ArticlePDF Available

Land Consumption for Current Diets Compared with That for the Planetary Health Diet—How Many People Can Our Land Feed?

MDPI
Sustainability
Authors:

Abstract and Figures

Nowadays dietary habits in many countries are disconnected from the locally available resources and land. Current diets harm ecosystems and people’s health. (Re-)regionalising food systems and aligning diets with planetary boundaries can be one way to reconnect people to the food that they eat. Within academic discourse, there are numerous debates about the benefits and drawbacks of regional agriculture, and the circumstances that determine the viability of regional agriculture as a preferable approach. An argument that often merges is that feeding a whole population using local resources cannot be accomplished. However, is this true? To test this argument, we used statistical data and created a framework to calculate land consumption in square meters per capita according to different dietary habits, among other factors. This study will focus on scenario analyses for the region of Hesse, Germany—with an emphasis on the livestock sector—as land consumption for the production of meat, milk and eggs is relatively high there. Our results show that the region is far from being able to feed the current livestock population and that it does not have the land to support the livestock needed to sustain current consumption patterns. However, the region could support a smaller livestock population with the implementation of the planetary health diet, especially if farmers were to adopt crop rotation systems and (more) extensive husbandry.
Content may be subject to copyright.
Sustainability2023,15,8675.https://doi.org/10.3390/su15118675www.mdpi.com/journal/sustainability
Article
LandConsumptionforCurrentDietsComparedwithThat
forthePlanetaryHealthDiet—HowManyPeopleCanOur
LandFeed?
Anna-MaraSchön*andMaritaBöhringer
DepartmentofBusiness,FuldaUniversityofAppliedSciences,60549Frankfurt,Germany;
marita.boehringer@w.hs-fulda.de
*Correspondence:anna-mara.schoen@w.hs-fulda.de
Abstract:Nowadaysdietaryhabitsinmanycountriesaredisconnectedfromthelocallyavailable
resourcesandland.Currentdietsharmecosystemsandpeople’shealth.(Re-)regionalisingfoodsys-
temsandaligningdietswithplanetaryboundariescanbeonewaytoreconnectpeopletothefood
thattheyeat.Withinacademicdiscourse,therearenumerousdebatesaboutthebenetsanddraw-
backsofregionalagriculture,andthecircumstancesthatdeterminetheviabilityofregionalagricul-
tureasapreferableapproach.Anargumentthatoftenmergesisthatfeedingawholepopulation
usinglocalresourcescannotbeaccomplished.However,isthistrue?Totestthisargument,weused
statisticaldataandcreatedaframeworktocalculatelandconsumptioninsquaremeterspercapita
accordingtodierentdietaryhabits,amongotherfactors.Thisstudywillfocusonscenarioanalyses
fortheregionofHesse,Germany—withanemphasisonthelivestocksector—aslandconsumption
fortheproductionofmeat,milkandeggsisrelativelyhighthere.Ourresultsshowthattheregion
isfarfrombeingabletofeedthecurrentlivestockpopulationandthatitdoesnothavethelandto
supportthelivestockneededtosustaincurrentconsumptionpaerns.However,theregioncould
supportasmallerlivestockpopulationwiththeimplementationoftheplanetaryhealthdiet,espe-
ciallyiffarmersweretoadoptcroprotationsystemsand(more)extensivehusbandry.
Keywords:self-suciencydegree;planetaryhealthdiet;landconsumption;foodsovereignty;
livestock;consumption
1.Introduction
Foodproductionaccountsforaboutone-thirdofthetotalgreenhouse-gasemissions
causedbyhumanactivity[1].Approximately20%oftheseareduetofoodtransport[2].
Globally,oneoutofthreepeopleisoverweightorobese,whereasoneoutofninepeople
isunder-ormalnourished[3].InGermany,about6millionchildrenreceivelunchat
schoolordaycarecentresonaregularbasis,yetoneinsixchildrenisoverweightorobese
[4].Thiscontradictionshowsthatthecurrentfoodsystemisnotworkingproperly;con-
sequently,bothagricultureandconsumptionbehaviourmustbereconsidered.
Shortfoodsupplychainshavebeenshowntohaveapositiveimpactonhealth[5]
(e.g.,ancientvarietiesandlandraces,astheyareoftenmorenutritious,aretypicallymore
cultivatedandsoughtafterinshortfoodsupplychains)[6],climate(e.g.,preservingag-
robiodiversityandreducingCO
2
emissionsfromtransportation)[7,8]andthelocalecon-
omy(e.g.,regionalvalueandjobcreation[9],andlowertransportationcosts)[8,10].Even
beforetheCOVID-19pandemicandtheRussianinvasionofUkraine—twoeventsthat
haveunequivocallyprovedtherisksofdependencyonglobalsupplychains[11,12]—
manyscientists,politiciansandciviliansagreedthatfoodsystemsneededtonotonlybe-
comemoreresource-andclimatefriendly,butalsomoreregional,notleasttobeableto
guaranteenational(food)sovereignty[13–15].Further,regionalisedagriculturecanhelp
Citation:Schön,A.-M.;
Böhringer,M.LandConsumption
forCurrentDietsComparedwith
ThatforthePlanetaryHealth
Diet—HowManyPeopleCanOur
LandFeed?Sustainability2023,15,
8675.hps://doi.org/10.3390/
su15118675
AcademicEditor:HosseinAzadi
Received:31March2023
Revised:11May2023
Accepted:23May2023
Published:26May2023
Copyright:©2023bytheauthors.Li-
censeeMDPI,Basel,Swierland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon-
ditionsoftheCreativeCommonsAt-
tribution(CCBY)license(hps://cre-
ativecommons.org/licenses/by/4.0/).
Sustainability2023,15,86752of38
promotesustainableagriculturalpractices,asitiseasierforconsumersandpolicymakers
totrackandmonitortheorigin,qualityandsafetyoffoodthisway[16–19].Asthesupply
chainsandtransportationareshorterinregionalisedagriculture,theproductsarefresher
andofhigherquality,andtheyrequirefewerpreservativesorothermethodsthatextend
shelflife[19,20].Forinstance,onestudyfoundthatkitchensthathadswitchedtoregional
supplycouldreducefoodwasteby20%[21].
Sustainablefoodpracticesandfoodsovereigntyarealsodemandedbytheglobal
peasantmovement,LaViaCampesina,whichissupportedbyactorsofnongovernmental
organisations,academia,andthepeasantcommunity,allofwhomstriveformoresustain-
ability,resilienceandfoodsovereigntyintheircommunitiesandregions[15].Keyfactors
infoodsovereigntyincludeprioritisinglocalagriculturalproduction;peasantsandland-
lesspeople’saccesstoland,water,seedsandcredit;therightoffarmersandpeasantsto
producefood;therightofconsumerstodecidewhattheyconsumeandhowandbywhom
foodisproduced;therightofcountriestoprotectthemselvesagainsttoo-low-pricedag-
riculturalandfoodimports;therighttoimposetaxesonexcessivelycheapimportsifthey
committhemselvesinfavourofsustainablefarmproduction;andtherecognitionofthe
rightoffemalefarmers,whoplayamajorroleinagriculturalproductionandfoodsystems
[22].
Themaingoaloffoodsovereigntyistoprioritisepeople’snutritionratherthanneo-
liberalpoliciesandinternationaltrade[22],andtotransformthecurrentfoodsystemfrom
theindustrialisedsystembackintopeasantryfarming.Thecurrentindustrialisedfood
systemcanbetracedbacktoafewhistoricalevents,i.e.,therst(1870–1930s)andsecond
(1950–1970s)foodregimes,theGreenRevolution(fromtheendoftheSecondWorldWar
untilthelate1970s)andtheindustrialisationofagricultureandtradeliberalisation,allof
whichplayedtheirpartinproducingandadvertisingcheapfood,suchascorn,riceand
wheat,butalsoinachievingthemass-productionofanimalproductstofuelcheaplabour
andstrengthenthehegemonicroleoftheUnitedStatesandcapitalism[15,23,24].
Apartfromthenegativeimpactonpeople’shealth,theincreasingdemandforand
dependenceonagriculturalimportsandtheoveralllevelofpoverty,theGreenRevolution
andagro-industrialisationhavesignicantlynegativeimpactsonourclimateandbiodi-
versity[15,22,25].Forinstance,whiletheproductionofcornperacreincreasedby~2.4
timesfrom1945to1970,fuelinputsroseby~3.1times.Asearlyas1973,scholarsdiscov-
eredthat80gallons(897litresper1ha)ofgasolineareconsumedper1acreofcornpro-
duced.Suchexamplesshowcasewhygreenhouse-gasemissionsfromfoodproductionare
sohighnowadays[1].
Withthisinmind,to(re-)gainfoodsovereignty,inmanypartsoftheworld,food
policycouncilsandotherfoodactivists,suchasthetransitiontownmovement,theslow
foodmovement,etc.,havebeenestablished[26–28].Theydemandindependencefrom
globalfoodsupplychainsandresilience,andthatregions,whethersmallorlarge,beable
tofeedthemselvesaccordingtotheavailablearablelandandpastureland.
Ontheotherhand,argumentsagainstshortandmoresustainablefoodsupplychains
persist.Advocatesforthestatusquoarguethatcropsshouldbegrownwherethehighest
yieldscanbeachievedandthattransportcostsandemissionsareonlyasmallpartofthe
totalcost,thushardlyplayingarole[29,30].Lowyieldsarenotaviablesolution,accord-
ingtothisargument,becausepopulationgrowth,incomegrowthandchangingdietsare
predictedtoincreasethedemandforagriculturalproductsbyabout60%by2050(from
thebaseyearof2005)[31,32].TheincreaseinanimalwelfareinGermanyand,thus,the
reductioninthenumberofanimalskeptformeatproductiondemandedbymoresustain-
ablymindedpeopleareincontrasttotheargumentthatmeatshouldnotbecomealuxury
goodthatonlywealthypeoplecanaord[33–35].
Thelobbythatpromotesthisargumentisstrongandsuccessfulinavertinganysig-
nicant(fast)changetowardgreaterclimateprotectionandnatureconservation.
Avarietyofimportantstudieshaveexploredourglobalfoodsystemanditsimpact
ontheenvironment,biodiversity,climateandhealth,focusingonglobaldata[36–40].
Sustainability2023,15,86753of38
Inordertocalculatetheavailabilityoffoodandtoprovideabasisforagricultural
andfoodpolicy,anumberofmodelsthatarededicatedtothistopicwithdierentfocuses
alreadyexist.Theseinclude,forexample,FAOmodelssuchasthepartialequilibriumand
computablegeneralequilibriumforforecasts,FoodSecurityModelsforassessingfood
securityandFoodBalanceSheets,whichprovideinformationonimports,exportsand
productionatthenationallevel[41–43].However,thesemodelshavefacedcriticismfor
beinginaccurate,incompleteandneglectingtheecologicalandsocialaspectsofagricul-
ture[32,44–48].Toaddressthiscriticismandtakeregionalspecicsintoconsideration,
ourcalculationsarebasedonregionaldatafromthestateofHesse.Withthisapproach,
weaimtomakeagriculturalproductiondataunderstandableandtangibleattheregional
levelandobtainmoreconcretemeasuresthattlocalconditions.Ourscenariosgobeyond
puremodelcalculationsandshowwhatwouldchangeifecologicalagriculturalpractices
wereintegratedandconsumerschangedtheirdietaryhabits.
Additionally,despitescienticreportsandmodelsrepeatedlyshowingthethreatof
climatechangeandtheoveruseoftheEarth’sresources[49],peopleacttooslowlyordo
notreactatalltothethreatsthatwearefacing.Whatisthereasonforthis?Studiesmod-
ellingglobaldatadonotseemtoconvincepeopletoactlocally,possiblybecausethese
dataaretooabstracttounderstandandforeigntopeople’sownexperiences(proximity
eect)[50].Psychologyshowsthatmoreinformationmaynotbethekeytoclimateaction
andthatdoomsdaymessagestendtofail[51].Theuseofstatus,metricsandfriendlycom-
petitionworksbeer:“Carbonfootprintshavebeenusefulbecausepeoplecanimprove.
