EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 3, 2023, 1675-1684
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Strongly 2-Nil Clean Rings with Units of Order Two

Renas T. M.Salim ${ }^{1}$, Nazar H. Shuker ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, University of Zakho, Faculty of Science, Zakho, Iraq
${ }^{2}$ Department of Math. College of Computer Science and Math. Mosul University, Mosul, Iraq

Abstract

A ring R is considered a strongly 2-nil clean ring, or (strongly 2-NC ring for short), if each element in R can be expressed as the sum of a nilpotent and two idempotents that commute with each other. In this paper, further properties of strongly 2-NC rings are given. Furthermore, we introduce and explore a special type of strongly 2-NC ring where every unit is of order 2 , which we refer to as a strongly 2 -NC rings with $U(R)=2$. It was proved that the Jacobson radical over a strongly 2-NC ring is a nil ideal, here, we demonstrated that the Jacobson radical over strongly 2-NC ring with $U(R)=2$ is a nil ideal of characteristic 4 . We compare this ring with other rings, since every SNC ring is strongly 2 -NC, but not every unit of order 2 , and if R is a strongly 2 -NC with $U(R)=2$, then R need not be SNC ring. In order to get $\operatorname{Nil}(R)=0$, we added one more condition involving this ring.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Clean, Nil clean, Strongly 2-nil clean, Tripotent

1. Introduction

In [1] W.K. Nicholson defined a clean ring as having an $\Sigma=\Sigma^{2}$ and a unit u with $a=\Sigma+u$. In [2], an element $a \in R$ is said to be strongly clean if $a=\Sigma+u$ with $u \in U(R), \Sigma \in I d(R)$ and $u \Sigma=\Sigma u$. While the ring R is strongly clean if every element of R is strongly clean. Clearly, Z_{9} is a strongly clean ring.

A nil-clean ring is defined as a ring with each element is the sum of an idempotent and a nilpotent was first proposed by Diesl in [3], R is considered a strongly nil clean (SNC for short) if the idempotent and nilpotent commute [4]. The structure of SNC rings and related topics was given for example in [5] and [6]. Clearly, Z_{8} is an SNC ring.

A strongly $2-\mathrm{NC}$ ring was defined by Chen and Sheibani in $[7]$ as a ring R with each element is a sum of two idempotents and a nilpotent that commute with each other. Many authors have been working on these topics see for example [8] a ring R is called strongly

[^0]2-nil-*-clean if every element in R is the sum of two projections and a nilpotent that commute, [9] if every element in R is the sum of an idempotent and two nilpotents, then R is called 2-nil-clean and [10] a ring R is defined to be 2-nil-good if every element in R is the sum of two units and a nilpotent. The purpose of this paper is to present new properties of strongly 2-NC rings, and their connection with other related rings. We prove that if R is a strongly $2-\mathrm{NC}$ ring, with $n^{2}+2 n=0$ for every $n \in \operatorname{Nil}(R)$. Then R is of characteristic 48 with every unit is of order 4. Additionally, we introduce and investigate a strongly 2-NC rings with $U(R)=2$, providing their fundamental properties and their connection with tripotent rings and other related rings. Among other results we prove that: If R is a strongly 2 -NC ring with $2 \in U(R)$. Then $24=0$, and the Jacobson radical over a strongly 2 -NC ring is a nil ideal of characteristic 4. In addition, we show that if R is a strongly $2-\mathrm{NC}$ ring with $U(R)=2$ and $2 \in U(R)$, then $\operatorname{Nil}(R)=0$. In this paper, we define R as an associative ring containing an identity element. Finally, it is worth mentioning that ring theory has several applications in many field, see for example [11], [12] and [13]. To represent the set of units, idempotents and nilpotents in R, we will use the symbols $U(R), \operatorname{Id}(R)$ and $\operatorname{Nil(R)}$, respectively. Additionally, we will use $J(R)$ to denote the Jacobson radical and Z_{n} for the ring of integers modulo n.

Recall that:
Definition 1. [14]. A ring R is considered to be n-good if each element is a sum of n units.

Definition 2. [15]. If $t=t^{3}$ is referred to as a tripotent. R is called a tripotent ring if every element of R is tripotent.
Clearly, Z_{6} is a tripotent ring.
Definition 3. For any $a \in R$, we define $\operatorname{Ann}(a)=\{b \in R: a b=b a=0\}$.
Theorem 1. [7]. Let R be a ring. Then the following are equivalent:

1. R is strongly $2-N C$.
2. For all $a \in R, a-a^{3} \in \operatorname{Nil}(R)$.
3. For all $a \in R, a^{2}$ is SNC element.

