Content uploaded by Aurélien Sallé
Author content
All content in this area was uploaded by Aurélien Sallé on Dec 05, 2023
Content may be subject to copyright.
1
Responses of the hyper-diverse community of canopy-dwelling Hymenoptera
to oak decline
E. Le Souchu1, J. Cours2,3,4, T. Cochenille1, C. Bouget4, S. Bankhead-Dronnet1, Y. Braet5, P. Burguet6, C.
Gabard1, C. Galkowski7, B. Gereys8, F. Herbrecht9, B. Joncour1, E. Marhic10, D. Michez11, P. Neerup
Buhl12, T. Noblecourt13, D. G. Notton14, W. Penigot15, J.-Y. Rasplus16, T. Robert17, A. Staverlokk18, C.
Vincent-Barbaroux1, A. Sallé1
Corresponding author: elodie.lesouchu2@gmail.com
Accepted in Insect Conservation and Diversity
Author details:
1 Université d'Orléans, INRAE, P2e EA 1207, Orléans, France
2 Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
3 School of Resource Wisdom, University of Jyväskylä, Jyväskylä, Finland
4 INRAE, UR EFNO, Domaine des Barres, Nogent-sur-Vernisson, France
5 Royal Belgian Institute of Natural Sciences, O.D. Phylogeny and Taxonomy, Entomology, Vautier street 29, B-
1000 Brussels, Belgium; Unité d’Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de
Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
6 18 rue du Massaud, 63118 Cébazat, France
7 Société Linnéenne de Bordeaux, Bordeaux, France
8 4 Chemin des Escaranches, 04700 Oraison, France
9 2, le Bois Barré, 35390 Sainte-Anne-sur-Vilaine, France
10 25 rue du Maréchal de Lattre de Tassigny, 78780 Maurecourt, France
11 University of Mons, Laboratory of Zoology, Research Institute for Biosciences, Place du parc, 20, 7000 Mons,
Belgium
12 Zoological Museum, Department of Entomology, University of Copenhagen, Universitet sparken 15, DK-2100
Copenhagen, Denmark
13 Réseau entomologie de l’Office National des Forêts, 14 rue de la Garenne, F-11190 Antugnac, France
14 Invertebrates Section, Natural Sciences Department, National Museums Collection Centre, 242 West Granton
Road, Granton, Edinburgh EH5 1JA, Scotland
15 24 rue du Puech de la Borie, 71240 Saint-Juéry, France
16 CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, 34988 Montpellier, France
17 12 rue du 20e bataillon 54120 Baccarat, France
18 Norwegian Institute for Nature Research, P.O.Box 5685 Torgard, NO-7485 Trondheim, Norway
2
ABSTRACT
1. Forest decline and dieback are growing phenomena worldwide, resulting in severe, large-
scale degradation of the canopy. This can profoundly alter the provision of trophic resources
and microhabitats for canopy-dwelling arthropods.
2. In 2019, we assessed the effect of oak decline on the community of canopy-dwelling
Hymenoptera. We selected 21 oak stands, and 42 plots, located in three forests in France,
presenting contrasting levels of decline. Insects were sampled at the canopy level with green
multi-funnel and flight-interception traps.
3. We collected a particularly diverse community of 19,289 insect individuals belonging to
918 taxa, ten larval trophic guilds and five nesting guilds.
4. Oak decline had no effect on the abundance or richness of the overall community, but
significantly reshaped the community assemblages. Decline had contrasting effects
depending on the taxa and guilds considered. Specialist parasitoids were more abundant at
intermediate levels of decline severity while generalists were negatively affected. Taxa
depending on ground-related resources and microhabitats were promoted. Saproxylic taxa
were more abundant while xylophagous insects were negatively impacted.
5. Reduced leaf area index promoted several guilds, and the diversity of the overall
community. While an increasing tree mortality rate enhanced the abundance and diversity of
deadwood resources, it had negative impacts on several Hymenoptera guilds. Our results
suggest that micro-environmental changes at the ground-level due to canopy decline have
major cascading effects on the communities of canopy-dwelling Hymenoptera.
6. Our study highlights the relevance of studying Hymenoptera communities to investigate
the outcomes of disturbances on forest biodiversity.
Keywords: trophic guild, habitat guild, deadwood, canopy openness, temperate forest
1
INTRODUCTION
Global change is currently increasing the
frequency, severity and spatial extent of major
forest disturbances in Europe such as
droughts, windstorms and wildfires (Seidl et
al., 2017; Samaniego et al., 2018; Spinoni et
al., 2018). Disturbances can markedly affect
the amount, diversity and distribution of key
trophic resources and microhabitats for forest
arthropods (Cours et al., 2023). One of the
main drivers of these changes is the
degradation of the forest canopy (Sallé et al.,
2021; Cours et al., 2023). A reduction in
canopy cover can result from direct
disturbance impacts on the trees themselves,
but also from subsequent forest dieback or
decline, as a progressive loss of tree vigour
generally translates into crown dieback (Sallé
et al., 2021). Decline and dieback can
consequently affect the quality and quantity
of foliage, and reduce the production of
flowers, fruits and seeds in the crown (Ishii et
al., 2004; Günthardt-Goerg et al., 2013; Hu et
al., 2013). On the other hand, they may also
increase the amount and diversity of
deadwood resources and tree-related
microhabitats such as fruiting bodies of
opportunistic fungi, trunk cavities or perched
deadwood (Sallé et al., 2021; Larrieu et al.,
2022; Bouget et al., 2023; Zemlerová et al.,
2023). Increased canopy openness also
considerably affects microclimates and trophic
resources for arthropods in the lower strata of
forest ecosystems for instance, by promoting
the accumulation and diversification of floral
resources in the herbaceous layer, or of
deadwood resources on the ground (Cours et
al., 2023). Consequently, forest dieback and
decline can promote forest biodiversity to a
certain extent by increasing structural
complexity at multiple scales, as predicted by
the pulse dynamics theory (Cours et al., 2022).
This theory postulates that pulse events like
disturbances affect resource ratios, storage
and availability, energy fluxes, spatiotemporal
patch dynamics and biotic trait diversity, and
predicts that species and trait diversity at the
landscape scale should increase with patch
distribution and resource heterogeneity
(Jentsch and White, 2019). These
modifications can profoundly reshape
communities of forest arthropods (Viljur et al.,
2022; Cours et al., 2023). The impact of
canopy dieback on forest arthropods has been
investigated for several taxonomic groups and
functional guilds, including some specifically
dwelling in the canopy (Martel & Mauffette,
1997; Stone et al., 2010; Sallé et al., 2020;
Vincent et al., 2020). While the responses of
canopy arthropods are largely mediated by
their functional and/or trophic guild (e.g.,
Sallé et al., 2020), idiosyncratic responses still
occur among the taxa of a same guild or
taxonomic group (e.g., Vincent et al., 2020).
Consequently, the impacts of disturbance-
driven changes in canopy structure on
arthropod communities are still difficult to
predict, especially in the largely under-studied
temperate forest canopy (Sallé et al., 2021;
Cours et al., 2023). Considering that canopy
mortality rate has been on the rise for several
decades in Europe (Senf et al., 2018), further
studies on how decline and dieback affect
canopy-dwelling arthropods are urgently
needed, especially for the taxonomic groups
that have received limited attention to date,
like the Hymenoptera.
Hymenoptera is a hyper-diverse group of
insects, sometimes regarded as the most
speciose animal order (Forbes et al., 2018).
This group plays a wide variety of functional
roles in temperate forests. Ants and predatory
and parasitic wasps help to regulate forest
pests (Hilszczański, 2018). Bees and wasps
pollinate forest plants (Motten, 1986; Yumoto,
1987), while ants can disperse seeds (Rico-
Gray and Oliveira, 2008). Hymenoptera nests,
galleries and galls also provide microhabitats
for many species (Stone et al., 2002). Wood-
nesting bees and ants, as well as the larvae of
xylophagous species, contribute to the
decomposition process of wood (Ulyshen,
2016). Phyllophagous and xylophagous
species can be major pests for trees
(Lyytikäinen-Saarenmaa and Tomppo, 2002;
Slippers et al., 2015). The Hymenoptera,
especially parasitic wasps, can be used as
bioindicators in forest ecosystems (Maleque
et al., 2009). Their communities can be largely
influenced by stand-related variables such as
stand composition (Fraser et al., 2007;
Ulyshen et al., 2011a), deadwood resources
2
(Hilszczański et al., 2005; Ulyshen et al.,
2011a; Jonsell et al., 2023) and silvicultural
practices (Lewis and Whitfield, 1999;
Hilszczański et al., 2005; Rappa et al., 2023).
Pollinators in particular are sensitive to
canopy opening and the subsequent positive
impacts on the floral resources in the
herbaceous layer and on ground-nesting sites
(Wermelinger et al., 2017; Burkle et al., 2019;
Viljur et al., 2022; Cours et al., 2023).
Many Hymenoptera use the canopy as a
hunting ground, a nesting site or a breeding
site (Ulyshen, 2011). The canopy can also act
as a dispersal corridor for species with a
preference for open habitats (Pucci, 2008; Di
Giovanni et al., 2017). As for other forest
insects, the Hymenoptera community exhibits
a conspicuous vertical stratification in
temperate forests (Smith et al., 2012). Certain
ecological guilds like the predatory and
parasitic wasps, and the pollinators, differ
significantly between the ground level and the
canopy (Sobek et al., 2009; Ulyshen et al.,
2011b; Urban-Mead et al., 2021), and several
taxa are specific to the canopy layer (Ulyshen
et al., 2010; Di Giovanni et al., 2017). While
some studies have investigated the vertical
stratification of certain taxonomic groups or
ecological guilds of bees and wasps in
temperate forests, few have taken into
account the whole Hymenoptera community
(e.g., Vance et al., 2007), and none have
considered this community’s response to
forest decline.
In the present study, we investigated the
impact of oak decline on the community of
canopy-dwelling Hymenoptera. We chose to
focus on oak forests because they are the
dominant forest ecosystem in western
Europe; they shelter a diverse entomofauna
(Kennedy and Southwood, 1984); finally, they
have suffered from historic decline in France
(Nageleisen, 2008), and have recently
undergone severe summer droughts (in 2018
and 2019) (Saintonge and Goudet, 2020). Our
first objective was to characterise the little-
known community of canopy-dwelling
Hymenoptera in temperate oak forests. Our
second objective was to assess how the
severity of forest decline affected the richness
and taxonomic composition of this
community. Our third objective was to
evaluate the effects of decline on certain
ecological guilds of Hymenoptera, and how
changes in stand-related variables drive those
effects. We focused on the trophic guilds of
larvae and nesting guilds. For these guilds, we
formulated three hypotheses. First (H1), we
expected to find positive effects of increasing
decline severity on pollinivorous /
nectarivorous and phyllophagous species
associated with host plants other than oak
due to the increased diversity and amount of
plant-resources in the herbaceous and shrub
layers, commonly observed when canopy
closure decreases (Romey et al., 2007; Lu et
al., 2019; Cacciatori et al., 2022). Likewise, we
expected that soil-nesters would be promoted
by more open conditions resulting in warmer
soil temperatures. We also hypothesised that
xylophagous, saproxylic and wood-nester taxa
would benefit from oak dieback and the
subsequent increased amount and diversity of
deadwood. Conversely (H2), we expected to
find negative effects on the guilds that feed on
oak foliage, for example, gall-inducing and
phyllophagous taxa, due to the decrease in
the quality and quantity of leaves. Finally (H3),
we hypothesised that decline severity would
have contrasting effects on parasitoids and
polyphagous taxa, depending on their hosts
and trophic resources. In addition, we
expected that specialist parasitoid taxa, highly
sensitive to habitat modification (Hilszczański,
2018), would exhibit pronounced changes
along the gradient of decline severity. On the
other hand, we anticipated that generalist
taxa would be favoured by the disturbed
environmental conditions in severely declining
stands (Devictor et al., 2008).
MATERIAL AND METHODS
Study sites
Three oak-dominated (Quercus petraea
(Matt.) Liebl. and Quercus robur L.) French
forests were sampled in 2019 (Fig. 1, Tab. S1):
one near Orléans (Forêt domaniale d’Orléans,
47°98´97˝81N, 1°95´44˝E), one near Vierzon
(Forêt domaniale de Vierzon, 47°26´89˝N,
3
02°10´74˝E) and one near Marcenat (Forêt
domaniale de l’Abbaye, 46°21´12˝N,
3°36´13˝E). All the forests were managed by
the French National Forest Service. The
Orléans forest covers 35,000 ha and is
dominated by oaks (47%) and pines (Pinus
sylvestris L., 51%). The Vierzon forest covers
7,500 ha and is also dominated by oaks (61%)
and pines (P. sylvestris and P. pinaster Ait.,
31%). The Marcenat forest covers 2,100 ha
and is dominated by oaks (71%), pines (11%)
and Douglas fir (8%). The Vierzon forest
suffered the most from decline. Several
decline events had been recorded there since
1920, and massive oak mortality had occurred
in several stands (Douzon, 2006). In the
Marcenat forest, two summer droughts (2018-
2019) had led to severe decline in several
stands (Saintonge and Goudet, 2020).
Conversely, no major decline event had been
reported in the Orléans forest.
In each forest, we first selected oak-
dominated stands exhibiting contrasting levels
of decline (nine in Orléans, nine in Vierzon and
three in Marcenat), on the basis of local
forester knowledge and visual examination.
Even in forests with no major decline,
declining trees could be found, in stands with
temporarily waterlogged soils for instance.
These 21 stands were separated by at least
500 m, with a minimum surface area of 3 ha
(Fig. 1). In each stand we selected two living
trees to hang our traps, at least 50 m apart,
one healthy and one declining if both tree
types were present. These two trees were at
the center of two plots where we secondly
quantified the decline severity (see below).
In each stand, we recorded average tree
height, density and diameter, and the stand
tree species composition (Tab. S1). We also
evaluated the level of decline according to the
DEPERIS protocol (Goudet and Nageleisen,
2019). This protocol makes it possible to
quantify decline at the tree level by evaluating
the percentage of dead branches and
ramification loss in the crown. Based on these
criteria, each tree was assigned to a decline
class ranging from A (no decline) to F (severe
decline). Trees in the A–C classes were
considered healthy. Trees in the D–F classes
were considered in decline. We used this
protocol to describe tree decline at two
embedded spatial scales: (i) the ten closest
oaks surrounding each trap-bearing tree,
hereafter referred as a “plot”; and (ii) 30 oaks
in the stand where the two plots were located
(i.e., the 20 trees in the two monitored plots
and ten trees in an additional plot located
between the two monitored plots), hereafter
referred as a “stand”. Decline level was
evaluated in January or February in 2019 and
2020, i.e., before and after Hymenoptera
sampling, and we averaged the 2019 and 2020
values for our analyses. We classified our plots
and stands into three decline categories
depending on the proportion of declining oak
trees. When the proportion of declining trees
was < 30%, we considered the plot/stand
“healthy”; when the proportion was between
30% and 60%, the plot/stand was considered
“moderately declining”; and when the
proportion was > 60%, the plot/stand was
considered “severely declining”.
In the early summer of 2019, we used a plant
canopy analyzer LAI-2200C with a half view
cap attached to the optical sensor to quantify
the leaf area index (LAI) in the 12 stands in the
Orléans and Vierzon forests. More than 50
measurements were carried out at each plot
at twilight below the canopy along two
diagonal transects; these values were then
compared with above-canopy readings taken
outside the plot. We applied an ellipsoidal
post-processing correction to the first three
zenith angles and used the FV2200 software
to compute LAI by the gap fraction method.
Then, in October 2020, we used a Bitterlich
relascope with an opening angle
corresponding to counting factor n° 1 (ratio
1/50) with a mean plot area of about 0.3 ha
(Bouget et al., 2023) to characterise the
woody resources in each of the 18 plots in the
Orléans and Vierzon forests. For each tree, we
recorded its status (i.e., living tree, standing
dead tree (snag) or downed dead tree (log)),
decay stage, tree species and diameter at
breast height (DBH). We defined the mortality
rate as the basal area of standing and lying
deadwood over the total basal area of all the
recorded trees (i.e., the sum of both living and
dead trees). We calculated the overall volume
of living trees and deadwood. For deadwood,
4
we calculated the volume for each status
(standing or downed deadwood), decay stage
(slightly vs. highly decayed) and diameter class
(deadwood DBH < 40 cm vs. ≥ 40 cm). We
compiled all this information (i.e., status,
species, decay stage and DBH) to calculate
deadwood diversity. Finally, we used the dbFD
function from the FD R-package to calculate
the mean status value of the woody resources
and the dispersion value for each plot, based
on an ordinal scale (i.e., living trees = 3, snags
= 2, logs = 1). Further information on the
acquisition and processing of forest structure
data is presented in Bouget et al. (2023).
Insect sampling
We hung two types of traps in each selected
tree: one green multi-funnel trap (ChemTica
Internacional, San José, Costa Rica) with 12
fluon-coated funnels, and one cross-vane
flight interception trap (PolytrapTM). The first
type is used to sample borers like Agrilus
(Santoiemma et al., in press); the experiment
was initially designed to sample the
community of borers along the decline
gradient in oak stands. This type of trap is also
efficient for sampling guilds of foliage-
associated insects (Sallé et al., 2020), and was
sometimes used to sample Hymenoptera
(Barnes et al., 2014; Haavik et al., 2014;
Skvarla et al., 2016). Green multi-funnel traps
in particular have proven to be quite effective
in collecting sawflies (Skvarla et al., 2016).
Flight interception traps are commonly used
in forests to sample saproxylic beetles (Bouget
et al., 2008).
Both types of traps were suspended among
the lower branches in the canopy (i.e.,
approximately 10 - 15m above the ground).
The collectors were filled with a 50% (v/v)
monopropylene glycol - water solution with a
drop of detergent. The traps were in place
from the end of March to the beginning of
September 2019, during the insects’activity
period, and they were emptied every month.
Identification and ecological trait list
All sampled Hymenoptera were sorted and
identified to the family or superfamily level,
according to the identification key by Goulet
and Huber (1993). Then the specimens were
sent to taxonomical experts who identified
them to the genus, species or morphospecies
level. Only the Cynipidae and Figitidae were
not identified at a lower taxonomic level.
We arranged the taxa into ten larval trophic
guilds: gall-inducers, parasitoids, oak-
associated phyllophagous larvae, other
phyllophagous larvae, phytophagous larvae
(i.e., feeding on plant parts other than leaves,
for example, seeds), carnivorous larvae, social
polyphagous larvae, xylophagous larvae and
pollinivorous/nectarivorous larvae. Parasitoids
were separated into idiobionts (i.e., larvae
develop on non-growing host stages or
paralyzed hosts) and koinobionts (i.e., the
host continues feeding and growing during
parasitism). This is often used as a surrogate
of whether a parasitoid is a generalist
(idiobiont) or a specialist (koinobiont) (Quicke,
2015). Preferred larval habitat (larval nesting
guild) was also considered, when known. Taxa
were divided into gall-nesters (i.e., gall-
inducers and their inquiline parasitoids), soil-
nesters, stem-nesters (generally in hollow
plant stems) and wood-nesters. For the latter
three guilds, we separated the specialists
(spe.) from the generalists (gen.), nesting in
wood and/or soil and/or stems. Specialist
wood-nesters were considered analogous to
saproxylic taxa (Jonsell et al., 2023).
Data analysis
All analyses and graphs were performed in R,
version 4.1.1 (R Core Team, 2021). We used
the ggplot2 R-package (Wickham, 2016) to
produce the figures. Unless otherwise stated,
analyses were realised with the Hymenoptera
community collected at the plot level, and the
proportion of declining trees at both plot and
stand scales. The figures with stand decline
levels are included in the body of the present
article since they are more informative than
the figures with plot decline levels, which are
available in the Supplementary Data. We also
provide the figures with ecological guilds in
the main text, the figures with taxonomic
families or species are provided in the
supplementary data.
5
Some specimens of Cynipidae, Figitidae,
Halictidae, Andrenidae, Pteromalidae,
Encyrtidae and Platygastridae were not
identified, either because of a lack of
expertise or because the specimens were too
damaged for identification. These unidentified
specimens were removed from the
community analyses.
To extrapolate the species richness for the
whole community (i.e., γ-diversity) and for
each decline category, we first plotted species
rarefaction curves (functions iNEXT and
ggiNEXT, iNEXT R-package; Hsieh et al., 2016)
and calculated Chao, Jackknife, Jackknife 2
and Bootstrap diversity indices (function
specpool, vegan R-package; Oksanen et al.,
2022). We used the additive diversity
partitioning method (Lande, 1996; Crist et al.,
2003) to evaluate the contribution of α- and
β-diversity to the γ-diversity of canopy-
dwelling Hymenoptera over the entire
sampled area (function adipart, index =
“richness”, 1,000 permutations, vegan R-
package). We tested whether observed
species richness differed from the one we
expected by chance (null hypothesis). At the
plot scale, we used three levels of
differentiation: plot, plot decline category and
the whole sampled area. α plot corresponds
to the average species diversity per plot, β
plot to the diversity among plots and β
cat_plot to the diversity among plot decline
categories. γ-diversity is the sum of α plot, β
plot and β cat_plot (γ = α plot + β plot + β
cat_plot). Consequently, four levels of
differentiation were included: plot, stand,
stand decline category and the whole sampled
area. At the stand scale, four levels of
differentiation were included: plot, stand,
stand decline category and the whole sampled
area. As an additional measure of β-diversity,
we calculated the dissimilarity between plots,
stands, decline categories and pairs of decline
categories to separate β-diversity (Sorensen
dissimilarity index) into β-turnover (Simpson
dissimilarity index) and β-nestedness
(nestedness-resultant fraction of Sorensen
dissimilarity) (function beta.multi, Sorensen
family, betapart R-package; Baselga, 2010;
Baselga and Orme, 2012). β-turnover indicates
the replacement of some species by others,
while β-nestedness indicates that species
assemblages are subsets of species occurring
at larger spatial scales.
We assessed the influence of plot and stand
decline categories (i.e., healthy, moderately
declining and severely declining) on the
community of Hymenoptera in each plot by
performing non-metric multidimensional
scaling analyses (NMDS, function metaMDS, k
= 3, Bray-Curtis index, 1,000 permutations,
vegan R-package), and pairwise PERMANOVA
(function adonis2, Bray-Curtis index, 999
permutations, vegan R-package). Species with
less than ten individuals were excluded from
these analyses.
We assessed the effect of oak decline on the
abundance and species richness of the overall
community, of each taxonomic family (when n
> 30 ind.), and on the abundance of each taxa
(when n > 30 ind.). We also assessed the oak-
decline effect on each guild (i.e., larval trophic
guilds and nesting guilds). To do this, we used
generalised linear mixed-effects models
(GLMMs; function glmer, glmer.nb or lmer,
lme4 R-package; Bates et al., 2022) fitted for
the Poisson family, the negative binomial
family or the log-normal distribution (i.e.,
log(x+1) transformed). We first selected the
best suited family distribution, with the
fitdistrplus R-package (function fitdist and
gofstat; Delignette-Muller and Dutang, 2015).
We then performed GLMMs with either
abundance or species richness at both scales
(plot and stand). The decline variable was
used as either a linear term or a quadratic
term to be better fit our dataset. We added
forest and stand as nested random effects on
the intercept in the mixed models to account
for repeated measurements and the spatial
configuration of the sampling design. Since
some traps were not continuously functional,
for example, because they fell from the tree,
we also added an offset of the log-number of
effective traps across the entrapment season.
The offset was weighted by the efficacy of
each type of trap (i.e., multi-funnel vs. flight
interception traps), estimated with the
average percentage of specimens collected by
each type of trap. To assess model quality, we
used marginal R² (function R2, performance R-
6
package; Lüdecke et al., 2021). We used the
differences in AICc scores (function AICc,
AICCmodavg R-package; Mazerolle, 2023) to
compare the fit among models. When the
linear and quadratic models were
undifferentiated, we show only the results for
the simplest one, i.e., the linear model. We
also used the indicspecies R-package (function
multipatt, abundance data, func = “IndVal.g”,
1,000 permutations) to identify indicator
species for healthy, moderately-declining and
severely-declining stands and plots (Dufrene
and Legendre, 1997; De Cáceres and
Legendre, 2009; De Cáceres et al., 2010).
In a second step, we implemented Structural
Equation Modelling (SEM, piecewiseSEM R-
package; Lefcheck et al., 2022) to evaluate the
cascading effects of tree decline (i.e., the
proportion of declining trees) and tree
mortality (i.e., the proportion of dead trees)
on taxonomic families and ecological guilds
through changes in canopy closure (LAI), and
changes in variables related to living trees
(volume, density, and DBH), and deadwood
resources. SEM was used only for the plots
located in the Orléans and Vierzon forests. LAI
was originally measured in 12 plots in the
Orléans and Vierzon forests, and correlated
strongly with tree decline rate at the stand
scale (Fig. S1). Consequently, in order to avoid
excluding additional plots in the SEM analysis,
we extrapolated LAI from the tree decline rate
in the six remaining plots using the equation
of the regression curve (Fig. S1). We studied
Hymenoptera responses through (i) the
abundance of each taxonomic family, and (ii)
the abundance and species richness of each
ecological guild (see above). Response
variables that did not respect assumptions of
residual normality and homoscedasticity for
linear regressions were log-transformed. In
addition, in a first set of mixed models, we
added forest identity (i.e., Orléans or Vierzon)
as a random effect in the lmer function from
lme4 R-package. We finally dropped this
random effect since it was redundant with the
fixed effects and caused model non-
convergence. Finally, we used a linear model
with the lm function. Several plots were
installed close to wetlands. We added this
information, as a binary variable (i.e., wetland
/ no wetland), to the models as a fixed effect
since the characteristic might affect soil-
nesters and phyllophagous species associated
with plants in the herbaceous and shrub
layers. We also added an offset term of the
log-number of effective traps across the
entrapment season to our models. Finally, we
accounted for the increased type I error risk
due to multiple testing (16 parameters) with
the Bonferroni correction (family-wise error
rate = 0.05/16 = 0.0031).
