATTTGTTTGATCAATTCTCGTGACTACTGTTCTTCTCCTTCTAGCCCTCCCTGTTCTTGCAGCTGGAATTAC
AATATTACTTACAGACCGTAATCTCAACACCACATTCTTTGACCCAGCAGGTGGAGGGGACCCAATTCTT
TATCAACATCTA
>NOSMF032-08|Squatina dumeril|COI-5P|FJ519646
CCTTTATTTAATTTTTGGTGCATGAGCAGGAATAGTAGGTACTGCCCTAAGTATACTCATCCGAGCAGAA
TTAAGCCAGCCCGGAACACTCCTTGGGGATGATCAAATTTACAATGTAATTGTTACTGCCCACGCTTTCG
TAATAATCTTTTTTATAGTTATACCAATCATAATCGGTGGATTTGGAAATTGATTAGTTCCATTAATAATT
GGTGCACCAGATATAGCCTTTCCACGAATAAATAATATAAGCTTCTGACTTTTACCTCCTTCCCTATTATTA
TTACTTGCTTCAGCTGGAGTTGAAGCAGGGGCCGGCACTGGTTGAACAGTGTATCCCCCTCTTGCAGGA
AATCTAGCTCACGCCGGAGCATCGGTAGATTTAGCAATTTTTTCCCTACACTTAGCTGGTATCTCTTCAAT
TTTAGCCTCTATTAATTTCATTACAACTATTATTAACATAAAATCCCCAGCTACCTCCCAATATCAAACACC
ACTCTTTGTTTGATCAATTTTGGTAACTACTGTACTTCTCCTCCTTTCCCTCCCAGTTCTCGCAGCTGCAAT
CACAATATTACTAACCGACCGTAATCTAAATACAACATTTTTTGACCCTGCAGGAGGTGGAGACCCAATC
CTTTACCAACACTTA
>EWKU019-07|Squatina dumeril|COI-5P|FJ519598
CCTTTATTTAATTTTTGGTGCATGAGCAGGAATAGTAGGTACTGCCCTAAGTATACTCATCCGAGCAGAA
TTAAGCCAGCCCGGAACACTCCTTGGGGATGATCAAATTTACAATGTAATTGTTACTGCCCACGCTTTCG
TAATAATCTTTTTTATAGTTATACCAATCATAATCGGTGGATTTGGAAATTGATTAGTTCCATTAATAATT
GGTGCACCAGATATAGCCTTTCCACGAATAAATAATATAAGCTTCTGACTTTTACCTCCTTCCCTATTATTA
TTACTTGCTTCAGCTGGAGTTGAAGCAGGGGCCGGCACTGGTTGAACAGTGTATCCCCCTCTTGCAGGA
AATCTAGCTCACGCCGGAGCATCGGTAGATTTAGCAATTTTTTCCCTACACTTAGCTGGTATCTCTTCAAT
TTTAGCCTCTATTAATTTCATTACAACTATTATTAACATAAAATCCCCAGCTACCTCCCAATATCAAACACC
ACTCTTTGTTTGATCAATTTTGGTAACTACTGTACTTCTCCTCCTTTCCCTCCCAGTTCTCGCAGCTGCAAT
CACAATATTACTAACCGACCGTAATCTAAATACAACATTTTTTGACCCTGCAGGAGGTGGAGACCCAATC
CTTTACCAACACTT
Appendix 4
>BLNJ-2021-001_Ivanova
ATTTTTGGTGCATGAGCAGGTATAGTCGGAACAGCCCTAAGTCTCCTAACTCGAGCTGAACTTGGGCAA
CCTGGATCAC
TTTTAGGGGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTGTAATAATCTTTTTTATAGTT
ATACCAATT
ATAATTGGTGGTTTCGGAAATTGACTAGTTCCTCTAATAATTGGTGCACCAGACATAGCCTTTCCACGAA
TAAATAACAT
AAGTTTCTGACTTCTTCCACCATCATTTCTTCTCCTTCTCGCCTCTGCTGGAGTAGAAGCTGGGGCAGGTA
CTGGTTGAA
CAGTATATCCTCCATTAGCTAGCAACTTAGCACATGCTGGACCATCTGTTGATTTAGCCATTTTCTCTCTTC
ACTTAGCT
GGTGTTTCATCAATTTTAGCTTCAATTAATTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCC
CAATATCA
AACACCATTATTTGTTTGATCTATTCTTGTAACTACTATTCTTCTTCTCCTTTCACTTCCAGTTCTTGCAGCA
GGGATTA
CAATATTACTTACAGATCGTAACCTCAATACCACATTCTTTGATCCTGCAGGTGGAGGAGATCCAATCCTT
TATCAACAT
TTATTCTGATTCTTCGGACACCCTGAAGTGTCATA
>BLNJ-2021-002_Folmer
AGTGATAGGATGGATCTCCTCCCCTGCAGGATCAAAGAATGTGGTATTGAGGTTACGATCTGCCCGTAA
TATTGTAATCC
CTGCTGCAAGAACTGGAAGTGAAAGGAGAAGAAGAATAGTAGTTACAAGAATAGATCAAACAAATAAT
GGTGTTTGATAT
TGGGAAATGGCTGGTGGTTTTATATTAATAATAGTTGTAATAAAATTAATTGAAGCTAAAATTGATGAAA
CACCAGCTAA
GTGAAGAGAGAAAATGGCTAAATCAACAGATGGTCCAGCATGTGCTAAGTTGCTAGCTAATGGAGGAT
ATACTGTTCAAC
CAGTACCTGCCCCAGCTTCTACTCCAGCAGAGGCGAGAAGGAGAAGAAATGATGGTGGAAGAAGTCAG
AAACTTATGTTA
TTTATTCGTGGAAAGGCTATGTCTGGTGCACCAATTATTAGAGGAACTAGTCAATTTCCGAAACCACCAA
TTATAATTGG
TATAACTATAAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTATAAATCTGATCATCCCCT
AAAAGTGATC
CAGGTTGCCCAAGTTCAGCTCGAATTAGGAGACTTAGGGCTGTTCCGACTATACCTGCTCATGCACCAAA
AATTAGGTAA
AGGGTGCCAATATCTTTATGATTGGTTGACC
>BLNJ-2021-003_Folmer
ANGGNTGATAGGATTGGATCTCCTCCCCTGCAGGATCAAAGAATGTGGTATTGAGGTTACGATCTGCCN
GTAATATTGTA
ATCCCTGCTGCAAGAACTGGAAGTGAAAGGAGAAGAAGAATAGTAGTTACAAGAATAGATCAAACAAA
TAATGGTGTTTG
ATATTGGGAAATGGCTGGTGGTTTTATATTAATAATAGTTGTAATAAAATTAATTGAAGCTAAAATTGAT
GAAACACCAG
CTAAGTGAAGAGAGAAAATGGCTAAATCAACAGATGGTCCAGCATGTGCTAAGTTGCTAGCTAATGGA
GGATATACTGTT
CAACCAGTACCTGCCCCAGCTTCTACTCCAGCAGAGGCGAGAAGGAGAAGAAATGATGGTGGAAGAAG
TCAGAAACTTAT
GTTATTTATTCGTGGAAAGGCTATGTCTGGTGCACCAATTATTAGAGGAACTAGTCAATTTCCGAAACCA
CCAATTATAA
TTGGTATAACTATAAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTATAAATCTGATCATC
CCCTAAAAGT
GATCCAGGTTGCCCAAGTTCAGCTCGAATTAGGAGACTTAGGGCTGTTCCGACTATACCTGCTCATGCAC
CAAAAATTAG
GTAAAGGGTGCCAATATCTTTATGATTTGGNTTGACCAA
>BLNJ-2021-004_Folmer
AGGGTTGGTAGATTGGGTCTCCCCCACCTGCAGGATCAAAGAATGTGGTATTAAGGTTGCGATCTGNAA
GTAATATTGTA
ATTCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGGAGAATAGTAGTTACAAGAATAGATCAAACAAA
TAAAGGTGTTTG
ATATTGGGAAATAGCTGGTGGTTTTATGTTGATAATGGTTGTAATAAAGTTAATTGAGGCTAAAATTGAT
GAAACACCGG
CTAAATGAAGGGAGAAAATAGCCAGATCAACAGATGGTCCAGCGTGAGCTATGTTACTAGCTAATGGG
GGATAGACTGTT
CAACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAAGCTAGGAGAAGAAGGAATGAAGGTGGAAGGAG
TCAAAAGCTCAT
GTTATTTATTCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACCAGTCAATTTCCGAAACCA
CCAATTATAA
TTGGCATTACCATAAAGAAGATTATTACAAAAGCGTGGGCAGTTACGATCACATTATAAATCTGATCATC
TCCTAAGAGA
GATCCAGGTTGACCGAGTTCGGCTCGAATTAGGAGACTTAGGGCTGTTCCAACTATACCTGCCCATGCA
CCAAAAATTAA
GTAAAGGGTGCCAATATCTTTATGATTTGGGTGGACCAA
>BLNJ-2021-005_Folmer
ANNTGGTAAGATTGGGTCTCCCCCACCTGCAGGATCAAAGAATGTGGTATTAAGGTTGCGATCTGTAAG
TAATATTGTAA
TTCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGGAGAATAGTAGTTACAAGAATAGATCAAACAAAT
AAAGGTGTTTGA
TATTGGGAAATAGCTGGTGNTTTTATGTTGATAATGGTTGTAATAAAGTTAATTGAGGCTAAAATTGATG
AAACACCGGC
TAAATGAAGGGAGAAAATAGCCAGATCAACAGATGGTCCAGCGTGAGCTATGTTACTAGCTAATGGGG
GATAGACTGTTC
AACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAAGCTAGGAGAAGAAGGAATGAAGGTGGAAGGAGT
CAAAAGCTCATG
TTATTTATTCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACCAGTCAATTTCCGAAACCAC
CAATTATAAT
TGGCATTACCATAAAGAAGATTATTACAAAAGCGTGGGCNGTTACGATCACATTATAAATCTGATCATCT