Theorem 2. [7]. A ring R is strongly 2-NC if and only if

1. $J(R)$ is nil.
2. $R / J(R)$ is tripotent.

Theorem 3. [16] The following are equivalent for a ring R :

1. Every element of R is a sum of a nilpotent and two tripotents that commute with one another.
2. $a^{5}-a$ is nilpotent for all $a \in R$.

2. Fundamental properties of strongly $2-\mathrm{NC}$ rings

This section presents new properties of strongly 2-NC rings, and we provide a condition for strongly 2 -NC rings to be tripotent rings.

Example 1. Consider the ring Z_{18}.
Note that: $\operatorname{Nil}\left(Z_{18}\right)=\{0,6,12\}$, and $\operatorname{Id}\left(Z_{18}\right)=\{0,1,9,10\}$. By direct calculation, we may find that Z_{18} is a strongly 2-NC.

Chen and Sheibani in [7] proved that:
Lemma 1. The following two issues are equivalent:

1. R is a strongly $2-N C$ ring.
2. $a=\Sigma_{1}-\Sigma_{2}+n$, for each $a \in R$, and some $\Sigma_{1}, \Sigma_{2} \in \operatorname{Id}(R), n \in \operatorname{Nil}(R)$, that commute.

Next, we shall record the following two lemmas, that will be used extensively throughout our current work.

Lemma 2. [17]. If $u \in U(R)$ and $n \in \operatorname{Nil(R),~and~if~} u n=n u$, then $1+n$ and $u+n$ are units.

Lemma 3. Suppose that Σ_{1} and Σ_{2} are two commuting idempotents. Then:

1. $\left(\Sigma_{1}-\Sigma_{2}\right)^{2}$ is an idempotent.
2. $\left(\Sigma_{1}-\Sigma_{2}\right)^{3}$ is tripotent.
3. $\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)-1$ is a unit of order 2.
4. $2\left(\Sigma_{1}-\Sigma_{2}\right)^{2}-1$ is a unit of order 2.

Proof.

1. $\left(\Sigma_{1}-\Sigma_{2}\right)^{4}=\Sigma_{1}^{4}-4 \Sigma_{1}^{3} \Sigma_{2}+6 \Sigma_{1}^{2} \Sigma_{2}^{2}-4 \Sigma_{1} \Sigma_{2}^{3}+\Sigma_{2}^{4}$

$$
=\Sigma_{1}-4 \Sigma_{1} \Sigma_{2}+6 \Sigma_{1} \Sigma_{2}-4 \Sigma_{1} \Sigma_{2}+\Sigma_{2}=\left(\Sigma_{1}-\Sigma_{2}\right)^{2} .
$$

2. $\left(\Sigma_{1}-\Sigma_{2}\right)^{3}=\Sigma_{1}^{3}-3 \Sigma_{1}^{2} \Sigma_{2}+3 \Sigma_{1} \Sigma_{2}^{2}-\Sigma_{2}^{3}$

$$
=\Sigma_{1}-3 \Sigma_{1} \Sigma_{2}+3 \Sigma_{1} \Sigma_{2}-\Sigma_{2}=\left(\Sigma_{1}-\Sigma_{2}\right) .
$$

3. $\left(\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)-1\right)\left(\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)-1\right)$
$=\left(\Sigma_{1}-\Sigma_{2}\right)^{4}+\left(\Sigma_{1}-\Sigma_{2}\right)^{3}-\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)^{3}+\left(\Sigma_{1}-\Sigma_{2}\right)^{2}$
$-\left(\Sigma_{1}-\Sigma_{2}\right)-\left(\Sigma_{1}-\Sigma_{2}\right)^{2}-\left(\Sigma_{1}-\Sigma_{2}\right)+1$
$=\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)-\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)+\left(\Sigma_{1}-\Sigma_{2}\right)^{2}$
$-\left(\Sigma_{1}-\Sigma_{2}\right)-\left(\Sigma_{1}-\Sigma_{2}\right)^{2}-\left(\Sigma_{1}-\Sigma_{2}\right)+1=1$.
4. $\left(2\left(\Sigma_{1}-\Sigma_{2}\right)^{2}-1\right)\left(2\left(\Sigma_{1}-\Sigma_{2}\right)^{2}-1\right)$
$=4\left(\Sigma_{1}-\Sigma_{2}\right)^{4}-2\left(\Sigma_{1}-\Sigma_{2}\right)^{2}-2\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+1$
$=4\left(\Sigma_{1}-\Sigma_{2}\right)^{2}-2\left(\Sigma_{1}-\Sigma_{2}\right)^{2}-2\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+1=1$.