RESULTS
Overview of the community of canopy-
dwelling Hymenoptera
We collected 19,289 individuals, belonging to
54 families and 918 taxa (Fig. 2; Tab. S2). The
most abundant families were the
Ichneumonidae (22% of the specimens), the
Cynipidae (22%) and the Perilampidae (14%),
while the most diverse were the
Ichneumonidae (321 taxa), the Braconidae
(121) and the Tenthredinidae (88) (Fig. 2).
Most of the community was composed of
singletons (344 taxa) and doubletons (129),
and only 198 taxa occurred with more than
ten individuals (Tab. S2). Several species cited
for the first time in France were sampled,
especially members of the Ichneumonidae
family (Tab. S2). We also collected 35 bee
species registered on Worldwide or European
Red Lists (Tab. S2). Among them, three species
were near-threatened, 13 species were
classified as “data deficient”, and 19 as “of
least concern”.
The activity of most families peaked in the
spring (Fig. S2), and the community was the
most abundant (64% of total specimens) in
April. Species richness was more evenly
distributed throughout the sampling period,
but also peaked in April (48% of all taxa).
Overall, the green multi-funnel traps clearly
outperformed the flight interception traps
(93% vs. 7% of total abundance, 94% vs. 28%
of all taxa) (Fig. S3); for each guild and family,
both abundance and species richness were
higher in the multi-funnel traps.
7
According to our species-diversity estimators
(Tab. S3), there should have been between
1,074 and 1,505 species in the entire sampled
area. We collected between 61% and 85% of
these estimations, and consequently, the
rarefaction curve for the whole community
barely approached an asymptote (Fig. 3A).
Both moderately declining and severely
declining plots and stands were predicted to
shelter slightly more taxa than healthy ones
(Tab. S3, Figs. 3A & S4A). The communities in
healthy and severely declining stands were
clearly distinct, but both were partially similar
to those in moderately declining stands (Fig.
3B). At the plot scale, a similar pattern was
observed, although the divergence was less
marked (Fig. S4B). Consequently, the
differences among decline categories were
significant at both the plot and stand scales,
except between moderately declining and
healthy plots (Tab. S4).
Contribution of α- and β-diversity to γ-
diversity
The additive partitioning of species richness
showed that, at the plot scale, β plot did not
present any significant difference between
observed and expected richness (Fig. S4C). At
the stand scale, the observed richness of β
plot was significantly lower than expected
(Fig. 3C), while observed β stand was similar
to predicted β stand. Conversely, decline
categories contributed largely to γ-diversity.
Observed β cat_plot and β cat_stand were
significantly higher than expected and
respectively represented 39% and 40% of the
γ-diversity.
Overall β-diversity was mainly due to species
turnover, among all plots and stands (Tab. 1),
and between each pair of plots (Tab. S5) and
stand decline categories (Tab. 1). At the plot
scale, β nestedness was very low. At the stand
scale, however, β nestedness was a significant
part of the β-diversity between moderately
declining stands and healthy ones (22%), as
well as between moderately and severely
declining stands (16%).
Indicator species
At the plot scale, one species was associated
with healthy plots, 11 with moderately
declining plots and 11 with severely declining
plots (Tab. S6). At the stand scale, five species
were associated with healthy stands, five with
moderately declining stands and seventeen
with severely declining stands (Tab. S7). Four
species were indicators at both plot and stand
scales. The majority of the indicators were
parasitoids. Several sawflies that feed on non-
oak host plants were also indicators of
severely declining stands, and a few species
with pollinivorous/nectarivorous larvae were
indicators of moderately declining plots.
Effect of oak decline on ecological guilds
Neither the abundance nor the species
richness of the community of canopy-dwelling
Hymenoptera was influenced by the extent of
the decline. However, contrasting effects were
observed among guilds, taxonomic families
and taxa (Fig. 4, Tabs. S8 & S9). For larval
trophic guilds, the abundance of
pollinivorous/nectarivorous and polyphagous
species increased with decline severity, while
those of xylophagous species decreased (Fig.
4A, Tab. S8). Koinobiont parasitoids were
more abundant at intermediary levels of
decline (46 % of declining trees), while the
abundance of idiobiont parasitoids decreased
when decline severity increased (Fig. 4A, Tab.
S8). Carnivorous and polyphagous taxa also
became more diverse as decline severity
increased (Fig. 4B, Tab. S9). For larval habitat
guilds, oak decline only slightly affected the
abundance of gall-nesting taxa, while the
abundance of both specialist wood-nesters
and specialist soil-nesters was promoted (Fig.
4A, Tab. S8). Decline also promoted the
diversity of generalist soil-, wood- and stem-
nesters (Fig. 4B, Tab. S9).
The SEM showed that tree mortality
promoted the abundance and diversity of
deadwood habitats and that tree decline
markedly reduced LAI (Figs. 5 & S7). Tree
mortality rate negatively affected overall
species richness, and both tree mortality and
decline rates also had direct effects on
ecological guilds (Fig. 5), and taxonomic
families (Fig. S7). An increasing tree mortality
rate reduced the abundance and species
richness of nectarivorous/pollinivorous
species, and the species richness of koinobiont
8
parasitoids, non-oak phyllophagous,
polyphagous and soil-nesting species. As
mentioned above, tree decline rate negatively
affected the abundance of xylophagous
Hymenoptera, more specifically of the
Xiphydriidae (Fig. S7), but also promoted the
species richness of polyphagous species. It
also promoted the abundance of Tiphiidae
(Fig. S7), and a similar trend was observed for
the Halictidae (P=0.0035). Nonetheless, the
most important impact of tree decline rate
was mediated by the reduction in LAI which
promoted the species richness of non-oak
phyllophagous species, and both the species
richness and abundance of
nectarivorous/pollinivorous and specialist soil-
nesting taxa. LAI impacts on guilds were
consistently similar to those of tree mortality,
leading to opposite effects of tree decline and
tree mortality on ecological guilds (Fig. 5). For
the overall community, as well as for
nectarivorous/pollinivorous and non-oak
phyllophagous taxa, species richness
consistently decreased when LAI increased,
and was always low when tree mortality rate
was high (Fig. S8). Finally, changes in
deadwood resources, mediated by tree
mortality, only marginally influenced
xylophagous taxa and had no impact on the
other ecological guilds (Fig. 5). Mortality or
decline rates did not affect tree density, but
tree density promoted the Platygastridae (Fig.
S7). In line with this, it also promoted the
diversity of gall-nesters (Fig. 5).
DISCUSSION
The community of canopy-dwelling
Hymenoptera in temperate oak forests
With more than 150,000 species described
worldwide, Hymenoptera are one of the most
diverse orders of insects (Huber, 2017;
Aberlenc, 2020). In our study, among the
19,289 specimens collected, we identified 918
taxa. As a comparison, with the same
sampling design, in the same plots and at the
same time, we collected approximately 97,000
Coleoptera and 10,000 Hemiptera, and
identified 562 and 169 taxa respectively
(unpubl. data). This indicates that the
community of Hymenoptera dwelling in the
canopy of the oak stands was particularly
diverse. In agreement with earlier predictions
(Forbes et al., 2018), these results suggest that
this community could be one of the most
diverse, if not the most diverse, community of
arthropods in temperate oak forests.
We collected numerous phyllophagous and
gall-inducing species (Tab. S2), which supports
using green multi-funnel traps to collect
foliage-feeding arthropods (Sallé et al., 2020).
In the same traps, we also collected a wide
diversity of parasitoids and predators, which
might have been attracted by the green
colour, indicative of potential hunting grounds
for their hosts and prey. For example, the
most common species in our sampling,
Perilampus ruficornis (F.), is a hyperparasitoid
that frequently parasitises leaf-chewing
caterpillars and cynipids (Mitroiu and
Koutsoukos, 2023). We also collected several
phytophagous species that feed on oak foliage
(e.g., Periclista spp.) and oak pollen (e.g.,
Lasioglossum pallens (Brullé)), and saproxylic
taxa known to develop in oak branches (i.e.,
Xiphydria longicollis (Geoffroy)) or to nest in
standing deadwood and/or in branches (e.g.,
Dolichoderus quadripunctatus (L.)). We
therefore expected to find all of these taxa in
the canopy. Conversely, we found several
unexpected taxa in the canopy layer. For
instance, we collected species that feed on
plants in the herbaceous layer (e.g.,
Strongylogaster multifasciata (Geoffroy), a
fern-feeder), as well as parasitoids of soil-
dwelling grubs (i.e., Tiphia femorata F.) or
spiders (i.e., Aporus unicolor Spinola). These
may be considered as “tourist species”,
without intimate relationship with oaks but
which may be attracted by the
microenvironments and trophic resources
provided by the canopy (Moran and
Southwood, 1982). We also sampled several
uncommon or even rare species (e.g., Chrysis
equestris Dahlbom, Pamphilius balteatus
(Fallén), Marhic & Noblecourt, pers. obs.),
including three species of bees that are near-
threatened at the European level (i.e.,
Andrena fulvida Schenck, Lasioglossum
monstrificum (Morawitz) and Lasioglossum
sexnotatum (Kirby); Nieto et al., 2014), and
9
several species new for France (e.g., Spathius
polonicus Niezabitowski), or even Europe (i.e.,
Plastanoxus evansi Gorbatovsky). This
highlights how little we still know about the
composition and ecology of canopy-dwelling
arthropods in general, and Hymenoptera in
particular (Hilszczański, 2018; Sallé et al.,
2021), in temperate forests.
Our sampling protocol was not initially
designed to collect Hymenoptera, which are
more commonly, and probably more
efficiently, sampled with Malaise traps or
yellow pan traps, or by fogging in the canopy
(Skvarla et al., 2016; Floren et al., 2022).
Although efficient in terms of diversity, our
trapping design may still have underestimated
the actual diversity of canopy-dwelling
Hymenoptera. For instance, taxa with a low
mobility might be underrepresented
compared to what could be collected by
fogging. It may also have biased the
representativeness of our sampling in relation
to the actual assemblage of canopy species.
Most of our specimens were collected in the
attractive green multifunnel traps. This may
have led to an overrepresentation of leaf-
dwelling taxa and an underestimation of
floricolous or saproxylic taxa. In addition, it
may have attracted species dwelling in lower
strata of the ecosystem, the herbaceous and
understory layers, and led to the
aforementioned unexpected occurrence of
these taxa in our sampling. Nonetheless,
whether these species were sampled because
of our trapping design or because a part of
their life cycle actually takes place in the
canopy is unclear at the moment since we do
not have an accurate knowledge of their
ecology.
Effects of forest decline on the community,
guilds and taxa of canopy-dwelling
Hymenoptera
Oak decline did not directly affect the
abundance and richness of the community of
canopy-dwelling Hymenoptera. However, it
did markedly reshape its composition, which
differed significantly along the decline
gradient. Species turnover was the main
component of these changes, as has been
commonly observed (Soininen et al., 2018),
while difference among decline categories
was the main contributor to global diversity.
The significant contribution of nestedness to
the β-diversity between moderately declining
stands and both healthy and severely
declining stands is congruent with the NMDS
results, and indicates that the community
characteristic of an intermediate level of
decline is composed of taxa from the other
two levels rather than of specific taxa new to
the community. Similarly, in a previous study,
the species richness of canopy-dwelling
beetles was not influenced by oak decline,
although both their abundance and their
biomass increased (Sallé et al., 2020). Our
result is nonetheless surprising since a recent
meta-analysis indicates that forest
Hymenoptera diversity (excluding ants) is
generally promoted by disturbances like
wildfires, windstorms and pest outbreaks
(Viljur et al., 2022). However, the meta-
analysis also found that the magnitude of
increase in species richness was quite variable
among studies (Viljur et al., 2022). In addition,
these disturbances are brief and intense,
while oak declines are slower and longer
processes. Their impacts on the overall
community of Hymenoptera might then be
more progressive. In our case study, the
decline effect was generally consistent
between the two spatial scales considered
(plot vs. stand), but the magnitude of the
effects was sometimes different. This might
reflect differences in foraging behaviour and
habitat use among taxa and/or guilds.
Changes in community composition were
driven by contrasting responses of ecological
guilds to oak decline, supporting the
importance of multi-taxonomic and
multitrophic approaches in research on how
environmental changes affect community
structure (Seibold et al., 2018). As expected by
our first hypothesis (H1), the abundance of
pollinivorous/nectarivorous taxa increased
with severity of decline. This is in line with
previous studies showing that disturbances
generally promote pollinators by providing
more floral resources and nesting sites
(Wermelinger et al., 2017; Viljur et al., 2022;
10
Perlík et al., 2023). Interestingly, however, the
dominant family of
pollinivorous/nectarivorous bees, Halictidae,
was mostly represented by L. pallens, a soil-
nesting bee which mainly feeds on oak pollen
and consequently, does not rely on other
floral resources (Hermann et al., 2003). Since
the overall abundance of specialist soil-
nesters was also promoted by stand decline,
this suggests that soil conditions were
potentially a more important driver of
community change for the guild of
pollinivorous/nectarivorous taxa than were
floral resources in the herbaceous layer.
Oak decline promoted the abundance, but not
the diversity, of specialist wood-nesters, i.e.,
of saproxylic taxa. Yet, the accumulation and
diversification of deadwood resources and
weakened hosts during forest dieback and
decline events generally favour saproxylic taxa
abundance and diversity (Beudert et al., 2015;
Kozák et al., 2020; Cours et al., 2022, 2023),
including those dwelling in the canopy (Stone
et al., 2010; Sallé et al., 2020). This overall
trend for the guild might be contradicted at
the species level, since some saproxylic
species can be negatively affected by forest
dieback or decline (Vincent et al., 2020). In
line with this, the only xylophagous species in
our survey i.e., X. longicollis, was negatively
affected by decline severity. The larvae of this
species bore into the branches of weakened
broadleaved trees and are sometimes
associated with oak decline (Dominik and
Starzyk, 1988). Nonetheless, severe decline
conditions may have reduced the amount of
living branches in the canopy, thereby
reducing the amount of breeding substrates
for the species, as suggested by both the
direct effect of tree decline rate, and the
indirect effect of tree mortality on X.
longicollis abundance. The diversity of
generalist stem-, wood- and soil-nesters was
promoted by oak decline, while the species
richness of the specialist guilds remained
unaffected. The decline process may lead to
resources pulses, which may be more readily
exploited by generalist species (Devictor et al.,
2008; Cours et al., 2023).
Contrary to our second hypothesis (H2), oak
decline did not influence the gall-inducer taxa
and phyllophagous species typically associated
with oaks, and only marginally affected gall-
nesters. Responses of leaf-feeding insects to
tree decline can be highly variable, ranging
from negative to positive effects (Martel and
Mauffette, 1997; Stone et al., 2010; Sallé et
al., 2020). Host specificity might modulate the
outcome of tree decline on leaf-feeding
species, but we did not observe any such
tendency in our survey. Interestingly, oak
decline had an overall negative effect on the
parasitoids of defoliating or mining
caterpillars. This suggests a negative impact of
decline on leaf-feeding moths, with potential
cascading impacts on higher trophic levels.
Conversely, the diversity of leaf-feeders
associated with other host plants increased
with decline severity, and several of them
were indicators of high levels of decline (i.e.,
Strongylogaster multifasciata (Geoffroy) and
Aneugmenus padi (L.), both fern-feeders;
Tenthredopsis nassata (L.) and Dolerus
gonager (F.), bentgrass-feeders;
Eutomostethus luteiventris (Klug), a rush-
feeder; and Pachyprotasis simulans (Klug), a
goldenrod-feeder (Lacourt, 2020)). All of the
above were “Symphyta” and their increase
might reflect the preference of these wasps
for open forests (Lehnert et al., 2013), but it
might also result from a cascading effect of an
increase in plant diversity and biomass along
with increased canopy openness (Lehnert et
al., 2013; Lu et al., 2019; Cacciatori et al.,
2022).
As expected from the literature (Gaston,
1991), the parasitoid guild was both the most
diverse and the most abundant guild. Since
parasitoids, and especially koinobionts,
require a diversity of habitats to support the
full assemblage of their hosts, they are highly
sensitive to changes in habitat (Fraser et al.,
2007; Hilszczański, 2018; Jonsell et al., 2023).
As anticipated by our third hypothesis (H3),
koinobiont parasitoids exhibited a quadratic
relationship with decline levels, and were
more abundant at intermediate levels of
decline severity. This suggests that a
moderate decline may provide a greater
diversity of habitats and trophic resources for
11
specialist parasitoids, as predicted, for
instance, by the intermediate disturbance
hypothesis (Grime, 1973; Horn, 1975).
Idiobiont parasitoids, however, where
consistently negatively affected by decline
severity. This was unexpected since they are
considered as generalists in terms of host
range, and generalist species generally thrive
in disturbed ecosystems (e.g., Devictor et al.,
2008). These overall trends might be further
modulated though by the host type of the
parasitoid. We observed that both Tiphiidae
(e.g., T. femorata) and Evanidae (e.g.,
Brachygaster minuta (Olivier), which
parasitize chafers and cockroaches
respectively, benefited from tree decline,
while the parasitoids of defoliating or mining
moths (e.g., Agrypon flaveolatum
(Gravenhorst), Bassus sp. 1, Earinus
gloriatorius (Panzer), Macrocentrus nitidus
(Wesmael), P. ruficornis (Mitroiu and
Koutsoukos, 2023)), were somewhat
disadvantaged by high levels of decline.
Further studies would be necessary to assess
whether these effects depend on host type or
are idiosyncratic species responses. The other
guild belonging to a higher trophic level, the
carnivorous taxa, was promoted by oak
decline. Disturbances can have highly
contrasted effects on predators (Cours et al.,
2023). In our study, this guild included several
taxonomic families such as Vespidae,
Formicidae and Pemphredonidae that prey on
a wide range of taxa. The positive decline
effect might result either from a higher
abundance or accessibility of prey (Cours et
al., 2023), or from better habitat conditions.
Further studies would be required to identify
the factors underpinning this positive effect.
The abundance and the diversity of
polyphagous species were also enhanced by
oak decline. This is congruent with the fact
that ants, which dominated the guild of
polyphagous species, are known to benefit
from silvicultural practices leading to more
open conditions (Tausan et al., 2017; Grevé et
al., 2018; Cours et al., 2023).
Key parameters of decline-driven changes in
Hymenoptera guilds
The results of the SEMs were consistent with
those of the GLMMs, indicating that the
effects highlighted by the SEM approach were
probably also involved in hymenopteran
responses to oak decline over the whole
sampling design. Changes in community
composition and structure resulted either
from the direct effects of tree mortality and
tree decline, or from indirect effects mediated
by alterations of the forest structure. As dead
branches accumulated in the crown of
declining trees, an increase in tree decline rate
markedly reduced the LAI. Most of the tree
decline effects on ecological guilds were
mediated by changes in LAI, which was
therefore a major driver of community
change. In parallel, an increase in tree
mortality rate increased the volume and
diversity of deadwood resources.
An increasing tree decline rate directly
promoted the abundance of Halictidae and
Tiphiidae (Figs. 5, S7). Both families rely on
ground-related trophic resources (floral
resources for the Halictidae and soil-dwelling
larvae for the Tiphiidae) and ground habitats
since they are soil-nesters (Michez et al.,
2019). In declining stands, soil-nesters may
benefit from better or warmer micro-
environmental conditions but also from better
underground resources due to LAI reduction
(Cours et al., 2023). In line with this, generalist
leaf-feeding weevils, with root-feeding larvae,
have been shown to benefit from oak decline
(Sallé et al., 2020). The positive effect of a
reduction in LAI on
nectarivorous/pollinivorous taxa is also
congruent with its positive effect on the
diversity of non-oak phyllophagous taxa,
supporting the above-mentioned hypothesis
of a pulse in plant diversity and floral
resources when canopy openness increases
(Romey et al., 2007; Lu et al., 2019; Cacciatori
et al., 2022). In our study, canopy opening
promoted the overall diversity of the
Hymenoptera taxa, which supports previous
observations (Eckerter et al., 2022; Perlík et
al., 2023; Rappa et al., 2023). This result also
indicates that micro-environmental
modifications at the ground level can have
critical impacts on the communities dwelling
in higher forest strata, especially when species
12
have developmental instars that rely on
ground resources or ground micro-habitats.
Surprisingly, while tree mortality rate altered
a large array of deadwood resources, we did
not observe any effect of these alterations on
the taxonomic families and guilds of
Hymenoptera, aside from the negative effect
of a reduction in the number of living trees on
the xylophagous Xiphydriidae. This contradicts
several studies where the accumulation
and/or diversification of deadwood resources
promoted the abundance, species richness or
community composition of different
Hymenoptera guilds and taxa like bees and
wasps (Bogusch and Horák, 2018; Urban-
Mead et al., 2021; Rappa et al., 2023), and
parasitoid wasps (Hilszczański et al., 2005;
Ulyshen et al., 2011a). However, our results
are congruent with recent observations where
changes in deadwood amounts did not
influence the species richness or community
composition of either cavity- or non-cavity-
nesting Hymenoptera, at least at a local scale
(Perlík et al., 2023). Our study plots were
located in managed oak forests, and active
forest management likely restricted the
magnitude of accumulation and diversification
of deadwood resources (Bouget et al., 2023).
This may have limited the potentially
beneficial effects of tree mortality and decline
on saproxylic Hymenoptera, thus only weakly
promoting saproxylic taxa and wood-nesters.
It may also be a matter of spatial scale;
considering the amount and diversity of
deadwood resources over larger spatial scales
might be more relevant, especially for taxa
with a high dispersal capacity (Cours et al.,
2022). In addition, considering more precise
parasitoid subguilds, especially those with
saproxylic hosts, might also help to unravel
the impacts of changes in deadwood on the
forest Hymenoptera community.
In our study, the effects of tree mortality rate
on the ecological guilds were consistently
opposed to those of the decline rate, and
were, overall, negative. The stands with a high
tree mortality rate might very well have
experienced more severe and frequent
droughts in the years before the study,
leading to pervasive cascading effects on
Hymenoptera through alterations in plant-
pollinator or host-parasitoid interactions, for
instance (Rouault et al., 2006; Endres et al.,
2021). The negative effects could also indicate
that canopies with dead trees are avoided by
Hymenoptera, thus leading to an overall
reduction in abundance and species richness.
Stands with high levels of tree mortality might
also have experienced critical changes in
micro-environmental conditions and trophic
resources, but further studies are required to
better understand the processes underpinning
these deleterious effects.
CONCLUSION
Our results highlight the extreme diversity of
the forest Hymenoptera community, and the
relevance of Hymenoptera in studying
changes in global community structure and
forest functional processes. Our results also
support their value as forest bioindicators, as
previously proposed by Maleque et al. (2009).
Nonetheless, our study also underlines the
relative lack of knowledge of this group in
temperate forests (Hilszczański, 2018; Jonsell
et al., 2023). Consequently, considering the
growing threats to biodiversity in general, we
call for thorough investigations on the
diversity and ecology of Hymenoptera to
make better use of their potential as
bioindicators, understand their ecological
services, and better evaluate their
conservation value. This suggests that micro-
environmental changes at the ground level
strongly influence changes in canopy
communities. Consequently, we also call for a
thorough investigation of the changes in
ecological processes and community structure
at the ground level following forest decline
and dieback.
Oak decline had mixed effects on canopy-
dwelling Hymenoptera in our study. We found
contrasting responses for some taxa and
ecological guilds, which profoundly reshaped
the species assemblage but did not affect the
overall abundance or diversity of the
community. Although tree mortality rate
induced local changes in deadwood resources,
it only had negative impacts on the guilds and
13
taxonomic families considered in our study,
which is in line with the negative or quadratic
relationships frequently observed in our
analyses. This suggests that late stages of the
decline process, and/or severe declines or
diebacks, would be detrimental for several
ecological guilds of canopy-dwelling
arthropods. When dead trees accumulate,
only scarce fragments of the canopy remain,
and the ecosystem shifts towards open
habitats, where taxa dependant on ground-
related resources and microhabitats (floral
resources, herbaceous layer and soil
conditions) can thrive, leading to a major shift
in forest insect communities. We have shown
that the β-diversity among decline categories
at the stand level significantly contributed to
the overall γ-diversity, mostly through species
turnover. This suggests that, when possible,
maintaining a landscape mosaic including
stands at different levels of decline or dieback,
and/or stands with different levels of canopy
closure, may serve a conservation purpose
(Socolar et al., 2016), especially since
maintaining high habitat heterogeneity is
generally a key goal for the conservation of
insect communities (Samways, 2015).
ACKNOWLEDGEMENTS
We thank C. Moliard (INRAE), G. Parmain
(INRAE), X. Pineau (P2e) and O. Denux (INRAE)
for their technical assistance. We also thank T.