Youcanactuallyhaveapositivetrajectoryandfeelgoodaboutthat.Thentheycancom-
pete.Everybodylikestohavethatsmileyface;noonelikestohavethatfrownyface”[51].
Withthisinmind,theaimofthisstudyistoprovidepeoplewithatooltocalculate
theirlandconsumptioninsquaremeterspercapita,dependingonthewaytheyeat,and
todeterminetheimpactonfarmers’practices.Withourmetricsathand,peoplewho
changetheirdietaryhabitscandeterminetheirowndecreaseinlandconsumption,award-
ingthemselvesthat“smileyface”.Studyingsmallerareas,butindetail,isessential[32].
Tocalculateandprocessdetails,localconditionsmustbeconsidered,suchasthe
currentlocalsupplyanddemand,typesofagriculture(e.g.,pasturelandvs.arableland),
soilconditions,etc.Eventhoughourapproachfocusesonasmallarea,thestateofHesse
inGermany,weproposethatourndings,especiallytheapproximatesquaremetresre-
quiredbytheaveragelocalpersontosustaintheirdiet,begeneralisedtoatleastawide
rangeofEuropeanregionsandprobablymostareasoftheGlobalNorth,particularlybe-
causethewaythatfoodconsumptioninCentralGermanyissimilartothatinmanyother
regions[52].
Consideringalltheseargumentsforandagainstalocalandclimate-friendlyfood
system,arangeofresearchquestionsandassumptionsemerge:
RQ1:Howmanyanimalswouldbenecessarytosatisfythedemandforregionalanimal
products(meat,dairyandeggs)inthecontextofcurrentconsumptionpaerns?
RQ2:Canlocallandfeedthenumberofcurrentlykeptlivestockandthenumberoflive-
stocknecessarytoachievea100%degreeofself-suciency(SSD)?
RQ3:Howmuchfoodisgrownonlocalelds,andhowmuchwouldbenecessarytofeed
thelocalpopulationinaplant-based,healthy,appealinganddiverseway,asrecom-
mendedbytheplanetaryhealthdiet(PHD)?
Tothispoint,thesequestionshavenotbeenanswered,atleastnotindetail.Weas-
sumedthatthestudiedareaisnotbigenoughtofeedtheanimalsneededforfood—in-
cludingmeat,eggsanddairyproducts—withlocalresources,andthatthecropswerenot
diverseenoughtoprovidehealthyfoodforeveryone.Thus,weraisedthefollowingques-
tion:
RQ4:Howwouldlandconsumptionchangeifeveryoneconsumedinamoreenviron-
mentallyfriendlymanner—specically,consumingfewermeat,eggsanddairyprod-
ucts,as,forinstance,proposedintheplanetaryhealthdietbytheEAT-Lancet
Sustainability2023,15,86754of38
Commissionin2019[13]—andagriculturebecamemoresustainableandenviron-
mentallyfriendly?
Toanswerthesequestions,westudiedsixdierentregionswithinthestateofHesse,
andthewholestateofHesse,infourscenarios.Therstscenarioconsiderscurrentcon-
sumptionpaerns,whicharebasedoncurrentcultivationstatisticsandthecurrentnum-
beroflivestock(referredtoascurrentinthefollowing).Thecalculatedself-suciencyde-
greesprovideinsightsaboutthesupplysituationsintheseregions.ToanswerRQ1,the
secondscenariocalculatesthelivestocknecessarytomeetthecurrentconsumptionpat-
terns—toreachaself-suciencydegreeof100%(referredtoasSSD100%inthefollow-
ing)[53–56],andprovideanswerstoRQ2.Thethird(PHD)andfourth(extensive)scenar-
iosarebasedontheconsumptionrecommendationsoftheplanetaryhealthdietandthus
analysethelivestocknecessaryforboththeadaptedconsumptionpaerns(referredtoas
PHDinthefollowing)andforchangingthetypeofcultivationtoaseven-yearcroprota-
tionsystemandextensivehusbandry(referredtoasextensiveinthefollowing).Scenario
PHDanswersRQ3,whilescenarioextensiveshedslightonRQ4.
2.MethodandConceptoftheStudy
Adetailedframeworkwasestablishedtocalculatethelandconsumptioninm2/capita
andthedierentlevelsofself-suciency.Figure1displaysanoverviewoftheframework
development.ToanswertheresearchquestionsRQ1–3,werstidentiedtheareastobe
studied(step1,cf.2.1RegionsunderConsideration).Wethenlookedatspecicagricultural
statisticsandcurrentdietaryhabitsandtheplanetaryhealthdiet(steps2and3,cf.2.2
SelectedFoodGroups).Toestimatehowmanyanimalsmustbefedwithwhatamountof
fodderperyear,wedenedfodderexamplesbasedontheliteratureandexpertinterviews
(step4)andtheso-calledherdfactors,stableplaceandslaughterquotas(step5,cf.2.3
AnimalProductionRatesand2.4.LandConsumptionforAnimalFeed).Then,weexcludedthe
plantsusedforenergyproductionfromthetotalandconsideredfurtherassumptions
(steps6and7,cf.2.5PlantsforEnergyProductionand2.6FurtherAssumptions).Equipped
withthisinformation,wewereabletoconsiderdierentscenarios(steps8–12,cf.2.7The
CalculatedScenarios:Current,SSD100%,PHDandExtensive).
Sustainability2023,15,86755of38
Figure1.OverviewofFrameworkDevelopment.Theupperpartofthegureshowsthestep-by-
stepprocedureofthestudyandtheconditionstakenunderconsideration,separatedintomaincon-
ditions(step1to5)andsideconditions(step6and7)andaimingtoprovideanswerstoresearch
questions1to4.Basedonthedenedconditions,thelowerpartofthegurepresentstheprocedure
forcalculatingthefourscenarios:calculatinglandconsumptionforcurrentdietaryhabitsandcur-
rentlivestock(steps8a–11a,current);calculatinglandconsumptionforaself-suciencydegree
(SSD)of100%basedoncurrentdietaryhabits(steps8b–10b,SSD100%);calculatinglandconsump-
tionforadietbasedontheplanetaryhealthdiet(PHD)andcomparisonwiththeDeutscheGesell-
schaftfürErnährung(DGE;steps8c–11c,PHD);calculatinglandconsumptionforPHDincombina-
tionwithamoresustainabletypeofagriculture,namely,seven-yearcroprotationand(more)ex-
tensivehusbandry(steps8d–12d,extensive).
2.1.RegionsunderConsideration
WespecicallyanalysedthewholeGermanstateofHessetocalculatetheself-su-
ciencydegreesandsquaremeterspercapita.LocatedwithinHesseare(1)threegovern-
mentaldistricts(Darmstadt(2),Gießen(3)andKassel(4)),twosmallerregions(themet-
ropolitanareaofFrankfurt/Main,includingalltheborderingcounties(5)andtherural
countyofMarburg-Biedenkopf(6)),whichareshownindetailbelow(Figure2)[57].
Sustainability2023,15,86756of38
Figure2.LocationoftheAnalysedRegionsandtheirTotalPopulation.Theleftsideshowsregion
1,thewholestateofHesse,whichislocatedinthemiddleofGermany,andtherightsideshows
whereinHessetheregions2–6arelocated.Regions2–4arethegovernmentaldistricts(GD)of
Darmstadt(2),Gießen(3)andKassel(4);region5istheFrankfurtmetropolitanarea(FMPA),con-
sistingofthecityofFrankfurt/Mainandborderingcounties,andpartofregion2;andregion6isa
moreruralarea,thecountyofMarburg-Biedenkopf(M-B),about80kmnorthofFrankfurt,andpart
ofregion3.
2.2.SelectedFoodGroups
Weselectedandadaptedthefoodgroupsusedintheplanetaryhealthdietandcom-
binedthemwithcurrentconsumptionpaernsandtheconsumptionrecommendedby
theplanetaryhealthdiet(PHD)percapita(Table1).SincethePHDrecommends2500kcal
perpersonperday,weadjustedthisgureto2150kcal(86%),i.e.,thecalculatedmedian
acrosstheagegroupsoftheHessianpopulationandtherespectivequantitiesrequired.
Tab l e1.Consumptioninkg/capitap.a.Intherstcolumnontheleft,thedierentfoodgroups
basedontheplanetaryhealthdietaredisplayed.Inthesecondcolumn,thecurrentconsumption
basedonthestatisticaldataisshown.ThethirdcolumnshowstheannualisedPHDrecommenda-
tioninkg.Thefourthcolumndownscalesthisrecommendationtoadailyintakeof2150kcal/capita,
i.e.,thecalculatedHessianmedianinrelationtotheagegroupslivingintheregionandthecalorie
intakerecommendedbytheGermanNutritionSociety(DGE—DeutscheGesellschaftfür
Ernährung)perdayandagegroup[13,58–62].
FoodGroupCurrentCon-
sumption1
ConsumptionRecommendedbyPHD
2500kcal
ConsumptionRecommendedbyPHD
2150kcal
Cereals85.484.772.8
Legumes0.927.423.5
Potatoes71.718.315.7
Vegetables98.6109.594.2
Fruits66.573.062.8
Plant-oil14.518.916.3
Nuts5.018.315.7
Sugar33.611.39.7
Milk,equiv.diary409.691.378.5
Sustainability2023,15,86757of38
Eggs(pcs.)239.075.364.8
Redmea
t
42.05.14.4
Whitemeat13.110.69.1
Fish14.110.28.8
1Alldataareexpressedinkgpercapitaperyear(excepteggs).
WeemphasisedthePHDfoodgroups,whicharealsoincludedintheGermanNutri-
tionSociety’s(DGE)recommendationsandforwhichasoliddatabaseisprovided.These
groupsincludegrains,grainproductsandpotatoes,whichareimportantsourcesofen-
ergy,carbohydratesanddietarybre[63,64].Thenextfoodgroupscomprisevegetables,
saladandlegumes(suchaspeas,beansandlentils).Vegetablesarerichinvitamins,min-
erals,dietarybreandphytochemicals,andlegumesareagoodsourceofproteinand
dietarybreandconstituteagoodmeatalternative.Fruitsarerichinvitamins,minerals,
breandphytochemicals;nutsandseedsareimportantsourcesofnutrientsandtherefore
partofahealthydiet.Wedidnotincludenutsinourstudy,astheyarehardlycultivated
inHesse.Therearenoexactstatisticsonfruits.Theregionmainlycultivatesstrawberries,
cherriesandapples.Localapplesareusedmainlytoproducejuiceandcider.Asthese
productsgrowonlyincertainareasofHesseandaresoldmostlybymeansofdirectmar-
keting,wedecidednottoincludethem.Milkanddairyareagoodsourceofcalciumand
providehigh-qualityprotein,iodineandvitaminsA,B2andB12.Meatalsoprovideshigh-
qualityprotein,andvitaminB12,selenium,zincandiron.Processedmeatisrichinsatu-
ratedfayacidsandsalt.Whitemeat,asboththeDGEandthePHDstate,ispreferableto
redmeat,asthereisnorelationshipbetweentheformerandcanceraccordingtocurrent
knowledge[63].TheDGEsuggestsamoderateconsumptionofredmeatduetohigh
greenhouse-gasemissionsfromruminants,suchascale,sheepandgoats.ThePHDpro-
posesradicallydecreasingredmeatintakecomparedwiththecurrentaverageintakebe-
causeofhealthissuesandthenegativeenvironmentalimpact[64].Fish,anotherfood
group,isahigh-qualityproteinsource;fayshspeciesarerichinvaluablelong-chain
omega-3fayacids,andseashishighiniodine.Wedidnotincludeshinourstudy,as
itishardlycultivatedinHesse.Eggsareagoodsourceofproteinandfat-solublevitamins,
thoughtheyolkishighinfatandcholesterol.Currentstudiesdonotshowanupperlimit
foreggconsumption;however,theDGEdoesnotrecommendanunlimitedamountinthe
contextofaplant-baseddiet[63].ThePHDlimitseggstoaboutoneeggperweek[64].