CCTAAGAGAG
ATCCAGGTTGACCGAGTTCGGCTCGAATTAGGAGACTTAGGGCTGTTCCAACTATACCTGCCCATGCACC
AAAAATTAAG
TAAAGGGTGCCAATATCTTTATATTTNGGTGGGNNCAAC
>BLNJ-2021-006_Folmer
AGGTGGTAGATTGGGTCTCCCCCCCTGCAGGATCAAAGAATGTGGTATTAAGGTTGCGATCTGCAAGTA
ATATTGTAATT
CCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGGAGAATAGTAGTTACAAGAATAGATCAAACAAATAA
AGGTGTTTGATA
TTGGGAAATAGCTGGTGGTTTTATGTTGATAATGGTTGTAATAAAGTTAATTGAGGCTAAAATTGATGA
AACACCGGCTA
AATGAAGGGAGAAAATAGCCAGATCAACAGATGGTCCAGCGTGAGCTATGTTACTAGCTAATGGGGGA
TAGACTGTTCAA
CCAGTACCTGCTCCAGCTTCTACTCCAGCAGAAGCTAGGAGAAGAAGGAATGAAGGTGGAAGGAGTCA
AAAGCTCATGTT
ATTTATTCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACCAGTCAATTTCCGAAACCACCA
ATTATAATTG
GCATTACCATAAAGAAGATTATTACAAAAGCGTGGGCAGTTACGATCACATTATAAATCTGATCATCTCC
TAAGAGAGAT
CCAGGTTGACCGAGTTCGGCTCGAATTAGGAGACTTAGGGCTGTTCCAACTATACCTGCCCATGCACCA
AAAATTAAGTA
AAGGGTGCCAATATCTTTATGATTTGGGTTGACCAA
>BLNJ-2021-007_Folmer
AGGGTTGGTAGATTGGGTCTCCCCCACCTGCAGGGTCAAAGAATGTGGTATTAAGGTTGCGATCTGNAA
GTAATATTGTA
ATTCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGGAGAATAGTAGTTACAAGAATAGATCAAACAAA
TAAAGGTGTTTG
ATATTGGGAAATAGCTGGTGGTTTTATGTTGATAATGGTTGTAATAAAGTTAATTGAGGCTAAAATTGAT
GAAACACCGG
CTAAATGAAGGGAGAAAATAGCCAGATCAACAGATGGTCCAGCGTGAGCTATGTTACTAGCTAATGGG
GGATAGACTGTT
CAACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAAGCTAGGAGAAGAAGGAATGAAGGTGGAAGGAG
TCAAAAGCTCAT
GTTATTTATTCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACCAGTCAATTTCCGAAACCA
CCAATTATAA
TTGGCATTACCATAAAGAAGATTATTACAAAAGCGTGGGCAGTTACGATCACATTATAAATCTGATCATC
TCCTAAGAGA
GATCCAGGTTGACCGAGTTCGGCTCGAATTAGGAGACTTAGGGCTGTTCCAACTATACCTGCCCATGCA
CCAAAAATTAA
GTAAAGGGTGCCAATATCTTTATGATTTGGTTGACCAA
>BLNJ-2021-008_Folmer
AAGTGTGGTAGATTGGGTCTCCCCCACCTGCAGGGTCAAAGAATGTGGTATTAAGGTTGCGATCTGNNA
GTAATATTGTA
ATTCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGGAGAATAGTAGTTACAAGAATAGATCAAACAAA
TAAAGGTGTTTG
ATATTGGGAAATAGCTGGTGGTTTTATGTTGATAATGGTTGTAATAAAGTTAATTGAGGCTAAAATTGAT
GAAACACCGG
CTAAATGAAGGGAGAAAATAGCCAGATCAACAGATGGTCCAGCGTGAGCTATGTTACTAGCTAATGGG
GGATAGACTGTT
CAACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAAGCTAGGAGAAGAAGGAATGAAGGTGGAAGGAG
TCAAAAGCTCAT
GTTATTTATTCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACCAGTCAATTTCCGAAACCA
CCAATTATAA
TTGGCATTACCATAAAGAAGATTATTACAAAAGCGTGGGCAGTTACGATCACATTATAAATCTGATCATC
TCCTAAGAGA
GATCCAGGTTGACCGAGTTCGGCTCGAATTAGGAGACTTAGGGCTGTTCCAACTATACCTGCCCATGCA
CCAAAAATTAA
GTAAAGGGTGCCAATATCTTTATGATTGGTTGACCA
>BLNJ-2021-009_Ivanova
TATTTTTGGTGCATGGGCAGGTATAGTTGGAACAGCCCTAAGTCTCCTAATTCGAGCCGAACTCGGTCAA
CCTGGATCTC
TCTTAGGAGATGATCAGATTTATAATGTGATCGTAACTGCCCACGCTTTTGTAATAATCTTCTTTATGGTA
ATGCCAATT
ATAATTGGTGGTTTCGGAAATTGACTGGTTCCCTTAATAATTGGTGCACCAGATATAGCCTTCCCACGAA
TAAATAACAT
GAGCTTTTGACTCCTTCCACCTTCATTCCTTCTTCTCCTAGCTTCTGCTGGAGTAGAAGCTGGAGCAGGTA
CTGGTTGAA
CAGTCTATCCCCCATTAGCTAGTAACATAGCTCACGCTGGACCATCTGTTGATCTGGCTATTTTCTCCCTTC
ATTTAGCC
GGTGTTTCATCAATTTTAGCCTCAATTAACTTTATTACAACCATTATCAACATAAAACCACCAGCTATTTCC
CAATATCA
AACACCTTTATTTGTTTGATCTATTCTTGTAACTACTATTCTCCTTCTCCTTTCACTTCCAGTCCTTGCAGCA
GGAATTA
CAATATTACTTACAGATCGCAACCTTAATACCACATTCTTTGACCCTGCAGGTGGGGGAGACCCAATTCT
TTACCAACAC
CTATTCTGATTCTTCGGNCACCCTGAAGTGTCATA
>BLNJ-2021-010_Folmer
AGNGTGGTAGGATTGGATCTCCTCCTCCTGCAGGATCAAAGAATGTGGTATTAAGGTTGCGATCTGCGA
GTAATATTGTA
ATTCCGGCTGCAAGAACTGGAAGTGAGAGGAGAAGTAGGATAGTAGTTACAAGGATAGATCAAACGAA
TAATGGTGTTTG
ATATTGAGAAATGGCTGGAGGTTTTATGTTAATAATAGTTGTAATGAAATTAATTGAGGCTAAAATTGAT
GATACACCGG
CTAGGTGTAGAGAGAAGATAGCTAAGTCAACAGATGGTCCAGCATGAGCTAAGTTGCTAGCTAATGGA
GGATAAACTGTT
CAGCCAGTACCTGCTCCAGCTTCTACCCCAGCGGAAGCTAGGAGGAGAAGGAATGAAGGTGGAAGAAG
TCAGAAGCTTAT
GTTATTTATTCGTGGGAAGGCCATGTCTGGCGCACCAATTATTAAAGGAACTAGTCAGTTCCCGAAACCA
CCAATTATAA
TTGGCATAACTATGAAAAAGATTATTACGAAAGCGTGGGCAGTTACAATTACATTATAAATCTGATCATC
TCCTAAAAGA
GATCCTGGTTGTCCAAGTTCAGCTCGAATTAAAAGACTTAGGGCTGTTCCAATTATTCCTGCTCATGCACC
AAAAATTAG
GTAAAGGGTGCCAATATCTTTATGATTGGGTTGACCAA
>BLNJ-2021-011_Folmer
AGGTTGGTAGGATTGGATCTCCTCCTCCTGCAGGATCAAAGAATGTGGTATTAAGGTTGCGATCTGCGA
GTAATATTGTA
ATTCCGGCTGCAAGAACTGGAAGTGAGAGGAGAAGTAGGATAGTAGTTACAAGGATAGATCAAACGAA
TAATGGTGTTTG
ATATTGAGAAATGGCTGGAGGTTTTATGTTAATAATAGTTGTAATGAAATTAATTGAGGCTAAAATTGAT
GATACACCGG
CTAGGTGTAGAGAGAAGATAGCTAAGTCAACAGATGGTCCAGCATGAGCTAAGTTGCTAGCTAATGGA
GGATAAACTGTT
CAGCCAGTACCTGCTCCAGCTTCTACCCCAGCGGAAGCTAGGAGGAGAAGGAATGAAGGTGGAAGAAG
TCAGAAGCTTAT
GTTATTTATTCGTGGGAAGGCCATGTCTGGCGCACCAATTATTAAAGGAACTAGTCAGTTCCCGAAACCA
CCAATTATAA
TTGGCATAACTATGAAAAAGATTATTACGAAAGCGTGGGCAGTTACAATTACATTATAAATCTGATCATC
TCCTAAAAGA
GATCCTGGTTGTCCAAGTTCAGCTCGAATTAAAAGACTTAGGGCTGTTCCAATTATTCCTGCTCATGCACC
AAAAATTAG
GTAAAGGGTGCCAATATCTTTATGATTTGGGTNGANCCAA
>BLNJ-2021-012_Folmer
AGGTTGGTAGGATGGATCTCCTCCTCCTGCAGGATCAAAGAATGTGGTATTAAGGTTGCGATCTGCGAG
TAATATTGTAA
TTCCGGCTGCAAGAACTGGAAGTGAGAGGAGAAGTAGGATAGTAGTTACAAGGATAGATCAAACGAAT
AATGGTGTTTGA
TATTGAGAAATGGCTGGAGGTTTTATGTTAATAATAGTTGTAATGAAATTAATTGAGGCTAAAATTGATG
ATACACCGGC
TAGGTGTAGAGAGAAGATAGCTAAGTCAACAGATGGTCCAGCATGAGCTAAGTTGCTAGCTAATGGAG
GATAAACTGTTC
AGCCAGTACCTGCTCCAGCTTCTACCCCAGCGGAAGCTAGGAGGAGAAGGAATGAAGGTGGAAGAAGT
CAGAAGCTTATG
TTATTTATTCGTGGGAAGGCCATGTCTGGCGCACCAATTATTAAAGGAACTAGTCAGTTCCCGAAACCAC
CAATTATAAT
TGGCATAACTATGAAAAAGATTATTACGAAAGCGTGGGCAGTTACAATTACATTATAAATCTGATCATCT
CCTAAAAGAG