Next, we shall give the following results.
Proposition 1. Let R be a strongly 2-NC ring, then for any $a \in R$ we have:

1. a^{2} is an SNC.
2. a^{2} is the sum of a tripotent and a nilpotent that commute.
3. a^{2} is the sum of an idempotent, a unit of order 2 , and a nilpotent that commutes.

Proof.

1. Given $a \in R$, there existing some $\Sigma_{1}, \Sigma_{2} \in \operatorname{Id}(R)$ and $n \in \operatorname{Nil}(R)$, that commute with one another, such that $a=\Sigma_{1}-\Sigma_{2}+n$. Thus, $a^{2}=\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+2\left(\Sigma_{1}-\Sigma_{2}\right) n+n^{2}$. But $2\left(\Sigma_{1}-\Sigma_{2}\right) n+n^{2}=n_{1} \in \operatorname{Nil}(R)$, so $a^{2}=\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+n_{1}$. According to Lemma 3(1) $\left(\Sigma_{1}-\Sigma_{2}\right)^{2}$ is an idempotent. Yielding a^{2} is an SNC element.
2. Follows from Lemma 3(2).
3. By (1) a^{2} is a SNC element, then $a^{2}=\Sigma+n$ where $\Sigma \in \operatorname{Id}(R), n \in \operatorname{Nil}(R)$ that commute, we may write $a^{2}=(1-\Sigma)+(2 \Sigma-1)+n$. Clearly, $(1-\Sigma)^{2}=$ $1-\Sigma,(2 \Sigma-1)^{2}=1$. Thus, a^{2} is the sum of an idempotent, a unit of order 2 , and a nilpotent.

Proposition 2. Suppose R is a ring, and let $a \in R$. Then:

1. If a^{2} is a strongly $2-\mathrm{NC}$, then a and $-a$ are strongly clean.
2. If a^{2} is a strongly 2-NC, then a is the sum of two tripotents and a nilpotent commute one another.

Proof.

1. Take $a^{2}=\Sigma_{1}-\Sigma_{2}+n$, by Proposition 1(1), a^{4} is a SNC element, so $a^{4}=\Sigma+n$ where $\Sigma \in I d(R), n \in \operatorname{Nil}(R)$ that commute. Write $a^{4}=(1-\Sigma)+(2 \Sigma-1)+n$. But $(2 \Sigma-1)^{2}=1$, then $(2 \Sigma-1)+n=u_{1} \in U(R)$. So $a^{4}=(1-\Sigma)+u_{1}$, implies $a^{4}-(1-\Sigma)=u_{1}$, but $(1-\Sigma)^{4}=1-\Sigma$, yields $\left(a^{2}-(1-\Sigma)\right)\left(a^{2}+(1-\Sigma)\right)=u_{1}$. and hence, $(a-(1-\Sigma))(a+(1-\Sigma))\left(a^{2}+(1-\Sigma)\right)=u_{1}$. Thus, $a-(1-\Sigma) \in U(R)$ and $-a-(1-\Sigma) \in U(R)$.
2. Let a in R. Applying Theorem $1,\left(a^{2}\right)^{3}-a^{2} \in \operatorname{Nil}(R)$. Hence $a\left(a^{5}-a\right) \in \operatorname{Nil}(R)$, so $\left(a^{4}-1\right) a\left(a^{5}-a\right)=\left(a^{5}-a\right)^{2} \in \operatorname{Nil}(R)$. Using Theorem 3, a is a sum of two tripotents and a nilpotent that commute.

Proposition 3. Suppose R is a strongly 2-NC ring, and $a=\Sigma_{1}-\Sigma_{2}+n$ for any $a \in R$. Then:

1. $\operatorname{Ann}(a) \cap\left(\Sigma_{1}-\Sigma_{2}\right) R=0$.
2. If $2 \in U(R)$, then a is 3 -good element.
3. If $a \in U(R)$, then $\left(\Sigma_{1}-\Sigma_{2}\right)^{2}=1$.
4. If a is a non-zero divisor, then $a \in U(R)$.