RapeseedoilisrecommendedbytheDGEasplant-oil,anotherfoodgroup,asitcontains
thelowestproportionofsaturatedfayacids,ahighcontentofmonounsaturatedand
polyunsaturatedfayacids,vitaminEandagoodratioofomega-3fayacidstoomega-
6fayacids[65].ThePHDdoesnotrecommendanyspecicoilbuthighlightstheim-
portanceofunsaturatedfayacids[64].Inourstudy,wecalculatedtheamountofavail-
ableplant-basedfatbasedonrapeseedsandsunowersbecausebothoftheseplantsare
grownregionally.
TheyieldsperhectarebasedontheGermanFederalStatisticalOce[66]andcrops
canbefoundinTables A1,A2andA3,respectively,andtheextrapolatedconsumptionby
regioninkgandhaisshowninTablesA4andA5.Yieldsmaysignicantlyvary,depend-
ingonthetypeofsoil,thequalityofseedsusedandtheweatherconditions.
2.3.AnimalProductionRates
Regardinganimalproducts,tocalculatetheactualself-suciencydegree,weused
averagedconventionalproductionrates,suchasaveragemilkyieldperanimalgroup
(9358kg/cow/year;averageslaughterweights:230kgpercale,21kgpersheep,11kgper
goatand98kgperpig;chickenlyingperformance:288eggs/chicken/year;slaughter
weightsofpoultry:2kgperbroilerchicken,5.2kgpergoose,10kgperturkeyand2.2kg
perduck).
Theherdfactors(howmanyanimalsneedtobekepttomaintaintheherdatacon-
stantlevel)andtheslaughterrate(howmanyanimals“occupy”astableplaceperyear
Sustainability2023,15,86758of38
beforetheyareslaughtered)canbefoundinTableA6[67–76].Thesefactorsareimportant
incalculatinghowmuchfeediseatenintotalperyearandnotperanimal.Forextensive
husbandry,someofthesegureswereadapted,suchaseggs(180insteadof288)(cf.Tab le
A6).
2.4.LandConsumptionforAnimalFeed
Tocalculatehowmuchfoddertheregioncanprovideforwhichnumberandtypeof
animals(permanentpasturelandandarableland),wehadtodeneexemplaryfodder
rationsbasedonthegivenliteratureandexpertinterviews[67,68,77–79](cf.Tables S1and
S2).Ourfodderrationsarebasedonregionalcultivationpractices,suchashighrationsof
maizesilageandcerealsandlowerrationsoflegumesandlucernes.Basedonourconver-
sationswithfarmers,weareawarethattheserationsvarygreatlydependingonthefarm
andregionandthatitisimpossibletoobtainrealisticdatabasedonafewfeedingexam-
ples(eachfarmerhashis/herownfeedingpractices).However,thisstepwasnecessaryin
ordernottomakethecalculationmodeltoocomplicatedorchaotic.
2.5.PlantsforEnergyProduction
WedrewonstatisticsprovidedbythestateofHesseregardingarableland(haand
cultivatedcrops),pastureland,permanentcrops,andtypesandnumberofanimals.These
statisticscanbefoundinTab leS3[80].
Thestatisticsindicatecropsperha,notyieldperregion.Thestatisticsdonotreveal
whichcropsareusedforhumanconsumption,fodderorenergyproduction.However,
wecaninferthatabout95%oflegumesgrownareforfeeding[81],asare—intotal—triti-
cale,lucerne,corn-cobmixandmaizesilage(about20%ofthetotalcropland).Weesti-
matedthatinHesse,atleast2.1%ofwheat,9%ofsilagemaize,1.84%ofsugarbeets,0.4%
ofpotatoes,7.2%ofrapeseedand1%oflegumesareusedforenergyproductionorindus-
trialpurposes[82,83].TableA7showstheresults.TableS4showsthecalculationbasis.
Thesepercentagesweresubtractedfromthetotalamountperfoodgroupandwerenot
consideredinfuturecalculations.
2.6.FurtherAssumptions
Approximately30%ofthetotalproductionofwheatand55%ofrapeseeddonot
enterthemarketforhumanconsumption,becausethereareremainingsharesafterthresh-
ing,millingandoil-pressingprocessesthatcanbefedtoanimalsasprotein-richcakeor
meal.Despiteknowingthattheareasstudieddonothavelargeprocessingplants—such
asoilmills,grainmills,threshingcropprocessingorsugarfactories—westillconsidered
thatallharvestsareinsteadprocessedandconsumedherebyhumansandanimals,in
ordertocalculatethelocalself-suciencydegrees.Weexcludedanykindoffoodwaste,
althoughweareawareoftheextentandproblematicnatureofthisloss.Onereasonfor
thisisthatweestimatedthatifsupplychainswerelocalisedandmademoresustainable,
acircuiteconomywouldbebuilt,inturndrasticallyreducingfoodwaste(theleftovers
wouldbefedtoanimals,andtheproductswouldbevaluedmoreandusedwhenavaila-
ble).
2.7.TheCalculatedScenarios:Current,SSD100%,PHDandExtensive
Basedonthesedata,wewereabletomodelthefollowingfourscenarios,focusingon
livestockbeforecalculatinghowmuchlandisleftfortheplant-basedshareofthediet:
livestockforcurrent:Thenecessaryfeedrequirementsforcurrentlivestockinha(cf.
TableS5)inthedierentregionsandtheself-suciencydegreesofredmeat,white
meat,eggsandmilk/dairyproducts;
livestockforSSD100%:Thenumberoflivestock,includingherdfactors/stableplaces,
necessarytoensureourcurrentconsumptionpaerns(100%self-suciencydegrees
ofanimalproducts;cf.Tab leS9);
Sustainability2023,15,86759of38
livestockforPHD:Thenumberoflivestock,includingherdfactors/stableplaces,nec-
essarytoensuretheconsumptionlevelrecommendedbythePHD(100%self-su-
ciencydegreesofanimalproducts;cf.TableS10);
livestockforextensivelivestock,includingseven-yearcroprotationsystem:The
self-suciencydegreesofplantsandanimalproductsintheutopiancaseinwhich
allfarmersuseaseven-yearcroprotationsystemandonlykeepanimalsextensively
insteadofintensively(asitismainlypracticedtoday)(cf.Tabl eS11).
Further,wecalculatedtheself-suciencydegreesofplantsforhumanconsumption
(cereals(excludingtriticale),sugar,potatoes,oilfromrapeseeds,legumesandvegetables)
basedonthecurrentconsumptionpaernsandthePHDrecommendations(cf.Table S6).
Wedidnotfocusonoilfromsunower,asitonlyplaysaminorroleinlocalfarming
practices.Foreachscenario,wecalculatedtheapproximatetotalandpercapitanecessary
landconsumptionofpasturelandandcropland.
ThecurrentandSSD100%scenariosaimedtoanswerRQ1(Howmanyanimals
wouldbenecessarytosatisfythedemandforregionalanimalproducts(meat,dairyand
eggs)inthecontextofcurrentconsumptionpaerns?)andRQ2(Canlocallandfeedthe
currentlykeptlivestockandthenumberoflivestocknecessaryfora100%self-suciency
degree(SSD)?).ToanswertherstpartofRQ3(Howmuchfoodisgrownonlocalelds?),
wesubtractedthearablelandnecessarytoraiselivestockfromthetotaltorevealhow
muchlandisleftfortheplant-basedshareofthediet.Bycalculatingtheself-suciency
degree,wecouldanswerthesecondpartofRQ3(Howmuchwouldbenecessarytofeed
thelocalpopulationinaplant-based,healthy,appealinganddiverseway,e.g.,asrecom-
mendedbytheplanetaryhealthdiet(PHD)?).Withtheresultsobtainedsofar,wecon-
rmedourassumptionthattheareastudiedisnotlargeenoughtofeedtheanimalsthat
areneededforfood—includingeggsanddairyproducts—usinglocalresources.Byrecal-
culatingthelandconsumptionforthenecessarylivestockbasedontheplanetaryhealth
diet(PHDscenario),wemathematicallydecreasedthelandconsumptionpercapitaand
provedthatcurrentagriculturalpracticesweresustainableingeneral,albeitnotinline
withLaViaCampesinanordiverseenoughtoprovidehealthyfoodtoeveryone(excep-
tionsexcluded).ThisledustoanalyseRQ4(Howwouldlandconsumptionchangeif
everyoneconsumedinamoreenvironmentallyfriendlymanner,specically,lessmeat,
eggsanddairyproducts,forinstance,proposedintheplanetaryhealthdiet,whileatthe
sametimeagriculturebecamemoresustainableandenvironmentallyfriendly?)Thelaer
scenarioisinlinewiththeliteraturecallingtoincludesustainableagriculture[32,47].
3.AnalysisoftheStatusQuo:LowSelf-SuciencyDegrees—WhatMustChange?
Beforepresentingtheresultsindetail,weprovideabriefoverviewoftheregion.
3.1.OverviewoftheStateofHesse
HesseisastateinCentralGermanywithalmost6.3millioninhabitants,298inhabit-
antsperkm²,302.53billionEURGDP(in2021)andanunemploymentrateof4.9%(in
2022)[84].Intotal,15,128farmscanbefoundinthisstate,688ofwhichareunder5ha,
and536ofwhichareover200ha[53].Mostfarmsinthisstatearebetween50and99ha
(3853farms).Only4241ofallthefarmownersworkasfull-timefarmers.Atotalof10,221
farmskeeplivestock,mainlycale(6429farmskeep406,304cale,aboutone-thirdof
whicharedairycows)andpigs(2407farmskeep543,934pigs).Atotalof2108ofthefarms
workorganically,ofwhich1674keeplivestock(63,006livestockunits)[53,69].

Sustainability2023,15,867510of38
3.2.ArableFarming
InthestateofHesse,atotalof764,705haisusedforagriculture(36%ofthetotal
area).Ofthis,61%isusedascroplandand38%aspastureland,while1%isusedtogrow
permanentcrops,suchasfruits,nuttreesandbushes.
Farmerscultivatevegetableson8285haofland,andalmost32haiscovered;farmers
cultivatestrawberriesonnearly1000haofland[55,56].
Thesharesofmaincropscultivatedoncropland—includingorganiccrops—ineach
regionaredisplayedinTableA1.Theoverallshareoforganicfarmlandinhaisbetween
10and21%,dependingontheregion;theshareoforganicvs.conventionalfarmsvaries
between14and20%.Thestate’sgoalistoincreasetheareaoforganicfarmingto25%by
2025(cf.TableS3)[85].Theareaoforganicfarmingpercropsignicantlyvarieswithtotal
cereals.Inregion1(Hesse),thisareais8%,ofwhichwheat,spelt,Einkornandcorn
maize/corn-cobmixrepresent6%each;ryeandtriticale,16%each;barley,4%;oat,27%;
othercereals,suchasEmmer,millet,buckwheatandsorghum,42%;silagemaize,3%;
sugarbeets,2%;potatoes,11%;rapeseeds,0%;andlegumes,35%.Thedatashowthatthe
maincropcultures,suchascerealsandmaize,havearatherlowshareoforganicallypro-
ducedcrops,whereasnicheproducts,suchasEmmer,oatandbuckwheathavearather
highorganicshare.
3.3.CurrentProductionandConsumptionofAnimalProducts
About580,000grazinganimals—includingcloseto35,000horses,roughly544,000
faeningpigs,closeto33,000breedingsows,1.1millionbroilersandotherpoultryand
nearly1.5millionlayinghens—arecurrentlykeptinregion1(cf.TableS5)[53,69].