ATCCTGGTTGTCCAAGTTCAGCTCGAATTAAAAGACTTAGGGCTGTTCCAATTATTCCTGCTCATGCACCA
AAAATTAGG
TAAAGGGTGCCAATATCTTTATGATTTGGTTGACCAA
>BLNJ-2021-013_Folmer
ANTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGATGTTTAGGTTTCGATCAGNNAGT
AATATTGATAA
TACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAAT
AATGGTGTTTGG
TATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGAT
GAGATACCTGC
TAAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAG
GATAAACTGTTC
AACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCAGAAGTAAAAGAAAAGAAGGGGGAAGTAGT
CAAAAGCTTATG
TTATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTAC
GGGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCT
CCTAGAAGTG
ATCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACC
AAAGATTAAA
TAAAGGGTGCCAATATCTTTATGATTTGGGTTGACCAA
>BLNJ-2021-014_Folmer
NTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGATGTTTANGTTTCGATCANCNNNTA
ATATTGATAAT
ACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAATA
ATGGTGTTTGGT
ATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGATG
AGATACCTGCT
AAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAGG
ATAAACTGTTCA
ACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCANAAGTAAAAGAAAAGAAGGGGGAAGTAGTC
AAAAGCTTATGT
TATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTACG
GGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCTC
CTAGAAGTGA
TCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACCA
AAGATTAAAT
AAAGGGTGCCAATATCTTTATGATTTTGNTTGACCAAN
>BLNJ-2021-015_Folmer
ANTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGATGTTTAGGTTTCGATCAGNAAGT
AATATTGATAA
TACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAAT
AATGGTGTTTGG
TATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGAT
GAGATACCTGC
TAAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAG
GATAAACTGTTC
AACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCANAAGTAAAAGAAAAGAAGGGGGAAGTAGT
CAAAAGCTTATG
TTATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTAC
GGGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCT
CCTAGAAGTG
ATCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACC
AAAGATTAAA
TAAAGGGTGCCAATATCTTTATGATTTGGGTGGACCAA
>BLNJ-2021-016_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTTGNTTGANCCAA
>BLNJ-2021-017_Folmer
AAGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAG
TAATATTGTAA
TCCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAAT
AATGGTGTTTGA
TATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATG
AAACACCGGC
TAAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAG
GATAAACTGTTC
AACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGT
CAGAAGCTTATG
TTATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCAC
CAATTATAAT
TGGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTG
ATCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACC
AAAAATCAGG
TAAAGGGTGCCAATATCTTTATGATTTGGGTN
>BLNJ-2021-018_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTTGGGTNGANCCAA
>BLNJ-2021-019_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTTGGGTGGANCCAA
>BLNJ-2021-020_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGTAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTTGGTTNG
>BLNJ-2021-021_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTNGGGTGGANCCAA
>BLNJ-2021-022_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGCNAAG
TAATATTGTAA
TCCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAAT
AATGGTGTTTGA
TATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATG
AAACACCGGC
TAAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAG
GATAAACTGTTC
AACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGT
CAGAAGCTTATG
TTATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCAC
CAATTATAAT
TGGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTG
ATCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACC
AAAAATCAGG
TAAAGGGTGCCAATATCTTTATGATTTGGGTNGANCCAA
>BLNJ-2021-023_Folmer
AGTGAAAGGATGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAGTA
ATATTGTAATC
CCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATAA
TGGTGTTTGATA
TTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGAA
ACACCGGCTA
AGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGGA
TAAACTGTTCAA
CCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTCA
GAAGCTTATGTT
ATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACCA
ATTATAATTG
GTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCCCC
TAAAAGTGAT
CCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCAA
AAATCAGGTA
AAGGGTGCCAATATCTTTATGNTTTNGGGNGACCCAA
>BLNJ-2021-024_Folmer
AGTGAAAGGATGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGTAAGTA
ATATTGTAATC
CCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATAA
TGGTGTTTGATA
TTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGAA
ACACCGGCTA
AGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGGA
TAAACTGTTCAA
CCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTCA
GAAGCTTATGTT
ATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACCA
ATTATAATTG
GTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCCCC
TAAAAGTGAT
CCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCAA
AAATCAGGTA
AAGGGTGCCAATATCTTTATGATTTGGNTGGACCAA
>BLNJ-2021-025_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTTGGNTGGANCCAA
