ArticlePDF Available

Advancing Sustainable Agriculture: A Comprehensive Review for Optimizing Food Production and Environmental Conservation

Authors:
  • ICAR- National Dairy Research Institute

Abstract

Advances in sustainable agriculture are essential for simultaneously optimizing food production and preserving the environment. This comprehensive review provides an in-depth study of the current state and future possibilities of sustainable farming practices. With the ever-increasing global population, ensuring food security has become a paramount issue. Conventional farming techniques, though effective for mass food production, pose serious threats to environmental sustainability due to excessive resource utilization, pollution, and degradation of biodiversity. Sustainable agriculture promotes practices that are environmentally friendly, economically viable, and socially equitable. This involves the application of advanced technologies, including precision farming, genetically modified crops for higher yield and disease resistance, and integrating renewable energy sources in farming practices. Importantly, the study also emphasizes agroecological practices which include crop rotation, organic farming, and agroforestry that contribute to enhancing soil fertility, reducing synthetic pesticide use, and promoting biodiversity. Additionally, sustainable agriculture supports the use of local resources and traditional knowledge to maintain ecological balance while ensuring food production. This review also highlights the crucial role of policy support and education in promoting sustainable farming. Farmer training and public awareness campaigns can increase understanding and acceptance of sustainable practices, leading to wider adoption. Overall, this review suggests that the adoption of sustainable agricultural practices is not just a choice but a necessity for ensuring food security and environmental conservation in the future.
Vital Importance of Agriculture to Human Civilization
Abstract:
Agriculture has been the foundation of human civilization for over 10,000 years. The
development of farming allowed early human societies to transition from a nomadic hunter-
gatherer existence to permanent settlements, leading to the birth of the first villages, cities,
and nations. Today, modern agriculture remains absolutely essential to the survival and
flourishing of a global population of nearly 8 billion people. Advances in farming technology
and practices have dramatically increased crop yields to keep pace with rapid population
growth. Agriculture provides the vast majority of the world's food supply as well as plant-
based industrial products such as cotton, rubber, and oils. Additionally, agriculture plays a
vital role in the world economy, serving as the main livelihood for millions in the developing
world while also being a key sector in international trade. As the human population continues
to expand in the coming decades, furthering sustainable agricultural practices will be critical
to ensure food security and protect the environment. This paper explores the central
importance of agriculture throughout human history, its crucial role in the modern world, and
the need to increase the sustainability of farming as we look to the future.
This abstract provides a high-level overview of the vital importance of agriculture, touching
on its historical role in the development of human civilization, its centrality in feeding the
world and supporting the global economy today, and the need for sustainable practices going
forward as the population continues to grow. The abstract sets up the key points that would
then be explored in more depth in the full paper. Let me know if you would like me to modify
or expand the abstract in any way. I'm happy to refine it further.
Abstract
 
 !"##$#%&'()*+,-./
0$1!2International Journal of Environment and Climate Change212!
 3& 45
 6%(6(7$#%&#*8
$9#)*9#/0$1!
4 ,-99(
 4!*:$#)*9#
1!
; .$< 4!($)*
$*=$'#8#$*
$2International Journal of Plant & Soil Science2355!;>&;?
? 6%.(($<0
( 4!"##$#&$.%-"#'
0$1!2International Journal of Environment and Climate Change213>!??&
??3
6. 7@9 4!-*
'#9=%)*#9##*#2Asian Journal
of Research in Agriculture and Forestry294!5;&>
7. 70'(*9 ;!
%$*&"$($#)*($*7A
$$2International Journal of Environment and Climate Change214!B4&44
8. 6,/(%(6'(
 4!0*#$$9&'#*$*
$2International Journal of Environment and Climate Change213 !;4; &;4;3
B (((.<66
 4!)*)#*$#$**$&#*9
$=('2International Journal of Environment and Climate Change213 !B ?&
B;
  9<.<6C
 4!"##$$9#%A*8*()"$$#
/2International Journal of Environment and Climate Change213>!B&B>
 0.D(%<<D*
 4!('**)##**2International Journal of Plant &
Soil Science235B!>45&>;4
 .<66(-C 4!