Theself-suciencydegreeofanimalproductsvariesquitesignicantlybyregion
andproduct(cf.Figure3andTable S8,SSDanimalproducts).Thecurrentproductionof
animalproductsisthehighestinregion4(e.g.,SSDofmilk:111%;SSDofredmeat:132%).
Region5hasmostinhabitants,thelowestshareofagricultureand,thus,lowself-su-
ciencydegreesofanimalproducts(e.g.,SSDofwhitemeat:1.1%;SSDofeggs:14%).Re-
gion3andregion6,whichispartofregion3,raisecaleanddairycowsintensively,but
stillcannotmeetthelocaldemand(e.g.,inregion3,SSDofmilk:64%;SSDofredmeat:
54%).Whitemeatandeggsareonlyproducedtoaconsiderabledegreeinregion4(SSD
ofwhitemeat:125%;SSDofeggs:55%).

Sustainability2023,15,867511of38
Figure3.CurrentAnimalProductConsumptionbyRegion1to6.Region4isananimal-producing
region,withmoremilkandredandwhitemeatbeingproducedthanconsumed.Inallareasother
thanregion4consumptionexceedsproductionforallfoodtypes.
3.4.CalculatedNumberofAnimalsforCurrentConsumptionandConsumptionAccordingto
PHDRecommendations
Thenextstepoftheanalysiswastocalculatethenumberofanimalsnecessaryto
ensurethecurrentlevelofconsumptionofanimalproductsineachregion(SSD100%;cf.
TableS9),toensuretheconsumptionrecommendedbythePHD(PHD;cf.TableS10)and
tosustaintheconsumptionrecommendedbythePHDwithextensiveanimalhusbandry
andthuslower/sloweroutputperanimal(extensive;cf.TableS11).Figure4showsthere-
sultsofregion1,thewholestateofHesse,andFigureA1showstheresultsofallthere-
gions.Theherdfactors/stableplacesreportedinTableA6wereincludedinthecalculation
oftheresults.Thecalculationofthelivestocknecessaryforthedierentdietscanbefound
inTabl eS12.InHesse,forexample,manymoreanimalswouldbeneededtomeetlocal
demand.Ifalltheinhabitantsweretoeatasrecommendedbytheplanetaryhealthdiet,
thefarmerswouldhavetokeepfarlesslivestock.Ifeveryoneintheregionateasrecom-
mendedbythePHDandthelivestockwerekeptextensively,thenumberofanimals
wouldincreasetoPHD,butonlyslightly.Theresultsoftheotherregionsaresimilar.Only
inregion5,themostpopulatedone,isthedierencebetweenthecurrentandnecessary
livestock(PHD)lessextremebecausefewanimalsliveintheregion.Forpoultrykeptto
producemeat,thedierencesarealsolessnotable,becausethePHD-recommendedpoul-
trylevelsarequitehigh.TheresultsinFigure4answerRQ1(Howmanyanimalswould
benecessarytosatisfythedemandforregionalanimalproducts(meat,dairyandeggs)in
thecontextofcurrentconsumptionpaerns?).Forinstance,inregion1,currently124,750
dairycowsandabout544,000pigsarekept,thoughalmost363,800dairycowsandabout
1millionfaeningpigsarenecessary.IfeveryoneatebythePHD,region1wouldonly
need61,000dairycowsand104,000faeningpigs,whichwouldincreasetoabout128,000
and139,000extensivelykeptdairycowsandpigs,respectively(cf.TablesS5,S9–S11).
Sustainability2023,15,867512of38
Figure4.CurrentLivestockinComparisonwithNecessaryLivestock.Thenumberoflivestock
neededinSSD100%exceedsthenumberofcurrentlykeptlivestock(current),whereasthenumber
oflivestockneededinPHDismuchlower.Ifalltheanimalswerekeptextensively(extensive),the
numberswouldincreaseslightlytoPHD.
3.5.CalculationofFeedQuantitiesandLandConsumptionRequiredforLivestock
ThenextstepbasedontheresultsinFigures3and4wastodeterminetheamountof
feedrequiredforthelivestockofthescenarioscurrent,SSD100%andPHD(fortheexten
sivescenario,seeSection3.8).Thisstepisnecessaryinassessingthelandconsumptionfor
thecurrentdietandfortheplanetaryhealthdiet.
Basedonourfodderexamplesandyields(mainlyfrom2021[66]),wecalculatedthat
thelivestockcurrentlykeptinthedierentregions(1to6)wouldusebetween62%(region
3)and80%(region4)oftheavailablepasturelandandbetweenabout34%(region5)and
75%(region4)oftheavailablecrop-landifthetotalamountoffodderwereproduced
locally(cf.Figure5).AssuminganSSDof100%,thenecessaryamountoffeedingwould
exceedtheregions’resourcesbyupto409%(region5)forpasturelandandby256%(re-
gion5)forcropland.Ontheotherhand,basedonthePHDconsumptionrecommenda-
tions(i.e.,theconsumptionoffeweranimalproducts),theregionswouldonlyneedbe-
tween14%(region4)and65%(region5)ofpasturelandandbetween14%(region4)and
47%(region2)ofcropland,clearlyindicatingthatextensivehusbandrywouldbepossible.
Themainargumentforkeepingcale(includingdairycows)isthatruminantsare
capableofprocessingnon-ediblegrass,clovergrassandlucerneintovaluableproteinfor
humans,althoughtheyemitahighshareofmethaneasaresultoftheirdigestiveprocesses
[36].Regardingtheforageexamples,pasturelanddoesnotseemtobeusedoptimally,as
outofthe294,288haoftheavailablepasturelandinregion1,only208,985hawasusedin
ourcalculation(Figure5,leftbars).Apartfromthepotentiallyunderestimatedfeedra-
tionsinourforageexamples,intheseregions,itcanbeobservedthatmanyanimalshave
tostayinthebarnbecausedirectgrazingisnotpossible,requirestoomucheortoris
simplydicultduetopoorweatherconditions.Inaddition,theproportionofconcen-
tratedfeedisquitehighincomparisontopastureforagefordairycowsandcale,somilk
andmeatyieldsarehigh.Regardingregionalgrazingpractices,hardlyanyhybridgrazing
ispractised,whichiscorroboratedbythelowsharesofgoatsandsheepinthetotallive-
stock(0.4%ofgoatsand1%ofsheep).IntheSSD100%scenario,mostregionswouldnot
haveenoughpasturelandtofeedalltheanimals(thenecessaryamountforregion1is
482,996ha),contrarytothePHDscenario.IfeveryonewastoeataccordingtothePHD
recommendations,therewouldbeenoughgrazinglandforalltheanimalsthatwould
thenbeneeded(80,647haofpastureland).
Thecultivationoflucerne,clovergrassandlegumes(statusquo:mainlyeldbeans
andeldpeasforfeedinglivestock)oncroplandisgoodforsoilfertility,asnitrogenis
boundandisagoodsourceofproteinforanimals—notonlyforcaleanddairycows,but
Sustainability2023,15,867513of38
alsoforpigsandpoultry[86,87].Especiallyorganicfarmerscultivatingaccordingtoper-
ennialcroprotationhaveclovergrasssilageandlegumesinstockfortheiranimalsinthe
winter[68,81].Accordingtothestatistics,theoverallamountoflucerneandclovergrass
isonly1.14%ofthetotalcultivatedareainHesse(cf.TableS7)[66].Thequantitiesgrown
arefartoosmalltofeedthecurrentlocallivestock(availablelandinregion1:5300hafor
lucerneandclovergrass,and13,277haforlegumes).Noregiongrowsnearlyenoughof
theseproteincropsneededforthecurrentlivestock(region1:33,823haforlucerne/clover
grassand58,312haforlegumes),letalonethenecessarylivestock(region1:74,067hafor
lucerne/clovergrass,and120,601haforlegumes).NoteventhelivestockofPHDcouldbe
keptwiththecurrentquantityoflucerne(region1:14,447ha)andlegumes(region1:
21,522ha).Thesmallnumberofproteincropssuggeststhatmostanimalsarefedimported
products(e.g.,soybeansfromBrazil).
Maizesilageisaveryimportantforagecropforcaleanddairycows,asitcanbe
usedtoincreasethemilkyieldofdairycows,amongotherapplications.Itisonlypro-
ducedinareaswhereitgrowswell.TheamountofmaizesilageinHesse—excludingus-
ageforenergyproduction—isabout40,000ha.Althoughweadjustedourforageexamples
tothestatisticallygrownamountofmaize,themaizecurrentlyusedtofeedlivestock
amountsto21,510ha(region1).Thus,wesuspectthattheshareofmaizegrownforenergy
productionisevenhigherthanweassumed.Theamountofmaizesilagewouldnotbe
enoughforSSD100%inregions1(necessary:51,272ha),2(necessary:32,796ha;available:
10,636ha)and5(necessary:24,049;available:8330ha).Theamountofcerealsgrownis
enoughforlivestockforthecurrentscenarioinalltheregions.Itwouldalsobeenoughfor
SSD100%inregion1(necessary:191,130ha;available:286,368ha),region3(necessary:
32,530ha;available:71,947ha),region4(necessary:40,662ha;available:126,916ha)and
region6(necessary:7433ha;available:19,595ha).Thehighestshareinfeedingisdueto
pigfarming.
Oil-seedcropsarealsofedtoanimals,especiallycale;however,onlyacertain
amountisfedtothem,astheremainingshareafteroilpressingishighinproteins.Since
wedonotknowthecurrentlyfedsharesofcompleteoilseedsandoilpresscakes,wecal-
culatedtheshareofoilseeds(rapeseedsandsunowerseeds)inwholeseeds.Inallthe
regions,theamountofcurrentlygrownoilseedsisenoughtofeedthecurrentlivestock,
butnotenoughtofeedthenecessarylivestock(exceptinregion4).ForPHDconsumption,
thecurrentcropswouldbesucient.Ta blesS2,S9andS10showarablecropsdivided
accordingtoanimalgroupsandaggregatedaccordingtothecalculatednecessarynumber
ofanimalsperdiet(livestockfeedofthescenarioscurrent,SSD100%andPHD,respec-
tively).
Thecalculatedself-suciencydegreesprovideevidencethatthelocallandcannot
feedthecurrentlykeptlivestocknorthelivestocknecessarytoachievea100%SSD(RQ
2).

Sustainability2023,15,867514of38
Figure5.LandConsumptionofCurrentLivestockinComparisontoNecessaryLivestock,Regions
1to6.Eachchart(regions1–6areshownfromthetopleft(region1)totheboomright(region6))
showstheamountofavailablepasturelandandarableland(leftbar);theamountthatthecurrent
livestockneedsforfodder(secondleftbar,current);theamountoffoddernecessarytofeedthelive-
stockinSSD100%(thirdleftbar);andtheamountoffoddernecessaryinPHD(rightbar).Thebars
arecomposedofsegmentsrepresentingthedemandofindividualanimalgroupsandareshown
stacked(cf.Table sS2,S9–S11).