Proof.

1. Let $c \in \operatorname{Ann}(a) \cap\left(\Sigma_{1}-\Sigma_{2}\right) R$. Then $a c=c a=0$ and $c=\left(\Sigma_{1}-\Sigma_{2}\right) r$, for some $r \in R$. Hence $a\left(\Sigma_{1}-\Sigma_{2}\right) r=0$, so $\left(\Sigma_{1}-\Sigma_{2}+n\right)\left(\Sigma_{1}-\Sigma_{2}\right) r=0,\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+n\left(\Sigma_{1}-\Sigma_{2}\right)=0$. Applying Lemma 3 , we get $\left(\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+n\left(\Sigma_{1}-\Sigma_{2}\right)^{3}\right) r=0,\left(\Sigma_{1}-\Sigma_{2}\right)^{2}\left(1+n\left(\Sigma_{1}-\right.\right.$ $\left.\left.\Sigma_{2}\right)\right) r=0$. But $1+n\left(\Sigma_{1}-\Sigma_{2}\right) \in U(R)$, say u, then we have $\left(\Sigma_{1}-\Sigma_{2}\right)^{2} u r=0$, so $\left(\Sigma_{1}-\Sigma_{2}\right)^{2} r=0$. Multiply by $\left(\Sigma_{1}-\Sigma_{2}\right)$, we have $\left(\Sigma_{1}-\Sigma_{2}\right) r=c=0$. Therefore, $\operatorname{Ann}(a) \cap\left(\Sigma_{1}-\Sigma_{2}\right) R=0$.
2. We may write $a=\Sigma_{1}+1+\Sigma_{2}+1+n-2$. Consider $\left(\Sigma_{1}+1\right)\left(2-\Sigma_{1}\right)=2 \Sigma_{1}-\Sigma_{1}+2-$ $\Sigma_{1}=2$. Since $2 \in U(R)$, then $\Sigma_{1}+1=u_{1} \in U(R)$. Similarly $\Sigma_{2}+1=u_{2} \in U(R)$. Furthermore, $n-2 \in U(R)$, say u_{3}. Thus, $a=u_{1}+u_{2}+u_{3}$.
3. Let $a=\left(\Sigma_{1}-\Sigma_{2}\right)+n$, and let $a \in U(R)$. Then $a-n=\left(\Sigma_{1}-\Sigma_{2}\right) \in U(R)$. Applying Lemma 3(2), then $\left(\Sigma_{1}-\Sigma_{2}\right)=\left(\Sigma_{1}-\Sigma_{2}\right)^{3}$. Thus $\left(\Sigma_{1}-\Sigma_{2}\right)^{2}=1$.
4. Let a be a non-zero divisor element. Applying Theorem $1, a^{3}-a \in \operatorname{Nil}(R)$, this gives $a\left(a^{2}-1\right) \in \operatorname{Nil}(R)$, thus, $a^{r}\left(a^{2}-1\right)^{r}=0$, for some positive integer r. Since a^{r} is a non-zero divisor, then $\left(a^{2}-1\right)^{r}=0$, so $a^{2}-1=n_{1} \in \operatorname{Nil}(R)$, implies $a^{2}=1+n_{1} \in U(R)$, then $a \in U(R)$.

It was proved in [18], that.
Proposition 4. [18, Proposition 1]. Assume R is a nil clean ring with every nilpotent is the difference between two commuting idempotents, then R is a Boolean ring.

We here extend this result as follows:
Theorem 4. Suppose R is a strongly 2-NC ring, with any nilpotent is the difference between two commuting idempotents. Then R is a tripotent ring.

Proof. Let a in R, then $a=\Sigma_{1}-\Sigma_{2}+n$ for some existing $\Sigma_{1}, \Sigma_{2} \in \operatorname{Id}(R), n \in N i l(R)$, that commute which each other. Then $n=\Sigma_{3}-\Sigma_{4}$ for some $\Sigma_{3}, \Sigma_{4} \in \operatorname{Id}(R)$ and $\Sigma_{3} \Sigma_{4}=$ $\Sigma_{4} \Sigma_{3}$. So $n+\Sigma_{4}=\Sigma_{3}$, this implies $\left(n+\Sigma_{4}\right)^{2}=\left(n+\Sigma_{4}\right)$, then $n^{2}+2 n \Sigma_{4}+\Sigma_{4}^{2}=n+\Sigma_{4}$, this gives $n^{2}+2 n \Sigma_{4}-n=0$, so $n^{2}+n\left(2 \Sigma_{4}-1\right)=0$, but $\left(2 \Sigma_{4}-1\right)^{2}=1$, then we have $n=-n^{2}\left(2 \Sigma_{4}-1\right)^{-1}$. As n is nilpotent, then $n=0$. Thus, $a=\Sigma_{1}-\Sigma_{2}$. Applying Lemma 3(2), $\left(\Sigma_{1}-\Sigma_{2}\right)^{3}=\Sigma_{1}-\Sigma_{2}$. Hence, $a=a^{3}$ therefore, R is a tripotent ring.