$*$#
*=('2International Journal of Plant & Soil Science2353!5 &54
4 '.<6(('9%,'9
 4!*#$#$*#$&#*9
$*2International Journal of Plant & Soil Science235B! &
; ('.,<.
 4!7*#*$*&*.@2The European Physical Journal
Plus21384! B
? 6,/(%(6'(
 4!0*#$$9&'#*$*
$2International Journal of Environment and Climate Change213 !;4; &;4;3
5 ,.*<(
% 4!-**#***$*
**9#**=('2International Journal of Plant & Soil
Science2353!35 &3>
> %%D.<6C.
 4!"$($**$'<*0$*=(6'2International
Journal of Environment and Climate Change213B!; B&;
3 ***%(.(,(,
 ;!"$($**"##$$99,
%$E(A$A6$2Journal of Advances in Biology &
Biotechnology227?!4B&44?
B .<6',9'
D 4!<*,#%$*9($**A
$=('2International Journal of Environment and Climate Change213B!5 &
5
  $..<619/6
 4!*$)":*9*$%<"*
"<*$)*9#C"$9&(6'2International
Journal of Plant & Soil Science2353!B3B& 
 $.<6**$.9)%
9% 4!7$#$$*)#$*$
*2International Journal of Environment and Climate Change213 !4?&;?
 19/9< 4!$F#*$
*$=$$2International Journal of
Plant & Soil Science2353!;??&;5;
4 %$9% 4!"##$
$G$##*8*$*'*=
'2International Journal of Environment and Climate Change213 !33&B3
; (..<6'(%9
9,1 4!&##$$*)**2Journal of Experimental
Agriculture International245 ! 5&?
? 6,,9$0*6%
% 4!":*D9$($0$*#-
&**&$*C=(6'2International Journal of Environment and
Climate Change213 !;;>;&;;34
5 @9(%6@(9
 4!":*#$$$'
$2International Journal of Plant & Soil Science235!>3&3B
> 91(9(66'9%
 ;!D%$*9#"$&A*9,"$
)*($*2Journal of Experimental Agriculture International246>!?;&5>
3 * !"##$#)9*
G*9#.#8+91!$**8#-
B ,'*69<,9(%<
 4!C87%($*(#$*
7**$7*2Int. J. Environ. Clim. Change213 !; 5&; 
4  (-.9.<6 4!
D$#)*($*="*$
*D*2Bionature243!5&B
4 .$.<66D6
C 4!"',"$9D*0"**
,2Int. J. Plant Soil Sci2353! >5& 3>
4 (*<60*(*69,1
 4!$)*6,)G*(
$92International Journal of Environment and Climate Change213 !4?3>&4?B>
44 %C@6D(*
":*$$*,%*,)9
4; 6((0*.<*
 4!":*#$$#7$"$9=(,":
#"*$*2International Journal of Environment and Climate Change213!
;4&?
4? %(1(%0DC6C%"=%(0-6"
C,,-66"%,"(%<A-%,07C%
45 191<,,9,%.6
 ;!06*#A$$,)C)96*)*$
<2European Journal of Nutrition & Food Safety2163! &3
4> (",D(%7CADC0C%0D"7
43 '***%().6@9<
* ;!%$*9&)#6*&(#
*D*H*9=(6'2Asian Journal of Soil Science and Plant Nutrition210!
?>&>4
4B %.6'9%%9
 ;!*"9F6*($)*<**
($*2International Journal of Environment and Climate Change214?! &4
;  .<669<%$<)9
 4!":*%*1$=(6'#AC#
1$.2International Journal of Environment and Climate Change213 !;3&;B4
; 6%6 !