3.6.DirectHumanConsumption—SelfSuciencyDegree(SSD100%andPHD)
Thenecessarycurrentconsumptionofplantsamountsto226,522haforregion1,
whichdecreasesslightlyinthePHDscenario(region1:225,090ha).Byonlyconsidering
plantscurrentlygrownforhumanconsumption(wheat,spelt,Einkorn,rye,barley,oat,
othercereals,sugarbeets,potatoes,oilseedsandlegumes)andconsideringthatlegumes
comprisingonly5%ofthetotalamount—as95%oflegumesaregrownforanimalfeeding
andvegetables—thetotalavailablelandis328,829ha(region1).TableA8showstheavail-
ablehacurrentlyusedandthecalculatedself-suciencydegreesforthecurrentconsump-
tion(TableA9)andforadietbasedonthePHD(TableA10).Theoverallself-suciency
Sustainability2023,15,867515of38
degree(theavailablehainrelationtothehanecessaryforaplant-baseddiet)regarding
currentconsumptionpaernsisbetween75%(region2)and324%(region4),anditis
between76%(region2)and326%(region4)intermsofPHDrecommendations.Forsingle
crops,however,thepicturelooksdierent.Thecultivationofcerealsissucientinallthe
regions,andisbetween158%(region2)and748%(region4).Sugarbeets(consideringthat
5kgofsugarbeetsarenecessarytoproduce1kiloofsugar)arecultivatedmorethanis
currentlyneededinregion1(137%),region2(115%),region4(264%)andregion5(130%),
butnotinregion3(74%)andregion6(66%).ThePHDrecommendseatingonlyone-third
ofthecurrentsugarintake;thus,forPHDconsumption,theamountofcultivatedsugar
beetswouldbemorethanenoughinalltheregions(region6:219%;region4:883%).
TheSSDofpotatoesisbetween22%(region6)and56%(region2),whichincreases
to83%(region6)and212%(region2)basedonthePHD.TheSSDofoilseeds(considering
that2.3kgofseedsarenecessarytoproduce1kgofoil)iscurrentlybetween17%(region
5)and109%(region4).Thesenumbersincreaseto25%(region5)and159%(region4)
whenconsideringPHDintake.Theshareoflegumesnotcultivatedforlivestockcancur-
rentlyonlycoverbetween4%(regions2and5)and24%(region4);consideringthePHD
recommendations,thesharewoulddecreaseto0.4%(regions2and5)andto2.6%(region
4).TheSSDofvegetablesisbetween3.7%(regions3and6)and43%(region2),witha
slightincreaseupto4.3%(regions3and6)andto50%(region2),whenconsideringthe
PHD.
Whereasthelandforalocallybasedandplant-baseddietisavailable,thestatistical
datashowsthatthecurrentlycultivatedtypesofarablecropsareinadequatetoprovide
thepopulationwithavariedandhealthydiet(RQ3).Theguresvividlyillustratehow
theregionalfarmers’croppingplansdonotadapttotheregionalneeds,buttoexisting
livestock,theglobalmarket,subsidies,andarablecropsthatarelesslabour-intensive.The
insignicantshareoftheothercereals(about0.5%ofthetotalcerealproductioninallthe
regions),suchassummercereals,milletandsorghum,andnon-cerealssuchasbuckwheat
andamaranth,allofwhichareimportantforahealthy,balancedandvarieddiet,supports
thisstatement.
3.7.LandConsumptionduetoConsumptionPaernsTotalandperCapita
AsstatedaboveanddisplayedinFigure5,thepasturelandiscurrentlyunderutilised
(region3:62%;region4:80%).InSSD100%,onlyinregion3(89%),region4(80%)and
region6(100%),wouldtherebeenoughpasturelandavailabletofeedthenecessarylive-
stock(cf.TableS8).PasturelandwouldbesignicantlyunderutilisedinthecaseofPHD
(i.e.,14%forregion4and65%forregion5).
Inotherwords,eachinhabitantneedsapprox.767m2ofpasturelandfortheircurrent
dietaryhabits(slightdeviationsperregionareduetothedierentnumbersofequines
includedinthecalculationforpastureland),buttheavailablelandvariesbetween185
m2/capita(region5)and974m2/capita.Theunequaldistributiondoesnotbalanceoutfor
thewholestateofHesse,andeachinhabitanthas467m2/capitainsteadofthenecessary
767m2/capita.WhenconsideringthePHDrecommendations,thissharedecreasestoap-
prox.128m2.Inthiscase,noregioncouldlivebeyonditsmeans.
Bycombiningtheshareofthecroplandnecessaryfortheplant-baseddietandthe
shareofthecroplandnecessarytofeedlivestock,wecanvisualiseifandtowhatextent
theregionscouldlivebeyondtheirmeans(Figure6).Basedontheresourcesnecessaryto
feedcurrentlivestockplustheshareofcurrentplant-basedconsumptionshares,the
croplandwouldbesucientonlyinregion3(available:929m2/capita;necessary:905
m2/capita;respectively,97%ofcroplandnecessaryincomparisontotheexisting
cropland),region4(100%)andregion6(85%).InthecaseofSSD100%,onlyregion4
(available:1476m2/capita;necessary:1212m2/capita;respectively82%ofthecroplandnec-
essaryincomparisontotheexistingcropland)wouldhaveenoughcroplandtodirectly
feedlivestockandhumans.Region1(thewholestateofHesse)exceedsitscropland
Sustainability2023,15,867516of38
resourcesby81%(inthecaseofSSD100%).InPHD,mostregions,exceptregions2(154%)
and5(148%),cansupplythedemand(region3:56%;region4:37%;region6:50%of
croplandnecessaryincomparisontotheexistingcropland).
Mostimportantly,ifalltheHessianinhabitantsconsumedasthePHDrecommends,
theresourceswouldbeenough(74%ofthecroplandnecessaryincomparisontotheex-
istingcropland).Eachinhabitantwouldhave648m2ofcroplandbutwouldonlyneed482
m2.
Figure6.AvailableCroplandinComparisontoCroplandNecessaryforPlant-basedDietplus
CroplandNecessarytoFeedLivestockinm2perCapitainRegions1–6.Theleftbarshowstheavail-
ablecropland;thesecondbardisplaysthecroplandnecessarytocovertheshareoftheplant-based
dietandtofeedcurrentlivestock;thethirdbarshowsthecroplandnecessarytocompletelyensure
localconsumptionpaerns;andthefourthbarillustratesthecroplandnecessarytoensurecon-
sumptionasrecommendedbythePHD.
Consideringthat,mathematically,eachofushasonly2000m2ofcroplandforour
totalconsumption(includingbread,rice,potatoes,fruit,vegetables,oil,sugar,nuts,etc.;
drinks,suchasjuice,beer,wine,etc.;animalproducts,suchasmeat,dairyandeggs;cot-
ton,linen,etc.,forourclothes;tobaccoforsmokers;andbio-gasorbio-dieselandrenew-
ablerawmaterialsforindustrialpurposes[88]),theusageofnearly1200m2(SSD100%)
ofcroplandcouldbeconsideredanon-balancedshare.Achangeinbehaviourtowards
thePHD,or,ingeneral,anadaptationofone’sdietconsistingoffeweranimalproducts,
seemstobeimperativeifregionsdonotwanttocontinueto‘livetoolarge’.
Atthesametime,ourdatashowsthatnotmuchwouldbeachievedifonlythediet
changed,andnotfarmers’cultivationplans.Regardingtheindividualcrops,therefore,in
thecaseofPHD,aboveall,thepasturelandwouldnotbeusedeciently,andthelocal
plant-baseddietofhumanswouldnotbecomemorevaried.Rather,morepasturelandand
cropscouldtheoreticallybeexportedorburned.Whilethespreadoftheplanetaryhealth
dietwouldmakeapositivecontributiontoamoresustainablepercapitaconsumptionin
ha,amorelocaldietwouldberelativelyone-sided;moreover,theshareofcroplandre-
quiredfortheproductionofmeat,dairyandeggswouldcontinuetocompetewithdirect
humanfood(plants),asanimalswouldcontinuetoreceivealargeshareofhuman-edible
cerealsandotherarablecrops.Acertaindegreeofindependencefromglobalfoodchains
andadevelopmenttowardfoodsovereigntyispossibleinHesse,butonlyiftheconsump-
tionofanimalproductsisdrasticallyreduced.Isitpossibletoswitch(back)topeasantry
farming,andthusagroecologicalpractices,asdemandedbyLaViaCampesinaandother
Sustainability2023,15,867517of38
organisations,toensuremoreenvironmentallyfriendlydiets,whileatthesametimeag-
riculturebecomesmoresustainableandenvironmentallyfriendly(cf.RQ4)?
3.8.‘WhatWouldChangeif…’:SelfSuciencyDegreesbasedonthePlanetaryHealthDietplus
CropRotationandExtensiveAnimalHusbandry
Withthecollecteddataandtheperformedanalyses,wecandeterminethelimitsof
thestudiedregions(feedingeveryoneavaried/diversediet),theimpactofthelivestock
thattheregionscurrentlykeep,theimpactofthelivestockthattheregionsshouldkeepto
achieveanSSDof100%andtheresultingimpactinthecasewhereeveryoneeatsaccord-
ingtothePHD.Althoughinthelaercase(PHD)therewouldbesucientlandforthe
reducednumberoflivestockandanimalswouldcontinuetoreceiveasignicantshareof
human-ediblecerealsandotherarablecrops.Thus,inordertomakeagriculturemore
sustainable,animalfeedingshouldalsochange,evenifthismeansdecreasingtheproduc-
tionoutputoflivestock(whichwouldnotbeanissueunderawidespreadadoptionofthe
PHD).
InEuropealone,theassumedsoillossisaround970milliontonnesperyeardueto
erosion.Becauseofthisandthereasonsmentionedabovethatadvocateforthe(re-)local-
isingandgreeningoffoodchains,asensiblestepcouldbetoshiftagriculturalpracticesto
moresustainableones.However,whatexactlywouldchange,andisthereenoughland
availablefor(more)extensivelivestockfarming?Toanalysethisscenario,wechoseadif-
ferent,utopian-basedmethod.Weelaboratedaseven-yearcroprotationsystembasedon
expertinput[68]andtheliterature[89,90].Thecroprotationsystemconsistsoftwoyears
ofclovergrassandlucernefollowedbyoneyearofhigh-yieldingplants,suchaswinter
wheat,sunowerorrapeseed.Yearfourisforgrowingpotatoes,oatormedium-to-low-
yieldingvegetables.Thefthyearisforgrowinggrainlegumes,suchassoya,sweetlu-
pines,chickpeasorlentils,followedbyhigh-to-medium-yieldingplantssuchassugar
beets,sunower/rapeseed,vegetables,winterwheatandgreenorsilagemaize,inyearsix.
Theseventhyearclosestherotationcropsystemwithalow-yieldingcereal,namely,oat,
barleyorrye.Itmustbestatedthatwedidnotincludethedierentsoiltypesandquali-
ties—whichcanbemoreorlesssuitableforthecultivationofindividualarablecrops—
norfoodwaste.
Next,weseparatedtheavailablehafordirecthumanconsumptionandtheavailable
haforanimalfeeding;rstly,weconsideredthehanecessaryforaplant-basedself-su-
ciencydegreeof100%basedonthePHD,andsecondly,wesubtractedthesharesremain-
ingafteroilandourprocessing.Theremainingshareswereconsideredforanimalcon-
sumption(cf.TableS12).Wethendecreasedtheoutput(milk,eggsandanimalgrowth
rate;cf.TableA6),becauseinthisutopianscenario,thepasturelandandlucernesmainly
remainforanimalfeed.The‘output’ofdual-useanimalswasalsoincluded.Thisreduc-
tionwouldentailanincreaseintherequirednumberoflivestockincontrasttothePHD
scenario(cf.TablesS10andS11).