Wood, S. Flaminio and P. Rosa for their help in
determining the Andrenidae, Halictidae and
Chrysididae. We are grateful to the National
Forest Office (Office National des Forêts) for
their field assistance. We would like to thank
Vicky Moore for her English proofreading and
the two anonymous reviewers for their
comments, which helped to improve this
manuscript considerably. This work was
supported by Région Centre-Val de Loire
Project no. 2018-00124136 (CANOPEE)
coordinated by A. Sallé.
SUPPLEMENTARY INFORMATION
Representative specimens of Braconidae,
Ichneumonidae, Halictidae, Andrenidae,
Crabronidae and Pemphredonidae are housed
at the Orleans Museum for Biodiversity and
the Environment (MOBE, Orléans, France). R
scripts, the list of species traits and the list of
plot and stand characteristics can be found at:
https://doi.org/10.57745/H8CBG1
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
REFERENCES
Aberlenc, H.-P. (Ed.), 2020. Les insectes du
monde. Museo Éditions, Plaissan.
Baselga, A., 2010. Partitioning the turnover
and nestedness components of beta diversity:
Partitioning beta diversity. Glob. Ecol.
Biogeogr. 19, 134–143.
https://doi.org/10.1111/j.1466-
8238.2009.00490.x
Baselga, A., Orme, C.D.L., 2012. betapart : an R
package for the study of beta diversity:
Betapart package. Methods Ecol. Evol. 3, 808–
812. https://doi.org/10.1111/j.2041-
210X.2012.00224.x
Bates, D., Maechler, M., Bolker, B., Walker, S.,
Christensen, R.H.B., Singmann, H., Dai, B.,
Scheipl, F., Grothendieck, G., Green, P., Fox, J.,
Bauer, A., simulate.formula), P.N.K. (shared
copyright on, 2022. lme4: Linear Mixed-Effects
Models using “Eigen” and S4.
Beudert, B., Bässler, C., Thorn, S., Noss, R.,
Schröder, B., Dieffenbach-Fries, H., Foullois,
N., Müller, J., 2015. Bark Beetles Increase
Biodiversity While Maintaining Drinking Water
Quality: Bark beetles, biodiversity and drinking
water. Conserv. Lett. 8, 272–281.
https://doi.org/10.1111/conl.12153
Bogusch, P., Horák, J., 2018. Saproxylic Bees
and Wasps, in: Ulyshen, M.D. (Ed.), Saproxylic
Insects, Zoological Monographs. Springer
International Publishing, Cham, pp. 217–235.
https://doi.org/10.1007/978-3-319-75937-1_7
14
Bouget, C., Brustel, H., Brin, A., Noblecourt, T.,
2008. Sampling saproxylic beetles with
window flight traps: methodological insights.
Rev. Ecol. Terre Vie 21–32.
Bouget, C., Cours, J., Larrieu, L, Parmain, G.,
Müller, J., Speckens, V., Sallé, A., 2023. Trait-
Based Response of Deadwood and Tree-
Related Microhabitats to Decline in
Temperate Lowland and Montane Forests.
Ecosystems. https://doi.org/10.1007/s10021-
023-00875-9.
Burkle, L.A., Simanonok, M.P., Durney, J.S.,
Myers, J.A., Belote, R.T., 2019. Wildfires
Influence Abundance, Diversity, and
Intraspecific and Interspecific Trait Variation
of Native Bees and Flowering Plants Across
Burned and Unburned Landscapes. Front.
Ecol. Evol. 7, 252.
https://doi.org/10.3389/fevo.2019.00252
Cacciatori, C., Bacaro, G., Chećko, E., Zaremba,
J., Szwagrzyk, J., 2022. Windstorm effects on
herbaceous vegetation in temperate forest
ecosystems: Changes in plant functional
diversity and species trait values along a
disturbance severity gradient. For. Ecol.
Manag. 505, 119799.
https://doi.org/10.1016/j.foreco.2021.119799
Cours, J., Bouget, C., Barsoum, N., Horák, J., Le
Souchu, E., Leverkus, A.B., Pincebourde, S.,
Thorn, S., Sallé, A., 2023. Surviving in Changing
Forests: Abiotic Disturbance Legacy Effects on
Arthropod Communities of Temperate
Forests. Curr. For. Rep.
https://doi.org/10.1007/s40725-023-00187-0
Cours, J., Sire, L., Ladet, S., Martin, H.,
Parmain, G., Larrieu, L., Moliard, C., Lopez-
Vaamonde, C., Bouget, C., 2022. Drought-
induced forest dieback increases taxonomic,
functional, and phylogenetic diversity of
saproxylic beetles at both local and landscape
scales. Landsc. Ecol. 37, 2025–2043.
https://doi.org/10.1007/s10980-022-01453-5
Crist, T.O., Veech, J.A., Gering, J.C.,
Summerville, K.S., 2003. Partitioning Species
Diversity across Landscapes and Regions: A
Hierarchical Analysis of α, β, and γ Diversity.
Am. Nat. 162, 734–743.
https://doi.org/10.1086/378901
De Cáceres, M., Legendre, P., 2009.
Associations between species and groups of
sites: indices and statistical inference. Ecology
90, 3566–3574.
Delignette-Muller, M.L., Dutang, C., 2015.
fitdistrplus : An R Package for Fitting
Distributions. J. Stat. Softw. 64.
https://doi.org/10.18637/jss.v064.i04
Devictor, V., Julliard, R., Jiguet, F. 2008.
Distribution of specialist and generalist
species along spatial gradients of habitat
disturbance and fragmentation. Oikos, 117,
507-514.
Di Giovanni, F., Mei, M., Cerretti, P., 2017.
Vertical stratification of selected
Hymenoptera in a remnant forest of the Po
Plain (Italy, Lombardy) (Hymenoptera:
Ampulicidae, Crabronidae, Sphecidae). Fragm.
Entomol. 49, 71–77.
Dominik, J., Starzyk, J.R., 1988. Owady
niszczące drewno, Ochrona drewna.
Państwowe Wydawnictwo Rolnicze i Leśne,
Poland.
Douzon, G., 2006. Le point sur les
dépérissements des chênes pédonculés en
forêt de Vierzon. Dép. Santé For. Bilan Santé
For. En 2005 4.
Dufrene, M., Legendre, P., 1997. Species
Assemblages and Indicator Species: The Need
for a Flexible Asymmetrical Approach. Ecol.
Monogr. 67, 345.
https://doi.org/10.2307/2963459
Eckerter, T., Braunisch, V., Buse, J., Klein,
A.M., 2022. Open forest successional stages
and landscape heterogeneity promote wild
bee diversity in temperate forests. Conserv.
Sci. Pract. 4.
https://doi.org/10.1111/csp2.12843
Endres, K.L., Morozumi, C.N., Loy, X., Briggs,
15
H.M., CaraDonna, P.J., Iler, A.M., Picklum,
D.A., Barr, W.A., Brosi, B.J., 2021. Plant–
pollinator interaction niche broadens in
response to severe drought perturbations.
Oecologia 197, 577–588.
https://doi.org/10.1007/s00442-021-05036-0
Floren, A., Linsenmair, K.E., Müller, T. 2022.
Diversity and functional relevance of canopy
arthropods in central Europe. Divers. 14, 660.
Forbes, A.A., Bagley, R.K., Beer, M.A., Hippee,
A.C., Widmayer, H.A., 2018. Quantifying the
unquantifiable: why Hymenoptera, not
Coleoptera, is the most speciose animal order.
BMC Ecol. 18, 21.
https://doi.org/10.1186/s12898-018-0176-x
Fraser, S.E.M., Dytham, C., Mayhew, P.J.,
2007. Determinants of parasitoid abundance
and diversity in woodland habitats:
Determinants of parasitoid abundance and
diversity. J. Appl. Ecol. 44, 352–361.
https://doi.org/10.1111/j.1365-
2664.2006.01266.x
Gaston, K.J., 1991. The Magnitude of Global
Insect Species Richness. Conserv. Biol. 5, 283–
296. https://doi.org/10.1111/j.1523-
1739.1991.tb00140.x
Goudet, M., Nageleisen, L.M., 2019. Protocole
Dépéris: Méthode de notation simplifiée de
l’aspect du houppier des arbres forestiers
dans un contexte de dépérissement. For.
Entrep. 246, 36–40.
Goulet, H., Huber, J.T., 1993. Hymenoptera of
the world: an identification guide to families,
Agriculture Canada Publication. ed,
Publication. Centre for Land and Biological
Resources Research, Ottawa, Ontario, USA.
Grevé, M.E., Hager, J., Weisser, W.W., Schall,
P., Gossner, M.M., Feldhaar, H., 2018. Effect
of forest management on temperate ant
communities. Ecosphere 9, e02303.
https://doi.org/10.1002/ecs2.2303
Grime, J.P., 1973. Competitive Exclusion in
Herbaceous Vegetation. Nature 242, 344–347.
https://doi.org/10.1038/242344a0
Günthardt-Goerg, M.S., Kuster, T.M., Arend,
M., Vollenweider, P., 2013. Foliage response
of young central European oaks to air
warming, drought and soil type: Oak foliage
response to air warming, drought and soil pH.
Plant Biol. 15, 185–197.
https://doi.org/10.1111/j.1438-
8677.2012.00665.x
Herrmann, M., Burger, F., Müller, A., &
ischendorf, S., 2003. Verbreitung, Lebensraum
und Biologie der Furchenbiene Lasioglossum
pallens (Brullé 1832) und ihrer Kuckucksbiene
Sphecodes majalis Pérez 1903 in Deutschland
(Hymenoptera, Apidae, Halictinae). Carolinea,
61, 133-144.
Hilszczański, J., 2018. Ecology, Diversity and
Conservation of Saproxylic Hymenopteran
Parasitoids, in: Ulyshen, M.D. (Ed.), Saproxylic
Insects, Zoological Monographs. Springer
International Publishing, Cham, pp. 193–216.
https://doi.org/10.1007/978-3-319-75937-1_6
Hilszczański, J., Gibb, H., Hjältén, J., Atlegrim,
O., Johansson, T., Pettersson, R.B., Ball, J.P.,
Danell, K., 2005. Parasitoids (Hymenoptera,
Ichneumonoidea) of Saproxylic beetles are
affected by forest successional stage and dead
wood characteristics in boreal spruce forest.
Biol. Conserv. 126, 456–464.
https://doi.org/10.1016/j.biocon.2005.06.026
Horn, H.S., 1975. Markovian properties of
forest succession, in: Cody, M., Diamond, J.M.
(Eds.), Ecology and Evolution of Communities.
Belknap Press, Cambridge, MA, pp. 196–211.
Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an
R package for rarefaction and extrapolation of
species diversity ( H ill numbers). Methods
Ecol. Evol. 7, 1451–1456.
https://doi.org/10.1111/2041-210X.12613
Hu, B., Simon, J., Rennenberg, H., 2013.
Drought and air warming affect the species-
specific levels of stress-related foliar
metabolites of three oak species on acidic and
calcareous soil. Tree Physiol. 33, 489–504.
16
https://doi.org/10.1093/treephys/tpt025
Huber, J.T., 2017. Biodiversity of
Hymenoptera, in: Foottit, R.G., Adler, P.H.
(Eds.), Insect Biodiversity. John Wiley & Sons,
Ltd, Chichester, UK, pp. 419–461.
https://doi.org/10.1002/9781118945568.ch12
Ishii, H., Tanabe, S., Hiura, T., 2004. Exploring
the Relationships Among Canopy Structure,
Stand Productivity, and Biodiversity of
Temperate Forest Ecosystems. For. Sci. 50,
342–355.
Jentsch, A., White, P., 2019. A theory of pulse
dynamics and disturbance in ecology. Ecology
100. https://doi.org/10.1002/ecy.2734
Jonsell, M., Vårdal, H., Forshage, M.,
Stigenberg, J., 2023. Saproxylic Hymenoptera
in dead wood retained on clear cuts, relation
to wood parameters and their degree of
specialisation. J. Insect Conserv. 27, 347–359.
https://doi.org/10.1007/s10841-023-00468-w
Kennedy, C.E.J., Southwood, T.R.E., 1984. The
Number of Species of Insects Associated with
British Trees: A Re-Analysis. J. Anim. Ecol. 53,
455. https://doi.org/10.2307/4528
Kozák, D., Svitok, M., Wiezik, M., Mikoláš, M.,
Thorn, S., Buechling, A., Hofmeister, J.,
Matula, R., Trotsiuk, V., Bače, R., Begovič, K.,
Čada, V., Dušátko, M., Frankovič, M., Horák, J.,
Janda, P., Kameniar, O., Nagel, T.A., Pettit, J.L.,
Pettit, J.M., Synek, M., Wieziková, A.,
Svoboda, M., 2020. Historical Disturbances
Determine Current Taxonomic, Functional and
Phylogenetic Diversity of Saproxylic Beetle
Communities in Temperate Primary Forests.
Ecosystems. https://doi.org/10.1007/s10021-
020-00502-x
Lacourt, J., 2020. Symphytes d’Europe,
Hyménoptères d’Europe. NAP éditions,
Verrières-le-Buisson.
Lande, R., 1996. Statistics and Partitioning of
Species Diversity, and Similarity among
Multiple Communities. Oikos 76, 5.
https://doi.org/10.2307/3545743
Larrieu, L., Courbaud, B., Drénou, C., Goulard,
M., Bütler, R., Kozák, D., Kraus, D., Krumm, F.,
Lachat, T., Müller, J., Paillet, Y., Schuck, A.,
Stillhard, J., Svoboda, M., Vandekerkhove, K.,
2022. Perspectives: Key factors determining
the presence of Tree-related Microhabitats: A
synthesis of potential factors at site, stand and
tree scales, with perspectives for further
research. For. Ecol. Manag. 515, 120235.
https://doi.org/10.1016/j.foreco.2022.120235
Lehnert, L.W., Bässler, C., Brandl, R., Burton,
P.J., Müller, J., 2013. Conservation value of
forests attacked by bark beetles: Highest
number of indicator species is found in early
successional stages. J. Nat. Conserv. 21, 97–
104.
https://doi.org/10.1016/j.jnc.2012.11.003
Lewis, C.N., Whitfield, J.B., 1999. Braconid
Wasp (Hymenoptera: Braconidae) Diversity in
Forest Plots Under Different Silvicultural
Methods. Environ. Entomol. 28, 986–997.
https://doi.org/10.1093/ee/28.6.986
Lu, D., Zhang, G., Zhu, J., Wang, G.G., Zhu, C.,
Yan, Q., Zhang, J., 2019. Early natural
regeneration patterns of woody species within
gaps in a temperate secondary forest. Eur. J.
For. Res. 138, 991–1003.
https://doi.org/10.1007/s10342-019-01219-w
Lüdecke, D., Ben-Shachar, M., Patil, I.,
Waggoner, P., Makowski, D., 2021.
performance: An R Package for Assessment,
Comparison and Testing of Statistical Models.
J. Open Source Softw. 6, 3139.
https://doi.org/10.21105/joss.03139
Lyytikäinen-Saarenmaa, P., Tomppo, E., 2002.
Impact of sawfly defoliation on growth of
Scots pine Pinus sylvestris (Pinaceae) and
associated economic losses. Bull. Entomol.
Res. 92, 137–140.
https://doi.org/10.1079/BER2002154
Maleque, M.A., Maeto, K., Ishii, H.T., 2009.
Arthropods as bioindicators of sustainable
forest management, with a focus on
plantation forests. Appl. Entomol. Zool. 44, 1–
11. https://doi.org/10.1303/aez.2009.1
17
Martel, J., Mauffette, Y., 1997. Lepidopteran
Communities in Temperate Deciduous Forests
Affected by Forest Decline. Oikos 78, 48.
https://doi.org/10.2307/3545799
Mazerolle, M.J., 2023. AICcmodavg: Model
Selection and Multimodel Inference Based on
(Q)AIC(c).
Michez, D., Rasmont, P., Terzo, M., Vereecken,
N., 2019. Hymenoptera of Europe. NAP
Editions, Verrières-le-Buisson.
Mitroiu, M. D., Koutsoukos, E.,
2023. Perilampus neglectus and other
neglected species: new records of Palaearctic
Perilampidae (Hymenoptera, Chalcidoidea),
with a key to European species of Perilampus.
Journal of Hymenoptera Research, 96, 57-99.
Moran, V.C., Southwood, T.R.E. 1982. The
guild composition of arthropod communities
in trees. J. Anim. Ecol., 51, 289-306.
Motten, A.F., 1986. Pollination Ecology of the
Spring Wildflower Community of a Temperate
Deciduous Forest. Ecol. Monogr. 56, 21–42.
https://doi.org/10.2307/2937269
Nageleisen, L.M., 2008. Actualité sur les
dépérissements du “chêne.” Min. Agr. Pêche.
Nieto, A., Roberts, S.P.M., Kemp, J., Rasmont,
P., Kuhlmann, M., García Criado, M.,
Biesmeijer, J.C., Bogusch, P., Dathe, H.H., De la
Rúa, P., 2014. European red list of bees.
Publications Office, Luxembourg.
Oksanen, J., Simpson, G., Blanchet, F.G., Kindt,
R., Legendre, P., Minchin, P., hara, R.,
Solymos, P., Stevens, H., Szöcs, E., Wagner, H.,
Barbour, M., Bedward, M., Bolker, B., Borcard,
D., Carvalho, G., Chirico, M., De Cáceres, M.,
Durand, S., Weedon, J., 2022. vegan
community ecology package version 2.6-2
April 2022.
Perlík, M., Kraus, D., Bußler, H., Neudam, L.,
Pietsch, S., Mergner, U., Seidel, D., Sebek, P.,
Thorn, S., 2023. Canopy openness as the main
driver of aculeate Hymenoptera and
saproxylic beetle diversity following natural
disturbances and salvage logging. For. Ecol.
Manag. 540, 121033.
https://doi.org/10.1016/j.foreco.2023.121033
Pucci, T., 2008. A Comparison of the Parasitic
Wasps (Hymenoptera) at Elevated Versus
Ground Yellow Pan Traps in a Beech-Maple
Forest. J. Hymenopt. Res. 17, 116–123.
R Core Team, 2021. R: A Language and
Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna,
Austria.
Rappa, N.J., Staab, M., Ruppert, L.-S., Frey, J.,
Bauhus, J., Klein, A.-M., 2023. Structural
elements enhanced by retention forestry
promote forest and non-forest specialist bees
and wasps. For. Ecol. Manag. 529, 120709.
https://doi.org/10.1016/j.foreco.2022.120709
Rico-Gray, V., Oliveira, P.S., 2008. The ecology
and evolution of ant-plant interactions.
University of Chicago Press.
Romey, W.L., Ascher, J.S., Powell, D.A., Yanek,
M., 2007. Impacts of Logging on Midsummer
Diversity of Native Bees (Apoidea) in a
Northern Hardwood Forest. J. Kans. Entomol.
Soc. 80, 327–338.
https://doi.org/10.2317/0022-
8567(2007)80[327:IOLOMD]2.0.CO;2
Rouault, G., Candau, J.-N., Lieutier, F.,
Nageleisen, L.-M., Martin, J.-C., Warzée, N.,
2006. Effects of drought and heat on forest
insect populations in relation to the 2003
drought in Western Europe. Ann. For. Sci. 63,
613–624.
https://doi.org/10.1051/forest:2006044
Saintonge, F.-X., Goudet, M., 2020. Situation
sanitaire début 2020 de 52 massifs de chênes
en forêt publique. Dép. Santé For. 5.
Sallé, A., Cours, J., Le Souchu, E., Lopez-
Vaamonde, C., Pincebourde, S., Bouget, C.,
2021. Climate Change Alters Temperate Forest
Canopies and Indirectly Reshapes Arthropod
Communities. Front. For. Glob. Change 4, 8.
18
https://doi.org/10.3389/ffgc.2021.710854
Sallé, A., Parmain, G., Nusillard, B., Pineau, X.,
Brousse, R., Fontaine-Guenel, T., Ledet, R.,
Vincent-Barbaroux, C., Bouget, C., 2020.
Forest decline differentially affects trophic
guilds of canopy-dwelling beetles. Ann. For.
Sci. 77, 21. https://doi.org/10.1007/s13595-
020-00990-w
Samaniego, L., Thober, S., Kumar, R.,
Wanders, N., Rakovec, O., Pan, M., Zink, M.,
Sheffield, J., Wood, E.F., Marx, A., 2018.
Anthropogenic warming exacerbates
European soil moisture droughts. Nat. Clim.
Change 8, 421–426.
https://doi.org/10.1038/s41558-018-0138-5
Samways, M.J., 2015. Future-proofing insect
diversity. Curr. Opin. Insect Sci. 12, 71–78.
https://doi.org/10.1016/j.cois.2015.09.008
Santoiemma, G., Williams, D., Booth, E.G.,
Cavaletto, G., Curletti, G., de Groot, M.,
Devine, S.M., Enston, A., Francese, J.A.,
Franzen E.K.L., Giasson, M., Groznik, E.,
Gutowski, J.M., Hauptman, T., Hoch, G.,
Hoppe, B., Hughes, C., Kostaniwicz, C.,
Peterson D.L., Plewa, R., Ray, A.M., Sallé, A.,
Sućko, K., Sweeney, J., Van Rooyen, K., Rassati,
D. in press. Efficacy of trapping protocols for
Agrilus jewel beetles (Coleoptera:
Buprestidae): a multi-country assessment. J.
Pest Sci.
Seibold, S., Cadotte, M.W., MacIvor, J.S.,
Thorn, S., Müller, J., 2018. The necessity of
multitrophic approaches in community
ecology. Trends Ecol. Evol. 33, 754–764.
https://doi.org/10.1016/j.tree.2018.07.001
Seidl, R., Thom, D., Kautz, M., Martin-Benito,
D., Peltoniemi, M., Vacchiano, G., Wild, J.,
Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J.,
Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika,
M., Nagel, T.A., Reyer, C.P.O., 2017. Forest
disturbances under climate change. Nat. Clim.
Change 7, 395–402.
https://doi.org/10.1038/nclimate3303
Senf, C., Pflugmacher, D., Zhiqiang, Y., Sebald,
J., Knorn, J., Neumann, M., Hostert, P., Seidl,
R., 2018. Canopy mortality has doubled in
Europe’s temperate forests over the last three
decades. Nat. Commun. 9, 4978.
https://doi.org/10.1038/s41467-018-07539-6
Slippers, B., Hurley, B.P., Wingfield, M.J., 2015.
Sirex Woodwasp: A Model for Evolving
Management Paradigms of Invasive Forest
Pests. Annu. Rev. Entomol. 60, 601–619.
https://doi.org/10.1146/annurev-ento-
010814-021118
Smith, S.M., Islam, N., Bellocq, M.I., 2012.
Effects of single-tree selection harvesting on
hymenopteran and saproxylic insect
assemblages in the canopy and understory of
northern temperate forests. J. For. Res. 23,
275–284. https://doi.org/10.1007/s11676-
012-0253-5
Sobek, S., Tscharntke, T., Scherber, C., Schiele,
S., Steffan-Dewenter, I., 2009. Canopy vs.
understory: Does tree diversity affect bee and
wasp communities and their natural enemies
across forest strata? For. Ecol. Manag. 258,
609–615.
https://doi.org/10.1016/j.foreco.2009.04.026
Socolar, J.B., Gilroy, J.J., Kunin, W.E., Edwards,
D.P., 2016. How Should Beta-Diversity Inform
Biodiversity Conservation? Trends Ecol. Evol.
31, 67–80.
https://doi.org/10.1016/j.tree.2015.11.005
Soininen, J., Heino, J., Wang, J., 2018. A meta-
analysis of nestedness and turnover
components of beta diversity across
organisms and ecosystems. Glob. Ecol.
Biogeogr. 27, 96–109.
https://doi.org/10.1111/geb.12660
Spinoni, J., Vogt, J.V., Naumann, G., Barbosa,
P., Dosio, A., 2018. Will drought events
become more frequent and severe in Europe?
Int. J. Climatol. 38, 1718–1736.
https://doi.org/10.1002/joc.5291
Stone, A.C., Gehring, C.A., Whitham, T.G.,
2010. Drought negatively affects communities
on a foundation tree: growth rings predict
19
diversity. Oecologia 164, 751–761.
https://doi.org/10.1007/s00442-010-1684-3
Stone, G.N., Schönrogge, K., Atkinson, R.J.,
Bellido, D., Pujade-Villar, J., 2002. The
population biology of oak gall wasps
(Hymenoptera: Cynipidae). Annu. Rev.
Entomol. 47, 633–668.
Tausan, I., Dauber, J., Trica, M.R., Marko, B.,
2017. Succession in ant communities
(Hymenoptera: Formicidae) in deciduous
forest clear-cuts - an Eastern European case
study. Eur. J. Entomol. 114, 92–100.
https://doi.org/10.14411/eje.2017.013
Ulyshen, M.D., 2016. Wood decomposition as
influenced by invertebrates: Invertebrates and
wood decomposition. Biol. Rev. 91, 70–85.
https://doi.org/10.1111/brv.12158
Ulyshen, M.D., 2011. Arthropod vertical
stratification in temperate deciduous forests:
Implications for conservation-oriented
management. For. Ecol. Manag. 261, 1479–
1489.
https://doi.org/10.1016/j.foreco.2011.01.033
Ulyshen, M.D., Pucci, T.M., Hanula, J.L., 2011a.