"*#*#A*8'%(*)*9#/
0$1!2International Journal of Plant & Soil Science234 !>3&>33
; %(1 4!
"*#(($*,,#,$.
,$1!2Int. J. Environ. Clim. Change2135!4&4 
;4 6%6D).#**
;;
... Strategi ini menjadi kunci bagi merek kecantikan untuk menonjol dan membentuk keputusan pembelian konsumen. Influencer marketing meningkatkan kesadaran merek dan kepercayaan konsumen, di mana pemilihan influencer yang tepat sangat penting (Rai et al., 2023). Kolaborasi dengan influencer seperti Tasya Farasya berdampak positif pada keputusan pembelian melalui WOM digital dan personal branding (Afifah et al., 2023). ...
... Pemasaran influencer secara signifikan memengaruhi perilaku konsumen dengan membentuk persepsi dan keputusan pembelian, di mana kepercayaan dan keaslian memainkan peran penting, karena konsumen lebih tertarik pada konten yang terasa autentik (Anjaria & Satpati, 2024). Pemilihan influencer yang selaras dengan nilai merek dan demografi target terbukti meningkatkan kepercayaan dan loyalitas konsumen, terutama di industri kecantikan (Rai et al., 2023). Pemilihan influencer yang tepat, berdasarkan kelompok pelanggan, citra merek, dan jenis influencer, memastikan bahwa audiens sesuai dengan target pasar, memaksimalkan dampak pemasaran (Rai et al., 2023). ...
... Pemilihan influencer yang selaras dengan nilai merek dan demografi target terbukti meningkatkan kepercayaan dan loyalitas konsumen, terutama di industri kecantikan (Rai et al., 2023). Pemilihan influencer yang tepat, berdasarkan kelompok pelanggan, citra merek, dan jenis influencer, memastikan bahwa audiens sesuai dengan target pasar, memaksimalkan dampak pemasaran (Rai et al., 2023). Kerangka kerja PICTURES merekomendasikan pendekatan berbasis data untuk menemukan influencer yang tepat, yang dapat meningkatkan modal sosial dan kehadiran merek di pasar (Cruz et al., 2025). ...
Article
Full-text available
Penelitian ini menguji dampak penggunaan influencer, pemasaran media sosial, dan inovasi produk terhadap keputusan pembelian produk kecantikan di Jakarta. Pendekatan kuantitatif digunakan, dengan melibatkan 170 responden, dan data dianalisis menggunakan Structural Equation Modeling-Partial Least Squares (SEM-PLS). Hasil penelitian mengungkapkan bahwa pemasaran media sosial memiliki pengaruh terkuat terhadap keputusan pembelian, diikuti oleh penggunaan influencer dan inovasi produk. Bersama-sama, ketiga faktor ini menjelaskan 55,9% dari varians keputusan pembelian konsumen. Temuan ini menyoroti pentingnya mengintegrasikan strategi pemasaran digital dengan inovasi produk yang berkelanjutan untuk meningkatkan keterlibatan konsumen dan mendorong perilaku pembelian di pasar kecantikan yang kompetitif di Jakarta. Studi ini memberikan wawasan yang dapat ditindaklanjuti untuk merek kecantikan yang ingin meningkatkan pendekatan pemasaran mereka dan mempertahankan keunggulan kompetitif.
... Sustainable goat farming practices, such as rotational grazing, organic feeding, and waste management, have the potential to improve farm productivity while reducing environmental impact. By adopting these practices, farmers can lower input costs, preserve the health of their land, and ensure long-term productivity [46], [47]. Sustainable practices also improve the overall quality of the livestock and their products, which can lead to higher market prices and consumer demand [16], [20]. ...
... Sustainable practices also improve the overall quality of the livestock and their products, which can lead to higher market prices and consumer demand [16], [20]. Moreover, sustainability in farming can safeguard the livelihoods of farmers by ensuring that their agricultural activities remain viable over time, despite challenges such as climate change and resource scarcity [16], [46], [47]. Thus, it is hypothesized that: H3: Sustainable goat farming practices have a positive and significant effect on the economic welfare of goat farmers in rural Indonesia. ...