3. Strongly $2-N C$ rings with units of order two

In this section, we introduce and investigate a strongly 2 -NC rings with every unit is of order 2 , we refer to this type of ring as strongly 2 -NC rings with $U(R)=2$.

Definition 4. A ring R is called strongly 2-NC with $U(R)=2$ if for every $a \in R$, existing two idempotents Σ_{1}, Σ_{2} and a nilpotent n, that commute and every unit is of order 2 , such that $a=\Sigma_{1}+\Sigma_{2}+n$.

Example 2. The rings $Z_{4}, Z_{6}, Z_{8}, Z_{12}, Z_{24}$ are all strongly 2 -NC with $U(R)=2$, while the ring Z_{9} is not strongly 2 -NC with $U(R)=2$.

We start this section with some fundamental properties of a strongly 2-NC ring with $U(R)=2$.

Proposition 5. Homomorphic images of strongly 2-NC ring with $U(R)=2$ is again strongly 2-NC ring with every unit is of order 2.

Proof. Let $f: R \rightarrow R^{\prime}$ be a homomorphism from a strongly 2-NC $\operatorname{ring} R$ with $U(R)=2$ onto R^{\prime}. Then for any $b \in R^{\prime}$, there exists $a \in R$, such that $b=f(a), a=\Sigma_{1}+\Sigma_{2}+n$ and $U(R)=2$, where $\Sigma_{1}, \Sigma_{2} \in \operatorname{Id}(R), n \in \operatorname{Nil}(R)$ that commute of with one another. Now, $b=f(a)=f\left(\Sigma_{1}+\Sigma_{2}+n\right)=f\left(\Sigma_{1}\right)+f\left(\Sigma_{2}\right)+f(n)$. Clearly, $f\left(\Sigma_{1}\right), f\left(\Sigma_{2}\right) \in \operatorname{Id}\left(R^{\prime}\right)$ and $f(n) \in \operatorname{Nil}\left(R^{\prime}\right)$. On the other hand for any $u \in(R)$, where u is a unit, $(f(u))^{2}=f\left(u^{2}\right)=$ $f(1)$, this shows that $f(u)$ is a unit of order 2 . Therefore R^{\prime} is a strongly 2 -NC ring with $U\left(R^{\prime}\right)=2$.

Proposition 6. If R is a strongly 2-NC ring with $U(R)=2$. Then $24=0$.
Proof. Assume that a in R, then existing two idempotents Σ_{1}, Σ_{2} and a nilpotent n that commute with one another, such that $a=\Sigma_{1}-\Sigma_{2}+n$. By Theorem 1, $a^{3}-a \in \operatorname{Nil}(R)$, this gives $2^{3}-2=6 \in \operatorname{Nil}(R)$. Since every unit is of order 2 , and since 6 is nilpotent, then $6-1=5 \in U(R)$. This gives $5^{2}=1$, so $24=0$.

Example 3. Consider the ring Z_{24}. Clearly, Z_{24} is a strongly 2-NC, with $U\left(Z_{24}\right)=\{1,5,7,11,13,17,19,23\}$. Observe that $1^{2}=5^{2}=7^{2}=11^{2}=13^{2}=17^{2}=19^{2}=23^{2}=1$.

Observe that every SNC ring is strongly $2-\mathrm{NC}$, but not every unit of order 2 .
Example 4. The ring Z_{16} is an SNC which is strongly 2-NC, but Z_{16} is not strongly 2-NC ring with $U(R)=2$, since the units $3,5,11,13$ are not of order 2 .

