ArticlePublisher preview available

Molecular characterization of a novel amalgavirus infecting lilium spp. in China

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

A novel plant virus with a double-stranded (ds) RNA genome was detected in Lilium spp. in China by high-throughput sequencing and tentatively named “lily amalgavirus 2” (LAV2). The genomic RNA of LAV2 is 3432 nucleotides (nt) in length and contains two open reading frames (ORFs) that putatively encode a ‘1 + 2’ fusion protein of 1053 amino acids (aa), generated by a ‘+1’ programmed ribosomal frameshift (PRF). ORF1 encodes a putative 386-aa protein of unknown function, and ORF2 overlaps ORF1 by 350 nt and encodes a putative 783-aa protein with conserved RNA-dependent RNA polymerase (RdRp) motifs. The ‘+1’ ribosomal frameshifting motif, UUU_CGN, which is highly conserved among amalgaviruses, is also found in LAV2. Sequence analysis showed that the complete genome shared 46.04%-51.59% nucleotide sequence identity with those of members of the genus Amalgavirus and had the most similarity (51.59% sequence identity) to lily amalgavirus 1 (accession no. OM782323). Phylogenetic analysis based on RdRp amino acid sequences showed that LAV2 clustered with members of the genus Amalgavirus. Overall, our data suggest that LAV2 is a new member of the genus Amalgavirus.
This content is subject to copyright. Terms and conditions apply.
ANNOTATED SEQUENCE RECORD
Archives of Virology (2023) 168:181
https://doi.org/10.1007/s00705-023-05806-6
shallot yellow stripe virus (SYSV), and arabis mosaic virus
(ArMV) have been reported to infect lily plants in China
[48].
The family Amalgaviridae currently has 10 members,
including blueberry latent virus (BBLV) [9], rhododendron
virus A (RHV-A) [10], southern tomato virus (STV) [11],
vicia cryptic virus M (VCV-M) [12], Allium cepa amal-
gavirus 1 (AcAV1), Allium cepa amalgavirus 2 (AcAV2)
[13], spinach amalgavirus 1 (SpAV1) [14], Zostera marina
amalgavirus 1 (ZmAV1), and Zostera marina amalgavirus
2 (ZmAV2) [15] in the genus Amalgavirus and Zygosac-
charomyces bailii virus Z (ZbV-Z) [16] in the genus Zyba-
virus. The plant amalgaviruses have small dsRNA genomes
(3316–3453 bp) and have not yet been shown to form viri-
ons. They are transmitted by seeds but cannot be transmit-
ted mechanically [13]. Their genomes contain two partially
overlapping long open reading frames (ORFs), with down-
stream ORF2 overlapping ORF1 in the ‘+1’ frame. ORF1
encodes a protein of unknown function. ORF2 encodes the
RNA-dependent RNA polymerase (RdRp), which is trans-
lated through a ‘+1’ programmed ribosomal frameshifting
Lily (Lilium spp.) is a perennial plant belonging to the genus
Lilium of the family Liliaceae, with ornamental, medici-
nal, and food value, and it has become an important eco-
nomic crop in the oricultural industry worldwide [1]. To
date, more than 20 viruses have been reported to infect lily
plants, and of these, lily mottle virus (LMoV), lily symp-
tomless virus (LSV), and cucumber mosaic virus (CMV)
are the most frequently observed, often in mixed infections
[2, 3]. Lily amalgavirus 1 (LAV1), lily yellow mosaic virus
(LYMV), prunus necrotic ringspot virus (PNRSV), CMV,
LMoV, LSV, Plantago asiatica mosaic virus (PlAMV),
Communicated by Massimo Turina
Li Cai
caili@mail.hzau.edu.cn
1 Hubei Key Laboratory of Plant Pathology, College of Plant
Science and Technology, Huazhong Agricultural University,
430070 Wuhan, China
2 National Citrus Engineering Research Center, Southwest
University, 400712 Chongqing, China
Abstract
A novel plant virus with a double-stranded (ds) RNA genome was detected in Lilium spp. in China by high-throughput
sequencing and tentatively named “lily amalgavirus 2” (LAV2). The genomic RNA of LAV2 is 3432 nucleotides (nt) in
length and contains two open reading frames (ORFs) that putatively encode a ‘1 + 2’ fusion protein of 1053 amino acids
(aa), generated by a ‘+1’ programmed ribosomal frameshift (PRF). ORF1 encodes a putative 386-aa protein of unknown
function, and ORF2 overlaps ORF1 by 350 nt and encodes a putative 783-aa protein with conserved RNA-dependent RNA
polymerase (RdRp) motifs. The ‘+1’ ribosomal frameshifting motif, UUU_CGN, which is highly conserved among amal-
gaviruses, is also found in LAV2. Sequence analysis showed that the complete genome shared 46.04%-51.59% nucleotide
sequence identity with those of members of the genus Amalgavirus and had the most similarity (51.59% sequence identity)
to lily amalgavirus 1 (accession no. OM782323). Phylogenetic analysis based on RdRp amino acid sequences showed
that LAV2 clustered with members of the genus Amalgavirus. Overall, our data suggest that LAV2 is a new member of
the genus Amalgavirus.