... Halal certification continues to be a critical factor for Muslim-majority countries like Indonesia, where the demand for halal products is significant. The positive effect of halal certification on economic welfare aligns with studies by [46], [47] and [20] who found that halal-certified products tend to be more marketable and command higher prices. This suggests that farmers should be encouraged to obtain halal certification to access these economic benefits. ...
Article
Full-text available
This study examines the impact of Islamic ethical farming practices, halal certification, and sustainable goat farming on the economic welfare of goat farmers in rural Indonesia. Using a quantitative approach, data were collected from 90 goat farmers through a structured questionnaire, and the results were analyzed using SPSS version 25. The findings reveal that all three independent variables—Islamic ethical farming practices, halal certification, and sustainable goat farming—positively and significantly influence the economic welfare of goat farmers. Sustainable farming practices had the strongest effect, followed by halal certification and Islamic ethical farming. The study concludes that integrating ethical, religious, and sustainable practices enhances the productivity, marketability, and long-term viability of goat farming operations, thereby improving farmers' economic welfare. These results offer valuable insights for policymakers and practitioners seeking to promote sustainable and ethical agriculture.
... Real-time data exchange enables identification and resolution of workflow bottlenecks and optimisation of resources [6]. IoT-automated systems simplify attendance management, reducing errors and fraud [7], while IoT-based predictive maintenance reduces downtime [8], [9]. IoT also supports efficient production scheduling through AI and machine learning [8], as well as real-time OEE monitoring to achieve productivity targets [6]. ...
... IoT-automated systems simplify attendance management, reducing errors and fraud [7], while IoT-based predictive maintenance reduces downtime [8], [9]. IoT also supports efficient production scheduling through AI and machine learning [8], as well as real-time OEE monitoring to achieve productivity targets [6]. ...
Article
Full-text available
This study investigates the impact of Internet of Things (IoT) usage in attendance management and productivity monitoring on employee performance and operational efficiency in the manufacturing industry of Central Java. Using a quantitative approach, data were collected from 270 respondents and analyzed with Structural Equation Modeling-Partial Least Squares (SEM-PLS 3). The results indicate that IoT-driven systems in both attendance management and productivity monitoring have a significant positive effect on employee performance and operational efficiency. Specifically, IoT-enabled attendance management improves workforce accountability and discipline, while productivity monitoring enhances real-time feedback and workflow optimization. These findings highlight the critical role of IoT technology in transforming workforce and operational management in manufacturing, contributing to improved performance and efficiency. The study provides valuable insights for decision-makers in the manufacturing industry regarding the adoption of IoT technologies to enhance competitiveness and operational outcomes.
... Sistem pertanian dianggap berkelanjutan jika pada praktiknya pertanian layak secara ekonomi, ramah lingkungan, dan adil secara sosial dalam jangka waktu yang lama. Ini melibatkan penggunaan teknologi canggih seperti pertanian presisi dan tanaman hasil rekayasa genetika untuk hasil yang lebih tinggi dan ketahanan terhadap penyakit (Saikanth, et al., 2023). Selain itu, pertanian berkelanjutan mendorong praktik agroekologi, seperti: rotasi tanaman, pertanian organik, dan wanatani, yang meningkatkan kesuburan tanah, mengurangi penggunaan pestisida sintetis, dan meningkatkan keanekaragaman hayati (Mugambiwa, et al., 2017). ...