The importance of forest type, tree species
and wood posture to saproxylic wasp
(Hymenoptera) communities in the
southeastern United States. J. Insect Conserv.
15, 539–546. https://doi.org/10.1007/s10841-
010-9348-5
Ulyshen, M.D., Soon, V., Hanula, J.L., 2011b.
Vertical Distribution and Seasonality of
Predatory Wasps (Hymenoptera: Vespidae) in
a Temperate Deciduous Forest. Fla. Entomol.
94, 1068–1070.
https://doi.org/10.1653/024.094.0450
Urban-Mead, K.R., Muñiz, P., Gillung, J.,
Espinoza, A., Fordyce, R., Dyke, M. van, McArt,
S.H., Danforth, B.N., 2021. Bees in the trees:
Diverse spring fauna in temperate forest edge
canopies. For. Ecol. Manag. 482, 118903.
https://doi.org/10.1016/j.foreco.2020.118903
Vance, C.C., Smith, S.M., Malcolm, J.R., Huber,
J., Bellocq, M.I., 2007. Differences Between
Forest Type and Vertical Strata in the Diversity
and Composition of Hymenpteran Families
and Mymarid Genera in Northeastern
Temperate Forests. Environ. Entomol. 36,
1073–1083. https://doi.org/10.1603/0046-
225X(2007)36[1073:DBFTAV]2.0.CO;2
Viljur, M., Abella, S.R., Adámek, M., Alencar,
J.B.R., Barber, N.A., Beudert, B., Burkle, L.A.,
Cagnolo, L., Campos, B.R., Chao, A., Chergui,
B., Choi, C., Cleary, D.F.R., Davis, T.S., Dechnik‐
Vázquez, Y.A., Downing, W.M., Fuentes‐
Ramirez, A., Gandhi, K.J.K., Gehring, C.,
Georgiev, K.B., Gimbutas, M., Gongalsky, K.B.,
Gorbunova, A.Y., Greenberg, C.H., Hylander,
K., Jules, E.S., Korobushkin, D.I., Köster, K.,
Kurth, V., Lanham, J.D., Lazarina, M., Leverkus,
A.B., Lindenmayer, D., Marra, D.M., Martín‐
Pinto, P., Meave, J.A., Moretti, M., Nam, H.,
Obrist, M.K., Petanidou, T., Pons, P., Potts,
S.G., Rapoport, I.B., Rhoades, P.R., Richter, C.,
Saifutdinov, R.A., Sanders, N.J., Santos, X.,
Steel, Z., Tavella, J., Wendenburg, C.,
Wermelinger, B., Zaitsev, A.S., Thorn, S., 2022.
The effect of natural disturbances on forest
biodiversity: an ecological synthesis. Biol. Rev.
97, 1930–1947.
https://doi.org/10.1111/brv.12876
Vincent, A., Tillier, P., Vincent-Barbaroux, C.,
Bouget, C., Salle, A., 2020. Influence of forest
decline on the abundance and diversity of
Raphidioptera and Mecoptera species
dwelling in oak canopies. Eur. J. Entomol. 117,
372–379.
https://doi.org/10.14411/eje.2020.041
Wickham, H., 2016. ggplot2: Elegant Graphics
for Data Analysis. Springer-Verlag New York.
Yumoto, T., 1987. Pollination systems in a
warm temperate evergreen broad-leaved
forest on Yaku Island. Ecol. Res. 2, 133–145.
https://doi.org/10.1007/BF02346922
Zemlerová, V., Kozák, D., Mikoláš, M., Svitok,
M., Bače, R., Smyčková, M., Buechling, A.,
Martin, M., Larrieu, L., Paillet, Y., Roibu, C.-C.,
Petritan, I.C., Čada, V., Ferenčík, M., Frankovič,
M., Gloor, R., Hofmeister, J., Janda, P.,
1
Tables
Table 1. Overall β-diversity, β turnover and β nestedness between pairs of stand-decline category.
Overall β-diversity corresponds to Sorensen dissimilarity, β turnover to Simpson dissimilarity and β
nestedness to the difference between Sorensen and Simpson dissimilarity. H = healthy stands, MD =
moderately declining stands, SD = severely declining stands.
Overall β-diversity
β turnover
β nestedness
Among plots
0.95
0.93 (97.89%)
0.02 (2.11%)
Among stands
0.89
0.85 (95.51%)
0.04 (4.49%)
Among categories of stand decline
0.47
0.41 (87.23%)
0.06 (12.77%)
Between H and MD stands
0.37
0.29 (78.38%)
0.08 (21.62%)
Between MD and SD stands
0.38
0.32 (84.21%)
0.06 (15.79%)
Between H and SD stands
0.42
0.40 (95.24%)
0.02 (4.76%)
1
Figures
Figure 1
Figure 1. Map of France showing the location of the three oak forests studied, and the 21 stands sampled. Colors indicate the level of stand decline,
according to the proportion of declining trees: < 30%: healthy stand; 30-60%: moderately declining stand; > 60%: severely declining. Details on the stands
can be found in Tab. S1.
2
Figure 2. Overview of the diversity and abundance (log-transformed) of the Hymenoptera families sampled in oak canopies. Families are arranged in three
taxonomic groups: “Symphyta”, Apocrita Aculeata and Apocrita parasitica. Numbers between brackets indicate the number of individuals and the number of
taxa identified for each family.
3
Figure 3
Figure 3. Responses of the community of canopy-dwelling Hymenoptera, collected from three oak forests, 21 stands and 42 plots, to stand decline severity.
A) Rarefaction curves for the overall dataset and for healthy (H: < 30% of trees are declining), moderately declining (MD: 30-60% of trees are declining) and
4
severely declining (SD: > 60% of trees are declining) stands. B) NMDS ordination (k=3, stress=0.18) of species composition per plot, grouped by stand decline
category. C) Global additive partitioning of species richness of the canopy-dwelling Hymenoptera in the three oak forests, at plot and stand scales. Four
levels are represented: α plot (within plot), β plot (among plots), β stand (among stands) and β cat_stand (among levels of stand decline). Significance levels
correspond to the difference between expected and observed values, with ***: p < 0.001; . : p < 0.1. H = healthy stands, MD = moderately declining stands,
SD = severely declining stands, Overall = all stands. See main text for details on stand decline categories.
5
Figure 4
6
7
Figure 4. Graphical representations of the predicted linear (in dark green) or quadratic (in orange) relationships between the abundance (A) or species
richness (B) of larval trophic or nesting guilds and the mean proportion (prop.) of declining oak per stand. ggeffects::ggpredict was used to predict the
values. The grey area corresponds to the confidence interval for the predicted values. When the quadratic model is the best model, d1 and d2 are displayed,
with d1 corresponding to the linear form of the decline and d2 to the quadratic form of the decline. Est. corresponds to the estimate and only significant
relationships are shown (*** p < 0.001, ** p < 0.01, * p < 0.05). Standard error, t and z value and marginal R² are available in Tables S8 and S9.
8
Figure 5
Figure 5. Results of the Structural Equation Modelling (SEM) for the effects of oak decline on Hymenoptera ecological guilds through changes in forest
structure. Since we tested 16 predictors, we used 0.0031 as the p.value (0.05/16). The transparent lines had a p.value below 0.05 but above 0.0031 and
helped to explain the response variables in the multiple regression models. LAI: leaf area index, vol.: volume, DW: deadwood, LW: living wood, N: density,
DBH: diameter at breast height, CWM: community-weighted mean trait value, FDis: functional diversity, Med: medium-sized, LarVer: large and very large,
dec12: low level of decay, dec34: high level of decay.
9
10
SUPPLEMENTARY DATA - TABLES
Table S1. Stand and plot locations and characteristics. Q: Quercus, P: Pinus, F: Fagus, C: Carpinus, Po: Populus, T: Tilia, Ca: Castanea, So: Sorbus, B: Betulus,
Sa: Salix, Fr: Frangula.
Forest
Stand
Plot
Long.
Lat.
Mean plot
decline rate
Mean stand
decline rate
Mean stand
height (m)
Mean stand
DBH (cm) ± SE
Stand tree density
(tree/ha)
Oak basal area
(m²/ha)
Stand composition
(dominant level)
Stand composition
(understory)
Marcenat
12
12_1
3.36082
46.24709
0.6
0.56
29
56 ± 6
154
19
Q
C
Marcenat
12
12_3
3.36194
46.24607
0.48
0.56
29
56 ± 6
154
19
Q
C
Vierzon
19
19_1
2.18129
47.25792
1.00
0.95
26
57 ± 3
87
18
Q, P
C
Vierzon
19
19_3
2.18125
47.25891
0.85
0.95
26
57 ± 3
87
18
Q, P
C
Vierzon
35
35_1
2.17526
47.29789
0.2
0.43
26
53 ± 3
105
21
Q, P, F
C
Vierzon
35
35_3
2.17310
47.29719
0.8
0.43
26
53 ± 3
105
21
Q, P, F
C
Marcenat
37
37_1
3.37381
46.23167
0.15
0.2
37
79 ± 4
76
18
Q
C, T
Marcenat
37
37_3
3.37339
46.22902
0.3
0.2
37
79 ± 4
76
18
Q
C, T
Marcenat
58
58_1
3.35888
46.20639
0.2
0.52
23
40 ± 4
389
33
Q
C
Marcenat
58
58_3
3.36050
46.20959
0.8
0.52
23
40 ± 4
389
33
Q
C
Vierzon
70
70_1
2.15505
47.29036
0.65
0.83
24
50 ± 6
58
9
Q, P, F
P
Vierzon
70
70_2
2.15439
47.28989
0.95
0.83
24
50 ± 6
58
9
Q, P, F
P
Vierzon
71
71_1
2.15458
47.28711
0.45
0.68
25
47 ± 3
105
15
Q, P, F
F
Vierzon
71
71_2
2.15554
47.28721
0.7
0.68
25
47 ± 3
105
15
Q, P, F
F
Vierzon
81
81_1
2.19792
47.26712
0.075
0.14
24
43 ± 2
197
15
Q
C
Vierzon
81
81_2
2.19679
47.26614
0.05
0.14
24
43 ± 2
197
15
Q
C
Vierzon
179
179_1
2.11877
47.26536
0.575
0.65
29
64 ± 6
81
21
Q
Vierzon
179
179_3
2.11811
47.26589
0.55
0.65
29
64 ± 6
81
21
Q
Vierzon
236
236_1
2.08074
47.26758
0.4
0.43
24
73 ± 4
88
23
Q, F
C, F, B
Vierzon
236
236_3
2.07986
47.27009
0.65
0.43
24
73 ± 4
88
23
Q, F
C, F, B
Vierzon
249
249_1
2.06739
47.26554
0.65
0.64
25
52 ± 2
127
22
Q, P, C
Vierzon
249
249_2
2.06770
47.26462
0.41
0.64
25
52 ± 2
127
22
Q, P, C
Vierzon
290
290_1
2.03273
47.26114
0.075
0.32
24
50 ± 2
160
22
Q
So
Vierzon
290
290_2
2.03277
47.26007
0.45
0.32
24
50 ± 2
160
22
Q
So
Orléans
351
351_1
2.46153
47.86942
0.05
0.02
24
63 ± 5
136
18
Q, P
Ca, So
Orléans
351
351_2
2.46296
47.86943
0,00
0.03
24
63 ± 5
136
18
Q, P
Ca, So
11
Orléans
751
751_1
2.29365
47.98251
0.5
0.40
27
64 ± 4
107
24
Q, F
P, C
Orléans
751
751_2
2.29409
47.98275
0.4
0.41
27
64 ± 4
107
24
Q, F
P, C
Orléans
1140
1140_1
2.18281
48.03878
0.75
0.73
25
72 ± 6
90
26
Q
Fr
Orléans
1140
1140_2
2.18181
48.039
0.75
0.74
25
72 ± 6
90
26
Q
Fr
Orléans
1343
1343_1
1.98182
48.00018
0,00
0.02
28
75 ± 4
100
28
Q
C
Orléans
1343
1343_2
1.98265
47.99997
0,00
0.03
28
75 ± 4
100
28
Q
C
Orléans
1344
1344_1
1.97403
47.99847
0.3
0.47
24
78 ± 5
74
27
Q
C
Orléans
1344
1344_2
1.97383
47.99771
0.4
0.48
24
78 ± 5
74
27
Q
C
Orléans
1427
1427_2
1.95332
47.94775
0.5
0.52
26
140
15
Q, P
C, Sa
Orléans
1427
1427_3
1.95451
47.94805
0.1
0.53
26
140
15
Q, P
C, Sa
Orléans
1490
1490_1
1.90605
48.01824
0.15
0.1
23
70 ± 9
73
17
Q, Po
C
Orléans
1490
1490_3
1.90521
48.01915
0.15
0.1
23
70 ± 9
73
17
Q, Po
C
Orléans
1491
1491_1
1.90963
48.01389
0.2
0.1
23
65 ± 3
90
17
Q, Po
C
Orléans
1491
1491_2
1.90888
48.01383
0.1
0.1
23
65 ± 3
90
17
Q, Po
C
Orléans
1502
1502_1
1.90291
48.01353
0.5
0.27
21
48 ± 3
222
16
Q, Po
C
Orléans
1502
1502_3
1.90158
48.01330
0.15
0.28
21
48 ± 3
222
16
Q, Po
C
1
Table S2. List of taxa collected in 2019 in the canopy of three oak forests in France. Larval trophic
guild: carnivorous (Carn.), idiobiont parasitoid (Par. I.), koinobiont parasitoid (Par. K.), phyllophagous
feeding on oaks (O. Phyll.), phyllophagous feeding on other host plants (N. O. Phyll.), phytophagous
(Phyt.), pollinivorous / nectarivorous (Poll./Nec.), polyphagous (Poly.), xylophagous (Xyl.). Nesting
site: soil (So.), wood (Wo.), stems (St.), galls (Ga.). IUCN status: ERL corresponds to the European Red
List and WRL to the Worldwide Red List. Abund.: abundance. Species in bold are new to France.
Family
Taxa
Larval
trophic
guild
Nesting site
IUCN
(2022)
Abund.
Identifier
So.
Wo.
St.
Ga.
Ampulicidae
Ampulex fasciata Jurine, 1807
Carn.
4
P. Burguet
Ampulicidae
Dolichurus corniculus
(Spinola, 1808)
Carn.
2
F. Herbrecht
Andrenidae
Andrena afzeliella (Kirby, 1802)
Poll./Nec.
2
T. Wood
Andrenidae
Andrena angustior (Kirby, 1802)
Poll./Nec.
ERL (DD)
1
T. Wood
Andrenidae
Andrena bicolor Fabricius, 1775
Poll./Nec.
ERL (LC)
2
T. Wood
Andrenidae
Andrena bimaculata
(Kirby, 1802)
Poll./Nec.
ERL (DD)
1
T. Wood
Andrenidae
Andrena chrysosceles
(Kirby, 1802)
Poll./Nec.
ERL (DD)
5
T. Wood
Andrenidae
Andrena cinerea Brullé, 1832
Poll./Nec.
ERL (DD)
8
T. Wood
Andrenidae
Andrena dorsata (Kirby, 1802)
Poll./Nec.
ERL (DD)
13
T. Wood
Andrenidae
Andrena ferox Smith, 1847
Poll./Nec.
ERL (DD)
50
T. Wood
Andrenidae
Andrena flavipes Panzer, 1799
Poll./Nec.
ERL (LC)
3
T. Wood
Andrenidae
Andrena fulva (Müller, 1766)
Poll./Nec.
ERL (DD)
8
T. Wood
Andrenidae
Andrena fulvida Schenck, 1853
Poll./Nec.
ERL (NT)
4
T. Wood
Andrenidae
Andrena haemorrhoa
(Fabricius, 1781)
Poll./Nec.
ERL (LC)
21
T. Wood
Andrenidae
Andrena helvola
(Linnaeus, 1758)
Poll./Nec.
ERL (DD)
4
T. Wood
Andrenidae
Andrena minutula (Kirby, 1802)
Poll./Nec.
ERL (DD)
8
T. Wood
Andrenidae
Andrena minutuloides
Perkins, 1914
Poll./Nec.
ERL (DD)
2
T. Wood
Andrenidae
Andrena mitis
Schmiedeknecht, 1883
Poll./Nec.
ERL (DD)
4
T. Wood
Andrenidae
Andrena nigroaenea
(Kirby, 1802)
Poll./Nec.
ERL (LC)
6
T. Wood
Andrenidae
Andrena nitida (Müller, 1776)
Poll./Nec.
ERL (LC)
5
T. Wood
Andrenidae
Andrena propinqua
Schenck, 1853
Poll./Nec.
ERL (DD)
1
T. Wood
Andrenidae
Andrena scotica Perkins, 1916
Poll./Nec.
18
T. Wood
Andrenidae
Andrena strohmella
Stoeckhert, 1928
Poll./Nec.
ERL (LC)
4
T. Wood
Andrenidae
Andrena subopaca
Nylander, 1848
Poll./Nec.
ERL (LC)
3
T. Wood
Andrenidae
Andrena sulcata Donovan, 1977
Poll./Nec.
10
T. Wood
Andrenidae
Andrenidae sp.
Poll./Nec.
30
LBLGC team
Apidae
Apis mellifera Linnaeus, 1758
Poll./Nec.
ERL (DD)
32
LBLGC team
Apidae
Bombus gr. terrestris
Poll./Nec.
21
D. Michez
Apidae
Bombus (Psithyrus) sp.
Poll./Nec.
1
LBLGC team
Apidae
Nomada sp.
Poll./Nec.
3
LBLGC team
Argidae
Arge rustica (Linnaeus, 1758)
O. Phyll.
3
T. Noblecourt
Argidae
Sterictiphora longicornis
Chevin, 1982
N.O. Phyll.
2
T. Noblecourt
Bembicidae
Argogorytes mystaceus
(Linnaeus, 1760)
Carn.
1
P. Burguet
2
Bembicidae
Gorytes quinquecinctus
(Fabricius, 1793)
Carn.
1
P. Burguet
Bembicidae
Lestiphorus bicinctus
(Rossi, 1794)
Carn.
1
P. Burguet
Bethylidae
Bethylus boops (Thomson, 1861)
Par. I.
4
E. Marhic
Bethylidae
Bethylus dendrophilus
Richards, 1939
Par. I.
5
E. Marhic
Bethylidae
Bethylus fuscicornis
(Jurine, 1807)
Par. I.
3
E. Marhic
Bethylidae
Epyris cf. bilineatus
Par. I.
8
E. Marhic
Bethylidae
Epyris niger Westwood, 1832
Par. I.
7
E. Marhic
Bethylidae
Laelius femoralis
(Foerster, 1860)
Par. I.
6
E. Marhic
Bethylidae
Parascleroderma sulcatifrons
(Kieffer, 1908)
Par. I.
1
E. Marhic
Bethylidae
Plastanoxus evansi
Gorbatovsky, 1995
Par. I.
1
E. Marhic, J.
De Rond
Braconidae
Acampsis alternipes
(Nees, 1816)
Par. K.
4
Y. Braet
Braconidae
Ascogaster annularis
(Nees, 1816)
Par. K.
1
Y. Braet
Braconidae
Ascogaster armata
Wesmael, 1835
Par. K.
1
Y. Braet
Braconidae
Ascogaster exigua
Huddleston, 1984
Par. K.
2
Y. Braet
Braconidae
Ascogaster sp. 1
Par. K.
1
Y. Braet
Braconidae
Ascogaster sp. 2
Par. K.
1
Y. Braet
Braconidae
Ascogaster varipes
Wesmael, 1835
Par. K.
16
Y. Braet
Braconidae
Aspicolpus sp.
Par. K.
2
Y. Braet
Braconidae
Bassus sp. 1
Par. K.
38
Y. Braet
Braconidae
Bassus sp. 2
Par. K.
22
Y. Braet
Braconidae
Bassus sp. 3
Par. K.
1
Y. Braet
Braconidae
Bassus sp. 4
Par. K.
2
Y. Braet
Braconidae
Blacinae sp. 1
Par. K.
1
Y. Braet
Braconidae
Blacinae sp. 2
Par. K.
1
Y. Braet
Braconidae
Blacinae sp. 3
Par. K.
1
Y. Braet
Braconidae
Blacinae sp. 4
Par. K.
1
Y. Braet
Braconidae
Blacinae sp. 5
Par. K.
1
Y. Braet
Braconidae
Blacinae sp. 6
Par. K.
1
Y. Braet
Braconidae
Blacinae sp. 7
Par. K.
1
Y. Braet
Braconidae
Blacinae sp. 8
Par. K.
1
Y. Braet
Braconidae
Blacinae sp. 9
Par. K.
1
Y. Braet
Braconidae
Braconidae sp.
Par.
4
LBLGC team
Braconidae
Braconinae sp. 1
Par. I.
1
Y. Braet
Braconidae
Braconinae sp. 2
Par. I.
1
Y. Braet
Braconidae
Braconinae sp. 3
Par. I.
1
Y. Braet
Braconidae
Braconinae sp. 4
Par. I.
1
Y. Braet
Braconidae
Braconinae sp. 5
Par. I.
2
Y. Braet
Braconidae
Braconinae sp. 6
Par. I.
2
Y. Braet
Braconidae
Braconinae sp. 7
Par. I.
1
Y. Braet
Braconidae
Braconinae sp. 8
Par. I.
1
Y. Braet
Braconidae
Chrysopophthorus hungaricus
(Zilahi-Kiss, 1927)
Par. K.
2
Y. Braet
Braconidae
Dendrosoter protuberans
(Nees, 1834)
Par. I.
3
Y. Braet
Braconidae
Diospilus sp. 1
Par. K.
9
Y. Braet
Braconidae
Diospilus sp. 2
Par. K.
1
Y. Braet
Braconidae
Diospilus sp. 3
Par. K.
1
Y. Braet
3
Braconidae
Diospilus sp. 4
Par. K.
23
Y. Braet
Braconidae
Diospilus sp. 5
Par. K.
1
Y. Braet
Braconidae
Doryctes aff. mutillator
Par. I.
3
Y. Braet
Braconidae
Doryctes leucogaster
(Nees, 1834)
Par. I.
7
Y. Braet
Braconidae
Doryctinae sp. 1
Par. I.
1
Y. Braet
Braconidae
Doryctinae sp. 2
Par. I.
1
Y. Braet
Braconidae
Doryctinae sp. 3
Par. I.
1
Y. Braet
Braconidae
Earinus elator (Fabricius, 1804)
Par. K.
180
Y. Braet
Braconidae
Earinus gloriatorius
(Panzer, 1809)
Par. K.
43
Y. Braet
Braconidae
Eubazus sp. 1
Par. K.
4
Y. Braet
Braconidae
Eubazus sp. 2
Par. K.
2
Y. Braet
Braconidae
Eubazus sp. 3
Par. K.
1
Y. Braet
Braconidae
Eubazus sp. 4
Par. K.
2
Y. Braet
Braconidae
Eubazus sp. 5
Par. K.
8
Y. Braet
Braconidae
Eubazus sp. 6
Par. K.
1
Y. Braet
Braconidae
Eubazus sp. 7
Par. K.
2
Y. Braet
Braconidae
Eubazus sp. 8
Par. K.
5
Y. Braet
Braconidae
Gnamptodon pilosus
(van Achterberg, 1983)
Par. K.
2
Y. Braet
Braconidae
Gnamptodon pumilio
(Nees, 1834)
Par. K.
1
Y. Braet
Braconidae
Hecabolus sulcatus Curtis, 1834
Par. I.
1
Y. Braet
Braconidae
Helcon claviventris
Wesmael, 1835
Par. K.
6
Y. Braet
Braconidae
Helcon tardator Nees, 1812
Par. K.
8
Y. Braet
Braconidae
Homolobus flagitator
(Curtis, 1837)
Par. K.
1
Y. Braet
Braconidae
Macrocentrus bicolor
Curtis, 1833
Par. K.
9
Y. Braet
Braconidae
Macrocentrus flavus
Snellen van Vollenhoven, 1878
Par. K.
3
Y. Braet
Braconidae
Macrocentrus marginator
(Nees, 1811)
Par. K.
3
Y. Braet
Braconidae
Macrocentrus nitidus
(Wesmael, 1835)
Par. K.
42
Y. Braet
Braconidae
Meteorus aff. longipilosus
Par. K.
18
Y. Braet
Braconidae
Meteorus sp.1
Par. K.
1
Y. Braet
Braconidae
Meteorus sp.2
Par. K.
2
Y. Braet
Braconidae
Meteorus sp.3
Par. K.
1
Y. Braet
Braconidae
Meteorus sp.4
Par. K.
1
Y. Braet
Braconidae
Meteorus sp.5
Par. K.
2
Y. Braet
Braconidae
Metopiinae sp. 1
Par. K.
2
Y. Braet
Braconidae
Metopiinae sp. 10
Par. K.
2
Y. Braet
Braconidae
Metopiinae sp. 11
Par. K.
2
Y. Braet
Braconidae
Metopiinae sp. 12
Par. K.
2
Y. Braet
Braconidae
Metopiinae sp. 13
Par. K.
7
Y. Braet
Braconidae
Metopiinae sp. 14
Par. K.
1
Y. Braet
Braconidae
Metopiinae sp. 15
Par. K.