>BLNJ-2021-026_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGCNANT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTGGGTNGACCAA
>BLNJ-2021-027_Folmer
ATGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGCNNA
GTAATATTGTA
ATCCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAA
TAATGGTGTTTG
ATATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGAT
GAAACACCGG
CTAAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGA
GGATAAACTGTT
CAACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAG
TCAGAAGCTTAT
GTTATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCA
CCAATTATAA
TTGGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATC
CCCTAAAAGT
GATCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCAC
CAAAAATCAG
GTAAAGGGTGCCAATATCTTTATGATTGGGTTGANCCAA
>BLNJ-2021-028_Folmer
ANTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGTGTTTAGGTTTCGATCAGNNAAGT
AATATTGATAA
TACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAAT
AATGGTGTTTGG
TATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGAT
GAGATACCTGC
TAAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAG
GATAAACTGTTC
AACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCATAAGTAAAAGAAAAGAAGGGGGAAGTAGT
CAAAAGCTTATG
TTATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTAC
GGGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCT
CCTAGAAGTG
ATCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACC
AAAGATTAAA
TAAAGGGTGCCAATATCTTTATGATTTGGGNTGGACCAAN
>BLNJ-2021-029_Folmer
ANTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGTGTTTAGGTTTCGATCAGNAAGTA
ATATTGATAAT
ACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAATA
ATGGTGTTTGGT
ATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGATG
AGATACCTGCT
AAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAGG
ATAAACTGTTCA
ACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCAGAAGTAAAAGAAAAGAAGGGGGAAGTAGTC
AAAAGCTTATGT
TATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTACG
GGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCTC
CTAGAAGTGA
TCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACCA
AAGATTAAAT
AAAGGGTGCCAATATCTTTATGATTTGGNTNGANCCAA
>BLNJ-2021-030_Folmer
ANTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGTGTTTAGGTTTCGATCAGNAAGTA
ATATTGATAAT
ACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAATA
ATGGTGTTTGGT
ATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGATG
AGATACCTGCT
AAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAGG
ATAAACTGTTCA
ACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCAGAAGTAAAAGAAAAGAAGGGGGAAGTAGTC
AAAAGCTTATGT
TATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTACG
GGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCTC
CTAGAAGTGA
TCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACCA
AAGATTAAAT
AAAGGGTGCCAATATCTTTATGATTGGGTGGACCAA
>BLNJ-2021-031_Folmer
ANTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGTGTTTAGGTTTCGATCAGNAAGTA
ATATTGATAAT
ACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAATA
ATGGTGTTTGGT
ATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGATG
AGATACCTGCT
AAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAGG
ATAAACTGTTCA
ACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCAGAAGTAAAAGAAAAGAAGGGGGAAGTAGTC
AAAAGCTTATGT
TATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTACG
GGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCTC
CTAGAAGTGA
TCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACCA
AAGATTAAAT
AAAGGGTGCCAATATCTTTATGATTTGGNTGGACCAA
>BLNJ-2021-032_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTTGGTTGACCAA
>BLNJ-2021-033_Folmer
NGTGANAGGATTGGGTCCCTCCGCCTGCAGGGTCAAGAATGTAGTATTAAGGTTACGATCTGTAAGTAA
TATTGTAATCC
CTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATAAT
GGTGTTTGATAT
TGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGAA
ACACCGGCTAA
GTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGGAT
AAACTGTTCAAC
CAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTCAG
AAGCTTATGTTA
TTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACCAA
TTATAATTGG
TATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCCCCT
AAAAGTGATC
CAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCAAA
AATCAGGTAA
AGGGTGCCAATATCTTTATGATTTGGNTTGA
>BLNJ-2021-034_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGTAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTGGGTTGANCCA
>BLNJ-2021-035_Folmer
ANTTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGTGTTTAGGTTTCGATCAGCNAAGT
AATATTGTAA
TACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAAT
AATGGTGTTTGG
TATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGAT
GAGATACCTGC
TAAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAG
GATAAACTGTTC
AACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCAGAAGTAAAAGAAAAGAAGGGGGAAGTAGT
CAAAAGCTTATG
TTATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTAC
GGGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCT
CCTAGAAGTG
ATCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACC
AAAGATTAAA
TAAAGGGTGCCAATATCTTTATGATTTGGGTNGACCAA
>BLNJ-2021-036_Folmer
ANTTGGTAGATTGGATCTCCCCCTCCTGCCGGATCAAAGAATGTTGTGTTTAGGTTTCGATCAGNAAGTA
ATATTGTAAT
ACCGGCTGCGAGCACTGGGAGGGATAATAGAAGAAGGATAGTTGTAACTAGAATTGATCATACAAATA
ATGGTGTTTGGT