Book
Full-text available
Sistematika buku ini dengan judul “Ilmu Pertanian”, mengacu pada konsep dan pembahasan hal yang terkait. Buku ini terdiri atas 10 bab yang dijelaskan secara rinci dalam pembahasan antara lain mengenai Hakikat Ilmu Pertanian; Masalah Sumberdaya Alam dan Lingkungan; Konsep Umum Ketahanan Pangan; Peluang Usaha dalam Sektor Pertanian; Kelembagaan dan Kebijakan dalam Pembangunan Pertanian; Jaringan, Anatomi, Morfologi, Pertumbuhan dan Perkembangan Tanaman; Syarat Tumbuh Tanaman; Dasar-Dasar Budidaya Tanaman; Konsep Pertanian Berkelanjutan; serta Current Issue Terkait Pertanian.
Article
The urgent threat of pathogenic diseases to the environment, food, and human health necessitates prompt action to devise novel solutions to mitigate losses. Diverse strategies have been utilized to control diseases; for instance, chemical pesticides may result in ecological harm, health issues, and the emergence of genetically modified pests that pose a risk to crops. The demand for sustainable agriculture compels scientists to seek environmentally friendly alternatives to detrimental pesticides. Consequently, microorganisms like bacteria, molds, and yeasts are utilized as biocontrol agents to mitigate crop diseases and promote pesticide-free agriculture globally. These bioagents can modulate phytopathogen proliferation and enhance plant growth and stress resilience. Engineered microorganisms serve as a potent instrument for sustainable agriculture, delivering improved disease resistance and augmented agricultural yields. The current review examines several tactics employed by microbial biocontrol agents to mitigate plant diseases, encompassing antibiosis, hyperparasitism, competition, interference, and the enhancement of plant defenses, all without the use of chemical pesticides, so promoting a safe environment.
Research
Full-text available
Crop pests and diseases pose significant challenges to agricultural productivity and food security worldwide. Traditional methods for detecting and managing these threats often rely on manual scouting and blanket pesticide applications, which can be labor-intensive, time-consuming, and environmentally harmful. Precision agriculture technologies offer promising solutions for early detection and targeted management of crop pests and diseases. This review article provides a comprehensive overview of the latest precision agriculture tools and techniques for monitoring crop health, detecting pests and diseases, and guiding site-specific interventions. Key technologies discussed include remote sensing, proximal sensing, machine learning, robotics, and Internet of Things (IoT) sensors. The article highlights the potential of these technologies to improve the timeliness, accuracy, and efficiency of pest and disease detection while reducing reliance on chemical inputs. It also discusses the challenges and opportunities for integrating these technologies into current agricultural practices and extension services. The review concludes with recommendations for future research and development to advance precision agriculture solutions for sustainable crop protection.
Chapter
Full-text available
With the world's population projected to reach 9.8 billion by 2050, sustainable agriculture is crucial to meet food sufficiency and security, posing an urgent challenge to our food production systems while protecting the environment. Traditional farming methods, though effective in increasing production, have caused soil degradation, water contamination, and reduced biodiversity. This review examines the complex relationship between sustainable agriculture and food systems. Starting with techniques that promote ecological health, resource efficiency, and long-term productivity, such as organic farming, permaculture, and precision agriculture, it looks at the fundamentals and indicators of sustainable agriculture. Subsequently, the chapter explores food safety protocols in sustainable agriculture, particularly highlighting emerging strategies that improve agricultural produce quality, reduce the danger of contamination, and facilitate traceability. The review further examines how sustainable agriculture might enhance food security by strengthening rural livelihoods, fostering resilient food systems, and expanding access to nutrient-dense foods. The review also addresses how sustainable agriculture contributes to food sufficiency, highlighting the potential of agroecological techniques to maximize crop yields and minimize reliance on outside inputs. The analysis provides a comprehensive overview of how sustainable agriculture may be used to create a robust and resilient food production system that prioritizes the current and projected population's security, safety, and sufficiency needs.