Note that: If R is a strongly 2 -NC with $U(R)=2$, then R need not to be SNC ring.
Example 5. In the ring Z_{12}. Then
$U\left(Z_{12}\right)=\{1,5,7,11\}$ and
$1^{2}=5^{2}=7^{2}=11^{2}=1$. Clearly, Z_{12} is a strongly 2-NC with $U\left(Z_{12}\right)=2$, but $\left(Z_{12}\right)$ is not SNC ring. Since 2 is not SNC element.

Proposition 7. If a ring R is a strongly $2-\mathrm{NC}$ ring with $U(R)=2$, for which $3 \in U(R)$, then R is SNC ring of characteristic 8 .

Proof. Assume R is a strongly 2 -NC ring with $U(R)=2$. Then By Proposition 1(1), a^{2} is a SNC element for every $a \in R$. Applying Proposition 2(1), a is strongly clean. Then a may be written $a-1=\Sigma+u$, where $\Sigma \in I d(R)$ and $u^{2}=1$. Then $a=\Sigma+u+1$. Since $3 \in U(R)$, then $3^{2}=1$, gives $8=0$ thus, $2 \in \operatorname{Nil}(R)$. So $(u+1)^{2}=u^{2}+2 u+1=$ $2(u+1) \in \operatorname{Nil}(R)$. Thus, $u+1 \in \operatorname{Nil}(R)$. Therefore R is an SNC ring.

Example 6. Consider the ring Z_{8}. Then
$U\left(Z_{8}\right)=\{1,3,5,7\}$. So
$1^{2}=3^{2}=5^{2}=7^{2}=1$. Clearly, Z_{8} is a strongly 2 -NC with $U\left(Z_{8}\right)=2$. Observe that $3 \in U\left(Z_{8}\right)$. Then Z_{8} is an SNC ring.

It was proved in Theorem 2, if a ring R is a strongly $2-\mathrm{NC}$, then $J(R)$ is nil. In the next result, we consider $J(R)$ over a strongly 2-NC ring with $U(R)=2$.

Theorem 5. If R is a strongly 2-NC ring with $U(R)=2$, then $J(R)$ is nil of characteristic 4.

Proof. Given $a \in J(R)$, then $a=\Sigma_{1}-\Sigma_{2}+n$, where $\Sigma_{1}, \Sigma_{2} \in \operatorname{Id}(R)$ and $n \in \operatorname{Nil(R)}$, that commute with one another. Write $a=1-\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)-1+n$. According to Lemma 3(3), $\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+\left(\Sigma_{1}-\Sigma_{2}\right)-1=u_{1}$ is a unit of order 2, then $a=1-\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+u_{1}+n$ implies $a=1-\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+u_{2}$, where $u_{2}=u_{1}+n$. Since $a \in J(R)$, so $a-u_{2} \in U(R)$, applying to Proposition 3(3), we conclude that $1-\left(\Sigma_{1}-\Sigma_{2}\right)^{2}=1$, gives $\left(\Sigma_{1}-\Sigma_{2}\right)^{2}=0$, whence it follows that $a=1+u_{2}$, with $u_{2}^{2}=1$. Now consider $a^{2}=\left(1+u_{2}\right)^{2}=2\left(1+u_{2}\right)=2 a$, and $a^{3}=2^{2}\left(1+u_{2}\right)=4 a$. Choose $a=2 b$, then $(2 b)^{3}=4(2 b)$, so $8 b^{3}=8 b$, implies $8 b\left(1-b^{2}\right)=0$, but $b \in J(R)$, gives $1-b^{2} \in U(R)$, gives $8 b=0$. Thus $4 a=a^{3}=0$.

Example 7. Consider the ring Z_{24}. Then Z_{24} is a strongly 2-NC with $U\left(Z_{24}\right)=2$. Now $J\left(Z_{24}\right)=\{0,6,12,18\}$. So $J\left(Z_{24}\right)$ is a nil ideal of characteristic 4 .
Corollary 1. If R is a strongly 2-NC ring with $U(R)=2$ and if $2 \in U(R)$, then $J(R)=0$.
Proof. Let $a \in J(R)$, then by Theorem 5, $4 a=0$, since $2 \in U(R)$, then $a=0$.
Proposition 8. If R is a strongly 2-NC ring with $U(R)=2$, and if $2 \in U(R)$, then $\operatorname{Nil}(R)=0$.