Asmentionedabove,thenecessarym²/capitafortheplant-basedconsumptionshare
basedonthePHDand2150kcaladdsupto358m2/capita.Theavailablecroplandper
capitabasedonaseven-yearcroprotationsystemwouldvarybetween206m2(region2)
and955m2(region4).RegardingthewholestateofHesse(region1),eachpersonwould
have420m2ofcropland(insteadofthe521m2potentiallyavailablefordirecthumancon-
sumptionwithoutacroprotationsystem)foraplant-baseddietand318m2ofcropland
foranimalfeeding(cf.TableS13,mainlyconsistingofclovergrassandlucernes,30%
wheatthatfarmerscannotsellduetoitsquality,corn,production-relatedsugarandoil
residues).TofeedthenumberoflivestocknecessarybasedonthePHD,305m2/capitaof
croplandand393m2/capitaofpastureland(availablepastureland:467m²/capita)would
benecessaryinregion1.Inpercentage,landconsumptionfortheplant-basedshareand
fortheconsumptionofanimalproductsofextensivelykeptlivestockwouldbe85%and
96%oftheavailablecropland,respectively(totalof81%),and84%oftheavailablepas-
tureland.Regions3,4and6couldalsosatisfylocaldemand,butthepopulation-intensive
Sustainability2023,15,867518of38
areas(i.e.,regions2and5)couldnotmeetlocaldemand(bothintermsofcroplandand
pastureland)andwouldhavetobesuppliedbyotherHessianregions.Figure7illustrates
theavailablepasturelandincomparisonwiththenecessarypastureland(extensive)and
theavailablecroplandincomparisonwiththenecessarycropland(extensive),includingits
divisionbetweendirecthumanconsumptionandanimalfeed.Ifeveryoneadaptedthe
PHDandfarmersadjustedtheircroprotationplansaccordingly,ourcalculationsshow
thatdespitehigherlivestocknumbers,moreextensivelivestockproductionwouldbepos-
siblewhilestillfeedingtheregionadequately.
Figure7.SharesofAvailableCroplandinComparisonwithCroplandNecessaryforDirectHuman
Consumption(PHD)andforAnimalFeed(Extensive)inRegions1to6inm²/capita.Theshares
werecalculatedbasedonaseven-yearcroprotationsystemandextensivehusbandry(feedonly
lucerne/glovergrass;remainingcropsnotsuitableforhumanconsumption).
Regardingeachcropinparticular,themainchallengewouldbetomeetthedemand
forlocaloilfromoilseeds,whichwouldnotbesatised,basedonourcalculations(cf.
TableS13).Theproportionoffayacidsinrapeseedis45%,soonlythisproportioncanbe
assumedforthesupplyofoilseedcrops.Basedonthecroprotationassumedhere,the
supplyofvegetableoilsfromtheregionwouldnotbeensured.However,ascropland,in
reality,isnotdividedinto49shares—aswasmathematicallyperformedinourscenario—
butisdividedbyfarmandasthefarms’croprotationsystemsaresmaller,thepossibility
ofmeetingdemandexists—somuchthatarablelandcouldbeusedtogrowotherinter-
estingarablecropstomeettheneedforseeds(suchashempseeds,linseed,andpumpkin
andsunowerseedsasreplacementsforthePHD-proposedneedfornuts;cf.Tab leS13:
totallandconsumptionrelatedtoavailablevs.necessarycroplandandpasturelandinre-
gion1:81%).
TakingintoconsiderationtheamountofanimalproductsbasedonthePHDandthe
2150kcalperdayperperson,thenumberofanimalscouldbedecreasedfromthecurrent
0.33animals/capitatoapprox.0.03animals/capitaforredmeatandfromapprox.0.62
poultry/capitato0.43poultry/capita(SSD100%incomparisontoPHD,includingherd
factors/stableplaces).Inotherwords,currently,onedairycowcansatisfythedemandof
17people,butitcouldsatisfythatofnearly90iftheoverallconsumptiondecreasedinline
Sustainability2023,15,867519of38
withtherecommendationsofthePHD.Iftheseanimalswerekeptextensively,andthus
themilkyieldpercowdecreased,thenumberofcowswouldincrease(respectively,one
cowcouldthensatisfythedemandof49.2peopleinsteadof90people).Thelandforex-
tensivefeedingwouldbeavailable,basedonPHDconsumptionpaerns.
Theeectoncaleisevengreater:whereas,today,nearly10peopleeatonecowper
year,onecowcouldfeed103peoplewhenconsideringPHDconsumption(sheep:27vs.
256people;goats:27vs.258people;pigs6vs.60people).Inthecaseofmoreextensive
livestockproduction,thesenumberswouldalsodecreaseagainto82personspercale,
and45.3personsperpig.Thenumbersforgoatsandsheepwouldnotchange,sinceeven
todaytheseanimalsaremainlykeptextensivelyinthestudiedregions.Regardinglaying
hens,theshareswouldmorethantriple(1.2peopleinSSD100%vs.4.4peopleinPHD,
thoughfallingto2.8personsperhenwhenkeptmoreextensively).Regardingwhitemeat
(broilerchickensandotherpoultry),thedierencesarelesssignicant,asthePHD’al-
lows’ratherlargeamountsofwhitemeattobeconsumedperyear;whereas,todate,one
broilerchicken(occupyingonestableplace)couldmeetthedemandof1.8people,itcould
meetthedemandof2.6people(PHD)or1.2people(extensive),andotherpoultrycould
satisfythedemandofnearly22people,comparedwiththecurrentdemandof15people
(nodierencecalculatedforextensive,partlybecausetheregionallyproducedquantities
arerelativelyinsignicantforcurrentconsumption).Figure8aimstoillustratethesedif-
ferences.
Sustainability2023,15,867520of38
Figure8.NumberofPersonsoneAnimalCanFeed(Meat,Dairy,Eggs)inSSD100%,PHDand
Extensive.Forinstance,currently,onecowensurestheannualdairyconsumptionof17.3persons,
butitcouldensuretheconsumptionofnearly90personsifeveryoneconsumedasrecommended
bythePHD.Iflivestockwerekeptextensively,milkperformancewoulddecrease;thus,onecow
wouldonlyensuretheconsumptionofabout50persons,etc.Therearenodierencesingoats,sheep
andotherpoultrybetweenPHDandextensive.
Inbrief,ourcalculationsconrmedthatalocal,diverseandsustainabledietwithin
planetaryboundariesandbasedonpeasantryandagroecologicalfarmingispossible(RQ
4)ifthepopulationdrasticallyreducesitsconsumptionofanimalproducts,farmers
Sustainability2023,15,867521of38
cultivateonthebasisofcroprotationsystems,animalsarekept(more)extensivelyagain
anddual-purposeanimalsndtheirwaybackintoourconsumptionbehaviour.
4.DiscussionWeMustChangeOurConsumptionLevel
Wewantedtovisualisethestatusquoandmaketheimpactofourdietcomprehensi-
ble.Ourresultsofthecalculatedself-suciencylevelsbasedonthecurrentconsumption
paernsshowthatregions1to6arenotabletofeedthelocalpopulationandarethusfar
fromfoodsovereigntyorindependencefromglobalsupplychains.Thecurrentprevailing
consumptionbehaviourdoesnotallowtheseregionstoturnawayfromindustrialised
agriculture,nortotransformtheirfoodsystemintopeasantfarmingonabroaderscale.
Wecouldalsoshowthateventhoughconsumptionpaernschangedasrecommendedby
theplanetaryhealthdiet,thecurrentlycultivatedtypeofarablecropsarenotsucientto
providethepopulationwithavariedandhealthydiet.Theseareimportantresultsbe-
causethedemandforshortfoodsupplychainsandthe(re-)localisationoffoodcannotbe
metwiththestatusquo,norwithchangingonlyoneside(here,theconsumptionbehav-
iour).Ergo,ifthestatusquoprevails,shortfoodsupplychainscanonlybesuccessfully
builtforsmallconsumergroups,butnotforthemasses,includingout-of-homecatering,
which,inGermanyalone,serves17millionpersonsdaily[63,65].Thus,oursecondgoal
wastoexplainifandhowfoodsupplyanddemandcandeveloptogethertowardsustain-
ability.Thiswasdoneonthebasisofourutopian-basedscenarioanalysis:extensive.Adiet,
suchasthePHD(lowratesofsugarandanimalproducts),incombinationwithsustaina-
blefarmingpractices,wouldnotonlybegoodfortheenvironment,biodiversityandsoil,
butalsoleadtohealthierlifestylesandlowerratesofobesityinthepopulation.Weem-
phasisethatsustainablefarmingpracticesarekeyformitigatingclimatechange,asprevi-
ousstudiesconrm[13–15,40].
Cultivatingusingconventionalagriculturalmethodsisneithersustainablenorcon-
ducivetowardgainingindependencefrombigcorporationsandcountriesproducingfer-
tilisersandpesticides.Researchonagroecologyalreadyindicatesthatsustainablefarming
practicescouldfeedtheworld,especiallywhenusingleguminouscovercropsasfertiliser
[91],andatthesametime,combatclimatechange[15,92,93].Toarrivethere,thestatus
quomethodsofproducingfoodneedtobereconsidered.Inthecaseofvegetables,for
instance,researchfromtheUKindicatesthatgardeninglotsandsmallmarketgardening
farmscanproducesignicantyieldsperm²,usingecologicallysoundcultivationmethods
andaids,suchasowningcompost,sheepwoolpellets,etc.[94].Moreresearchshouldbe
performedoncompostandbiocharasalternativestoanimalmanure,asthecalculated
amountofnearly215,000grazinganimals(scenarioextensive,region1)pluspigsisnot
enoughtofertilise464,000haofcroplandandnearly300,000haofpastureland(according
toexpertsonorganicfarming,onelivestockunitisneededperhectareforfertilising[68]).
Toincreaseyields/m²,amongotherreasons,itisimperativetoundertakefurtherinvesti-
gationsintothefollowingareas:sustainablefarming,includingtraditionalpracticessuch
asmixedcropping,intercroppingsystemsandno-tillfarming;theimpactofdierentsoil
microbiomesonplants;innovationssuchasprecisionfarming(farming4.0);articialin-
telligence(cropmanagementandriskrecognition);geneticengineering(fastermatura-
tion,insectanddroughtresistance);andmodernplantbreeding(suchasRiceberryRice)
[95,96].Ourresultssupportthisresearch.Weperformedcalculationswithconventional
yieldstakenfromstatisticalreports.Ifwehadcalculatedusingthecurrentorganicyields,
wecouldnotmathematicallyhaveachieved100%self-suciencyonthebasisoftheplan-
etaryhealthdiet,astheseare,asoftoday,about60%oftheconventionalyieldsinthe
regionsanalysed[68].
Therigidinclusionofyieldsperhacouldbeinterpretedasoneoftheweakpointsof
ourmodel,becauselandconsumptionincreasesordecreasesdependingontheyieldsper
haincluded,withvaryingresults.Anotherawmightbethatthestudiedareaisrather
small;thevariablesconsidered,suchasthefodderexamples,mightsignicantlychange
Sustainability2023,15,867522of38
inotherareas.Inaddition,theproposedcropsarecertainlynotsuitableforallareasbe-
causeofthedierentregionalcultivationconditions.Furthermore,ouranalysesdidnot
takeintoconsiderationtheissueoffoodwaste,nordiditaccountforthehighercostof
localproductsincomparisontoimportedones,whichisoftenthedeterminingfactorbe-
hindconsumerpurchasingdecisions,ratherthanmereproductavailability.Moreover,
ourstudyonlyconsiderslandconsumption.Otherresourceconsumptionofagriculture
orotherrelevantenvironmentalimpacts,suchaswateruse[97],wasnotconsideredin
ourstudy.Otherrelevantenvironmentalimpactsshouldplayanimportantroleinfuture
studies.
Havingstatedintherstsectionthatpeopleloveandactuponmetrics,suchascar-
bonfootprints,muchmorethanupondoomsdaymessagesorabstractmodelsnotintouch
withlocalcircumstances,webelievethatweprovideimportantguresinthisstudy.We
canclearlydemonstratehowmucheachofusconsumesandwhatwouldchangeifweate
dierently.Illustrativeresults—suchasthelandconsumptioninsquaremeterspercap-
ita—areimportantinactivatingbehaviouralchangeprocessesinpeople.Byincludinglo-
caldataforlocalpeople,resultsbecomemoretangiblethanresultsgloballyproducedus-
ingabstractmodels.This,togetherwiththecombinationofproductionandconsumption,
webelieve,isthestrengthandthenoveltyofourstudy.Ourframeworkdemonstratesan
approachforotherregionstodeterminetheirlevelofself-suciencyusingregionaldata.