11
Y. Braet
Braconidae
Metopiinae sp. 16
Par. K.
27
Y. Braet
Braconidae
Metopiinae sp. 2
Par. K.
1
Y. Braet
Braconidae
Metopiinae sp. 3
Par. K.
2
Y. Braet
Braconidae
Metopiinae sp. 4
Par. K.
1
Y. Braet
Braconidae
Metopiinae sp. 5
Par. K.
3
Y. Braet
Braconidae
Metopiinae sp. 6
Par. K.
1
Y. Braet
Braconidae
Metopiinae sp. 7
Par. K.
4
Y. Braet
Braconidae
Metopiinae sp. 8
Par. K.
1
Y. Braet
Braconidae
Metopiinae sp. 9
Par. K.
1
Y. Braet
4
Braconidae
Ontsira aff. imperator
Par. I.
8
Y. Braet
Braconidae
Opiinae sp. 1
Par. K.
1
Y. Braet
Braconidae
Opiinae sp. 2
Par. K.
1
Y. Braet
Braconidae
Opiinae sp. 3
Par. K.
1
Y. Braet
Braconidae
Orgilus sp. 1
Par. K.
3
Y. Braet
Braconidae
Orgilus sp. 2
Par. K.
2
Y. Braet
Braconidae
Peristenus aff. picipes
Par. K.
4
Y. Braet
Braconidae
Phanerotoma ocularis
Kohl, 1906
Par. K.
1
Y. Braet
Braconidae
Phanerotoma robusta
Zettel, 1988
Par. K.
4
Y. Braet
Braconidae
Phanerotoma sp. 1
Par. K.
1
Y. Braet
Braconidae
Phanerotoma sp. 2
Par. K.
2
Y. Braet
Braconidae
Polystenus rugosus
Förster, 1862
Par. I.
3
Y. Braet
Braconidae
Rhoptrocentrus piceus
Marshall, 1897
Par. I.
8
Y. Braet
Braconidae
Rogadinae sp. 1
Par. K.
4
Y. Braet
Braconidae
Rogadinae sp. 2
Par. K.
1
Y. Braet
Braconidae
Rogadinae sp. 3
Par. K.
1
Y. Braet
Braconidae
Rogadinae sp. 4
Par. K.
1
Y. Braet
Braconidae
Rogadinae sp. 5
Par. K.
2
Y. Braet
Braconidae
Spathius aff. brevicaudis
Par. I.
8
Y. Braet
Braconidae
Spathius aff. rubidus
Par. I.
4
Y. Braet
Braconidae
Spathius polonicus
Niezabitowski, 1910
Par. I.
2
Y. Braet
Braconidae
Triaspis sp.1
Par. K.
1
Y. Braet
Braconidae
Triaspis sp.2
Par. K.
1
Y. Braet
Braconidae
Triaspis sp.3
Par. K.
2
Y. Braet
Braconidae
Triaspis sp.4
Par. K.
3
Y. Braet
Braconidae
Triaspis sp.5
Par. K.
4
Y. Braet
Braconidae
Triaspis sp.6
Par. K.
2
Y. Braet
Braconidae
Triaspis sp.7
Par. K.
19
Y. Braet
Braconidae
Triaspis sp.8
Par. K.
2
Y. Braet
Braconidae
Triaspis sp.9
Par. K.
1
Y. Braet
Braconidae
Wroughtonia spinator
(Lepeletier de Saint Fargeau &
Audinet-Serville, 1827)
Par. K.
5
Y. Braet
Braconidae
Zele albiditarsus Curtis, 1832
Par. K.
1
Y. Braet
Braconidae
Zele chlorophthalmus
(Spinola, 1808)
Par. K.
3
Y. Braet
Braconidae
Zele deceptor (Wesmael, 1835)
Par. K.
3
Y. Braet
Cephidae
Cephus pygmaeus
(Linnaeus, 1767)
Phyto.
2
T. Noblecourt
Cephidae
Janus cynosbati (Linnaeus, 1758)
Phyto.
2
T. Noblecourt
Cephidae
Janus luteipes (Le Peletier, 1823)
Phyto.
1
T. Noblecourt
Ceraphronidae
Aphanogmus sp.
Par. K.
2
A. Staverlokk
Ceraphronidae
Ceraphron sp.
Par. K.
5
A. Staverlokk,
P.N. Buhl
Ceraphronidae
Conostigmus abdominalis
(Boheman, 1832)
Par. K.
1
A. Staverlokk
Chalcididae
Brachymeria femorata
(Panzer, 1801)
Par. K.
1
E. Marhic
Chalcididae
Brachymeria minuta
(Linnaeus, 1767)
Par. K.
1
J-Y. Rasplus
Chalcididae
Brachymeria rugulosa
(Förster, 1859)
Par. K.
1
E. Marhic
Chalcididae
Haltichella rufipes
(Olivier, 1791)
Par. K.
2
E. Marhic, J-Y.
Rasplus
5
Chrysididae
Chrysis corusca Valkeila, 1971
Par. I.
2
E. Marhic
Chrysididae
Chrysis equestris Dahlbom, 1854
Par. I.
1
E. Marhic, P.
Rosa
Chrysididae
Chrysis fasciata Olivier, 1790
Par. I.
3
E. Marhic
Chrysididae
Chrysis fulgida Linnaeus, 1761
Par. I.
6
E. Marhic
Chrysididae
Chrysis gr. ignita
Par. I.
12
E. Marhic
Chrysididae
Chrysis longula
Abeille de Perrin, 1879
Par. I.
2
E. Marhic
Chrysididae
Chrysis pseudobrevitarsis
Linsenmaier, 1951
Par. I.
4
E. Marhic
Chrysididae
Chrysis ragusae
De-Stefani, 1888
Par. I.
1
E. Marhic
Chrysididae
Chrysis solida Haupt, 1956
Par. I.
1
E. Marhic
Chrysididae
Chrysis terminata
Dahlbom, 1854
Par. I.
34
E. Marhic
Chrysididae
Chrysura radians (Harris, 1778)
Par. I.
2
E. Marhic
Chrysididae
Hedychrum nobile
(Scopoli, 1763)
Par. I.
2
E. Marhic
Chrysididae
Philoctetes bidentulus
(Lepeletier, 1806)
Par. I.
1
E. Marhic, P.
Rosa
Chrysididae
Pseudomalus auratus
(Linnaeus, 1758)
Par. I.
2
E. Marhic
Chrysididae
Pseudomalus cupratus
(Mocsáry, 1889)
Par. I.
1
E. Marhic
Chrysididae
Pseudomalus triangulifer
(Abeille de Perrin, 1877)
Par. I.
2
E. Marhic
Chrysididae
Pseudomalus violaceus
(Scopoli, 1763)
Par. I.
5
E. Marhic
Chrysididae
Trichrysis cyanea
(Linnaeus, 1758)
Par. I.
20
E. Marhic
Cimbicidae
Abia lonicerae (Linnaeus, 1758)
N.O. Phyll.
3
T. Noblecourt
Colletidae
Hylaeus sp.
Poll./Nec.
30
LBLGC team
Crabronidae
Crossocerus annulipes
(Lepeletier & Brullé, 1835)
Carn.
1
P. Burguet
Crabronidae
Crossocerus cetratus
(Shuckard, 1837)
Carn.
3
P. Burguet
Crabronidae
Crossocerus guichardi
Leclercq, 1972
Carn.
1
P. Burguet
Crabronidae
Crossocerus megacephalus
(Rossi, 1790)
Carn.
12
P. Burguet
Crabronidae
Crossocerus nigritus
(Lepeletier & Brullé, 1835)
Carn.
1
P. Burguet
Crabronidae
Crossocerus ovalis
Lepeletier & Brullé, 1835
Carn.
1
P. Burguet
Crabronidae
Crossocerus quadrimaculatus
(Fabricius, 1793)
Carn.
3
P. Burguet
Crabronidae
Crossocerus varus
Lepeletier & Brullé, 1835
Carn.
2
P. Burguet
Crabronidae
Ectemnius cavifrons
(Thomson, 1870)
Carn.
1
P. Burguet
Crabronidae
Ectemnius continuus
(Fabricius, 1804)
Carn.
2
P. Burguet
Crabronidae
Ectemnius lituratus
(Panzer, 1804)
Carn.
3
P. Burguet
Crabronidae
Ectemnius ruficornis
(Zetterstedt, 1838)
Carn.
1
P. Burguet
Crabronidae
Miscophus ater
Lepeletier, 1845
Carn.
1
P. Burguet
Crabronidae
Nitela fallax
Kohl, 1884
Carn.
1
P. Burguet
6
Crabronidae
Nitela lucens
Gayubo & Felton, 2000
Carn.
12
P. Burguet
Crabronidae
Nitela spinolae
Latreille, 1809
Carn.
5
P. Burguet
Crabronidae
Rhopalum clavipes
(Linnaeus, 1758)
Carn.
2
P. Burguet
Crabronidae
Rhopalum coarctatum
(Scopoli, 1763)
Carn.
1
P. Burguet
Crabronidae
Tachytes panzeri
(Dufour, 1841)
Carn.
1
P. Burguet
Crabronidae
Trypoxylon clavicerum
Lepeletier de Saint Fargeau &
Audinet-Serville, 1828
Carn.
7
P. Burguet
Crabronidae
Trypoxylon minus
Beaumont, 1945
Carn.
4
P. Burguet
Cynipidae
Cynipidae sp.
Gall
4199
LBLGC team
Diapriidae
Aclista sp.
Par. K.
1
D. Notton
Diapriidae
Aclista prolongata
(Kieffer, 1907)
Par. K.
19
D. Notton
Diapriidae
Aclista rufopetiolata
(Nees, 1834)
Par. K.
1
D. Notton
Diapriidae
Basalys sp.
Par. K.
1
D. Notton
Diapriidae
Belyta depressa Thomson, 1859
Par. K.
2
D. Notton
Diapriidae
Belyta sp.
Par. K.
1
D. Notton
Diapriidae
Belyta validicornis
Thomson, 1859
Par. K.
1
D. Notton
Diapriidae
Coptera sp. 1
Par. K.
5
D. Notton
Diapriidae
Coptera sp. 2
Par. K.
1
D. Notton
Diapriidae
Diapria cf. conica
Par. K.
5
D. Notton
Diapriidae
Ismarus sp.
Par. K.
2
D. Notton
Diapriidae
Pantoclis sp. 1
Par. K.
2
D. Notton
Diapriidae
Pantoclis sp. 2
Par. K.
1
D. Notton
Diapriidae
Pantoclis sp. 3
Par. K.
7
D. Notton
Diapriidae
Pantolyta pseudosciarivora
(Macek, 1998)
Par. K.
1
D. Notton
Diapriidae
Paramesius rufipes
(Fonscolombe, 1832)
Par. K.
4
D. Notton
Diapriidae
Spilomicrus hemipterus
Marshall, 1868
Par. K.
1
D. Notton
Diapriidae
Spilomicrus integer
Thomson, 1859
Par. K.
1
D. Notton
Diapriidae
Spilomicrus sp.
Par. K.
2
D. Notton
Diapriidae
Spilomicrus stigmaticalis
Westwood, 1832
Par. K.
2
D. Notton
Diapriidae
Trichopria aequata
(Thomson, 1859)
Par. K.
13
D. Notton
Diapriidae
Trichopria cameroni
(Kieffer, 1909)
Par. K.
7
D. Notton
Diapriidae
Trichopria cf. morio
Par. K.
1
D. Notton
Diapriidae
Trichopria conotoma
(Kieffer, 1911)
Par. K.
1
D. Notton
Diapriidae
Trichopria gr. nigra
Par. K.
1
D. Notton
Diapriidae
Trichopria gr. verticillata
Par. K.
2
D. Notton
Diapriidae
Trichopria hyalinipennis
(Thomson, 1859)
Par. K.
2
D. Notton
Diapriidae
Trichopria modesta
(Ratzeburg, 1848)
Par. K.
2
D. Notton
Diapriidae
Trichopria nigra (Nees, 1834)
Par. K.
1
D. Notton
Diapriidae
Trichopria nixoni
Notton, 1995
Par. K.
12
D. Notton
7
Diapriidae
Trichopria sociabilis
Masner, 1965
Par. K.
1
D. Notton
Diapriidae
Trichopria striata Notton, 1993
Par. K.
1
D. Notton
Diapriidae
Trichopria suspecta
(Nees, 1834)
Par. K.
1
D. Notton
Diapriidae
Trichopria verticillata
(Latreille, 1805)
Par. K.
2
D. Notton
Diapriidae
Zygota sp.
Par. K.
1
D. Notton
Dryinidae
Anteon brachycerum
(Dalman, 1823)
Par. I.
2
E. Marhic
Dryinidae
Anteon infectum (Haliday, 1837)
Par. I.
5
E. Marhic
Dryinidae
Anteon jurineanum
Latreille, 1809
Par. I.
6
E. Marhic
Dryinidae
Anteon scapulare
(Haliday, 1837)
Par. I.
1
E. Marhic,
J. De Rond
Dryinidae
Aphelopus camus Richards, 1939
Par. I.
1
E. Marhic
Encyrtidae
Anagyrus sp.
Par. K.
2
J-Y. Rasplus
Encyrtidae
Blastothrix longipennis
Howard, 1881
Par. K.
11
J-Y. Rasplus
Encyrtidae
Blastothrix sp.
Par. K.
2
J-Y. Rasplus
Encyrtidae
Copidosoma sp.
Par. K.
2
J-Y. Rasplus
Encyrtidae
Encyrtidae sp.
Par. K.
2
J-Y. Rasplus
Encyrtidae
Microterys chalcostomus
(Dalman, 1820)
Par. K.
1
J-Y. Rasplus
Eulophidae
Aprostocetus sp.
Par. K.
3
J-Y. Rasplus
Eulophidae
Aulogymnus skianeuros
(Ratzeburg, 1844)
Par. K.
36
J-Y. Rasplus
Eulophidae
Aulogymnus sp.
Par. K.
42
J-Y. Rasplus
Eulophidae
Aulogymnus trilineatus
(Mayr, 1877)
Par. K.
13
J-Y. Rasplus
Eulophidae
Chrysocharis pubicornis
(Zetterstedt, 1838)
Par. K.
1
J-Y. Rasplus
Eulophidae
Chrysocharis sp.
Par. K.
1
J-Y. Rasplus
Eulophidae
Elachertus sp.
Par. K.
1
J-Y. Rasplus
Eulophidae
Entedon armigerae
Graham, 1971
Par. K.
1
J-Y. Rasplus
Eulophidae
Entedon zanara Walker, 1839
Par. K.
3
J-Y. Rasplus
Eulophidae
Ionympha carne (Walker, 1839)
Par. K.
1
J-Y. Rasplus
Eulophidae
Omphale lugubris Askew, 2003
Par. K.
1
J-Y. Rasplus
Eulophidae
Omphale sp.
Par. K.
1
J-Y. Rasplus
Eulophidae
Pediobius foliorum
(Geoffroy, 1785)
Par. K.
1
J-Y. Rasplus
Eulophidae
Pediobius lysis (Walker, 1839)
Par. K.
1
J-Y. Rasplus
Eulophidae
Pediobius sp.
Par. K.
1
J-Y. Rasplus
Eulophidae
Pnigalio sp.
Par. K.
2
J-Y. Rasplus
Eupelmidae
Anastatus bifasciatus
(Geoffroy, 1785)
Par. I.
1
J-Y. Rasplus
Eupelmidae
Calosota aestivalis
Curtis, 1836
Par. I.
4
J-Y. Rasplus
Eupelmidae
Eupelmus matranus
Erdös, 1947
Par. I.
1
J-Y. Rasplus
Eupelmidae
Eupelmus pini
Taylor, 1927
Par. I.
1
J-Y. Rasplus
Eupelmidae
Eupelmus sp.
Par. I.
1
J-Y. Rasplus
Eupelmidae
Eupelmus urozonus
Dalman, 1820
Par. I.
5
J-Y. Rasplus
Eupelmidae
Metapelma nobile
(Förster, 1860)
Par. I.
6
J-Y. Rasplus
Eurytomidae
Eurytoma sp.
Par. I.
12
J-Y. Rasplus
Eurytomidae
Sycophila sp.
Par. K.
1
J-Y. Rasplus
8
Eurytomidae
Sycophila submutica
(Thomson, 1876)
Par. K.
3
J-Y. Rasplus
Evanidae
Brachygaster minuta
(Olivier, 1791)
Par. I.
33
E. Marhic
Figitidae
Figitidae sp.
Par.
7
LBLGC team
Formicidae
Aphaenogaster subterranea
(Latreille, 1798)
Carn.
10
C. Galkowski
Formicidae
Camponotus fallax
(Nylander, 1856)
Poly.
6
C. Galkowski
Formicidae
Camponotus tergestinus
Mueller, 1921
Poly.
3
C. Galkowski
Formicidae
Colobopsis truncata
(Spinola, 1808)
Poly.
21
C. Galkowski
Formicidae
Dolichoderus quadripunctatus
(Linnaeus, 1771)
Poly.
718
C. Galkowski
Formicidae
Formica cunicularia
Latreille, 1798
Poly.
12
C. Galkowski
Formicidae
Formica fusca Linnaeus, 1758
Poly.
18
C. Galkowski
Formicidae
Formica polyctena
Foerster, 1850
Poly.
6
C. Galkowski
Formicidae
Formicidae sp.
Poly.
155
C. Galkowski
Formicidae
Lasius alienus (Foerster, 1850)
Poly.
23
C. Galkowski
Formicidae
Lasius bicornis (Foerster, 1850)
Poly.
8
C. Galkowski
Formicidae
Lasius brunneus (Latreille, 1798)
Poly.
77
C. Galkowski
Formicidae
Lasius distinguendus
Emery, 1916
Poly.
5
C. Galkowski
Formicidae
Lasius emarginatus
(Olivier, 1792)
Poly.
3
C. Galkowski
Formicidae
Lasius flavus (Fabricius, 1782)
Poly.
13
C. Galkowski
Formicidae
Lasius fuliginosus
(Latreille, 1798)
Poly.
3
C. Galkowski
Formicidae
Lasius platythorax
Seifert, 1992
Poly.
63
C. Galkowski
Formicidae
Lasius sabularum
(Bondroit, 1918)
Poly.
1
C. Galkowski
Formicidae
Lasius sp.
Poly.
51
C. Galkowski
Formicidae
Lasius umbratus
(Nylander, 1846)
Poly.
23
C. Galkowski
Formicidae
Myrmecina graminicola
(Latreille, 1802)
Poly.
39
C. Galkowski
Formicidae
Myrmica ruginodis
Nylander, 1846
Poly.
26
C. Galkowski
Formicidae
Myrmica sabuleti Meinert, 1861
Poly.
1
C. Galkowski
Formicidae
Myrmica scabrinodis
Nylander, 1846
Carn.
11
C. Galkowski
Formicidae
Myrmica specioides
Bondroit, 1918
Poly.
1
C. Galkowski
Formicidae
Ponera coarctata
(Latreille, 1802)
Carn.
1
C. Galkowski
Formicidae
Solenopsis fugax
(Latreille, 1798)
Poly.
1
C. Galkowski
Formicidae
Temnothorax affinis
(Mayr, 1855)
Carn.
9
C. Galkowski
Formicidae
Temnothorax parvulus
(Schenck, 1852)
Carn.
29
C. Galkowski
Formicidae
Tetramorium impurum
(Foerster, 1850)
Poly.
2
C. Galkowski
Halictidae
Halictidae sp.
Poll./Nec.
227
LBLGC team
Halictidae
Lasioglossum bluethgeni
Ebmer, 1971
Poll./Nec.
ERL (LC)
5
S. Flaminio
9
Halictidae
Lasioglossum fulvicorne
(Kirby, 1802)
Poll./Nec.
ERL (LC)
3
S. Flaminio
Halictidae
Lasioglossum laticeps
(Schenck, 1868)
Poll./Nec.
ERL (LC)
1
S. Flaminio
Halictidae
Lasioglossum lativentre
(Schenck, 1853)
Poll./Nec.
ERL (LC)
20
S. Flaminio
Halictidae
Lasioglossum leucozonium
(Schrank, 1781)
Poll./Nec.
ERL (LC)
1
S. Flaminio
Halictidae
Lasioglossum marginatum
(Brullé, 1832)
Poll./Nec.
ERL (LC)
3
S. Flaminio
Halictidae
Lasioglossum monstrificum
(Morawitz, 1891)
Poll./Nec.
ERL (NT),
WRL (NT)
1
S. Flaminio
Halictidae
Lasioglossum pallens
(Brullé, 1832)
Poll./Nec.
ERL (LC)
605
S. Flaminio
Halictidae
Lasioglossum pauperatum
(Brullé, 1832)
Poll./Nec.
ERL (LC)
2
S. Flaminio
Halictidae
Lasioglossum pauxillum
(Schenck, 1853)
Poll./Nec.
ERL (LC)
3
S. Flaminio
Halictidae
Lasioglossum punctatissimum
(Schenck, 1853)
Poll./Nec.
ERL (LC)
2
S. Flaminio
Halictidae
Lasioglossum sexnotatum
(Kirby, 1802)
Poll./Nec.
ERL (NT)
1
S. Flaminio
Halictidae
Lasioglossum subhirtum
(Lepeletier, 1841)
Poll./Nec.
ERL (LC)
5
S. Flaminio
Halictidae
Lasioglossum transitorium
(Schenck, 1868)
Poll./Nec.
ERL (LC)
1
S. Flaminio
Halictidae
Sphecodes sp.
Poll./Nec.
44
LBLGC team
Heloridae
Helorus ruficornis
Förster, 1856
Par. K.
6
E. Marhic
Heydeniidae
Heydenia pretiosa
Förster, 1856
Par. I.
1
J-Y. Rasplus
Ibaliidae
Ibalia leucospoides
(Hochenwarth, 1785)
Par. K.
1
LBLGC team
Ichneumonidae
Acrodactyla carinator
(Aubert, 1965)
Par. I.
1
T. Robert
Ichneumonidae
Adelognathinae sp.
Par. I.
2
LBLGC team
Ichneumonidae
Agrypon flaveolatum
(Gravenhorst, 1807)
Par. K.
32
W. Penigot
Ichneumonidae
Agrypon flexorium
(Thunberg, 1824)
Par. K.
1
W. Penigot
Ichneumonidae
Alloplasta tomentosa
(Gravenhorst, 1829)
Par. K.
44
T. Robert
Ichneumonidae
Amblyteles armatorius
(Forster, 1771)
Par. K.
1
W. Penigot
Ichneumonidae
Apechthis rufata
(Gmelin, 1790)
Par. I.
24
T. Robert
Ichneumonidae
Aphanistes gliscens
(Hartig, 1838)
Par. K.
17
W. Penigot, T.
Robert
Ichneumonidae
Apophua bipunctoria
(Thunberg, 1824)
Par. K.
1
T. Robert
Ichneumonidae
Arotes albicinctus
Gravenhorst, 1829
Par. K.
2
T. Robert
Ichneumonidae
Astiphromma pictum
(Brischke, 1880)
Par. K.
164
T. Robert
Ichneumonidae
Atractogaster semisculptus
Kriechbaumer, 1872
Par. I.
4
T. Robert
Ichneumonidae
Baeosemus mitigosus
(Gravenhorst, 1829)
Par. K.
3
W. Penigot
Ichneumonidae
Barichneumon derogator
(Wesmael, 1845)
Par. K.
18
W. Penigot
10
Ichneumonidae
Campopleginae sp. 1
Par. K.
40
LBLGC team
Ichneumonidae
Campopleginae sp. 10
Par. K.
2
LBLGC team
Ichneumonidae
Campopleginae sp. 11
Par. K.
1
LBLGC team
Ichneumonidae
Campopleginae sp. 12
Par. K.
12
LBLGC team
Ichneumonidae
Campopleginae sp. 13
Par. K.
3
LBLGC team
Ichneumonidae
Campopleginae sp. 14
Par. K.
1
LBLGC team
Ichneumonidae
Campopleginae sp. 15
Par. K.
1
LBLGC team
Ichneumonidae
Campopleginae sp. 16
Par. K.
1
LBLGC team
Ichneumonidae
Campopleginae sp. 17
Par. K.
8
LBLGC team
Ichneumonidae
Campopleginae sp. 18
Par. K.
18
LBLGC team
Ichneumonidae
Campopleginae sp. 19
Par. K.
1
LBLGC team
Ichneumonidae
Campopleginae sp. 2
Par. K.
4
LBLGC team
Ichneumonidae
Campopleginae sp. 20
Par. K.
12
LBLGC team
Ichneumonidae
Campopleginae sp. 21
Par. K.
3
LBLGC team
Ichneumonidae
Campopleginae sp. 22
Par. K.
27
LBLGC team
Ichneumonidae
Campopleginae sp. 23
Par. K.
28
LBLGC team
Ichneumonidae
Campopleginae sp. 24
Par. K.
3
LBLGC team
Ichneumonidae
Campopleginae sp. 25
Par. K.
3
LBLGC team
Ichneumonidae
Campopleginae sp. 26
Par. K.
4
LBLGC team
Ichneumonidae
Campopleginae sp. 3
Par. K.
2
LBLGC team
Ichneumonidae
Campopleginae sp. 4
Par. K.
13
LBLGC team
Ichneumonidae
Campopleginae sp. 5
Par. K.
