Based on previous research on energy efficiency of the buildings, particularly their cooling load capabilities we will develop a collection of machine learning methods for detecting buildings with best cooling load capabilities. This collection will study the influence of 8 input variables (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area,
... [Show full abstract] glazing area distribution) on one output parameter, that is cooling load of buildings. The results of this study support the practicability of using machine-learning software to estimate building parameters as a convenient and accurate approach, as long as the methods chosen are well suited for the type of data in question.