Received: 3 February 2023 / Accepted: 26 April 2023 / Published online: 14 June 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023, corrected publication 2023
Molecular characterization of a novel amalgavirus infecting lilium spp.
in China
ZhihaoYuan1· ZhenfengLi1· YuexiaLu1· MengjiCao2· NiHong1· GuopingWang1· LiCai1
1 3
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
... The partial ORF1 and ORF2 encode an RdRp fusion protein resulting from a frameshift at the + 1 PRF motif, consisting of 1,057 amino acids with a predicted molecular mass of 118.6 kDa (Fig. 1C). An alignment of the amino acid sequence of the RdRp encoded by SGAV1 with those of 10 related amalgaviruses revealed that the SGAV1 RdRp contains all seven conserved motifs (I to VII) ( Supplementary Fig. S1A) described previously [8,9]. ...
Article
Full-text available
A novel monopartite dsRNA virus, tentatively named “sponge gourd amalgavirus 1” (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.
Article
Full-text available
We report for the first time the complete genome sequence of a novel amalgavirus, tentatively designated as ‘lily amalgavirus 1’ (LAV-1), isolated from Lilium spp. in China. LAV-1 is a 3448-nt double-stranded RNA virus that encodes two putative proteins. Open reading frame 1 (ORF1) encodes a 394-aa protein with unknown function. ORF2 encodes a putative RNA-dependent RNA polymerase (RdRp) of 895 aa. The two ORFs putatively encode a ‘1 + 2’ fusion protein generated by a ‘+1’ programmed ribosomal frameshift (PRF). BLASTp analysis revealed that the complete genome sequence of LAV-1 shares 48.23–59.80% sequence identity (query sequence coverage > 77%) with those of members of the genus Amalgavirus, with the highest nucleotide sequence identity of 59.80% with that of Allium cepa amalgavirus 1 (query sequence coverage, 87%). The genome structure, phylogenetic relationships, and sequence similarities to other plant amalgaviruses suggest that LAV-1 is a new member of the genus Amalgavirus.
Article
Full-text available
Lily symptomless virus (LSV), Lily mottle virus (LMoV), Cucumber mosaic virus (CMV), Shallot yellow stripe virus (SYSV), and Plantago asiatica mosaic virus (PlAMV) are five of the economically important viruses infecting lilies (Lilium spp.) worldwide. In order to prevent the occurrence and spread of these viruses, it is necessary to develop a rapid, effective, and sensitive detection method for the simultaneous detection and specific quantification of these viruses. In this study, specific primers and probes for multiplex TaqMan real-time PCR assays designed from conserved regions of the coat protein sequence of each virus were used for the simultaneous detection of these viruses in lilies (Lilium spp.). The optimal concentration of primers and probes and reaction annealing temperature were 20 µM and 55.9 °C, respectively. The detection limits of the assay were 1.33 × 102, 1.27 × 101, 1.28 × 101, 2.33 × 102, and 2.01 × 102 copies·μL−1 for LSV, LMoV, CMV, SYSV, and PlAMV, respectively. Specificity was determined using seven viral pathogens of lilies. Variability tests of intra- and inter-assays showed high reproducibility with coefficients of variation <2%. The multiplex TaqMan real-time PCR assay was used to detect these viruses from lily samples in China. In brief, our developed assay showed high specificity, sensitivity, and reproducibility for the simultaneous detection and differentiation of five lily-infecting viruses and can be used for certification and quarantine programs.