6
LBLGC team
Ichneumonidae
Campopleginae sp. 6
Par. K.
3
LBLGC team
Ichneumonidae
Campopleginae sp. 7
Par. K.
38
LBLGC team
Ichneumonidae
Campopleginae sp. 8
Par. K.
3
LBLGC team
Ichneumonidae
Campopleginae sp. 9
Par. K.
2
LBLGC team
Ichneumonidae
Chasmias motatorius
(Fabricius, 1775)
Par. K.
1
W. Penigot
Ichneumonidae
Cidaphus alarius
(Gravenhorst, 1829)
Par. K.
7
T. Robert
Ichneumonidae
Coelichneumon desinatorius
(Thunberg, 1824)
Par. K.
3
W. Penigot
Ichneumonidae
Coelichneumon dubius
(Tischbein, 1876)
Par. K.
2
W. Penigot
Ichneumonidae
Coelichneumon leucocerus
(Gravenhorst, 1820)
Par. K.
7
W. Penigot
Ichneumonidae
Coelichneumon probator
Horstmann, 2000
Par. K.
1
W. Penigot
Ichneumonidae
Coelichneumon sinister
(Wesmael, 1848)
Par. K.
1
W. Penigot
Ichneumonidae
Coleocentrus croceicornis
(Gravenhorst, 1829)
Par. K.
2
T. Robert
Ichneumonidae
Coleocentrus exareolatus
Kriechbaumer, 1894
Par. K.
1
W. Penigot
Ichneumonidae
Coleocentrus excitator
(Poda, 1761)
Par. K.
1
T. Robert
Ichneumonidae
Coleocentrus soleatus
(Gravenhorst, 1829)
Par. K.
4
T. Robert
Ichneumonidae
Colpognathus celerator
(Gravenhorst, 1807)
Par. K.
1
W. Penigot
Ichneumonidae
Colpognathus divisus
Thomson, 1891
Par. K.
1
W. Penigot
Ichneumonidae
Cratichneumon albifrons
(Stephens, 1835)
Par. K.
1
W. Penigot
Ichneumonidae
Cratichneumon coruscator
(Linnaeus, 1758)
Par. K.
12
W. Penigot
Ichneumonidae
Cratichneumon culex
(Müller, 1776)
Par. K.
30
W. Penigot
Ichneumonidae
Cratichneumon flavifrons
(Schrank, 1781)
Par. K.
2
W. Penigot
11
Ichneumonidae
Cratichneumon rufifrons
(Gravenhorst, 1829)
Par. K.
2
W. Penigot
Ichneumonidae
Cratichneumon viator
(Scopoli, 1763)
Par. K.
2
W. Penigot
Ichneumonidae
Crypteffigies lanius
(Gravenhorst, 1829)
Par. K.
158
W. Penigot
Ichneumonidae
Cryptinae sp. 1
Par. I.
208
LBLGC team
Ichneumonidae
Cryptinae sp. 10
Par. I.
4
LBLGC team
Ichneumonidae
Cryptinae sp. 11
Par. I.
17
LBLGC team
Ichneumonidae
Cryptinae sp. 12
Par. I.
80
LBLGC team
Ichneumonidae
Cryptinae sp. 13
Par. I.
9
LBLGC team
Ichneumonidae
Cryptinae sp. 14
Par. I.
12
LBLGC team
Ichneumonidae
Cryptinae sp. 15
Par. I.
12
LBLGC team
Ichneumonidae
Cryptinae sp. 16
Par. I.
7
LBLGC team
Ichneumonidae
Cryptinae sp. 17
Par. I.
2
LBLGC team
Ichneumonidae
Cryptinae sp. 18
Par. I.
41
LBLGC team
Ichneumonidae
Cryptinae sp. 19
Par. I.
10
LBLGC team
Ichneumonidae
Cryptinae sp. 2
Par. I.
2
LBLGC team
Ichneumonidae
Cryptinae sp. 20
Par. I.
2
LBLGC team
Ichneumonidae
Cryptinae sp. 21
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 22
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 23
Par. I.
33
LBLGC team
Ichneumonidae
Cryptinae sp. 24
Par. I.
5
LBLGC team
Ichneumonidae
Cryptinae sp. 25
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 26
Par. I.
2
LBLGC team
Ichneumonidae
Cryptinae sp. 27
Par. I.
35
LBLGC team
Ichneumonidae
Cryptinae sp. 28
Par. I.
3
LBLGC team
Ichneumonidae
Cryptinae sp. 29
Par. I.
3
LBLGC team
Ichneumonidae
Cryptinae sp. 3
Par. I.
50
LBLGC team
Ichneumonidae
Cryptinae sp. 30
Par. I.
6
LBLGC team
Ichneumonidae
Cryptinae sp. 31
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 32
Par. I.
7
LBLGC team
Ichneumonidae
Cryptinae sp. 33
Par. I.
3
LBLGC team
Ichneumonidae
Cryptinae sp. 34
Par. I.
11
LBLGC team
Ichneumonidae
Cryptinae sp. 35
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 36
Par. I.
8
LBLGC team
Ichneumonidae
Cryptinae sp. 37
Par. I.
2
LBLGC team
Ichneumonidae
Cryptinae sp. 38
Par. I.
2
LBLGC team
Ichneumonidae
Cryptinae sp. 39
Par. I.
6
LBLGC team
Ichneumonidae
Cryptinae sp. 4
Par. I.
14
LBLGC team
Ichneumonidae
Cryptinae sp. 40
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 41
Par. I.
3
LBLGC team
Ichneumonidae
Cryptinae sp. 42
Par. I.
46
LBLGC team
Ichneumonidae
Cryptinae sp. 43
Par. I.
14
LBLGC team
Ichneumonidae
Cryptinae sp. 44
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 45
Par. I.
40
LBLGC team
Ichneumonidae
Cryptinae sp. 46
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 47
Par. I.
2
LBLGC team
Ichneumonidae
Cryptinae sp. 48
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 49
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 5
Par. I.
13
LBLGC team
Ichneumonidae
Cryptinae sp. 50
Par. I.
4
LBLGC team
Ichneumonidae
Cryptinae sp. 51
Par. I.
4
LBLGC team
Ichneumonidae
Cryptinae sp. 52
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 53
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 54
Par. I.
2
LBLGC team
Ichneumonidae
Cryptinae sp. 55
Par. I.
1
LBLGC team
Ichneumonidae
Cryptinae sp. 56
Par. I.
132
LBLGC team
Ichneumonidae
Cryptinae sp. 57
Par. I.
3
LBLGC team
12
Ichneumonidae
Cryptinae sp. 58
Par. I.
4
LBLGC team
Ichneumonidae
Cryptinae sp. 59
Par. I.
32
LBLGC team
Ichneumonidae
Cryptinae sp. 6
Par. I.
6
LBLGC team
Ichneumonidae
Cryptinae sp. 60
Par. I.
44
LBLGC team
Ichneumonidae
Cryptinae sp. 61
Par. I.
101
LBLGC team
Ichneumonidae
Cryptinae sp. 7
Par. I.
16
LBLGC team
Ichneumonidae
Cryptinae sp. 8
Par. I.
11
LBLGC team
Ichneumonidae
Cryptinae sp. 9
Par. I.
6
LBLGC team
Ichneumonidae
Crytea sanguinator
(Rossi, 1794)
Par. K.
2
W. Penigot
Ichneumonidae
Ctenopelmatinae sp. 1
Par. K.
88
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 10
Par. K.
2
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 11
Par. K.
1
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 12
Par. K.
59
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 13
Par. K.
2
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 14
Par. K.
1
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 15
Par. K.
2
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 16
Par. K.
1
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 17
Par. K.
2
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 18
Par. K.
12
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 19
Par. K.
1
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 2
Par. K.
4
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 20
Par. K.
1
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 21
Par. K.
1
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 22
Par. K.
33
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 23
Par. K.
24
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 24
Par. K.
134
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 25
Par. K.
39
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 26
Par. K.
73
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 27
Par. K.
1
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 28
Par. K.
3
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 3
Par. K.
6
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 4
Par. K.
6
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 5
Par. K.
2
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 6
Par. K.
2
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 7
Par. K.
1
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 8
Par. K.
8
LBLGC team
Ichneumonidae
Ctenopelmatinae sp. 9
Par. K.
1
LBLGC team
Ichneumonidae
Deuteroxorides elevator
(Panzer, 1799)
Par. I.
15
T. Robert
Ichneumonidae
Diadromus arrisor
Wesmael, 1845
Par. K.
1
W. Penigot
Ichneumonidae
Diadromus troglodytes
(Gravenhorst, 1829)
Par. K.
6
W. Penigot
Ichneumonidae
Dicaelotus erythrogaster
(Holmgren, 1890)
Par. K.
7
W. Penigot
Ichneumonidae
Dicaelotus pictus
(Schmiedeknecht, 1903)
Par. K.
12
W. Penigot
Ichneumonidae
Dicaelotus punctiventris
(Thomson, 1891)
Par. K.
15
W. Penigot
Ichneumonidae
Dicaelotus resplendens
Holmgren, 1890
Par. K.
1
W. Penigot
Ichneumonidae
Diphyus restitutor
(Wesmael, 1859)
Par. K.
1
W. Penigot
Ichneumonidae
Diplazon sp.
Par. K.
1
LBLGC team
Ichneumonidae
Dirophanes callopus
(Wesmael, 1845)
Par. K.
3
W. Penigot
Ichneumonidae
Dirophanes fulvitarsis
(Wesmael, 1845)
Par. K.
1
W. Penigot
13
Ichneumonidae
Dirophanes maculicornis
(Stephens, 1835)
Par. K.
64
W. Penigot
Ichneumonidae
Dolichomitus curticornis
(Perkins, 1943)
Par. I.
3
T. Robert
Ichneumonidae
Dolichomitus mesocentrus
(Gravenhorst, 1829)
Par. I.
1
T. Robert
Ichneumonidae
Dolichomitus milleri
Zwakhals, 2010
Par. I.
2
T. Robert
Ichneumonidae
Dolichomitus pterelas
(Say, 1829)
Par. I.
4
T. Robert
Ichneumonidae
Dolichomitus sp.
Par. I.
2
T. Robert
Ichneumonidae
Dolichomitus terebrans
(Ratzeburg, 1844)
Par. I.
7
T. Robert
Ichneumonidae
Drepanoctonus tibialis
Pfankuch, 1911
Par. K.
1
T. Robert
Ichneumonidae
Dusona sp.
Par. K.
13
LBLGC team
Ichneumonidae
Enizemum ornatum
(Gravenhorst, 1829)
Par. K.
1
T. Robert
Ichneumonidae
Ephialtes manifestator
(Linnaeus, 1758)
Par. I.
4
T. Robert
Ichneumonidae
Eristicus cf. clericus
Par. K.
1
W. Penigot
Ichneumonidae
Eristicus clarigator
(Wesmael, 1845)
Par. K.
1
W. Penigot
Ichneumonidae
Eristicus clericus
(Gravenhorst, 1829)
Par. K.
3
W. Penigot
Ichneumonidae
Euceros albitarsus
Curtis, 1837
Par. K.
9
W. Penigot
Ichneumonidae
Euceros kiushensis
Uchida
Par. K.
4
W. Penigot, T.
Robert
Ichneumonidae
Euceros pruinosus
(Gravenhorst, 1829)
Par. K.
1
T. Robert
Ichneumonidae
Eupalamus lacteator
(Gravenhorst, 1829)
Par. K.
7
W. Penigot
Ichneumonidae
Eupalamus wesmaeli
(Thomson, 1886)
Par. K.
10
W. Penigot
Ichneumonidae
Fredegunda diluta
(Ratzeburg, 1852)
Par. I.
1
W. Penigot
Ichneumonidae
Glypta extincta
Ratzeburg, 1852
Par. K.
1
T. Robert
Ichneumonidae
Glypta nigrina
Desvignes, 1856
Par. K.
2
T. Robert
Ichneumonidae
Glypta pictipes
Taschenberg, 1863
Par. K.
1
T. Robert
Ichneumonidae
Glypta trochanterata
Bridgman, 1886
Par. K.
7
T. Robert
Ichneumonidae
Herpestomus brunnicornis
(Gravenhorst, 1829)
Par. K.
1
W. Penigot
Ichneumonidae
Homotherus locutor
(Thunberg, 1824)
Par. K.
1
W. Penigot
Ichneumonidae
Homotherus varipes
(Gravenhorst, 1829)
Par. K.
1
W. Penigot
Ichneumonidae
Hoplismenus terrificus
Wesmael, 1848
Par. K.
1
W. Penigot
Ichneumonidae
Hyperacmus crassicornis
(Gravenhorst, 1829)
Par. K.
1
W. Penigot, T.
Robert
Ichneumonidae
Ichneumon bucculentus
Wesmael, 1845
Par. K.
2
W. Penigot
Ichneumonidae
Ichneumon cf. exilicornis
Par. K.
2
W. Penigot
Ichneumonidae
Ichneumon gracilicornis
Gravenhorst, 1829
Par. K.
1
W. Penigot
14
Ichneumonidae
Ichneumon inquinatus
Wesmael, 1845
Par. K.
7
W. Penigot
Ichneumonidae
Ichneumon molitorius
Linnaeus, 1760
Par. K.
1
W. Penigot
Ichneumonidae
Ichneumon simulans
Tischbein, 1873
Par. K.
8
W. Penigot
Ichneumonidae
Ichneumon stenocerus
Thomson, 1887
Par. K.
1
W. Penigot
Ichneumonidae
Ichneumon suspiciosus
Wesmael, 1845
Par. K.
3
W. Penigot
Ichneumonidae
Ischnoceros caligatus
(Gravenhorst, 1829)
Par. I.
4
W. Penigot, T.
Robert
Ichneumonidae
Ischnoceros rusticus
(Geoffroy, 1785)
Par. I.
13
W. Penigot, T.
Robert
Ichneumonidae
Itoplectis alternans
(Gravenhorst, 1829)
Par. I.
7
W. Penigot, T.
Robert
Ichneumonidae
Itoplectis clavicornis
(Thomson, 1889)
Par. I.
1
T. Robert
Ichneumonidae
Itoplectis maculator
(Fabricius, 1775)
Par. I.
19
T. Robert
Ichneumonidae
Liotryphon caudatus
(Ratzeburg, 1848)
Par. I.
3
T. Robert
Ichneumonidae
Liotryphon punctulatus
(Ratzeburg, 1848)
Par. I.
1
T. Robert
Ichneumonidae
Lissonota biguttata
Holmgren, 1860
Par. K.
19
T. Robert
Ichneumonidae
Lissonota complicator
Aubert, 1967
Par. K.
1
T. Robert
Ichneumonidae
Lissonota cruentator
(Panzer, 1809)
Par. K.
1
T. Robert
Ichneumonidae
Lissonota deversor
Gravenhorst, 1829
Par. K.
2
T. Robert
Ichneumonidae
Lissonota folii
Thomson, 1877
Par. K.
35
T. Robert
Ichneumonidae
Lissonota luffiator
Aubert, 1969
Par. K.
29
T. Robert
Ichneumonidae
Lissonota mutator
Aubert, 1969
Par. K.
1
T. Robert
Ichneumonidae
Lissonota palpalis
Thomson, 1889
Par. K.
1
T. Robert
Ichneumonidae
Lissonota variabilis
Holmgren, 1860
Par. K.
1
T. Robert
Ichneumonidae
Lissonota versicolor
Holmgren, 1860
Par. K.
1
T. Robert
Ichneumonidae
Lycorina triangulifera
Holmgren, 1859
Par. K.
1
T. Robert
Ichneumonidae
Lymantrichneumon disparis
(Poda, 1761)
Par. K.
19
W. Penigot
Ichneumonidae
Mesochorinae sp.1
Par. K.
32
LBLGC team
Ichneumonidae
Mesochorinae sp.2
Par. K.
2
LBLGC team
Ichneumonidae
Mesochorinae sp.3
Par. K.
3
LBLGC team
Ichneumonidae
Mesochorinae sp.4
Par. K.
1
LBLGC team
Ichneumonidae
Mesochorinae sp.5
Par. K.
3
LBLGC team
Ichneumonidae
Mesochorinae sp.6
Par. K.
2
LBLGC team
Ichneumonidae
Metopiinae sp. 1
Par. K.
90
LBLGC team
Ichneumonidae
Metopiinae sp. 2
Par. K.
7
LBLGC team
Ichneumonidae
Metopiinae sp. 3
Par. K.
8
LBLGC team
Ichneumonidae
Metopiinae sp. 4
Par. K.
1
LBLGC team
Ichneumonidae
Metopiinae sp. 5
Par. K.
6
LBLGC team
Ichneumonidae
Metopiinae sp. 6
Par. K.
1
LBLGC team
15
Ichneumonidae
Misetus oculatus
Wesmael, 1845
Par. K.
1
W. Penigot
Ichneumonidae
Netelia cristata
(Thomson, 1888)
Par. K.
3
T. Robert
Ichneumonidae
Netelia latungula
(Thomson, 1888)
Par. K.
2
T. Robert
Ichneumonidae
Netelia testacea
(Gravenhorst, 1829)
Par. K.
1
T. Robert
Ichneumonidae
Odontocolon quercinum
(Thomson, 1877)
Par. I.
2
W. Penigot, T.
Robert
Ichneumonidae
Ophion brocki
Johansson, 2019
Par. K.
2
W. Penigot
Ichneumonidae
Ophion confusus
Johansson, 2019
Par. K.
1
W. Penigot
Ichneumonidae
Ophion gr. mocsaryi
Par. K.
4
W. Penigot
Ichneumonidae
Ophion minutus
Kriechbaumer, 1879
Par. K.
83
W. Penigot, T.
Robert
Ichneumonidae
Ophion ocellaris
Ulbricht, 1926
Par. K.
2
W. Penigot
Ichneumonidae
Ophion splendens
Johansson, 2019
Par. K.
1
W. Penigot
Ichneumonidae
Ophion variegatus
Rudow, 1883
Par. K.
1
W. Penigot
Ichneumonidae
Ophion ventricosus
Gravenhorst, 1829
Par. K.
3
W. Penigot
Ichneumonidae
Orgichneumon calcatorius
(Thunberg, 1822)
Par. K.
1
W. Penigot
Ichneumonidae
Orthocentrinae sp. 1
Par. K.
49
LBLGC team
Ichneumonidae
Orthocentrinae sp. 2
Par. K.
4
LBLGC team
Ichneumonidae
Orthocentrinae sp. 3
Par. K.
7
LBLGC team
Ichneumonidae
Orthocentrinae sp. 4
Par. K.
2
LBLGC team
Ichneumonidae
Orthocentrinae sp. 5
Par. K.
1
LBLGC team
Ichneumonidae
Orthocentrinae sp. 6
Par. K.
1
LBLGC team
Ichneumonidae
Orthocentrinae sp. 7
Par. K.
1
LBLGC team
Ichneumonidae
Oxytorus armatus
Thomson, 1883
Par. K.
1
W. Penigot
Ichneumonidae
Paracoelichneumon rubens
(Boyer de Fonscolombe, 1847)
Par. K.
2
W. Penigot
Ichneumonidae
Phaeogenes cf. semivulpinus
Par. K.
2
W. Penigot
Ichneumonidae
Phaeogenes planifrons
Wesmael, 1845
Par. K.
1
W. Penigot
Ichneumonidae
Phaeogenes semivulpinus
(Gravenhorst, 1829)
Par. K.
38
W. Penigot
Ichneumonidae
Phaeogenes spiniger
(Gravenhorst, 1829)
Par. K.
1
E. Diller
Ichneumonidae
Phytodietus cf. albipes
Par. K.
1
W. Penigot
Ichneumonidae
Pimpla contemplator
(Müller, 1776)
Par. I.
21
T. Robert
Ichneumonidae
Pimpla insignatoria
(Gravenhorst, 1807)
Par. I.
1
T. Robert
Ichneumonidae
Pimpla rufipes
(Miller, 1759)
Par. I.
3
T. Robert
Ichneumonidae
Pimpla turionellae
(Linnaeus, 1758)
Par. I.
24
T. Robert
Ichneumonidae
Pimplinae sp.
Par. I.
1
LBLGC team
Ichneumonidae
Podoschistus scutellaris
(Desvignes, 1856)
Par. I.
30
T. Robert
Ichneumonidae
Poemeniinae sp.
Par. I.
1
LBLGC team
Ichneumonidae
Polysphincta boops
Tschek, 1869
Par. I.
4
Y. Braet, T.
Robert
16
Ichneumonidae
Pristomerus vulnerator
(Panzer, 1799)
Par. K.
1
T. Robert
Ichneumonidae
Pseudorhyssa alpestris
(Holmgren, 1860)
Par. I.
1
T. Robert
Ichneumonidae
Rhyssella approximator
(Fabricius, 1793)
Par. I.
1
T. Robert
Ichneumonidae
Rhyssella obliterata
(Gravenhorst, 1829)
Par. I.
27
W. Penigot, T.
Robert
Ichneumonidae
Rynchobanchus flavopictus
Heinrich, 1937
Par. K.
1
T. Robert
Ichneumonidae
Scambus calobatus
(Gravenhorst, 1829)
Par. I.
24
T. Robert
Ichneumonidae
Scambus nigricans
(Thomson, 1877)
Par. I.
1
T. Robert
Ichneumonidae
Scambus planatus
(Hartig, 1838)
Par. I.
95
T. Robert
Ichneumonidae
Schizopyga flavifrons
Holmgren, 1856
Par. I.
1
T. Robert
Ichneumonidae
Stenichneumon militarius
(Thunberg, 1824)
Par. K.
1
W. Penigot
Ichneumonidae
Stenobarichneumon
protervus (Holmgren, 1864)
Par. K.
1
W. Penigot
Ichneumonidae
Stilbopinae sp.
Par. K.
1
LBLGC team
Ichneumonidae
Stilbops vetulus
(Gravenhorst, 1829)
Par. K.
444
T. Robert
Ichneumonidae
Syrphophilus tricinctorius
(Thunberg, 1824)
Par. K.
1
T. Robert
Ichneumonidae
Syspasis albiguttata
(Gravenhorst, 1820)
Par. K.
3
W. Penigot
Ichneumonidae
Syspasis rufina
(Gravenhorst, 1820)
Par. K.
3
W. Penigot
Ichneumonidae
Syspasis tauma
(Heinrich, 1951)
Par. K.
1
W. Penigot
Ichneumonidae
Tersilochinae sp.1
Par. K.
35
LBLGC team
Ichneumonidae
Tersilochinae sp.2
Par. K.
1
LBLGC team
Ichneumonidae
Tersilochinae sp.3
Par. K.
1
LBLGC team
Ichneumonidae
Theronia atalantae
(Poda, 1761)
Par. I.
2
T. Robert
Ichneumonidae
Theronia laevigata
(Tschek, 1869)
Par. I.
1
T. Robert
Ichneumonidae
Tromatobia lineatoria
(Villers, 1789)
Par. I.
3
T. Robert
Ichneumonidae
Tromatobia ovivora
(Boheman, 1821)
Par. I.
1
T. Robert
Ichneumonidae
Tryphoninae sp. 1
Par. K.
16
LBLGC team
Ichneumonidae
Tryphoninae sp. 2
Par. K.
22
LBLGC team
Ichneumonidae
Tryphoninae sp. 3
Par. K.
1
LBLGC team
Ichneumonidae
Tryphoninae sp. 4
Par. K.
16
LBLGC team
Ichneumonidae
Tryphoninae sp. 5
Par. K.
1
LBLGC team
Ichneumonidae
Tryphoninae sp. 6
Par. K.
21
LBLGC team
Ichneumonidae
Tryphoninae sp. 7
Par. K.
1
LBLGC team
Ichneumonidae
Tryphoninae sp. 8
Par. K.
1
LBLGC team
Ichneumonidae
Tycherus cephalotes
(Wesmael, 1845)
Par. K.
3
W. Penigot
Ichneumonidae
Tycherus flavidens
(Wesmael, 1845)
Par. K.
5
W. Penigot
Ichneumonidae
Tycherus infimus
(Wesmael, 1845)
Par. K.
1
W. Penigot
Ichneumonidae
Tycherus ischiomelinus
(Gravenhorst, 1829)
Par. K.
7
W. Penigot
17
Ichneumonidae
Tycherus stipator
(Wesmael, 1855)
Par. K.
1
W. Penigot
Ichneumonidae
Tycherus suspicax
(Wesmael, 1845)
Par. K.
9
W. Penigot
Ichneumonidae
Ulesta perspicua
(Wesmael, 1857)
Par. K.
1
W. Penigot
Ichneumonidae
Virgichneumon dumeticola
(Gravenhorst, 1829)
Par. K.
3
W. Penigot
Ichneumonidae
Virgichneumon tergenus
(Gravenhorst, 1820)
Par. K.
8
W. Penigot
Ichneumonidae
Vulgichneumon bimaculatus
(Schrank, 1776)
Par. K.
2
W. Penigot
Ichneumonidae
Vulgichneumon deceptor
(Scopoli, 1763)
Par. K.
1
W. Penigot
Ichneumonidae
Vulgichneumon suavis
(Gravenhorst, 1820)
Par. K.
1
W. Penigot
Ichneumonidae
Woldstedtius citropectoralis
(Schmiedeknecht, 1926)
Par. K.
1
T. Robert
Ichneumonidae
Xorides berlandi
Clément, 1938
Par. I.
