Hörmander’s propagation of singularities theorem does not fully describe the propagation of singularities in subelliptic wave equations, due to the existence of doubly characteristic points. In the present work, building upon a visionary conference paper by Melrose (in: Hyperbolic equations and related topics, Academic Press, pp 181–192, 1986), we prove that singularities of subelliptic wave
... [Show full abstract] equations only propagate along null-bicharacteristics and abnormal extremals, which are well-known curves in optimal control theory. As a consequence, we characterize the singular support of subelliptic wave kernels outside the diagonal. These results show that abnormal extremals play an important role in the classical-quantum correspondence between sub-Riemannian geometry and sub-Laplacians.