Article
Full-text available
The wetland ecosystem (Haor) experiences recurrent flooding, which disrupts agricultural activities and impacts farmers' livelihoods annually. Addressing these challenges through integrated farming systems (IFSs) such as Crop + Livestock + Homestead-Agroforestry, Crop + Livestock + Fish farming, and Livestock + Agroforestry is crucial. However, empirical evidence supporting the economic viability of specific IFSs remains limited. This study aimed to fill this gap by assessing the impact of IFSs on farmers' income and livelihoods in Sunamganj district, Bangladesh. Data from 312 participants collected before (2016) and after (2019) the project's intervention were analyzed using descriptive statistical methods. Farmers in this region readily adopted diverse IFSs, integrating crop cultivation, livestock rearing, vegetable production, agroforestry, fish farming, and open-water fish catching, ensuring efficient resource utilization across enterprises. Predominantly, farmers adopted the Crop + Livestock + Homestead–Agroforestry + Open water fish catching system, which had a benefit-cost ratio (BCR) of 1.40, while the Livestock + Homestead–Agroforestry + Open water fish catching system demonstrated the highest BCR at 1.58, indicating economic viability. Moreover, the adoption of IFSs led to a statistically significant increase in farming income (p < 0.10), contributing to a notable rise in total income. This adoption also correlated with significant improvements in human and financial capital, indicating a positive transformation in livelihood patterns. Therefore, the findings highlight the potential benefits of IFSs in enhancing farmers' well-being, specifically income and livelihood, and provide valuable insights for policymakers to support the integration of sustainable farming practices in the wetland ecosystem.
Article
Full-text available
Crop pests and diseases pose significant challenges to agricultural productivity and food security worldwide. Traditional methods for detecting and managing these threats often rely on manual scouting and blanket pesticide applications, which can be labor-intensive, time-consuming, and environmentally harmful. Precision agriculture technologies offer promising solutions for early detection and targeted management of crop pests and diseases. This review article provides a comprehensive overview of the latest precision agriculture tools and techniques for monitoring crop health, detecting pests and diseases, and guiding site-specific interventions. Key technologies discussed include remote sensing, proximal sensing, machine learning, robotics, and Internet of Things (IoT) sensors. The article highlights the potential of these technologies to improve the timeliness, accuracy, and efficiency of pest and disease detection while reducing reliance on chemical inputs. It also discusses the challenges and opportunities for integrating these technologies into current agricultural practices and extension services. The review concludes with recommendations for future research and development to advance precision agriculture solutions for sustainable crop protection.
Article
Full-text available
The origins, history, and recent advances in Conservation Agriculture (CA) are reported. CA is now practiced worldwide on some 200 million hectares, important for mitigating climate change and ensuring food security. Its bedrock is Zero Tillage (ZT) with crop rotation and retention of crop residues. CA approaches Organic Agriculture (OA) when coupled to biological control providing opportunity for OA to become truly sustainable. Ley Farming (LF) and agroforestry with ZT are important for carbon sequestration and land use intensification. Hidden cost: each ton of carbon immobilizes 83 kg of N, 29 kg of P, and 14 kg of S. Industry-backed Regenerative Agriculture (RA) variants have no scientific definition, but generally adopt CA. Sustainable, profitable, and compatible new technologies are emerging and CA needs to embrace them to present a holistic, sustainable package to the farmer. How? A single definition for agricultural sustainability via a multi-stakeholder world congress would standardize certification and de-confuse the market. RA describes exactly what CA does for soil health and all farmers need to unite around a new “Combined Regenerative Agriculture” (CRA) to lobby for adequate payments for environmental services. Expansion of CA is critical for world sustainability. Many gaps and constraints exist, especially for smallholders. Keywords: land use intensification; no-tillage farming; off-farm benefits; organic agriculture; payments for environmental services; regenerative agriculture; soil biology; soil disturbance; zero tillage
Article
Full-text available
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
Article
Full-text available
Deep learning (DL) is a powerful state-of-the-art technique for image processing including remote sensing (RS) images. This letter describes a multilevel DL architecture that targets land cover and crop type classification from multitemporal multisource satellite imagery. The pillars of the architecture are unsupervised neural network (NN) that is used for optical imagery segmentation and missing data restoration due to clouds and shadows, and an ensemble of supervised NNs. As basic supervised NN architecture, we use a traditional fully connected multilayer perceptron (MLP) and the most commonly used approach in RS community random forest, and compare them with convolutional NNs (CNNs). Experiments are carried out for the joint experiment of crop assessment and monitoring test site in Ukraine for classification of crops in a heterogeneous environment using nineteen multitemporal scenes acquired by Landsat-8 and Sentinel-1A RS satellites. The architecture with an ensemble of CNNs outperforms the one with MLPs allowing us to better discriminate certain summer crop types, in particular maize and soybeans, and yielding the target accuracies more than 85% for all major crops (wheat, maize, sunflower, soybeans, and sugar beet).