ATTGAGAGATGGCCGGTGGTTTTATGTTAATGATAGTTGTAATAAAATTAATGGAAGCTAAAATTGATG
AGATACCTGCT
AAATGGAGGGAGAAAATGGCTAAATCAACGGATGCTCCAGCATGTGCTAGATTTCCCGCTAAGGGAGG
ATAAACTGTTCA
ACCAGTGCCAGCTCCGGCTTCAACTCCAGCTGAGGCCAGAAGTAAAAGAAAAGAAGGGGGAAGTAGTC
AAAAGCTTATGT
TATTTATTCGCGGGAAAGCTATATCTGGTGCACCAATTATTAAGGGCACTAGTCAATTTCCAAATCCACC
AATTATTACG
GGTATAACCATGAAGAAGATTATTACAAATGCATGGGCGGTTACAATAACATTATAGACTTGATCATCTC
CTAGAAGTGA
TCCGGGTTGTCCTAATTCAGCTCGAATTAGAAGGCTTAGGGCTGTTCCCACTATTCCTGCTCATGCACCA
AAGATTAAAT
AAAGGGTGCCAATATCTTTATGATTNGGGTGNACCAABLNJ-2021-037_Folmer
>BLNJ-2021-037_Ivanova
AATCTTTGGTGCATGAGCAGGAATAGTAGGTACCGCCCTTAGCTTACTTACTCGCGCAGAATTAAGCCAA
CCCGGAACAC
TTCTGGGAGATGATCAAATCTATAATGTTATCGTGACTGCTCACGCTTTTGTAATAATCTTTTTTATAGTT
ATGCCTGTA
ATAATTGGTGGATTCGGAAACTGATTGGTGCCCTTAATAATCGGCGCACCAGATATGGCTTTTCCACGAA
TAAATAATAT
AAGCTTTTGACTATTGCCCCCCTCCCTCCTATTACTTTTAGCCTCAGCTGGTGTTGAGGCAGGAGCCGGA
ACCGGCTGAA
CAGTCTACCCCCCTCTCGCAGGTAACATAGCCCATGCTGGCGCATCTGTAGATCTAGCCATCTTCTCACTC
CATTTAGCT
GGTATTTCCTCAATTTTAGCCTCTATTAATTTTATCACAACTATTATTAACATAAAACCACCTGCCATTTCTC
AGTATCA
AACACCACTCTTTGTTTGATCCATTCTTGTAACCACCATTCTTCTTCTTCTTTCTCTTCCTGTTCTCGCAGCC
GCAATTA
CGATACTATTAACTGACCGTAATTTAAACACAACATTTTTTGACCCTGCCGGAGGGGGAGACCCAATTCT
TTACCAACAT
TTATTCTGATTCTTCGGACACCCTGAAGTGTCATA
>BLNJ-2021-038_Ivanova
TATCTTTGGTGCATGAGCAGGAATAGTAGGTACCGCCCTTAGCTTACTTANTCGCGCAGAATTAAGCCAA
CCCGGAACAC
TTCTGGGAGATGATCAAATCTATAATGTTATCGTGACTGCTCACGCTTTTGTAATAATCTTTTTTATAGTT
ATGCCTGTA
ATAATTGGTGGATTCGGAAACTGATTGGTGCCCTTAATAATCGGCGCACCAGATATGGCTTTTCCACGAA
TAAATAATAT
AAGCTTTTGACTATTACCCCCCTCCCTCCTATTACTTTTAGCCTCAGCTGGTGTTGAGGCAGGAGCCGGAA
CCGGCTGAA
CAGTCTACCCCCCTCTCGCAGGTAACATAGCCCATGCTGGCGCATCTGTAGATCTAGCCATCTTCTCACTC
CATTTAGCT
GGTATTTCCTCAATTTTAGCCTCTATTAATTTTATCACAACTATTATTAACATAAAACCACCTGCCATTTCTC
AGTATCA
AACACCACTCTTTGTTTGATCCATTCTTGTAACCACCATTCTTCTTCTTCTTTCTCTTCCTGTTCTCGCAGCC
GCAATTA
CGATACTATTAACTGACCGTAATTTAAACACAACATTTTTTGACCCTGCCGGAGGGGGAGACCCAATTCT
TTACCAACAT
TTATTCTGATTCTTCGGNCACCCTGAAGTGTCATA
>BLNJ-2021-039_Folmer
AGTGATAGGATTGGGTCTCCTCCGCCTGCAGGGTCAAAGAATGTAGTATTAAGGTTACGATCTGNAAGT
AATATTGTAAT
CCCTGCTGCAAGGACTGGAAGTGAAAGGAGAAGAAGAATAGTGGTTACAAGAATAGATCAAACAAATA
ATGGTGTTTGAT
ATTGGGAAATGGCTGGTGGTTTTATGTTAATAATAGTTGTGATAAAATTAATTGAAGCTAAGATTGATGA
AACACCGGCT
AAGTGAAGAGAGAAAATAGCTAAATCAACAGATGGTCCAGCATGTGCTAGGTTGCTAGCTAATGGAGG
ATAAACTGTTCA
ACCAGTACCTGCTCCAGCTTCTACTCCAGCAGAGGCGAGGAGAAGAAGAAATGATGGTGGAAGGAGTC
AGAAGCTTATGT
TATTTATCCGTGGGAAGGCTATATCTGGTGCACCAATTATTAAGGGAACTAGTCAGTTTCCGAAACCACC
AATTATAATT
GGTATAACCATGAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTGTAGATCTGATCATCC
CCTAAAAGTGA
TCCAGGTTGCCCAAGTTCAGCTCGAATAAGGAGACTTAGGGCTGTTCCAACTATACCTGCTCATGCACCA
AAAATCAGGT
AAAGGGTGCCAATATCTTTATGATTTGGGTNGACCA
>BLNJ-2021-040_Ivanova
TATCTTTGGTGCATGAGCAGGAATAGTAGGTACCGCCCTTAGCTTACTTATTCGCGCAGAATTGAGCCAA
CCCGGAACAC
TTCTGGGAGATGATCAAATCTATAATGTTATCGTGACTGCTCACGCTTTTGTAATAATCTTTTTTATAGTT
ATGCCTGTA
ATAATTGGTGGATTCGGAAACTGATTGGTGCCCTTAATAATCGGCGCACCAGATATGGCTTTTCCACGAA
TAAATAATAT
AAGCTTTTGACTATTACCCCCCTCCCTCCTATTACTTTTAGCCTCAGCTGGTGTTGAGGCAGGAGCCGGAA
CCGGCTGAA
CAGTCTACCCTCCCCTCGCAGGTAACATAGCCCATGCTGGCGCATCTGTAGATCTAGCCATCTTCTCACTC
CATTTAGCT
GGTATTTCCTCAATTTTAGCCTCTATTAATTTTATCACAACTATTATTAACATAAAACCACCTGCCATTTCTC
AGTATCA
AACACCACTCTTTGTTTGATCCATTCTTGTAACCACCATTCTTCTTCTTCTTTCTCTTCCTGTTCTCGCAGCC
GCAATTA
CGATACTATTAACTGACCGTAATTTAAACACAACATTTTTTGACCCTGCCGGAGGGGGAGATCCAATTCT
TTACCAACAT
TTATTCTGATTCTTCGGNCACCCTGAAGTGTCATA
>BLNJ-2021-041_Ivanova
TATCTTTGGTGCATGAGCAGGAATAGTAGGTACCGCCCTTAGCTTACTTANTCGCGCAGAATTAAGCCAA
CCCGGAACAC
TTCTGGGAGATGATCAAATCTATAATGTTATCGTGACTGCTCACGCTTTTGTAATAATCTTTTTTATAGTT
ATGCCTGTA
ATAATTGGTGGATTCGGAAACTGATTGGTGCCCTTAATAATCGGCGCACCAGATATGGCTTTTCCACGAA
TAAATAATAT
AAGCTTTTGACTATTACCCCCCTCCCTCCTATTACTTTTAGCCTCAGCTGGTGTTGAGGCAGGAGCCGGAA
CCGGCTGAA
CAGTCTACCCCCCTCTCGCAGGTAACATAGCCCATGCTGGCGCATCTGTAGATCTAGCCATCTTCTCACTC
CATTTAGCT
GGTATTTCCTCAATTTTAGCCTCTATTAATTTTATCACAACTATTATTAACATAAAACCACCTGCCATTTCTC
AGTATCA
AACACCACTCTTTGTTTGATCCATTCTTGTAACCACCATTCTTCTTCTTCTTTCTCTTCCTGTTCTCGCAGCC
GCAATTA
CGATACTATTAACTGACCGTAATTTAAACACAACATTTTTTGACCCTGCCGGAGGGGGAGACCCAATTCT
TTACCAACAT
TTATTCTGATTCTTCGGNCACCCTGAAGTGTCATA
>BLNJ-2021-042_Folmer
AGTGATAGGATGGATCTCCTCCCCTGCAGGATCAAAGAATGTGGTATTGAGGTTACGATCTGNNAGTAA
TATTGTAATCC
CTGCTGCAAGAACTGGAAGTGAAAGGAGAAGAAGAATAGTAGTTACAAGAATAGATCAAACAAATAAT
GGTGTTTGATAT
TGGGAAATGGCTGGTGGTTTTATATTAATAATAGTTGTAATAAAATTAATTGAAGCTAAAATTGATGAAA
CACCAGCTAA
GTGAAGAGAGAAAATGGCTAAATCAACAGATGGTCCAGCATGTGCTAAGTTGCTAGCTAATGGAGGAT
ATACTGTTCAAC
CAGTACCTGCCCCAGCTTCTACTCCAGCAGAGGCGAGAAGGAGAAGAAATGATGGTGGAAGAAGTCAG
AAACTTATGTTA
TTTATTCGTGGAAAGGCTATGTCTGGTGCACCAATTATTAGAGGAACTAGTCAATTTCCGAAACCACCAA
TTATAATTGG
TATAACTATAAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTATAAATCTGATCATCCCCT
AAAAGTGATC
CAGGTTGCCCAAGTTCAGCTCGAATTAGGAGACTTAGGGCTGTTCCGACTATACCTGCTCATGCACCAAA
AATTAGGTAA
AGGGTGCCAATATCTTTATGATTTGGTTGACCA
>BLNJ-2021-043_Folmer
AGTGATAGGATGGATCTCCTCCCCTGCAGGATCAAAGAATGTGGTATTGAGGTTACGATCTGNNNAGTA
ATATTGTAATC
CCTGCTGCAAGAACTGGAAGTGAAAGGAGAAGAAGAATAGTAGTTACAAGAATAGATCAAACAAATAA
TGGTGTTTGATA
TTGGGAAATGGCTGGTGGTTTTATATTAATAATAGTTGTAATAAAATTAATTGAAGCTAAAATTGATGAA
ACACCAGCTA
AGTGAAGAGAGAAAATGGCTAAATCAACAGATGGTCCAGCATGTGCTAAGTTGCTAGCTAATGGAGGA
TATACTGTTCAA