Proof. Given $a \in R$, then $a-1=\Sigma_{1}-\Sigma_{2}+n$, so $a=\Sigma_{1}-\Sigma_{2}+n+1$, but $n+1 \in U(R)$, say u, then $a=\Sigma_{1}-\Sigma_{2}+u$. Let $n \in \operatorname{Nil}(R)$, then $n=\Sigma_{1}-\Sigma_{2}+u$, implies $\Sigma_{1}-\Sigma_{2}=n-u$, since $n-u \in U(R)$, according to Proposition 3(3), $\left(\Sigma_{1}-\Sigma_{2}\right)^{2}=1$. Furthermore, $n^{2}=\left(\Sigma_{1}-\Sigma_{2}\right)^{2}+2\left(\Sigma_{1}-\Sigma_{2}\right) u+u^{2}=1+2\left(\Sigma_{1}-\Sigma_{2}\right) u+1=2\left(1+\left(\Sigma_{1}-\Sigma_{2}\right) u\right)$. Observe that $n u=\left(\Sigma_{1}-\Sigma_{2}\right) u+1$. Thus, $n^{2}=2 n u$, so $n(n-2 u)=0$. since $2 \in U(R)$, by assumption then $n-2 u \in U(R)$. Whence it follows that $n=0$.

Next, we shall explore the relationship between strongly 2-NC ring with $U(R)=2$ and a tripotent ring.

Theorem 6. A ring R with $2 \in U(R)$ is strongly 2- $N C$ with $U(R)=2$ if and only if R is a tripotent.

Proof. Let R be a strongly 2-NC ring with $U(R)=2$, and let $a \in R$, then $a=$ $\Sigma_{1}-\Sigma_{2}+n$, where $\Sigma_{1}, \Sigma_{2} \in \operatorname{Id}(R), n \in \operatorname{Nil}(R)$, that commute with one another. According to Proposition 8, $n=0$. Thus, $a=\Sigma_{1}-\Sigma_{2}=\left(\Sigma_{1}-\Sigma_{2}\right)^{3}=a^{3}$.
Conversely, assume that R is a tripotent ring, and $t=t^{3} \in R$, since $2 \in U(R)$, then t may be written as $t=\frac{t^{2}+t}{2}-\frac{t^{2}-t}{2}$. Note that:

$$
\left(\frac{t^{2}+t}{2}\right)^{2}=\frac{t^{2}+2 t+t^{2}}{4}=\frac{t^{2}+t}{2}, \text { and }
$$

$\left(\frac{t^{2}-t}{2}\right)^{2}=\frac{t^{2}-2 t+t^{2}}{4}=\frac{t^{2}-t}{2}$, so $\left(\frac{t^{2}+t}{2}\right),\left(\frac{t^{2}-t}{2}\right) \in I d(R)$. Observe that for any unit $u, u^{3}=$ u thus, $u^{2}=1$. Therefore, R is a strongly $2-N C$ ring with $U(R)=2$.

To end this section, we consider a strongly $2-$ NC ring, with every unit is of order 4 .
Proposition 9. Suppose R is a strongly 2-NC ring, and if $n^{2}+2 n=0$ for every nilpotent n. Then every unit of R is of order 4 , and $48=0$.

Proof. Given $a \in R$, then by Proposition 1(1), a^{2} is an SNC element. Write $a^{2}=\Sigma+n$, where $\Sigma \in I d(R), n \in \operatorname{Nil}(R)$ and $\Sigma n=n \Sigma$. Let $u \in U(R)$, then $u^{2}=\Sigma+n$, implies $\Sigma=u^{2}-n=v \in U(R)$. Thus, $\Sigma=1$. Hence $u^{2}=1+n$, implies $u^{4}=(1+n)^{2}=1+2 n+n^{2}$. By assumption $n^{2}+2 n=0$, then $u^{4}=1$. On the other hand $6 \in \operatorname{Nil}(R)$ Theorem 1 . Thus, $6^{2}+2(6)=0$, gives $48=0$.

Example 8. In the ring Z_{48}. Then
$U\left(Z_{48}\right)=\{1,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47\}$,
$\operatorname{Nil}\left(Z_{48}\right)=\{0,6,12,18,24,30,36,42\}$,
$I d\left(Z_{48}\right)=\{0,1,16,33\}$.
By direct calculation, one easily check that Z_{48} is a strongly 2-NC ring, with every unit is of order 4.

