Article
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
After a brief flirtation with logicism in 1917--1920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gottingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the e-calculus, on which Hilbert's axiom systems were based, and the development of the e-substitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the e-notation and provides an analysis of Ackermann's consistency proofs for primitive recursive arithmetic and for the first comprehensive mathematical system, the latter using the substitution method. It is striking that these proofs use transfinite induction not dissimilar to that used in Gentzen's later consistency proof as well as non-primitive recursive definitions, and that these methods were accepted as finitistic at the time.
Article
This paper reveals David Hilbert’s position in the philosophy of mathematics, circa 1900, to be a form of non-eliminative structuralism, predating his formalism. I argue that Hilbert withstands the pressing objections put to him by Frege in the course of the Frege-Hilbert controversy in virtue of this early structuralist approach. To demonstrate that this historical position deserves contemporary attention I show that Hilbertian structuralism avoids a recent wave of objections against non-eliminative structuralists to the effect that they cannot distinguish between structurally identical but importantly distinct mathematical objects, such as the complex roots of 1-1.
Article
The article investigates one of the key contributions to modern structural mathematics, namely Hilbert’s Foundations of Geometry (1899) and its mathematical roots in nineteenth-century projective geometry. A central innovation of Hilbert’s book was to provide semantically minded independence proofs for various fragments of Euclidean geometry, thereby contributing to the development of the model-theoretic point of view in logical theory. Though it is generally acknowledged that the development of model theory is intimately bound up with innovations in 19th century geometry (in particular, the development of non-Euclidean geometries), so far, little has been said about how exactly model-theoretic concepts grew out of methodological investigations within projective geometry. This article is supposed to fill this lacuna and investigates this geometrical prehistory of modern model theory, eventually leading up to Hilbert’s Foundations .
Article
Article
In Mathematical Thought and Its Objects, Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a “nature” than that confers on them.
Article
Frege's Coneption of Logic explores the relationship between Frege's understanding of conceptual analysis and his understanding of logic. It is argued that the fruitfulness of Frege's conception of logic, and the illuminating differences between that conception and those more modern views that have largely supplanted it, are best understood against the backdrop of a clear account of the role of conceptual analysis in logical investigation. The first part of the book locates the role of conceptual analysis in Frege's logicist project. It is argued that, despite a number of difficulties, Frege's use of analysis in the service of logicism is a powerful and coherent tool. As a result of coming to grips with his use of that tool, we can see that there is, despite appearances, no conflict between Frege's intention to demonstrate the grounds of ordinary arithmetic and the fact that the numerals of his derived sentences fail to co-refer with ordinary numerals. The second part of the book explores the resulting conception of logic itself, and some of the straightforward ways in which Frege's conception differs from its now-familiar descendants. In particular, it's argued that consistency, as Frege understands it, differs significantly from the kind of consistency demonstrable via the construction of models. To appreciate this difference is to appreciate the extent to which Frege was right in his debate with Hilbert over consistency- and independence-proofs in geometry. For similar reasons, modern results such as the completeness of formal systems and the categoricity of theories do not have for Frege the same importance they are commonly taken to have by his post-Tarskian descendants. These differences, together with the coherence of Frege's position, provide reason for caution with respect to the appeal to formal systems and their properties in the treatment of fundamental logical properties and relations.
Article
It is a remarkable fact that Hilbert's programmatic papers from the 1920s still shape, almost exclusively, the standard contemporary perspective of his views concerning (the foundations of) mathematics; even his own, quite different work on the foundations of geometry and arithmetic1 from the late 1890s is often understood from that vantage point. My essay pursues one main goal, namely, to contrast Hilbert's formal axiomatic method from the early 1920s with his existential axiomatic approach from the 1890s. Such a contrast illuminates the circuitous beginnings of the finitist consistency program and connects the complex emergence of existential axiomatics with transformations in mathematics and philosophy during the 19th century; the sheer complexity and methodological difficulties of the latter development are partially reflected in the well known, but not well understood correspondence between Frege and Hilbert. Taking seriously the goal of formalizing mathematics in an effective logical framework leads also to contemporary tasks, not just historical and systematic insights; those are briefly described as "one direction" for fascinating work.
Article
Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly “meaningless” signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl, 2009/1949 and Kitcher, 1976). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates Hilbert's account of mathematical objectivity, axiomatics, idealization, and consistency. Resumi Detlefsen (1986) legge il programma di Hilbert come una sofisticata difesa dello strumentalismo, ma Feferman (1998) sostiene che il programma di Hilbert lascia senza risposta alcune significative questioni ontologiche. Una fra queste è il riferimento dei termini individuali numerici. L'impiego da parte di Hilbert di simboli per i numeri e formule per la matematica finistista esplicitamente “privi di senso,” sembra impedire la possibilitá di stabilire un riferimento per i termini matematici e un contenuto per le proposizioni (Weyl, 2009/1949 and Kitcher, 1976). Questo articolo ripercorre la storia e il contesto del pensiero di Hilbert concernente i simboli; tale contesto getta luce sulla concezione Hilbertiana dell'oggettivitá matematica.
Article
Hilbert's program attempts to show that our mathematical knowledge can be certain because we are able to know for certain the truths of elementary arithmetic. I argue that, in the absence of a theory of mathematical truth, Hilbert does not have a complete theory of our arithmetical knowledge. Further, while his deployment of a Kantian notion of intuition seems to promise an answer to scepticism, there is no way to complete Hilbert's epistemology which would answer to his avowed aims.
Article
In a letter to Frege of 29 December 1899, Hubert advances his formalist doctrineaccording to which consistency of an arbitrary set of mathematical sentences is a sufficient condition for its truth and for the existence of the concepts described by it. This paper discusses Frege’s analysis, as carried out in the context of the Frege-Hilbert correspondence, of the formalist approach in particular and the axiomatic method in general. We close with a speculation about Frege’s influence on Hilbert’s later work in foundations, which we consider to have been greater than previously assumed. This conjecture is based on a hitherto neglected revision of Hilbert’s talk Über den Zahlbegriff
Article
This is a survey of Gödel's perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert's program, using his published and unpublished articles and lectures as well as the correspondence between Bernays and Gödel on these matters. There is also an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end.
Article
This paper gives a survey of David Hilbert's (1862–1943) changing attitudes towards logic. The logical theory of the Göttingen mathematician is presented as intimately linked to his studies on the foundation of mathematics. Hilbert developed his logical theory in three stages: (1) in his early axiomatic programme until 1903 Hilbert proposed to use the traditional theory of logical inferences to prove the consistency of his set of axioms for arithmetic. (2) After the publication of the logical and set-theoretical paradoxes by Gottlob Frege and Bertrand Russell it was due to Hilbert and his closest collaborator Ernst Zermelo that mathematical logic became one of the topics taught in courses for Göttingen mathematics students. The axiomatization of logic and set-theory became part of the axiomatic programme, and they tried to create their own consistent logical calculi as tools for proving consistency of axiomatic systems. (3) In his struggle with intuitionism, represented by L. E. J. Brouwer and his advocate Hermann Weyl, Hilbert, assisted by Paul Bemays, created the distinction between proper mathematics and meta-mathematics, the latter using only finite means. He considerably revised the logical calculus of thePrincipia Mathematica of Alfred North Whitehead and Bertrand Russell by introducing the ε-axiom which should serve for avoiding infinite operations in logic.
  • Bernays Paul
  • Bernays Paul
  • Benacerraf Paul