CCAGTACCTGCCCCAGCTTCTACTCCAGCAGAGGCGAGAAGGAGAAGAAATGATGGTGGAAGAAGTCA
GAAACTTATGTT
ATTTATTCGTGGAAAGGCTATGTCTGGTGCACCAATTATTAGAGGAACTAGTCAATTTCCGAAACCACCA
ATTATAATTG
GTATAACTATAAAAAAGATTATTACAAAAGCGTGGGCGGTTACGATTACATTATAAATCTGATCATCCCC
TAAAAGTGAT
CCAGGTTGCCCAAGTTCAGCTCGAATTAGGAGACTTAGGGCTGTTCCGACTATACCTGCTCATGCACCAA
AAATTAGGTA
AAGGGTGCCAATATCTTTATGATTGGGTGGACCAA
>BLNJ-2021-044_Ivanova
ATTTTTGGTGCATGAGCAGGTATAGTCGGAACAGCCCTAAGTCTCCTAANTCGAGCTGAACTTGGGCAA
CCTGGATCAC
TTTTAGGGGATGATCAGATTTATAATGTAATCGTAACCGCCCACGCTTTTGTAATAATCTTTTTTATAGTT
ATACCAATT
ATAATTGGTGGTTTCGGAAATTGACTAGTTCCTCTAATAATTGGTGCACCAGACATAGCCTTTCCACGAA
TAAATAACAT
AAGTTTCTGACTTCTTCCACCATCATTTCTTCTCCTTCTCGCCTCTGCTGGAGTAGAAGCTGGGGCAGGTA
CTGGTTGAA
CAGTATATCCTCCATTAGCTAGCAACTTAGCACATGCTGGACCATCTGTTGATTTAGCCATTTTCTCTCTTC
ACTTAGCT
GGTGTTTCATCAATTTTAGCTTCAATTAATTTTATTACAACTATTATTAATATAAAACCACCAGCCATTTCC
CAATATCA
AACACCATTATTTGTTTGATCTATTCTTGTAACTACTATTCTTCTTCTCCTTTCACTTCCAGTTCTTGCAGCA
GGGATTA
CAATATTACTTACAGATCGTAACCTCAATACCACATTCTTTGATCCTGCAGGTGGAGGAGATCCAATCCTT
TATCAACAT
TTATTCTGATTCTTCGGACACCCTGAAGTGTCATA
>BLNJ-2021-045_Folmer
GTGATAGGATTGGATCTCCTCCCCCTGCAGGATCAAAGAATGTAGTATTAAGGTTACGATCTGNGAGTA
ATATTGTA
ATTCCTGCTGCGAGAACTGGAAGTGAGAGGAGAAGTAGGATAGTAGTTACAAGAATGGATCAAACAAA
TAATGGTGTTTG
ATATTGAGAGATGGCTGGAGGTTTCATGTTAATAATAGTTGTAATGAAATTAATTGAGGCTAAGATTGA
TGATACACCGG
CTAGGTGTAGGGAAAAGATAGCTAGGTCAACAGATGGTCCAGCATGAGCTAAGTTGCTAGCTAATGGA
GGGTAAACTGTT
CAGCCAGTACCTGCTCCAGCTTCTACCCCAGCGGAAGCTAAGAGGAGAAGGAATGATGGTGGAAGAAG
TCAAAAGCTTAT
GTTGTTTATTCGTGGGAAGGCCATATCTGGCGCACCAATTATTAAAGGCACGAGCCAATTCCCAAAACCA
CCAATTATAA
TTGGTATAACTATGAAAAAGATTATTACGAAAGCGTGGGCAGTTACAATTACATTATAAATCTGATCATC
TCCTAAAAGA
GAGCCTGGTTGTCCAAGTTCAGCTCGAATTAAAAGACTTAGGGCTGTTCCAATTATTCCTGCTCATGCAC
CAAAAATTAG
GTAAAGGGTGCCAATATCTTTATGATTGGGNTGGNCCAAN
>BLNJ-2021-046_Folmer
AGNTTGATAAGGATNGGATCTCCTCCCCCTGCAGGATCAAAGAATGTAGTATTAAGGTTACGATCTGNG
AGTAATATTGT
AATTCCTGCTGCGAGAACTGGAAGTGAGAGGAGAAGTAGGATAGTAGTTACAAGAATGGATCAAACAA
ATAATGGTGTTT
GATATTGAGAGATGGCTGGAGGTTTCATGTTAATAATAGTTGTAATGAAATTAATTGAGGCTAAGATTG
ATGATACACCG
GCTAGGTGTAGGGAAAAGATAGCTAGGTCAACAGATGGTCCAGCATGAGCTAAGTTGCTAGCTAATGG
AGGGTAAACTGT
TCAGCCAGTACCTGCTCCAGCTTCTACCCCAGCGGAAGCTAAGAGGAGAAGGAATGATGGTGGAAGAA
GTCAAAAGCTTA
TGTTGTTTATTCGTGGGAAGGCCATATCTGGCGCACCAATTATTAAAGGCACGAGCCAATTCCCAAAACC
ACCAATTATA
ATTGGTATAACTATGAAAAAGATTATTACGAAAGCGTGGGCAGTTACAATTACATTATAAATCTGATCAT
CTCCTAAAAG
AGAGCCTGGTTGTCCAAGTTCAGCTCGAATTAAAAGACTTAGGGCTGTTCCAATTATTCCTGCTCATGCA
CCAAAAATTA
GGTAAAGGGTGCCAATATCTTTATGATTNGNGTTGGNCCAA
>BLNJ-2021-047_Folmer
AGNGTGATAGGATTGGATCTCCTCCCCCTGCAGGATCAAAGAATGTAGTATTAAGGTTACGATCTGTGA
GTAATATTGTA
ATTCCTGCTGCGAGAACTGGAAGTGAGAGGAGAAGTAGGATAGTAGTTACAAGAATGGATCAAACAAA
TAATGGTGTTTG
ATATTGAGAGATGGCTGGAGGTTTCATGTTAATAATAGTTGTAATGAAATTAATTGAGGCTAAGATTGA
TGATACACCGG
CTAGGTGTAGGGAAAAGATAGCTAGGTCAACAGATGGTCCAGCATGAGCTAAGTTGCTAGCTAATGGA
GGGTAAACTGTT
CAGCCAGTACCTGCTCCAGCTTCTACCCCAGCGGAAGCTAAGAGGAGAAGGAATGATGGTGGAAGAAG
TCAAAAGCTTAT
GTTGTTTATTCGTGGGAAGGCCATATCTGGCGCACCAATTATTAAAGGCACGAGCCAATTCCCAAAACCA
CCAATTATAA
TTGGTATAACTATGAAAAAGATTATTACGAAAGCGTGGGCAGTTACAATTACATTATAAATCTGATCATC
TCCTAAAAGA
GAGCCTGGTTGTCCAAGTTCAGCTCGAATTAAAAGACTTAGGGCTGTTCCAATTATTCCTGCTCATGCAC
CAAAAATTAG
GTAAAGGGTGCCAATATCTTTATGATTTGGGTTGACCAA
Appendix 5: Semi-Structured Interview Guides for Hong Kong Consumers & Retailers
This script includes questions focused on the guiding themes of the research. Questions may be
rearranged, omitted, or modified.
For Consumers:
●) When did you first consume shark fin?
●) When do you consume shark fin?
●) What are your main reasons for consuming shark fin?
●) How often do you purchase shark fin?
●) What features do you look for in shark fins?
●) Where and how did you learn about the properties of shark fins?
●) How do you prepare shark fin?
●) Which source(s) do you usually purchase from?
●) If you purchase shark fin at a retail store, are there particular sellers you buy from?
●) If you eat shark fin at restaurants, what do features of the restaurant or shark fin product do
you look for?
●) If you eat shark fin at special occasions what are the circumstances?
For Retailers:
●) How long have you worked in the dried seafood industry?
●) How did you get into the business?
●) How long have you sold shark fins?
●) How much shark fin do you sell?
●) What do customers look for when they purchase shark fin?
●) What do customers value when they purchase shark fin?
●) When do customers buy shark fin the most?
●) What kind(s) of shark fin is most popular?
●) What features make one kind of shark fin more popular than another?
) From where do source your shark fin?
Appendix 6. Semi-Structured Interview Questions for Mid-Atlantic Fishers
This script includes questions focused on the guiding themes of the research. Questions may be
rearranged, omitted, or modified.
) How has the new shark fin ban S2905 influenced your fishing practices?
) How has the new shark fin ban S2905 influenced your fishing practice economically?
) What enforcement and regulations related to the shark fin law S2905 have you observed?
) How has the shark fin ban S2905 changed how you handle sharks and shark fins?
) In years past, how important has the sale of shark fins and shark meat been for you economi-
cally?