Article
Full-text available
The Lily mottle virus (LMoV) impedes the growth and quality of lily crops in Lanzhou, China. Recently Arabis mosaic virus (ArMV) has been detected in LMoV-infected plants in this region, causing plant stunting as well as severe foliar symptoms, and likely posing a threat to lily production. Consequently, there is a need to develop simple, sensitive, and reliable detection methods for these two viruses to prevent them from spreading. Reverse transcription (RT) loop-mediated isothermal amplification (LAMP) assays have been developed to detect LMoV and ArMV using two primer pairs that match six conserved sequences of LMoV and ArMV coat proteins, respectively. RT-LAMP assay results were visually assessed in reaction tubes using green fluorescence and gel electrophoresis. Our assays successfully detected both LMoV and ArMV in lily plants without the occurrence of viral cross-reactivity from other lily viruses. Optimal conditions for LAMP reactions were 65°C and 60°C for 60 min for LMoV and ArMV, respectively. Detection sensitivity for both RT-LAMP assays was a hundredfold greater than that of our comparative RT-polymerase chain reaction assays. We have also found this relatively rapid, target specific and sensitive method can also be used for samples collected in the field and may be especially useful in regions with limited or no laboratory facilities.
Article
Full-text available
The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.
Article
Full-text available
Lily plants exhibiting virus-like symptoms of leaf yellowing, twisting and brownish necrotic spots were collected, and next-generation sequencing of small RNAs was conducted to identify the associated viruses. Cucumber mosaic virus, lily symptomless virus and a hitherto unrecorded potyvirus, tentatively named “lily yellow mosaic virus” (LYMV), were detected. The genomic RNA of LYMV was 9811 nt in length, encoding a large polyprotein of 3,124 amino acids with a predicted Mr of 353.3 kDa. BLAST analysis showed that LYMV shared a high degree of amino acid sequence identity with Thunberg fritillary mosaic virus (55%), bean yellow mosaic virus (52%), clover yellow vein virus (51%), leek yellow stripe virus (51%), and lily mottle virus (52%), and these viruses clustered together in a phylogenetic tree.
Article
Full-text available
Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for a region of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses.
Article
Lily mottle virus (LMoV; genus Potyvirus, family Potyviridae) infects plants of the genus Lilium, causing a reduction in flower and bulb quality. A rapid and sensitive loop-mediated isothermal amplification (LAMP) assay was developed to detect the coat protein gene of LMoV. This LAMP method was highly specific for LMoV, with no cross-reaction with other lily viruses. The sensitivity of LMoV using the LAMP assay was 100 times more sensitive than that using conventional polymerase chain reaction. A reverse transcription LAMP (RT-LAMP) was then successfully applied to detect LMoV RNA. The newly established LAMP and one-step RT-LAMP provide an alternative method for detecting LMoV in lily plants.
Article
Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily.
Article
Complete genome sequences of three new plant RNA viruses, Spinach deltapartitivirus 1 (SpDPV1), Spinach amalgavirus 1 (SpAV1), and Spinach latent virus (SpLV), were identified from a spinach (Spinacia oleracea) transcriptome dataset. The RNA-dependent RNA polymerases (RdRps) of SpDPV1, SpAV1, and SpLV showed 72%, 53%, and 93% amino acid sequence identities with the homologous RdRp of the most closely related virus in each case, respectively, suggesting that SpDPV1 and SpAV1 were novel viruses. Sequence similarity and phylogenetic analyses revealed that SpDPV1 belonged to the genus Deltapartitivirus of the family Partitiviridae, SpAV1 to the genus Amalgavirus of the family Amalgaviridae, and SpLV to the genus Ilarvirus of the family Bromoviridae. Based on the demarcation criteria, SpDPV1 and SpAV1 are considered as novel species of the genera Deltapartitivirus and Amalgavirus, respectively. This is the first report of these two viruses from spinach.
Article
Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, Zygosaccharomyces bailii virus Z, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.