4
W. Penigot, T.
Robert
Ichneumonidae
Xorides corcyrensis
(Kriechbaumer, 1894)
Par. I.
1
T. Robert
Ichneumonidae
Xorides csikii
Clément, 1938
Par. I.
137
W. Penigot, T.
Robert
Ichneumonidae
Xorides filiformis
(Gravenhorst, 1829)
Par. I.
6
W. Penigot, T.
Robert
Ichneumonidae
Xorides fuligator
(Thunberg, 1824)
Par. I.
4
W. Penigot
Ichneumonidae
Xorides gravenhorstii
(Curtis, 1831)
Par. I.
5
W. Penigot, T.
Robert
Ichneumonidae
Xorides indicatorius
(Latreille, 1806)
Par. I.
1
T. Robert
Ichneumonidae
Xorides minutus
Clément, 1938
Par. I.
14
W. Penigot
Ichneumonidae
Xorides praecatorius
(Fabricius, 1793)
Par. I.
30
W. Penigot, T.
Robert
Ichneumonidae
Xorides rufipes
(Gravenhorst, 1829)
Par. I.
12
W. Penigot, T.
Robert
Ichneumonidae
Xorides sepulchralis
(Holmgren, 1860)
Par. I.
1
T. Robert
Megachilidae
Megachile sp.
Poll./Nec.
3
LBLGC team
Megaspilidae
Conostigmus sp.
Par. I.
14
A. Staverlokk
Megaspilidae
Dendrocerus sp.
Par. I.
9
A. Staverlokk
Megaspilidae
Platyceraphron muscidarum
Kieffer, 1906
Par. I.
1
A. Staverlokk
Megaspilidae
Trichosteresis glabra
(Boheman, 1832)
Par. I.
1
A. Staverlokk
Megastigmidae
Megastigmus dorsalis
(Fabricius, 1798)
Par. I.
1
J-Y. Rasplus
Mellinidae
Mellinus arvensis
(Linnaeus, 1758)
Carn.
1
P. Burguet
Mutillidae
Myrmosa atra
Panzer, 1801
Par. I.
4
F. Herbrecht,
E. Marhic
Ooderidae
Oodera formosa
(Giraud, 1863)
Par. I.
1
J-Y. Rasplus
Ormyridae
Ormyrus pomaceus
(Geoffroy, 1785)
Par. I.
1
J-Y. Rasplus
Ormyridae
Ormyrus wachtli
Mayr, 1904
Par. I.
5
J-Y. Rasplus
Orussidae
Orussus unicolor
Par. I.
17
T. Noblecourt
18
Latreille, 1812
Pamphiliidae
Acantholyda posticalis pinivora
Enslin, 1918
N.O. Phyll.
1
T. Noblecourt
Pamphiliidae
Pamphilius balteatus
(Fallén, 1808)
N.O. Phyll.
1
T. Noblecourt
Pamphiliidae
Pamphilius hortorum
(Klug, 1808)
N.O. Phyll.
3
T. Noblecourt
Pamphiliidae
Pamphilius ignymontiensis
Lacourt, 1973
N.O. Phyll.
1
T. Noblecourt
Pamphiliidae
Pamphilius marginatus
(Audinet-Serville, 1823)
N.O. Phyll.
18
T. Noblecourt
Pamphiliidae
Pamphilius pallipes
(Zetterstedt, 1838)
N.O. Phyll.
6
T. Noblecourt
Pamphiliidae
Pamphilius sylvarum
(Stephens, 1835)
O. Phyll.
1
T. Noblecourt
Pamphiliidae
Pamphilius sylvaticus
(Linnaeus, 1758)
N.O. Phyll.
5
T. Noblecourt
Pamphiliidae
Pamphilius varius
(Audinet-Serville, 1823)
N.O. Phyll.
2
T. Noblecourt
Pemphredonidae
Passaloecus corniger
Shuckard, 1837
Carn.
3
P. Burguet
Pemphredonidae
Passaloecus gracilis
Curtis, 1834
Carn.
1
P. Burguet
Pemphredonidae
Passaloecus insignis
(Vander Linden, 1829)
Carn.
24
P. Burguet, F.
Herbrecht
Pemphredonidae
Passaloecus vandeli
Ribaut, 1952
Carn.
6
P. Burguet
Pemphredonidae
Pemphredon austriaca
(Kohl, 1888)
Carn.
2
P. Burguet
Pemphredonidae
Pemphredon inornata
Say, 1824
Carn.
3
P. Burguet
Pemphredonidae
Pemphredon lethifer
(Shuckard, 1837)
Carn.
54
P. Burguet
Pemphredonidae
Pemphredon lugens
Dahlbom, 1842
Carn.
7
P. Burguet
Pemphredonidae
Pemphredon lugubris
(Fabricius, 1793)
Carn.
56
P. Burguet
Pemphredonidae
Spilomena troglodytes
(Vander Linden, 1829)
Carn.
3
P. Burguet
Pemphredonidae
Stigmus pendulus
Panzer, 1804
Carn.
1
P. Burguet
Pemphredonidae
Stigmus solskyi
A. Morawitz, 1864
Carn.
1
P. Burguet
Perilampidae
Perilampus ruficornis
(Fabricius, 1793)
Par. I.
2614
J-Y. Rasplus
Platygastridae
Inostemma curtum
Szelényi, 1938
Par. K.
7
P.N. Buhl
Platygastridae
Leptacis laodice
(Walker, 1836)
Par. K.
10
P.N. Buhl
Platygastridae
Leptacis nydia
(Walker, 1836)
Par. K.
1
P.N. Buhl
Platygastridae
Metaclisis sp.
Par. K.
1
P.N. Buhl
Platygastridae
Platygaster betulae
(Kieffer, 1916)
Par. K.
3
P.N. Buhl
Platygastridae
Platygaster betularia
Kieffer, 1916
Par. K.
1
P.N. Buhl
Platygastridae
Platygaster marchali
Kieffer, 1906
Par. K.
1
P.N. Buhl
Platygastridae
Platygaster munita
Walker, 1836
Par. K.
1
P.N. Buhl
19
Platygastridae
Platygaster sp. 1
Par. K.
1
P.N. Buhl
Platygastridae
Platygaster sp. 2
Par. K.
1
P.N. Buhl
Platygastridae
Platygaster sp. 3
Par. K.
1
P.N. Buhl
Platygastridae
Platygaster striatithorax
Buhl, 1994
Par. K.
548
P.N. Buhl
Platygastridae
Platygastridae sp.
Par. K.
3
J-Y. Rasplus
Platygastridae
Synopeas larides (Walker, 1836)
Par. K.
6
P.N. Buhl
Platygastridae
Synopeas lugubre
Thomson, 1859
Par. K.
20
P.N. Buhl
Platygastridae
Synopeas myles (Walker, 1836)
Par. K.
3
P.N. Buhl
Platygastridae
Synopeas sosis (Walker, 1836)
Par. K.
7
P.N. Buhl
Platygastridae
Synopeas sp. 1
Par. K.
2
P.N. Buhl
Platygastridae
Synopeas sp. 2
Par. K.
1
P.N. Buhl
Pompilidae
Agenioideus cinctellus
(Spinola, 1808)
Par. I.
8
F. Herbrecht
Pompilidae
Anoplius nigerrimus
(Scopoli, 1763)
Par. I.
1
F. Herbrecht
Pompilidae
Anoplius sp.
Par. I.
1
F. Herbrecht
Pompilidae
Anoplius viaticus
(Linnaeus, 1758)
Par. I.
1
F. Herbrecht
Pompilidae
Aporus unicolor Spinola, 1808
Par. I.
82
F. Herbrecht
Pompilidae
Arachnospila anceps
(Wesmael, 1851)
Par. I.
1
F. Herbrecht
Pompilidae
Arachnospila spissa
(Schioedte, 1837)
Par. I.
22
F. Herbrecht
Pompilidae
Arachnospila trivialis
(Dahlbom, 1843)
Par. I.
2
F. Herbrecht
Pompilidae
Auplopus carbonarius
(Scopoli, 1763)
Par. I.
128
F. Herbrecht
Pompilidae
Caliadurgus fasciatellus
(Spinola, 1808)
Par. I.
13
F. Herbrecht
Pompilidae
Cryptocheilus notatus
(Rossius, 1792)
Par. I.
10
F. Herbrecht
Pompilidae
Cryptocheilus versicolor
(Scopoli, 1763)
Par. I.
2
F. Herbrecht
Pompilidae
Deuteragenia bifasciata
(Geoffroy, 1785)
Par. I.
25
F. Herbrecht
Pompilidae
Deuteragenia monticola
(Wahis, 1972)
Par. I.
77
F. Herbrecht
Pompilidae
Deuteragenia subintermedia
(Magretti, 1886)
Par. I.
134
F. Herbrecht
Pompilidae
Deuteragenia variegata
(Linnaeus, 1758)
Par. I.
4
F. Herbrecht
Pompilidae
Deuteragenia vechti
(Day, 1979)
Par. I.
44
F. Herbrecht
Pompilidae
Evagetes siculus
(Lepeletier, 1845)
Par. I.
2
F. Herbrecht
Pompilidae
Poecilagenia rubricans
(Lepeletier, 1845)
Par. I.
1
F. Herbrecht
Pompilidae
Priocnemis agilis
(Shuckard, 1837)
Par. I.
1
F. Herbrecht
Pompilidae
Priocnemis cordivalvata
Haupt, 1927
Par. I.
1
F. Herbrecht
Pompilidae
Priocnemis coriacea
Dahlbom, 1843
Par. I.
6
F. Herbrecht
Pompilidae
Priocnemis enslini
Haupt, 1927
Par. I.
1
F. Herbrecht
Pompilidae
Priocnemis exaltata
(Fabricius, 1775)
Par. I.
1
F. Herbrecht
Pompilidae
Priocnemis fallax
Par. I.
1
F. Herbrecht
20
Verhoeff, 1922
Pompilidae
Priocnemis fennica
Haupt, 1927
Par. I.
1
F. Herbrecht
Pompilidae
Priocnemis hyalinata
(Fabricius, 1793)
Par. I.
60
F. Herbrecht
Pompilidae
Priocnemis parvula
Dahlbom, 1845
Par. I.
1
F. Herbrecht
Pompilidae
Priocnemis perturbator
(Harris, 1780)
Par. I.
38
F. Herbrecht
Pompilidae
Priocnemis sp.
Par. I.
4
F. Herbrecht
Pompilidae
Priocnemis schioedtei
Haupt, 1927
Par. I.
20
F. Herbrecht
Pompilidae
Priocnemis susterai
Haupt, 1927
Par. I.
7
F. Herbrecht
Pompilidae
Priocnemis vulgaris
(Dufour, 1841)
Par. I.
8
F. Herbrecht
Proctotrupidae
Exallonyx longicornis
(Nees, 1834)
Par. K.
4
E. Marhic
Psenidae
Pseneo exaratus
(Eversmann, 1849)
Carn.
1
P. Burguet
Psenidae
Psenulus fuscipennis
(Dahlbom, 1843)
Carn.
2
P. Burguet
Psenidae
Psenulus pallipes
(Panzer, 1798)
Carn.
13
P. Burguet, F.
Herbrecht
Pteromalidae
Arthrolytus ocellus
(Walker, 1834)
Par. K.
1
J-Y. Rasplus
Pteromalidae
Callitula bicolor
Spinola, 1811
Par. K.
1
J-Y. Rasplus
Pteromalidae
Cheiropachus quadrum
(Fabricius, 1787)
Par. K.
1
J-Y. Rasplus
Pteromalidae
Cleonymus laticornis
Walker, 1837
Par. K.
5
J-Y. Rasplus
Pteromalidae
Coelopisthia pachycera
Masi, 1924
Par. K.
4
J-Y. Rasplus
Pteromalidae
Conomorium amplum
(Walker, 1835)
Par. K.
6
J-Y. Rasplus
Pteromalidae
Cyclogastrella simplex
(Walker, 1834)
Par. K.
2
J-Y. Rasplus
Pteromalidae
Cyrtogaster vulgaris
Walker, 1833
Par. K.
13
J-Y. Rasplus
Pteromalidae
Dibrachys microgastri
(Bouché, 1834)
Par. K.
1
J-Y. Rasplus
Pteromalidae
Gastrancistrus compressus
Walker, 1834
Par. I.
1
J-Y. Rasplus
Pteromalidae
Gastrancistrus laticeps
Graham, 1969
Par. I.
3
J-Y. Rasplus
Pteromalidae
Gastrancistrus puncticollis
(Thomson, 1876)
Par. I.
1
J-Y. Rasplus
Pteromalidae
Gastrancistrus sp. 1
Par. I.
9
J-Y. Rasplus
Pteromalidae
Gastrancistrus sp. 2
Par. I.
1
J-Y. Rasplus
Pteromalidae
Meraporus graminicola
Walker, 1834
Par. I.
24
J-Y. Rasplus
Pteromalidae
Mesopolobus diffinis
(Walker, 1834)
Par. I.
23
J-Y. Rasplus
Pteromalidae
Mesopolobus dubius
(Walker, 1834)
Par. I.
1
J-Y. Rasplus
Pteromalidae
Mesopolobus fuscipes
(Walker, 1834)
Par. I.
4
J-Y. Rasplus
Pteromalidae
Mesopolobus sp. 1
Par. I.
17
J-Y. Rasplus
Pteromalidae
Mesopolobus sp. 2
Par. I.
3
J-Y. Rasplus
21
Pteromalidae
Mesopolobus sp. 3
Par. I.
1
J-Y. Rasplus
Pteromalidae
Mesopolobus sp. 4
Par. I.
1
J-Y. Rasplus
Pteromalidae
Mesopolobus tibialis
(Westwood, 1833)
Par. I.
42
J-Y. Rasplus
Pteromalidae
Mesopolobus xanthocerus
(Thomson, 1878)
Par. I.
1
J-Y. Rasplus
Pteromalidae
Miscogastrinae sp.
Par. K.
1
J-Y. Rasplus
Pteromalidae
Ormocerus latus Walker, 1834
Par.
12
J-Y. Rasplus
Pteromalidae
Ormocerus vernalis
Walker, 1834
Par.
105
J-Y. Rasplus
Pteromalidae
Pachyneuron aphidis
(Bouché, 1834)
Par. I.
1
J-Y. Rasplus
Pteromalidae
Pachyneuron sp.
Par. I.
1
J-Y. Rasplus
Pteromalidae
Pteromalidae sp.
Par.
11
J-Y. Rasplus
Pteromalidae
Pteromalus sp. 1
Par. K.
10
J-Y. Rasplus
Pteromalidae
Pteromalus sp. 2
Par. K.
4
J-Y. Rasplus
Pteromalidae
Pteromalus sp. 3
Par. K.
1
J-Y. Rasplus
Pteromalidae
Sceptrothelys parviclava
Graham, 1969
Par. I.
6
J-Y. Rasplus
Pteromalidae
Sphegigaster brevicornis
(Walker, 1833)
Par. I.
2
J-Y. Rasplus
Pteromalidae
Trigonoderus cyanescens
(Förster, 1841)
Par. I.
3
J-Y. Rasplus
Pteromalidae
Trigonoderus princeps
Westwood, 1832
Par. I.
7
J-Y. Rasplus
Scelionidae
Idris sp.
Par. I.
1
P.N. Buhl
Scelionidae
Scelio sp.
Par. I.
7
P.N. Buhl
Scelionidae
Telenomus chloropus
(Thomson, 1861)
Par. I.
8
P.N. Buhl
Scelionidae
Telenomus sp.
Par. I.
1
P.N. Buhl
Scelionidae
Trimorus flavipes
(Walker, 1836)
Par. I.
1
P.N. Buhl
Scelionidae
Trimorus puncticollis
(Thomson, 1859)
Par. I.
1
P.N. Buhl
Scelionidae
Trimorus sp.
Par. I.
1
P.N. Buhl
Scelionidae
Trissolcus cultratus
(Mayr, 1879)
Par. I.
5
P.N. Buhl
Scelionidae
Triteleia peyerimhoffi
(Kieffer, 1908)
Par. I.
5
P.N. Buhl
Sphecidae
Ammophila sabulosa
(Linnaeus, 1758)
Carn.
1
F. Herbrecht
Sphecidae
Isodontia mexicana
(Saussure, 1867)
Carn.
1
P. Burguet
Stephanidae
Stephanus serrator
(Fabricius, 1798)
Par. I.
2
LBLGC team
Tenthredinidae
Aglaostigma aucupariae
(Klug, 1817)
N.O. Phyll.
6
T. Noblecourt
Tenthredinidae
Allantus togatus
(Panzer, 1801)
O. Phyll.
1
T. Noblecourt
Tenthredinidae
Allantus viennensis
(Schrank, 1781)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Aneugmenus padi
(Linnaeus, 1760)
N.O. Phyll.
13
T. Noblecourt
Tenthredinidae
Athalia cordata
Audinet-Serville, 1823
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Athalia rosae
(Linnaeus, 1758)
N.O. Phyll.
4
T. Noblecourt
Tenthredinidae
Caliroa cinxia (Klug, 1816)
O. Phyll.
8
T. Noblecourt
Tenthredinidae
Claremontia alternipes
(Klug, 1816)
N.O. Phyll.
2
T. Noblecourt
22
Tenthredinidae
Claremontia uncta
(Klug, 1816)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Cytisogaster chambersi
(Benson, 1947)
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Cytisogaster genistae
(Benson, 1947)
N.O. Phyll.
16
T. Noblecourt
Tenthredinidae
Cytisogaster picta
(Klug, 1817)
N.O. Phyll.
8
T. Noblecourt
Tenthredinidae
Dineura stilata
(Klug, 1816)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Dolerus aeneus
Hartig, 1837
N.O. Phyll.
6
T. Noblecourt
Tenthredinidae
Dolerus gonager
(Fabricius, 1781)
N.O. Phyll.
11
T. Noblecourt
Tenthredinidae
Dolerus madidus
(Klug, 1818)
N.O. Phyll.
3
T. Noblecourt
Tenthredinidae
Dolerus niger
(Linnaeus, 1767)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Dolerus nigratus
(O.F. Müller, 1776)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Dolerus sanguinicollis
(Klug, 1818)
N.O. Phyll.
8
T. Noblecourt
Tenthredinidae
Emphytus cingulatus
(Scopoli, 1763)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Empria candidata
(Fallén, 1808)
N.O. Phyll.
9
T. Noblecourt
Tenthredinidae
Empria excisa
(C.G. Thomson, 1871)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Empria granatensis
Lacourt, 1988
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Empria immersa
(Klug, 1818)
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Empria liturata
(Gmelin, 1790)
N.O. Phyll.
6
T. Noblecourt
Tenthredinidae
Empria tridens
(Konow, 1896)
N.O. Phyll.
30
T. Noblecourt
Tenthredinidae
Eutomostethus luteiventris
(Klug, 1816)
N.O. Phyll.
11
T. Noblecourt
Tenthredinidae
Euura fagi
(Zaddach, 1876)
N.O. Phyll.
4
T. Noblecourt
Tenthredinidae
Euura krausi
(Taeger & Blank, 1998)
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Euura lateralis
(Konow, 1895)
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Euura myosotidis
(Fabricius, 1804)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Euura papillosa
(Retzius, 1783)
N.O. Phyll.
3
T. Noblecourt
Tenthredinidae
Euura poecilonota
(Zaddach, 1876)
N.O. Phyll.
4
T. Noblecourt
Tenthredinidae
Halidamia affinis
(Fallén, 1807)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Harpiphorus lepidus
(Klug, 1818)
O. Phyll.
59
T. Noblecourt
Tenthredinidae
Hoplocampa cantoti
Chevin, 1986
N.O. Phyll.
23
T. Noblecourt
Tenthredinidae
Hoplocampa chrysorrhoea
(Klug, 1816)
N.O. Phyll.
12
T. Noblecourt
Tenthredinidae
Hoplocampa testudinea
(Klug, 1816)
N.O. Phyll.
2
T. Noblecourt
23
Tenthredinidae
Macrophya albicincta
(Schrank, 1776)
N.O. Phyll.
11
T. Noblecourt
Tenthredinidae
Macrophya alboannulata
A. Costa, 1859
N.O. Phyll.
7
T. Noblecourt
Tenthredinidae
Macrophya annulata
(Geoffroy, 1785)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Macrophya blanda
(Fabricius, 1775)
N.O. Phyll.
17
T. Noblecourt
Tenthredinidae
Macrophya duodecimpunctata
(Linnaeus, 1758)
N.O. Phyll.
4
T. Noblecourt
Tenthredinidae
Macrophya militaris (Klug, 1817)
N.O. Phyll.
16
T. Noblecourt
Tenthredinidae
Macrophya montana
(Scopoli, 1763)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Macrophya sanguinolenta
(Gmelin, 1790)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Mesoneura opaca
(Fabricius, 1775)
O. Phyll.
60
T. Noblecourt
Tenthredinidae
Monophadnoides ruficruris
(Brullé, 1832)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Monophadnus pallescens
(Gmelin, 1790)
N.O. Phyll.
6
T. Noblecourt
Tenthredinidae
Monsoma pulveratum
(Retzius, 1783)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Nematus alniastri
(Scharfenberg, 1805)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Nematus brischkei
Zaddach, 1876
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Nematus umbratus
C.G. Thomson, 1871
N.O. Phyll.
10
T. Noblecourt
Tenthredinidae
Pachyprotasis antennata
(Klug, 1817)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Pachyprotasis rapae
(Linnaeus, 1767)
N.O. Phyll.
40
T. Noblecourt
Tenthredinidae
Pachyprotasis simulans
(Klug, 1817)
N.O. Phyll.
6
T. Noblecourt
Tenthredinidae
Periclista albida
(Klug, 1816)
O. Phyll.
113
T. Noblecourt
Tenthredinidae
Periclista albipennis
(Zaddach, 1859)
O. Phyll.
21
T. Noblecourt
Tenthredinidae
Periclista lineolata
(Klug, 1816)
O. Phyll.
7
T. Noblecourt
Tenthredinidae
Periclista pilosa
Chevin, 1971
O. Phyll.
30
T. Noblecourt
Tenthredinidae
Periclista pubescens
(Zaddach, 1859)
O. Phyll.
1
T. Noblecourt
Tenthredinidae
Pristiphora armata
(C.G. Thomson, 1863)
N.O. Phyll.
7
T. Noblecourt
Tenthredinidae
Pristiphora fausta
(Hartig, 1837)
O. Phyll.
23
T. Noblecourt
Tenthredinidae
Pristiphora insularis
Rohwer, 1910
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Pristiphora leucopus
(Hellén, 1948)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Pristiphora maesta
(Zaddach, 1876)
N.O. Phyll.
10
T. Noblecourt
Tenthredinidae
Pristiphora monogyniae
(Hartig, 1840)
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Pristiphora pallidiventris
(Fallén, 1808)
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Pristiphora punctifrons
N.O. Phyll.
1
T. Noblecourt
24
(Thomson, 1871)
Tenthredinidae
Pristiphora subbifida
(C.G. Thomson, 1871)
N.O. Phyll.
5
T. Noblecourt
Tenthredinidae
Pristiphora tetrica
(Zaddach, 1883)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Profenusa pygmaea
(Klug, 1816)
O. Phyll.
5
T. Noblecourt
Tenthredinidae
Rhogogaster chlorosoma
(Benson, 1943)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Rhogogaster scalaris Klug, 1817
O. Phyll.
14
T. Noblecourt
Tenthredinidae
Scolioneura vicina
Konow, 1894
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Strongylogaster multifasciata
(Geoffroy, 1785)
N.O. Phyll.
52
T. Noblecourt
Tenthredinidae
Strongylogaster xanthocera
(Stephens, 1835)
N.O. Phyll.
19
T. Noblecourt
Tenthredinidae
Tenthredo atra
Linnaeus, 1758
N.O. Phyll.
48
T. Noblecourt
Tenthredinidae
Tenthredo ferruginea
Schrank, 1776
N.O. Phyll.
44
T. Noblecourt
Tenthredinidae
Tenthredo livida
Linnaeus, 1758
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Tenthredo solitaria Scopoli, 1763
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Tenthredo temula
Scopoli, 1763
N.O. Phyll.
232
T. Noblecourt
Tenthredinidae
Tenthredo zona
Klug, 1817
N.O. Phyll.
2
T. Noblecourt
Tenthredinidae
Tenthredopsis coquebertii
(Klug, 1817)
N.O. Phyll.
1
T. Noblecourt
Tenthredinidae
Tenthredopsis litterata
(Geoffroy, 1785)
N.O. Phyll.
29
T. Noblecourt
Tenthredinidae
Tenthredopsis nassata
(Linnaeus, 1767)
N.O. Phyll.
16
T. Noblecourt
Tenthredinidae
Tenthredopsis scutellaris
(Fabricius, 1804)
N.O. Phyll.
27
T. Noblecourt
Tenthredinidae
Tomostethus nigritus
(Fabricius, 1804)
N.O. Phyll.
1
T. Noblecourt
Tiphiidae
Tiphia femorata Fabricius, 1775
Par.
92
F. Herbrecht,
E. Marhic
Torymidae
Diomorus calcaratus
(Nees, 1834)
Par. I.
2
J-Y. Rasplus
Torymidae
Monodontomerus aereus
Walker, 1834
Par. I.
3
J-Y. Rasplus
Torymidae
Podagrion pachymerum
(Walker, 1833)
Par. I.