) Can you describe the history of the market for sharks and shark fins in the region?
) Where have local shark fins been sold?
) The shark fin ban S2905 states that the "burden of proof" for showing a fin was separated
post-landing is on the fisher, how would a fisher verify that a shark fin was removed
post-landing?
) S2905 excludes "lawfully obtained" spiny and smooth dogfish. What percentage of your shark
landings are smooth and spiny dogfish? How do you distinguish between types of shark fins
post-removal?
) Are there particular shark species that you avoid catching for commercial purposes? (Follow
up) How do you determine the species while at sea?
... To consider these questions, we deployed a multidisciplinary methodology drawing on biological sampling and genetic testing of market samples, as well as interviews and observations with retailers and consumers across three NYC Chinatowns. This approach builds on work that has demonstrated the productive possibilities for multidisciplinary analyses with social and natural science methodologies, particularly through the integration of genetic and interview methods [9][10][11]. These works demonstrate how thinking across social science and molecular genomic methods can reveal new aspects of socioecological systems and their internal dynamics. ...
... Scholarship on urban ecological relationships in Manila, Philippines, for example, has shown how fish brought into the city inextricably tie urban food networks to aqueous resource frontiers [18]. In this vein, others have illustrated how urban metabolic processes and oceanic hinterlands are internally related through marine fish- eries, global trade, and urban consumption [11,19]. In this article, we extend concepts of urban metabolism to the consumption of sea cucumbers and other dried seafood in NYC. ...
Article
Full-text available
This study employs a multidisciplinary methodology across natural and social sciences to examine relationships between biodiversity loss at sea and urban consumption with a focus on sea cucumber and dried seafood markets in New York City (NYC). The study identified 34 dried seafood retailers across three NYC Chinatown boroughs: Manhattan, Brooklyn, and Queens. Samples of sea cucumber were collected with Chinese‑language labels indicating the commodity was from South America, a region of conservation concern. Comparison samples were taken from sea cucumbers labeled from Mexico and Japan. A mitochondrial DNA barcoding method was used to examine the taxonomic origin of 103 samples. Sequence data were successfully obtained from 74 of the samples, 8 of which were classified as brown sea cucumber (Isostichopus fuscus), an endangered species for which harvest is banned in several locations. Semi‑structured interviews with dried seafood retailers and consumers (n = 64), moreover, revealed associations between consuming sea cucumber and enhancing human health and limited knowledge of product origins. Collectively, the findings reveal socio‑ecological dynamics wherein endangered species on the market coupled with geographic market labeling practices and varying degrees of retailer and consumer knowledge negatively bear on marine biodiversity. Furthermore, given that brown sea cucumbers are abundant on the market, there is a need for developing genetic markers that can trace geographic origin to determine if species were legally harvested. These results indicate that more robust market labeling, training, genetic research, and public outreach are required to advance One Health in urban seafood markets.
... One of the significant dried shark products is the dried fin, which fetches more money than selling the whole body of the fish. Irrespective of the food security needs that are being met by the consumption of sharks, human consumption of sharks is widely recognized as a threat to biodiversity loss (Rodenbiker et al., 2023), and this must be critically looked at in Ghana. ...
... Generally, the conservation of aquatic organisms faces challenges (Rodenbiker et al., 2023). To promote a conservation-based approach to shark fishing, Press et al. (2016) indicated that government officials have to recognize the decline in the population of the shark species and obtain a greater scientific understanding of the role of sharks in the ecosystem. ...
Article
Full-text available
Shark is an important fishery commodity globally. However, 70% decline in the populations of shark species has cast doubt on the fishery's economic success, especially in Ghana. Therefore, studying the shark fishery activities in Ghana from the perspectives of production, socioeconomic , and management will inform key stakeholders of the approaches needed to strengthen the conservation of the fishery. We interviewed ninety-one (91) shark fishers from four important landing sites, namely; Apam, Dixcove, Tema, and Axim along the coast of Ghana using a semi-structured interview guide, and recorded their landings between April and December 2021. Our findings show that the dominant shark species landed by fishers were Sphyrna sp., C. leucas, C. carcahrias, R. acutus, C. carcharodon, I. oxyrinus, and Aliopas sp. with Sphyrna sp. and C. leucas experiencing a drastic population decline. Togo and China were the main foreign destinations for shark fin products, particularly fins of Sphyrna sp., C. leucas, and Aliopas sp. (species classified by the IUCN Red List as Endangered species). The price of shark fins during the lean season was significantly higher than in the peak period, indicating the influence of seasonality on the pricing of shark fins. The main challenges confronting shark fishing in Ghana were a decline in the population of sharks, inadequate premix fuel, and the risky nature of shark fishing activities. From the study, developing a species-specific conservation action plan through consultative approaches, community awareness programmes and enforcement of these conservation measures are some of the recommendations proposed.
... Garcia Barcia et al. (2020) señalan que Hong Kong es uno de los mayores importadores y consumidores de aletas de tiburón, recibiendo aletas de diversas especies de elasmobranquios. Por su parte Rodenbiker et al. (2023) afirman que el papel de Hong Kong en el consumo de aletas de tiburón influye en la producción en otros lugares, afectando incluso las políticas ambientales internacionales, como las de Estados Unidos. Sin embargo, Erasmus et al. (2022) advierten que no se toma en cuenta que estos tiburones acumulan y, en algunos casos, biomagnifican metales tóxicos como el arsénico (As) y el mercurio (Hg), lo cual es una preocupación creciente debido al aumento de las emisiones globales y las concentraciones en los océanos. ...
Article
Full-text available
This review article addresses the serious issue of indiscriminate shark fishing driven by the demand for fins in Asian markets and its consequential impact on shark populations and marine ecosystems. It highlights the bioaccumulation of heavy metals such as mercury, lead, and cadmium in shark tissues, posing significant risks to human health and marine biodiversity. Advanced techniques such as inductively coupled plasma mass spectrometry were employed for precise detection of these contaminants. Despite technological advancements, challenges persist in standardizing methods and obtaining consistent global data. The urgent need to strengthen international regulations and promote sustainable fishing practices is emphasized to mitigate environmental impacts and ensure the long-term conservation of sharks as key components of global marine ecosystems.
Book
Full-text available
En el presente trabajo presentamos 68 conceptos de políticas públicas con el objetivo de comparar los diversos enfoques que se tienen, también presentamos, mediante una revisión de la literatura, diversos estudios sobre políticas públicas tanto a nivel nacional como internacional, esto nos indica: quiénes escriben, en dónde escriben, y qué enfoques tiene su investigación. La primera parte del libro es una revisión teórica de los conceptos de política pública relacionados con la interdisciplina, la sustentabilidad y el ambiente. La segunda parte del libro se compone de ejemplos de aplicación local, desde la construcción de una asignatura a nivel posgrado para aplicar las políticas públicas a las investigaciones y tener una mayor incidencia social, hasta instrumentar un laboratorio donde se analicen, en conjunto con la sociedad, los cambios que se están dando en la aplicación de las políticas públicas y gubernamentales, su comportamiento, su análisis, diseño y evaluación en la conjunción de los diversos actores, y cerramos con un ejemplo de acercamiento de las investigaciones al entorno social con la creación del Tlali Nantli Tour./ In this work we present 68 concepts of public policies with the objective of comparing the different approaches that exist. We also present, through a literature review, various studies on public policies both nationally and internationally, which tells us who writes, where they write, and what approaches their research has. The first part of the book is a theoretical review of the concepts of public policy related to interdisciplinarity, sustainability and the environment. The second part of the book is made up of examples of local application, from the construction of a postgraduate course to apply public policies to research and have a greater social impact, to setting up a laboratory where the changes that are taking place in the application of public and government policies, their behavior, their analysis, design and evaluation in conjunction with the various actors, are analyzed together with society. We close with an example of how research is brought closer to the social environment with the creation of the Tlali Nantli Tour.