Article
Full-text available
More than 15 years after their first successful commercial introduction in the United States, genetically engineered (GE) seeds have been widely adopted by U.S. corn, soybean, and cotton farmers. Still, some questions persist regarding the potential benefits and risks of GE crops. The report finds that, although the pace of research and development (measured by the number of USDA-approved field tests) peaked in 2002, other measures show that biotech firms continue to develop new GE seed varieties at a rapid pace. Also, U.S. farmers continue to adopt GE seeds at a robust rate, and seed varieties with multiple (stacked) traits have increased at a very rapid rate. Insecticide use has decreased with the adoption of insect-resistant crops, and herbicide-tolerant crops have enabled the substitution of glyphosate for more toxic and persistent herbicides. However, overreliance on glyphosate and a reduction in the diversity of weed management practices have contributed to the evolution of glyphosate resistance in some weed species.
Book
Providing the theoretical and conceptual framework for this continually evolving field, Agroecology: The Ecology of Sustainable Food Systems, Second Edition explores environmental factors and complexities affecting agricultural crops and animals. Completely revised, updated, and reworked, the second edition contains new data, new readings, new issues and case studies, and new options. It includes two completely new chapters, one on the role of livestock animals in agroecosystems and one on the cultural and community aspects of sustainable food systems.The author clearly delineates the importance of using an ecosystem framework for determining if a particular agricultural practice, input, or management decision contributes or detracts from sustainability. He explains how the framework provides the ecological basis for the functioning of the chosen management strategy over the long-term. He also examines system level interactions, stressing the need for understanding the emergent qualities of populations, communities, and ecosystems and their roles in sustainable agriculture. Using examples of farming systems in a broad array of ecological conditions, the book demonstrates how to use an ecosystem approach to design and manage agroecosystems for sustainability.
Article
Agriculture stands on the cusp of a digital revolution, and the same technologies that created the Internet and are transforming medicine are now being applied in our farms and on our fields. Overall, this digital agricultural revolution is being driven by the low cost of collecting data on everything from soil conditions to animal health and crop development along with weather station data and data collected by drones and satellites. The promise of these technologies is more food, produced on less land, with fewer inputs and a smaller environmental footprint. At present, however, barriers to realizing this potential include a lack of ability to aggregate and interpret data in such a way that it results in useful decision support tools for farmers and the need to train farmers in how to use new tools. This article reviews the state of the literature on the promise and barriers to realizing the potential for Big Data to revolutionize agriculture. Expected final online publication date for the Annual Review of Resource Economics Volume 10 is October 5, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
Just like its recent predecessors, blockchain – also known as the distributed ledger technology – is considered to have the potential to cause major economic, political and social transformations in the Global South. The visible effects of this technology are already being noted there. We present early evidence linking the use of blockchain in overcoming some economic, social and political challenges facing the Global South. The article highlights the key applications and uses of blockchain in developing countries. It demonstrates how blockchain can help promote transparency, build trust and reputation, and enhance efficiency in transactions. The article looks at opportunities and key triggers for blockchain diffusion in these countries. It also delves into challenges and obstacles that developing economies are likely to encounter in the use of blockchain.