1
J-Y. Rasplus
Torymidae
Torymus aucupariae
(Rodzianko, 1908)
Par. I.
3
J-Y. Rasplus
Torymidae
Torymus auratus
(O.F. Müller, 1764)
Par. I.
5
J-Y. Rasplus
Torymidae
Torymus chlorocopes
Boheman, 1834
Par. I.
3
J-Y. Rasplus
Torymidae
Torymus druparum
Boheman, 1834
Par. I.
2
J-Y. Rasplus
Torymidae
Torymus flavipes
(Walker, 1833)
Par. I.
1
J-Y. Rasplus
Torymidae
Torymus sp. 1
Par. I.
11
J-Y. Rasplus
Torymidae
Torymus sp. 2
Par. I.
4
J-Y. Rasplus
Vespidae
Allodynerus koenigi
(Dusmet, 1917)
Carn.
2
B. Gereys
Vespidae
Allodynerus rossii
Carn.
5
B. Gereys
25
(Lepeletier, 1841)
Vespidae
Ancistrocerus antilope
(Panzer, 1798)
Carn.
3
B. Gereys
Vespidae
Ancistrocerus auctus
(Fabricius, 1793)
Carn.
1
B. Gereys
Vespidae
Ancistrocerus dusmetiolus
(Strand, 1914)
Carn.
4
B. Gereys
Vespidae
Ancistrocerus longispinosus
longispinosus (Saussure, 1855)
Carn.
1
B. Gereys
Vespidae
Ancistrocerus nigricornis
(Curtis, 1826)
Carn.
15
B. Gereys
Vespidae
Ancistrocerus oviventris
oviventris (Wesmael, 1836)
Carn.
1
B. Gereys
Vespidae
Ancistrocerus parietinus
(Linnaeus, 1760)
Carn.
8
B. Gereys
Vespidae
Ancistrocerus trifasciatus subsp.
trifasciatus (Müller, 1776)
Carn.
9
B. Gereys
Vespidae
Discoelius dufourii subsp.
dufourii Lepeletier, 1841
Carn.
1
B. Gereys
Vespidae
Discoelius zonalis (Panzer, 1801)
Carn.
4
B. Gereys
Vespidae
Dolichovespula media
(Retzius, 1783)
Carn.
6
LBLGC team
Vespidae
Euodynerus (Pareuodynerus)
quadrifasciatus subsp. quadrifas
ciatus (Fabricius, 1793)
Carn.
1
B. Gereys
Vespidae
Polistes nimpha
(Christ, 1791)
Carn.
7
B. Gereys
Vespidae
Stenodynerus chevrieranus
(Saussure, 1855)
Carn.
2
B. Gereys
Vespidae
Symmorphus bifasciatus
(Linnaeus, 1760)
Carn.
2
B. Gereys
Vespidae
Symmorphus murarius
(Linnaeus, 1758)
Carn.
3
B. Gereys
Vespidae
Vespa crabro
Linnaeus, 1758
Carn.
240
LBLGC team
Vespidae
Vespula germanica
(Fabricius, 1793)
Carn.
7
LBLGC team
Vespidae
Vespula vulgaris
(Linnaeus, 1758)
Carn.
647
LBLGC team
Xiphydriidae
Xiphydria longicollis
(Geoffroy, 1785)
Xyl.
149
T. Noblecourt
Xyelidae
Xyela curva Benson, 1938
Poll./Nec.
8
T. Noblecourt
Xyelidae
Xyela julii
(Brébisson, 1818)
Poll./Nec.
11
T. Noblecourt
2
Table S3. Species diversity estimators (Chao, Jackknife 1 and 2, bootstrap) for the Hymenoptera sampled with
green multi-funnel traps and flight interception traps, for the overall sampling in three forests (21 stands and
42 plots), and according to the sanitary condition of plots and stands where the insects have been sampled.
Unidentified Cynipidae, Figitidae, Halictidae, Andrenidae, Pteromalidae, Encyrtidae and Platygastridae have
been removed. Nb.: number of plots used to calculate the estimators.
Scale
Health status
Observed number
of taxa
Nb.
Chao
Jackknife 1
Jackknife 2
Bootstrap
Range
All
918
42
1,407 ± 70
1,279 ± 65
1,505
1,074 ± 32
1,074 - 1,505
Plot
Healthy
548
16
898 +/- 59
800 +/- 76
956
657 +/- 37
657 – 956
Moderately
declining
583
14
990 +/- 69
839 +/- 77
1,007
694 +/- 36
694 - 1,007
Severely
declining
555
12
911 +/- 58
812 +/- 90
968
667 +/- 45
667 – 968
Stand
Healthy
501
14
943 ± 79
742 ± 76
909
604 ± 37
604 – 943
Moderately
declining
629
16
943 ± 51
891 ± 76
1,041
745 ± 39
745 - 1,041
Severely
declining
532
12
898 ± 61
783 ± 78
940
641 ± 35
641 - 940
Table S4. Pairwise PERMANOVA based on the communities of canopy-dwelling Hymenoptera sampled in
healthy (H: < 30% of trees were in decline), moderately declining (MD: 30-60% of trees were in decline), and
severely declining (SD: > 60% of trees were in decline) plots and stands. Scale indicate at which spatial scale
(plot or stand) the decline severity has been estimated.
Scale
Group 1
Group 2
F value
P
R²
Plot
SD
MD
1.81
0.03
0.07
SD
H
4.37
< 0.001
0.14
MD
H
1.32
0.16
0.05
Stand
SD
H
5.83
< 0.001
0.20
SD
MD
3.88
< 0.001
0.13
H
MD
1.82
0.02
0.06
3
Table S5. Overall α diversity, β turnover and β nestedness between pairs of plot decline category. Overall β
diversity corresponds to Sorensen dissimilarity, β turnover to Simpson dissimilarity and β nestedness to the
difference between Sorensen and Simpson dissimilarity.
Overall α diversity
β turnover
β nestedness
Among plots
0.95
0.93 (97.89%)
0.02 (2.11%)
Among categories of plot decline
0.45
0.44 (97.78%)
0.01 (2.22%)
Between H and MD plots
0.37
0.35 (94.59%)
0.02 (5.41%)
Between MD and SD plots
0.38
0.37 (97.37%)
0.01 (2.63%)
Between H and SD plots
0.378
0.374 (98.94%)
0.004 (1.06%)
4
Table S6. Indicator species for decline categories estimated at the plot scale (i.e. on 10 trees, with H:
healthy plots (< 30% of trees were in decline), MD: moderately declining plots (30-60% of trees were
in decline), and SD: severely declining plots (> 60% of trees were in decline)), as estimated with the
multipatt function (indicspecies R-package) and the IndVal index (IndVal.g) with 1,000 permutations.
A corresponds to the probability that a site belongs to a particular category of decline because the
species has been sampled at that site, and B is the probability of sampling the species if the site
corresponds to the target decline category. Species in bold are indicators at both plot and stand
scales (see Table S7).
Plot decline category
Indicator species
Family
Larval trophic guild
A
B
IndVal index
H
Coleocentrus soleatus
Ichneumonidae
parasitoid
1.00
0.25
0.5*
MD
Hylaeus sp.
Colletidae
pollinivorous/nectarivorous
0.67
0.71
0.69 *
MD
Andrena fulva
Andrenidae
pollinivorous/nectarivorous
0.89
0.36
0.56 **
MD
Pseudomalus violaceus
Chrysididae
parasitoid
1.00
0.29
0.53 **
MD
Rhogogaster scalaris
Tenthredinidae
oak-associated phyllophagous
0.94
0.29
0.52 *
MD
Cryptinae sp.38
Ichneumonidae
parasitoid
0.87
0.29
0.50 *
MD
Eupalamus lacteator
Ichneumonidae
parasitoid
0.87
0.29
0.50 *
MD
Diapria cf. conica
Diapriidae
parasitoid
0.82
0.29
0.48 *
MD
Lasioglossum bluethgeni
Halictidae
pollinivorous/nectarivorous
0.82
0.29
0.48 *
MD
Athalia rosae
Tenthredinidae
other phyllophagous
1.00
0.21
0.46 *
MD
Cryptinae sp.39
Ichneumonidae
parasitoid
1.00
0.21
0.46 *
MD
Torymus auratus
Torymidae
parasitoid
1.00
0.21
0.46 *
SD
Eutomostethus luteiventris
Tenthredinidae
other phyllophagous
0.76
0.50
0.62 **
SD
Orthocentrinae sp.3
Ichneumonidae
parasitoid
0.89
0.47
0.61 **
SD
Formica fusca
Formicidae
polyphagous
0.81
0.42
0.58 *
SD
Campopleginae sp.12
Ichneumonidae
parasitoid
0.67
0.50
0.58 *
SD
Trigonoderus princeps
Pteromalidae
parasitoid
0.74
0.42
0.56 *
SD
Passaloecus vandeli
Pemphredonidae
carnivorous
0.87
0.33
0.54 *
SD
Dolichomitus terebrans
Ichneumonidae
parasitoid
0.77
0.33
0.51 *
SD
Arge rustica
Argidae
oak-associated phyllophagous
1.00
0.25
0.50 *
SD
Camponotus tergestinus
Formicidae
polyphagous
1.00
0.25
0.50 *
SD
Cryptinae sp.46
Ichneumonidae
parasitoid
1.00
0.25
0.50 *
SD
Tromatobia lineatoria
Ichneumonidae
parasitoid
1.00
0.25
0.50 *
5
Table S7. Indicator species for decline categories estimated at the stand scale (i.e. on 30 trees, with
H: healthy plots (< 30% of trees were in decline), MD: moderately declining plots (30-60% of trees
were in decline), and SD: severely declining plots (> 60% of trees were in decline)), as estimated with
the multipatt function (indicspecies R-package) and the IndVal index (IndVal.g) with 1,000
permutations. H: healthy, MD: moderately declining, SD: severely declining. A corresponds to the
probability that a site belongs to a particular category of decline because the species has been
sampled at that site, and B is the probability of sampling the species if the site corresponds to the
target decline category. Species in bold are indicators at both plot and stand scales (see Table S6).
Stand decline category
Indicator species
Family
Larval trophic guild
A
B
IndVal index
H
Chrysis fulgida
Chrysididae
parasitoid
1.00
0.36
0.60 **
H
Coleocentrus soleatus
Ichneumonidae
parasitoid
1.00
0.29
0.54 **
H
Andrena chrysosceles
Andrenidae
pollinivorous/nectarivorous
0.82
0.29
0.48 *
H
Bethylus dendrophilus
Bethylidae
parasitoid
0.82
0.29
0.48 *
H
Ectemnius lituratus
Crabronidae
carnivorous
1.00
0.21
0.46 *
MD
Ophion minutus
Ichneumonidae
parasitoid
0.78
0.75
0.76 *
MD
Tryphoninae sp.6
Ichneumonidae
parasitoid
0.72
0.50
0.60 *
MD
Microgastrinae sp.6
Braconidae
parasitoid
0.84
0.31
0.51 *
MD
Anteon infectum
Dryinidae
parasitoid
1.00
0.25
0.50 *
MD
Aphaenogaster subterranea
Formicidae
carnivorous
1.00
0.25
0.50 *
SD
Brachygaster minuta
Evanidae
parasitoid
0.88
0.92
0.90 ***
SD
Strongylogaster multifasciata
Tenthredinidae
other phyllophagous
0.66
0.83
0.74 **
SD
Tiphia femorata
Tiphiidae
parasitoid
0.93
0.58
0.74 **
SD
Sphecodes sp.
Halictidae
pollinivorous/nectarivorous
0.67
0.75
0.71 *
SD
Eutomostethus luteiventris
Tenthredinidae
other phyllophagous
0.85
0.50
0.65 **
SD
Pristiphora fausta
Tenthredinidae
oak-associated phyllophagous
0.71
0.58
0.65 **
SD
Agenioideus cinctellus
Pompilidae
parasitoid
0.89
0.42
0.61 **
SD
Dolerus gonager
Tenthredinidae
other phyllophagous
0.69
0.50
0.59 *
SD
Dendrocerus sp.
Megaspilidae
parasitoid
0.81
0.42
0.58 **
SD
Pachyprotasis simulans
Tenthredinidae
other phyllophagous
1.00
0.33
0.58 **
SD
Trigonoderus princeps
Pteromalidae
parasitoid
0.77
0.42
0.57 **
SD
Triaspis sp.7
Braconidae
parasitoid
0.96
0.33
0.57 **
SD
Aneugmenus padi
Tenthredinidae
other phyllophagous
0.88
0.33
0.54 *
SD
Passaloecus vandeli
Pemphredonidae
carnivorous
0.85
0.33
0.53 *
SD
Tenthredopsis nassata
Tenthredinidae
other phyllophagous
0.85
0.33
0.53 *
SD
Discoelius zonalis
Vespidae
carnivorous
1.00
0.25
0.50 *
SD
Polistes nimpha
Vespidae
social polyphagous
1.00
0.25
0.50 *
6
Table S8. Effect of the proportion of declining oaks at plot (left) and stand (right) scales on the abundance of oak-dwelling Hymenoptera, and on the
abundance of guilds (larval trophic guilds, larval nesting guild), families (abundance > 30 ind.) and taxa (abundance > 30 ind.). GLMMs were fitted for the
negative binomial family (NB), the Poisson family (P) or the log-normal family (Log), with forest and stand as random effects. Models with either linear or
quadratic decline variables were tested. When the quadratic model is the best model, d1 and d2 are displayed, with d1 corresponding to the linear form of
the decline and d2 to the quadratic form of the decline (Y= d1*X+d2*X²). Max. is the proportion of decline corresponding to the maximum abundance
observed at peak of the quadratic curve. ΔAICc = AICc (decline model) – AICc (null model). The best model between plot and stand scales is highlighted in
bold. Only significant relationships are shown (*** p < 0.001, ** p < 0.01, * p < 0.05).
Guild / taxa
Abund.
Dist. fam.
Plot decline
Stand decline
Delta AICc
Estimate
S. E.
z or t value
Marginal R²
Max.
Delta AICc
Estimate
S. E.
z or t value
Marginal R²
Max.
Larval trophic guilds
Idiobiont parasitoid
5,641
Log
-2.04
-0.62 **
0.22
-2.77
0.10
-3.31
-0.77 *
0.28
-2.79
0.13
Koinobiont parasitoid
4,113
Log
3.58
-3.36
d1. 2.43 *
0.84
2.91
0.06
0.46
d2. -2.64 *
0.90
-2.93
Pollinivorous/Nectarivorous
1,246
Log
-3.05
d1. 3.19 *
1.5
2.13
0.07
0.58
-4.30
1.56 *
0.6
2.63
0.15
d2. - 2.74 .
1.6
-1.72
Polyphagous
1,281
NB
-9.35
1.29 ***
0.1
113.57
0.19
-3.99
1.22 ***
0.1
112.82
0.14
Xylophagous
149
NB
-3.51
-3.47 *
1.5
-2.33
0.35
2.57
-
-
-
-
Larval nesting guilds
Gall-nesters
5,170
Log
0.70
-
-
-
-
-5.24
d1. 3.13 ns
1.98
1.58
0.25
0.34
d2. -4.63 *
2.17
-2.13
Specialist soil-nesters
1,376
NB
0.10
-
-
-
-
-4.72
1.66 **
0.55
3.00
0.18
Specialist wood-nesters
1,708
Log
-2.15
0.64 *
0.26
2.41
0.09
-2.91
0.83 *
0.32
2.58
0.13
7
Tab. S8 continued
Guild / taxa
Abund.
Dist. fam.
Plot decline
Stand decline
Delta AICc
Estimate
S. E.
z or t value
Marginal R²
Max.
Delta AICc
Estimate
S. E.
z or t value
Marginal R²
Max.
Families
Evanidae
33
P
-3.13
2.87 **
1.1
2.74
0.15
-11.88
5.03 ***
1.3
3.97
0.35
Formicidae
1,339
NB
-8.98
1.23 ***
0.1
113.00
0.18
-3.35
1.14 **
0.1
109.721
0.13
Halictidae
924
Log
-3.94
d1. 3.81 *
0.6
2.17
0.06
0.59
-4.90
1.82 *
0.7
2.70
0.12
d2. -3.25 .
0.6
-1.75
Ichneumonidae
4,242
Log
3.89
-
-
-
-
-4.46
d1. 2.24 **
0.7
3.40
0.11
0.47
-
-
-
-
d2. -2.37 **
0.7
-3.33
Pamphiliidae
38
NB
-1.55
-
-
-
-
-4.77
3 *
1.1
2.66
0.21
Perilampidae
2,614
NB
-6.30
-1.72 **
0.5
-3.24
0.38
-9.87
-2.67 *
0.8
-3.45
0.42
Tiphiidae
92
P
-2.44
2.39 *
1.1
2.21
0.05
-2.17
4.24 *
1.9
2.29
0.12
Xiphydriidae
149
NB
-3.51
-3.47 *
1.5
-2.33
0.35
2.57
-
-
-
-
Taxa
Agrypon flaveolatum
32
P
-2.63
-2.18 *
1.1
-2.00
0.11
2.32
-
-
-
-
Bassus sp.1
38
NB
-4.54
d1. 9.06 *
3.5
2.58
0.36
0.36
0.07
-
-
-
-
d2. -12.59 **
4.7
-2.67
Brachygaster minuta
33
P
-3.13
2.87 *
1.1
2.74
0.15
-11.88
5.03 ***
1.3
3.97
0.35
Ctenopelmatinae sp.1
88
P
-86.47
d1. 41.56 ***
8.3
4.99
0.53
0.40
1.88
-
-
-
-
d2. -51.48 ***
11.3
-4.55
Ctenopelmatinae sp.7
73
P
-20.70
2.92 ***
0.7
4.45
0.18
2.41
-
-
-
-
Deuteragenia vechti
44
P
-6.11
-3.05 *
1.2
-2.62
0.14
0.11
-
-
-
-
Dolichoderus quadripunctatus
718
NB
-6.30
1.49 *
0.5
3.06
0.18
-3.30
1.34 *
0.6
2.38
0.12
Earinus gloriatorius
43
NB
-4.19
d1. 7.77 ***
1.7
4.50
0.21
0.42
2.57
-
-
-
-
d2. -9.29 ***
2.0
-4.73
Empria tridens
30
P
-2.72
-2.18 *
0.9
-2.33
0.11
1.07
-
-
-
-
Macrocentrus nitidus
42
NB
-3.08
d1. 5.12 ***
1.2
4.15
0.24
0.33
-0.01
-
-
-
-
d2. -7.78 ***
1.6
-4.98
8
Tab. S8 continued
Guild / taxa
Abund.
Dist. fam.
Plot decline
Stand decline
Delta AICc
Estimate
S. E.
z or t value
Marginal R²
Max.
Delta AICc
Estimate
S. E.
z or t value
Marginal R²
Max.
Myrmecina graminicola
39
P
-10.86
d1. 12.48 **
3.8
3.29
0.30
0.51
-3.03
d1. 9.87 **
3.7
2.64
0.21
0.51
d2. -12.13 **
4.0
-3.04
d2. -9.68 *
4.1
-2.39
Perilampus ruficornis
2,614
NB
-8.50
d1. 2.00 ***
0.1
131.40
0.38
0.23
-22.79
d1. 3.53 ***
0.1
124.97
0.67
0.24
d2. -4.36 ***
0.1
-287.19
d2. -7.43 ***
0.1
-262.53
Priocnemis perturbator
38
P
-4.30
d1. 9.73 *
3.9
2.47
0.17
0.58
1.33
-
-
-
-
d2. -8.37 *
3.9
-2.16
Strongylogaster multifasciata
52
P
-12.98
d1. 15.97 **
4.7
3.40
0.31
0.67
-1.43
-
-
-
-
d2. -11.87 **
3.5
-3.39
Tiphia femorata
92
P
-2.44
2.39 *
1.1
2.21
0.04
-2.17
4.24 *
1.9
2.29
0.12
Vespa crabro
240
NB
-3.70
1.61 *
0.7
2.43
0.10
-0.27
-
-
-
-
Xiphydria longicollis
149
NB
-3.51
-3.47 *
1.5
-2.33
0.35
2.57
-
-
-
-
Xorides praecatorius
30
P
1.37
-
-
-
-
-3.07
d1. 9.88 *
3.9
2.53
0.22
0.50
d2. -9.82 *
4.0
-2.46
9
Table S9. Effect of the proportion of declining oaks (at plot and stand scales) on the species richness of oak-dwelling Hymenoptera, and on the species
richness of guilds (larval trophic guilds, larval nesting guild) and families (abundance > 30 ind.). GLMMs were fitted for the negative binomial family (NB), the
Poisson family (P) or the log-normal family (Log), with forest and stand as random effects. ΔAICc = AICc (decline model) – AICc (null model). The best model
between plot and stand scales is highlighted in bold. Only significant relationships are shown (*** p < 0.001, ** p < 0.01, * p < 0.05).
Guild / taxa
Species richness
Dist. fam.
Plot decline
Stand decline
Delta AICc
Estimate
S. E.
z or t value
Marginal R²
Delta AICc
Estimate
S. E.
z or t value
Marginal R²
Larval trophic guilds
Carnivorous
70
P
-3.60
0.57 *
0.23
2.54
0.05
-3.23
0.63 *
0.25
2.56
0.05
Non-oak phyllophagous
86
Log
1.62
-
-
-
-
-3.16
0.89 *
0.64
2.6
0.11
Polyphagous
25
P
-2.66
0.56 *
0.25
2.79
0.04
-3.24
0.66 *
0.28
2.40
0.05
Larval nesting guilds
Generalist soil-nesters
28
P
-2.13
0.53 *
0.24
2.19
0.03
-0.68
-
-
-
-
Generalist stem-nesters
40
P
-2.92
0.58 *
0.24
2.39
0.04
-3.65
0.67 *
0.27
2.53
0.04
Generalist wood-nesters
32
P
-3,89
0.55 *
0.22
2.57
0.04
-2,72
0.55 *
0.24
2.32
0.03
Families
Formicidae
29
P
-2.08
0.49 *
0.23
2.15
0.03
-1.54
-
-
-
-
Pamphiliidae
9
P
-4.51
2.00 **
0.69
2.89
0.12
-7.45
2.58 **
0.79
3.29
0.17
1
SUPPLEMENTARY DATA – FIGURES
Figure S1. Relationship between mean stand Leaf Area Index (LAI) and tree decline rate at the stand
scale.
2
Figure S2. Seasonal activity (monthly relative proportion of individuals) of the Hymenoptera families
dwelling in the canopy of the studied oak forests, arranged according to their dominant larval trophic
guild. Only families with more than 30 individuals are shown.
3
Figure S3. Mean abundance and species richness of Hymenoptera captured in transparent flight
interception traps and in green multi-funnel traps.
4
Figure S4. Responses of the community of canopy-dwelling Hymenoptera, collected from three oak
forests, and 42 plots, to plot decline severity. A) Rarefaction curves for the overall dataset and for
healthy (H: < 30% of trees are declining), moderately declining (MD: 30-60% of trees are declining)
and severely declining (SD: > 60% of trees are declining) stands. B) NMDS ordination (k=3,
stress=0.18) of species composition per plot, grouped by plot decline category. Species with less than
10 individuals were removed from the analysis. C) Global additive partitioning of species richness of
the canopy-dwelling Hymenoptera in the three oak forests, at the plot scale. Three levels are
represented: α plot (within plot), β plot (among plots), and β cat_plot (among level of plot decline).
Significance levels correspond to the difference between expected and observed values, with ***: p
< 0.001; . : p < 0.1.
5
Figure S5. Graphical representations of the linear (in dark green) or quadratic (in orange)
relationships between abundance (A) or species richness (B) of larval trophic and nesting guilds and
the proportion of declining trees at the plot scale (10 trees). ggeffects::ggpredict was used to predict
the values. The grey area corresponds to the confidence interval for the predicted values. When the
quadratic model is the best model, d1 and d2 are displayed, with d1 corresponding to the linear form
of the decline and d2 to the quadratic form of the decline. Est. corresponds to the estimate and only
significant relationships are shown (*** p < 0.001, ** p < 0.01, * p < 0.05). Standard error, t and z
value and marginal R² are available in the Tables S8 and S9.
6
Figure S6
7
8
9
Figure S6. Graphical representations of the linear (in dark green) or quadratic (in orange)
relationships between the abundance (A, B, D, E) of families and species or species richness (C, F) of
families and the proportion of declining trees at plot (A, B, C) or stand (D, E, F) scales (10 and 30
trees, respectively). ggeffects::ggpredict was used to predict the values. The grey area corresponds
to the confidence interval for the predicted values. Standard error, estimate, t and z value and
marginal R² are available in the Tables S8 and S9.
10
Figure S7
Figure S7. Results of the Structural Equation Modelling (SEM) for the effects of oak decline on the
abundance of the main Hymenoptera taxonomic families through changes in forest structure. Since
we tested 16 predictors, we used 0.0031 as the p.value (0.05/16). See the caption of Figure 6 for
complementary information.
11
Figure S8. Relationships between overall Hymenoptera species richness and LAI (top left); log
abundance of larval phytophagous species and LAI (top right); log abundance of larval species feeding
on nectar and/or pollen (bottom left); and richness of larval species feeding on nectar and/or pollen
(bottom right). All relationships are presented depending on the level of tree mortality rate (in
colour).