Article
Full-text available
Hong Kong has historically been the epicenter of the global shark fin trade. Despite this legacy, recent public outreach campaigns highlighting the effects of consumption on marine ecosystems have precipitated shifts in the market. Fish maw and sea cucumber have emerged as substitutes in wildlife markets, marking an understudied phenomenon from urban geographical perspectives. This article investigates the transitional nature of social value systems underpinning Hong Kong's marine wildlife market through interviews with retailers, conservation organizations, and government officials, as well as visual surveys of market displays. Hong Kong's marine wildlife market, this article contends, brings into sharp relief how transitions in social value systems that substitute one type of non-fungible wildlife commodity for others can amplify biodiversity loss and reproduce expressions of social difference in urban space. The article illuminates how social value systems embedded in urban wildlife markets are related to human health, aging, gifting, and relationship building. Furthermore, it analyzes how the possession, consumption, and display of high-value wildlife commodities in cities reflects classed and gendered forms of social difference. The article further examines the challenges of regulating the market and shaping public values and actions in the face of escalating global biodiversity loss.
Article
Full-text available
This paper argues that the urban and the ocean are co-constituted through relations that are unevenly classed, gendered, and racialized. This argument is empirically anchored in high-value fish maw markets in Hong Kong, New York City, and the oceanic spaces and lives therein. The global inter-urban trade in Totoaba, an endangered fish endemic to the Gulf of California, serves as a primary example of piscine capital circulation, while supporting examples engage a much longer durée of urban ocean relations. Agrarian technologies appropriated through colonial trans-oceanic trade, for instance, are shown to be precursors of Euro-American industrial urbanization , while whale bodies were crucial to urban politics of difference and producing urban spaces in 19th century U.S. cities. Contemporary fisheries on the high seas exemplify how ocean spaces remain frontiers of unfree labor and natural resource extraction that contribute to capital accumulation in global cities. Through these examples, the article details how the ocean is urbanized, how the urban is constituted through the ocean, as well as some of the differentiated social formations and socio-natural effects of urban oceanic relationships. Urban oceanic processes of exploitation, extraction, circulation, and consumption predispose marginalized people and ocean wildlife to premature deaths. Urban oceanic relations could be otherwise constituted. Towards reconstituting these relations, the paper advances a hybrid analytical framework that ungrounds the urban from terrestrial conceptual moorings through engaging interdisciplinary ocean geographies.
Article
Full-text available
The United Nations’ Sustainable Development Goals (SDGs) are described as integrated and indivisible, where sustainability challenges must be addressed across sectors and scales to achieve global-level sustainability. However, SDG monitoring mostly focuses on tracking progress at national-levels, for each goal individually. This approach ignores local and cross-border impacts of national policies and assumes that global-level progress is the sum of national, sector-specific gains. In this study, we investigate effects of reforestation programs in China on countries supplying forest and agricultural commodities to China. Using case studies of rubber and palm oil production in Southeast Asian countries, soy production in Brazil and logging in South Pacific Island states, we investigate cross-sector effects of production for and trade to China in these exporting countries. We use a three-step multi-method approach. 1) We identify distal trade flows and the narratives used to justify them, using a telecoupling framework; 2) we design causal loop diagrams to analyse social-ecological processes of change in our case studies driven by trade to China and 3) we link these processes of change to the SDG framework. We find that sustainability progress in China from reforestation is cancelled out by the deforestation and cross-sectoral impacts supporting this reforestation abroad. Narratives of economic development support commodity production abroad through unrealised aims of benefit distribution and assumptions of substitutability of socio-ecological forest systems. Across cases, we find the analysed trade supports unambiguous progress on few SDGs only, and we find many mixed effects – where processes that support the achievement of SDGs exist, but are overshadowed by counterproductive processes. Our study represents a useful approach for tracking global-level impacts of national sustainability initiatives and provides cross-scale and cross-sectoral lenses through which to identify drivers of unsustainability that can be addressed in the design of effective sustainability policies.
Article
Full-text available
Overfishing is the primary cause of marine defaunation, yet declines in and increasing extinction risks of individual species are difficult to measure, particularly for the largest predators found in the high seas. Here we calculate two well-established indicators to track progress towards Aichi Biodiversity Targets and Sustainable Development Goals: the Living Planet Index (a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species) and the Red List Index (a measure of change in extinction risk calculated for all 31 oceanic species of sharks and rays). We find that, since 1970, the global abundance of oceanic sharks and rays has declined by 71% owing to an 18-fold increase in relative fishing pressure. This depletion has increased the global extinction risk to the point at which three-quarters of the species comprising this functionally important assemblage are threatened with extinction. Strict prohibitions and precautionary science-based catch limits are urgently needed to avert population collapse, avoid the disruption of ecological functions and promote species recovery.
Article
Full-text available
Due to well-documented declines in many shark populations there is increasing pressure to implement new management and rebuilding strategies at the national and international scale. Since 2009, fifteen coastal countries in the Atlantic, Indian and Pacific Oceans have opted to ban commercial shark fishing altogether, and have laws that prohibit the possession, trade or sale of sharks and shark products. These ‘shark sanctuaries’ collectively cover >3% of the world’s oceans, a similar coverage as all currently established marine protected areas combined. Despite their prominence, and an intense scientific debate about their usefulness, the condition of shark sanctuaries has not yet been empirically evaluated. Here, we report results from a global diver survey used to set baselines of shark populations, human use patterns, public awareness and threats in all 15 shark sanctuaries, and contrasted with observations from 23 non-sanctuary countries. Specific results varied by country, but there were some general trends: i) shark sanctuaries showed less pronounced shark population declines, fewer observations of sharks being sold on markets, and lower overall fishing threats compared to non-shark sanctuaries, ii) bycatch, ghost gear, marine debris and habitat destruction are significant threats that are often not addressed by sanctuary regulations and need to be resolved in other ways, and iii) participants in sanctuaries were more optimistic about the survival of shark populations in local waters, but also highlighted the need for further conservation efforts. These results suggest that shark sanctuaries, as seen through the lens of local experts, may be a helpful conservation tool but likely not sufficient in isolation. There is an urgent need for higher-resolution data on shark abundance, incidental catch, and markets to direct priority conservation needs and optimize the conservation benefits of existing and future shark sanctuaries.
Book
The cuisine of China is widely considered to be one of the best because it meets the requirements of geographic variety, inclusion of all types of foods, and a long-established and well-developed culinary tradition. The Chinese culture can be labeled a food culture for the interest and honor given to food and its rituals. Food Culture in China is loaded with information on the cuisine's prominent role in Chinese culture. Students and other readers will learn about Chinese food history through the dynasties and Silk Road migrations up until today, ingredients, cooking implements and techniques, regional differences, table etiquette, cultural emphasis on food, specialty dishes for celebrations, and the role of diet and traditional Chinese medicine, among other topics. Each chapter contains a number of recipes for a meal based on the specific topic. Americans typically are familiar with a narrow range of Americanized Chinese restaurants. This one-stop resource helps readers to see this ever-popular ethnic cuisine in a broader context. It is the most in-depth reference of its kind on the market. A timeline, glossary, tables, and illustrations complement the narrative.
Preprint
This protocol allows high-throughput extraction of high molecular weight (HMW) DNA from tissue samples (primarily from animals). The protocol uses low-cost reagents and can be performed on 96-well plate formats. Provided that the tissue samples are properly stored and preserved, the extracted DNA can achieve very high quality and purity, suitable for most short- and long-read DNA sequencing library construction. For specific high-value samples, users may prefer to use specially-designed kits for extraction.
Article
The fear of Chinese food in the United States has risen with the advent of COVID-19, amidst widespread news reports pinpointing a wildlife wet market in Wuhan, China as the origin site of the novel coronavirus. Although scientific evidence for the exact pathway of zoonotic transmission is not yet conclusive, racist, anti-Chinese memes were quick to circulate, including a T-shirt design posted on social media by an art director at Lululemon, which featured an image of “bat fried rice” with the words “No Thank You” in chopstick font on the sleeves. It is important to address the facts of wildlife trade and consumption in China, but it is equally crucial to fight back against racist characterizations of Chinese food as “bat fried rice” with a different kind of Instagrammable image. I have taught an undergraduate seminar on the cultural history of Chinese food at the University of North Carolina at Chapel Hill for the past eight years, and this year, one of my students shared a photograph of a Chinese family celebrating the New Year in one of her assignments. This image distilled everything I associate with Chinese food— the joy of gathering with family—and stands as a powerful rebuke to the narrative of fear and disgust, replacing it instead with a vision of Chinese food as familiar source of comfort.