ThoughcreatedforandadaptedtotheregionofHesse,itcaneasilybeadaptedtoother
regions,mainlybyadaptingfodderexamples,agriculturalstatisticsandpopulationsize.
Further,itcanbesetinbroadercontexts,suchasGermanyorEurope,becausethecon-
sumptionpaernsanddietbehaviouraresimilar,ifnotthesame.
4.1.ClimateChangeMitigationAMultiLayeredGlobalChallenge
Foracoupleofdecades,demandand,thus,supplyhavedevelopedinaneconomic
butunsustainabledirection,makingfoodsystemsnowresponsibleforaboutone-thirdof
totalgreenhouse-gasemissions.WithGretaThunberg’swordsinmind:‘[…]Iwantyou
topanic.Iwantyoutoactasifyourhousewasonre[…]’[98],actionhastobetakenin
manyareasatthesametime.Toquicklyreducegreenhouse-gasemissions,andatthe
sametime,achievethetwo-foldobjectiveofahealthierandwell-nourishedhumanity,we
urgentlyneedtotransformourfoodsystems.Oneimportantmaeristoquicklyreduce
theconsumptionofanimalproducts[22,23].Globalchallengesonthisissuearemulti-
layeredandneedtobeapproachedfromdierentanglessimultaneously.
OneimportantsteptomitigateclimatechangecouldbetheredirectingoftheGreen
Revolutiontowardpeasantryandagroecologyfarming,prioritizingfoodforthepeople
andnotneo-liberalpoliciesandinternationaltrade.Thatthiscouldbeapotentiallyviable
pathisindicatedbyourresultsintheextensivescenario.Toachievethis,weproposeget-
tingfarmersbackintothinkingintermsofacirculareconomyandcultivatingfoodfor
peopleratherthanforlivestock.Asfarmersadapttheirfarmingmethodstothepolitical
willandaredemand-driven,bothpoliciesanddemandmustchange.Policymakershave
greatleverage,astheycanimplementandenforcenewlawsandpoliciesandconduct
wide-reachingcampaignsforchange.Insomepoliticalparties,thisprocesshasbeen
started.TheGermangovernmenthaspublishedanutritionstrategyfocusingonaclimate
friendlyandhealthydietforall.Thisistobeachievedthrougha‘systemicapproachof
behaviouralandprevention,whichtakesintoaccounttheeectsontheenvironmentand
climateandthedierentlifestyles[…]’[14].TheEUcommissionhaspublisheditsCom-
monAgriculturalPolicy(CAP)2023–27,seekingtoensureasustainablefutureforEuro-
peanfarmersandprovidingmoretargetedsupporttosmallerfarmswhilefocusingon
climatechangeaction,environmentalcare,preservinglandscapesandbiodiversityetc.
[99].
Supportingandrewardingfarmersisimportantbecausefarmers,asahomogenised
group,arenotknownforperceivingclimatechangeasman-madeandactingaccordingly,
Sustainability2023,15,867523of38
with66%of4778farmerssurveyedbelievingthatclimatechangeishappeningandonly
8%aributingittohumanactivity[100].
However,topersuadepoliticianstomakenewlawsandpolicies,theyneedtobe
equippedwithaglobalandlocalscienticbackground.Calculationsbasedonlocaldata,
aspresentedinthisstudy,arehelpfultodirectlyshowpolicymakerswhateconomicand
environmentalimpactstheirpoliciesmayhaveonaregion.Policymakerstakingcareof
daycarecentresandschoolscouldhaveahugeimpact,asinGermandaycarecentresand
schools,eachyear,about1.2billionlunchesareoered[65,101].Ifitbecamemandatory
tocookasrecommendedbythePHD,childrenwouldbefednotonlyhealthilybutalso
inanenvironmentallyfriendlymanner.Ifcanteenssuppliedtheestimated700tonnesof
ingredientslocallyanddemandedsustainableproduction,farmerssignalledindiscus-
sionsthattheywouldadjusttheircroppingplanstomeetthisdemand,aslongasthey
werecompensatedfairlyfordoingso.Thesideeectsofthistransitionmightbetoget
youngpeopleexcitedagainabout(good)foodproduction,bringingbacklocalprocessing
businessessuchasmills,oilpresses,slaughterhousesandbutchers,andtomakeregional
logisticsecient.
Ingeneral,out-of-homecateringcanhelpdiscovernewwaystoeat;therefore,can-
teensandcateringbusinessesmustchangetheirmenus.Thehealthy,sustainablemenus
theyhavemustprovideasenseofwell-beingandenjoyment,butstillbelling.Guests
shouldbeencouragedtotrynewthings.Todecreasetheconsumptionofanimalproducts
andthus,landconsumption,peopleneedtobemadeawareofthemaeronmultiple
levels,suchasthroughnudging,campaigning,experiencingandunderstandingtheur-
gencytodoso.
Whetherthischangeisreallygoingtohappenorwillhappenfastenoughishighly
questionable.Notonlyarehumanscreaturesofhabit,alsonotallpoliciesareworkingin
thedirectionof(re-)localisingfood.Forinstance,theEuropeanUnionworksonfreetrade
agreements,suchasMercosur,whichensurethatmoreandnotfeweragriculturalprod-
ucts,includingcaleandresourcesforfeedinglivestock,aretransportedfromlongdis-
tancesandatlowprices[102].Ifthepricesofproductsfromsmallregionalfarmersremain
manytimesmoreexpensivethanindustrial,tax-privilegedproductsfromthirdcountries,
howisachangeinmindsetofprice-sensitiveconsumerssupposedtotakeplace?Whatis
theanswerofpoliticianstotheirowncounter-productivepoliciestosuchurgentquestions
asrevolutionisingourglobalfoodsystem?
Beforeconcludingthediscussion,wewouldliketoaddresstwoissuesthataresome-
whatdisconnectedfromthemainfocusofthisstudyyetareimportant:theadaptationof
theplanetaryhealthdiettolocalconditionsandtheimpactofpetsontheenvironment.
4.2.AdaptingthePlanetaryHealthDiettoLocalCuisineandCulture
Wewereabletoindicatehowlandconsumptionwoulddecreaseifeveryone’scon-
sumptionfollowedtheplanetaryhealthdietrecommendations,atleastforacertainrange
offoodgroups.Weareawarethatweexcludedawiderangeoffoodstu,suchasfruits,
nutsandsh;beverages,suchascoee,tea,juice,wine,beer,etc.;processedfoodand
sweets,suchasice-cream,chocolateandcookies;snackfood,suchascrisps,etc.;andto-
baccoandotherluxuryfoods.Theimplicationoftheseexclusionsistwo-fold:rstly,the
resourceconsumptionnecessaryforourentiredietaloneismuchlargerthanthatshown
inthisstudy;secondly,ifitisthatmuchlarger,shouldeachofusnottrytokeepthefoot-
printofstaplefoodassmallaspossible,sothatoccasionally,wecanenjoyotherfoodstus
withoutconstantlystretchingplanetaryboundaries?Theplanetaryhealthdietcangiveus
gooddirection,asitindicatesahealthydietthatiswithinourplanetaryboundaries.None-
theless,itseemsimportantthatweadjustittoourlocalcuisineandculture,andcooking
timeandcapabilities,especiallyifbreakingconsumptionpaernsisthegoal—aproject
thatwillmeetmuchresistancefromthepopulation,aspeopledonotliketofeelpatron-
ised.
Sustainability2023,15,867524of38
InthecaseofthestateofHesse—orrathercentralEuropeassuch—themediumpo-
tatoconsumptionindicatedbythePHDistoolow.Instead,weproposetomaintainthe
currentconsumptionlevels,asinthisregion,potatoesareusuallyeatenwholeandonly
toalesserextentintheformofstarch(thereasonwhythePHDdoesnotrecommend
greaterpotatoconsumption).Tomaintaintherecommendedcalorieintake,theconsump-
tionofcereals,forexample,couldbereducedaccordingly.Therecommendedconsump-
tionofpoultryat3.6animalspercapitaperyearisquitehigh.Thisnumberofpoultrycan
onlybeproducedthroughfactoryfarming,aformofhusbandrythat,ascriticsargue(and
wecouldnotagreemore),cannotdojusticetoanimalwelfare.Itmightthereforemake
moresensetousethislandtogrowspecialcropssuchashemp,ax,buckwheat,quinoa,
chickpeas,etc.,insteadoffeedingthemtopoultry,toprovideamorevariedplant-based
dietatthelocallevel.Thesamealsoappliestosh,althoughitisnotpartofthisstudy
duetotheinsignicantamountoflocallyproducedsh:istheannualintakeofalmost9
kgofshpercapitanecessary,orcouldwenotratherconsumesimilarhealthyfood,such
aslocalplants,butalsoalgaeandequivalents?Examplesofbalanced,variedvegandiets
provethatsucientconsumptionofproteinsderivingfromplantsispossible[103].
InmostpartsofthestateofHesse,thecurrentproductionoffruitsandespecially
nutsisirrelevant,besidesperhapscherries,strawberriesandapples,wherethelaerare
employedtoproducebeverages.Byresearchinglocalgardens,however,wecanndthat
tonnesoffruitsareproducedwhichoftenrotontreesandbushes.Thispracticecouldbe
reconsideredbymakingtheadvantagesoflocalfruitvarietiesinseasonorpreservedfruit
sociallyaractiveagain.ThePHDalsorecommendsahighintakeofnuts(15.7kgper
capitaperyear).Mostnuts—suchasalmonds,cashews,Brazilnutsandpeanuts—arenot
nativetoGermany,andtheircultivationrequiresalargeamountofwater.Insteadofcam-
paigningtoeatmorenuts,thefocuscouldbeonlocalnuts,suchashazelnutsandwalnuts,
butespeciallyontheconsumptionoflocalseeds,suchashempseeds,linseed,pumpkin
seedsandsunowerseeds.
4.3.ThePlanetaryHealthDietandPets
Anotherimportantaspect,whichshouldnotbeneglectedandwhichcouldhinder
theachievementofthesustainabilitygoalsinthefoodsector—arepets(catsanddogs).In
Germany,thereare16.7millionpetcatsand10.3millionpetdogs,andtheshareforthe
populationofHesseisabout770,000dogsand1.25millioncats.Forcats(meanweightof
3–5kg),thismeansroughly55,000tonnesofmeatperyear,andfordogs,basedonthe
weightofthetenmostpopulardogbreedsandthemeanvalueofdierentfeedingprac-
tices(besidesso-calledrawfeeding),about13,000tonnesofmeat,3100tonnesofvegeta-
blesand3100tonnesofcerealsoffeedingaredemanded.Convertedintolandusedtofeed
theanimalsbeingfedtopets,andconsideringcale,poultryandsheep(includingthe
herdfactors/stableplacesreportedinTableA6),anaveragedogneedsnearly2000m2of
croplandand2000m2ofpasturelandperyear.Catsneedmoremeatanduseabout6000
m2ofcroplandandabout7000m2ofpastureland,whichis,assuch,amultipleoftheland
consumptionofhumanbeings(especiallyadoptingthePHD).Todate,thesenumberscan
berelativised,becausemostofthemeatconsumedbypetsisslaughterwaste(including
bones)oranimals,not(orless)eatenbyhumans,suchasbrothercocksorretireddairy
cows.Thus,theamountofadditionallyraisedlivestockforpetsiscurrentlymuchsmaller.
Whatwouldhappen,however,ifallhumansateasthePHDrecommends?Then,farfewer
animalswouldhavetobeslaughtered,and,consequently,lessslaughterwastewouldbe
produced.Howcouldthenumberofpetsthenbefed?Provocativelyspeaking,shouldwe
not,asasociety,outgrowtheideaofkeepinganimalsforourpleasure,whenmillionsof
peoplegohungryandweneedthreeworldstosustainourcurrentconsumptionpaerns?