4. Conclusion

In this article, new properties of a strongly $2-\mathrm{NC}$ rings are given. Additionally, we added certain conditions for strongly $2-\mathrm{NC}$ ring with each unit must be present of order four. We also introduce and investigated a strongly 2-NC ring with every unit of order two. We discuss some of the fundamental properties and present several examples. It was proved that the Jacobson radical over a strongly $2-\mathrm{NC}$ ring is a nil ideal, here, we demonstrated that the Jacobson radical over strongly $2-\mathrm{NC}$ ring with $U(R)=2$ is a nil ideal of characteristic 4 . In order to get $\operatorname{Nil}(R)=0$, we added one more condition involving this ring. The relationships between these rings, tripotent rings, and other related rings are given. Future goals include obtaining a deeper outcome on issues raised in this article, such as

1. The SNC ring with $U(R)=2,3$ or 4 .
2. The strongly $2-\mathrm{NC}$ ring with $U(R)=3$ or 4 .
3. The divisor graph of a strongly $2-\mathrm{NC}$ ring with $U(R)=2$.

References

[1] W. K. Nicholson, "Lifting idempotents and exchange rings," Transactions of the American Mathematical Society, vol. 229, pp. 269-278, 1977.
[2] W. K. Nicholson, "Strongly clean rings and fitting's lemma," Communications in algebra, vol. 27, no. 8, pp. 3583-3592, 1999.
[3] A. J. Diesl, "Nil clean rings," Journal of Algebra, vol. 383, pp. 197-211, 2013.
[4] M. T. Koşan and Y. Zhou, "On weakly nil-clean rings," Frontiers of Mathematics in China, vol. 11, no. 4, pp. 949-955, 2016.
[5] Y. Hirano, H. Tominaga, and A. Yaqub, "On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element," Mathematical Journal of Okayama University, vol. 30, no. 1, pp. 33-40, 1988.
[6] T. Koşan, Z. Wang, and Y. Zhou, "Nil-clean and strongly nil-clean rings," Journal of Pure and Applied Algebra, vol. 220, no. 2, pp. 633-646, 2016.
[7] H. Chen and M. Sheibani, "Strongly 2-nil-clean rings," Journal of Algebra and its Applications, vol. 16, no. 09, p. 1750178, 2017.
[8] H. Chen and M. S. Abdolyousefi, "Strongly 2-nil-clean rings with involutions," Czechoslovak Mathematical Journal, vol. 69, no. 2, pp. 317-330, 2019.
[9] J. Chen, Y. Wang, and Y. Ren, "2-nil-clean rings," Journal of Shandong University(Natural Science), vol. 57, no. 2, p. 14, 2022.
[10] M. S. Abdolyousefi, N. Ashrafi, and H. Chen, "On 2-nil-good rings," Journal of Algebra and Its Applications, vol. 17, no. 06, p. 1850110, 2018.
[11] Y. Rao, S. Kosari, H. Guan, M. Akhoundi, and S. Omidi, "A short note on the left a- γ-hyperideals in ordered γ-semihypergroups," AKCE International Journal of Graphs and Combinatorics, vol. 19, no. 1, pp. 49-53, 2022.
[12] Z. Shao, X. Chen, S. Kosari, and S. Omidi, "On some properties of right pure (bi-quasi-) hyperideals in ordered semihyperrings," Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys, vol. 83, no. 4, pp. 95-104, 2021.
[13] Z. Kou, S. Kosari, M. Monemrad, M. Akhoundi, and S. Omidi, "A note on the connection between ordered semihyperrings," Symmetry, vol. 13, no. 11, p. 2035, 2021.
[14] P. Vámos, "2-good rings," Quarterly Journal of Mathematics, vol. 56, no. 3, pp. 417430, 2005.
[15] Z. Ying, T. Koşan, and Y. Zhou, "Rings in which every element is a sum of two tripotents," Canadian Mathematical Bulletin, vol. 59, no. 3, pp. 661-672, 2016.
[16] Y. Zhou, "Rings in which elements are sums of nilpotents, idempotents and tripotents," Journal of Algebra and its Applications, vol. 17, no. 01, p. 1850009, 2018.
[17] T. Y. Lam, A first course in noncommutative rings, vol. 131. Springer, 1991.
[18] P. V. Danchev, "A note on nil-clean rings," Acta Universitatis Sapientiae, Mathematica, vol. 12, no. 2, pp. 287-293, 2020.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4797
 Email addresses: renas.salim@uoz.edu.krd (R. T. M.Salim), nazarh_2013@yahoo.com (N. H. Shuker)