Sustainability2023,15,867525of38
5.Conclusions
Organicfarmingpractices,advocatesofthestatusquoargue,isnotanoption,be-
causeyieldsaretoolow.WhenRussiainvadedUkraine,therewasahugediscussionthat
thepricesofgrainandsunoweroilwouldskyrocket[104],while,simultaneously,what
isseenonGermaneldsiswheatandrapeseed.Cateringbusinessesclaimthatlocalpro-
duceisnotavailable,sotheyhavetobuyitoninternationalmarkets.
Wewerecuriousaboutwhetherthesediscussionsandclaimswerereallytrue.We
startedlookingatstatisticsbutcouldnotmakeanysenseofthem.Whatdotheindicated
hectaresmeanforthelocalself-suciencylevels?Whatarethedierencesbetweenthe
NorthandtheSouthofthestateofHesse?Giventhisinitialpremise,weperformedour
calculations.First,wecalculateddierentself-suciencydegreesforanimalproducts
(meat,eggs,dairy)andplants(cereals,legumes,vegetables,oil,sugar,potatoes)andwere
provenright:self-suciencylevelsarewaytoolowforcurrentconsumptionbehaviour.
Then,wecalculatedthenumberoflivestocknecessarytoreachaself-suciencylevelof
100%foranimalproducts,andcomparedthelandconsumedforfeedingthislivestock
(SSD100%)withthelandusedtofeedthecurrentlivestock.Inbothscenarios,theland
necessaryforfeedingexceededtheavailablecroplandandpastureland.Thus,weadapted
thismethodtothescenariowhereeveryoneateastheplanetaryhealthdietrecommends
andcouldsubstantiallydecreasethenumberoflivestock.Theresultsshowthatalthough
landtofeedanimals(PHDlivestock)andfordirecthumanconsumptionisavailable,we
couldobservethatfarmers’practicesareneithersustainablenorabletofeedusproperly.
Basedontheseresults,wedevelopedtheutopian-basedmodel(aseven-yearcroprotation
andextensivehusbandry)justtoseewhatcouldbepossibleifeverybodyacteddierently.
Withourcalculationresults,wewereabletodemonstratethepotentialforpositive
change:mathematically,inthisscenario,mostoftheregionsareabletofeedthemselvesa
balancedplant-baseddietandkeepthenecessarynumberoflivestockinanextensiveand
sustainableway.However,morelivestockisneededbecauseoftheconsequentlylower
productionrates.
Thoughnotinscopeofthisstudy,thequestionremainsabouthowthingscould
change.Thisquestionisoneofthemostimportantofourtime.To‘extinguishtheburning
house’,torephraseGretaThunberg’swords,webelievethatweneedanarmyoftoolsfor
thischallenge.Asstatedabove,foodproductionaccountsforaboutone-thirdoftotal
greenhouse-gasemissions,soactinginthissectoriskey.Ourcontributiontothismassive
projectisourmodel,whichcanbeeasilyadaptedtouser-friendlytools,suchasanapp
thatshowsone’spersonallandconsumptionbasedonconsumptionbehaviour,including
smileyfacesandfrowningfaces(aswehaveindicatedabovethatpeoplelovethem).Our
guresanddatacanbeusedforcampaignsandround-tablediscussions;policymakers
canusethemtoconvincetheiropponentstostartchangingourfoodsystems.Eventhough
thechallengesareimmenseandmayappearimpossibletoovercome,itiscrucialthatwe
persistinoureorts.
SupplementaryMaterials:Thefollowingsupportinginformationcanbedownloadedat:
hps://www.mdpi.com/article/10.3390/su15118675/s1,informofanExcelleandincludeTableS1:
Feedingexamples;Table S2:Livestockfeed;TableS3:Crops;Table S4:Calc.baseenergyplants;Table
S5:Livestock;Tab leS6:SSDplants;TableS7:Clovergrass%Hesse;Tabl eS8:SSDanimalproducts;
TableS9:SSD100%Livestfeed;Table S10:PHDLivestockfeed;TableS11:PHDextensiveLivest
feed;TableS12:Overviewconsump,production;TableS13:PHDinclcroprotation.References[105–
109]arementionedinSupplementaryMaterialsFile.
Aut hor Contributions:Conceptualization,A.-M.S.andM.B.;methodology,A.-M.S.;validation,A.-
M.S.andM.B.;formalanalysis,A.-M.S.;investigation,A.-M.S.andM.B.;resources,A.-M.S.and
M.B.;datacuration,A.-M.S.andM.B.;writing—originaldraftpreparation,A.-M.S.;writing—review
andediting,A.-M.S.andM.B.;visualization,M.B.;supervision,A.-M.S.;projectadministration,A.-
M.S.andM.B.;fundingacquisition,A.-M.S.andM.B.Allauthorshavereadandagreedtothepub-
lishedversionofthemanuscript.
Sustainability2023,15,867526of38
Funding:ThisresearchwaspartlyfundedbyInnovationsintheeldoflogisticsandmobilitymeas-
ureoftheHessianMinistryofEconomics,Energy,TransportandHousing,grantnumber1268/21-
169.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Publiclyavailabledatasetswereanalysedinthisstudy.Thisdatacan
befoundhere:hps://statistik.hessen.de/unsere-zahlen/land-und-forstwirtschaft(accessedon12
September2022)andhere:hps://de.statista.com(accessedon14December2022).
Acknowledgments:WewouldliketothankChristophFeistforsharinghisknowledgeonagricul-
turalpractices.WewouldalsoliketothankKenanA.J.BozhüyükandSusannevonMünchhausen
forreading,commentingonanddiscussingourwork.
ConictsofInterest:Theauthorsdeclarenoconictofinterest.
AppendixA
Tab l eA1.AvailableCropLandperRegions1to6inhaandYieldsperRegionandCropindeci-
tonnesperhectare.Note:Onedecitonne(dt)isequivalentto100kgoronequintal.Eachregion(1–
6)isdividedintothetotalhectaresofeacharablecropandthecorrespondingorganicsharesin
hectaresandpercent.Tabl ereprinted/adaptedwithpermissionfromRef.[54].Copyrightyear:2023,
copyrightowner:HessischesStatistischesLandesamt.
AvailableCropLandinHectare,Regions1to6(I)
thereof
RegionOperating
Farms
Crop
Land
Total
Cereals
Total
Wheat,
Spelt,
Einkorn
RyeTriticaleBarleyOat
Corn
maize/C
orn-Cob-
Mix
Other
Cereals
1Hesse
intotal15,128464,437289,347143,60615,05919,34287,266927713,4701327
thereoforganic210822,29693182383310136552496787556
in%14%8%6%16%16%4%27%6%42%
2GDDa
intotal4935145,71488,51148,4424670244023,05724586963481
thereoforganic48645061925467372712534389108
in%10%5%4%10%15%3%22%6%22%
3GDGi
intotal3832113,21672,64033,4003658565723,31830393198370
thereoforganic7438677352396212921,4021,060235202
in%19%12%11%26%23%6%35%7%55%
4GDKa
intotal6361204,239128,19761,764673111,24440,89237803310476
thereoforganic8799113387095414371541902163247
in%14%7%6%14%13%4%24%5%52%
5FMPA
intotal3207112,82569,09738,5283991182516,78716145967385
thereoforganic3233691157839228248037833065
in%10%5%4%10%15%3%23%6%17%
6M-B
intotal 110629,66419,7658189141717915777889161983
thereoforganic197262591837044947127710335
in%18%13%11%26%25%8%31%6%42%
AvailableCropLandinHectare,Regions1to6(II)
RegionSilage
Maize
Sugar
BeetsPotatoes
Winter
Oilseed
Rape
PulsesVege-
tables
Grass-
land
Per-
manent
Crops
Clover
Grass/Lu
cerne
1Hesse
intotal43,89716,504442143,20413,4107494294,2885855501
thereoforganic14253184951794666
in%3%2%11%0%35%
2GDDa
intotal11,6898,845319211,4063303658283,5744888133
thereoforganic18815718752881
in%2%2%6%0%27%
Sustainability2023,15,867527of38
3GDGi
intotal10,198148648711,465373715092,089202116
thereoforganic55052103711595
in%5%3%21%1%43%
4GDKa
intotal22,010617374220,3336371763118,627726251
thereoforganic688109205572190
in%3%2%28%0%34%
5FMPA
intotal91557361101477732463456954,7631400104
thereoforganic115691270762
in%1%1%13%0%31%
6M-B
intotal24903137722009413519,31121339
thereoforganic15222538
in%6%0%29%0%57%
Tab l eA2.YieldsperCropindt/habasedon[66].
FieldCropYielddt/haHesse
(Year:2021)
Cerealstotalincl.cornmaizeandcorn-cob-mix67.9
Cerealstotalexcludingcornmaizeandcorn-cob-mix66.7
Wheat(meanvaluewinterandsummerwheat)65.95
Rye56.3
Barley(meanvaluewinterandsummerbarley)64.5
Oilseedrape(winter)35.5
Potatoes420.6
Sugarbeets847.3
Cornmaize93.3
Silagemaize547.9
Forage(permanentgrassland)60
Forage(cultivationonarableland)61.8
Clovergrass/alfalfa(drymass)60.3
Fieldbeans37.9
Fieldpeas35.4
Sweetlupines33.5
Soybeans34
Sunflowerseeds26.1
Tab l eA3.YieldsindtperRegionandCropbasedon[54,66].Tab leadaptedwithpermissionfrom
Ref.[54].Copyrightyear:2023,copyrightowner:HessischesStatistischesLandesamt.
YieldsperRegionandCropindtperHectare(I)
thereof
Region Cereals
Total
Wheat,
Spelt,
Einkorn
RyeTriticaleBarleyOat
Corn
Maize/Corn-
Cob-Mix
Other
Cereals
1Hesse19,100,7679,274,372847,8221,275,6055,628,657447,2671,256,75133,175
2GDDa5,836,6653,128,484262,921160,9181,487,177118,506649,64812,025
3GDGi4,798,8792,157,041205,945373,0791,504,011146,518298,3739250
4GDKa8,465,2903,988,847378,955741,5422,637,534182,243308,82311,900
5FMPA4,555,4672,488,218224,693120,3591,082,76277,815556,7219625
6M-B1,306,996528,86379,777118,116372,61742,861151,0532075
YieldsperRegionandCropindtperHectare(II)
Sustainability2023,15,867528of38
Region Silage
maize
Sugar
beetsPotatoes
Winter
oilseed
rape
PulsesVegetables
1Hesse21,884,16813,726,9241,852,6731,422,695350,5162,148,383
2GDDa5,827,3707,356,6801,337,646375,59686,3351,886,931
3GDGi5,084,0551,235,955204,083377,53997,67943,002
4GDKa10,972,7445,134,289310,944669,560166,528218,737
5FMPA4,564,0836,122,388424,929255,96364,3791,309,843
6M-B1,241,351260,33232,26872,44524,59610,034
Tab l eA4.ExtrapolatedConsumptionperRegions1to6inkgaccordingtoCurrentDietandPlane-
taryHealthDiet.
CurrentConsumptionandRecommendedConsumptionperRegioninkg
FoodGroup
(inkg)
Current
Consumption
Region1
Consump-
tionRec-
om-
mended
byPHD
Region1
Current
Consump
tion
Region2
Consump-
tionRec-
om-
mended
byPHD
Region2
Current
Consumpt
ionRegion
3
Con-
sump-
tionRec-
om-
mended
byPHD
Region3
Current
Consump
tion
Region4
Con-
sump-
tionRec-
om-
mended
byPHD
Region4
Current
Consumpt
ionRegion
5
Con-
sump-
tionRec-
om-
mended
byPHD
Region5
Current
Consum
ption
Region6
Con-
sump-
tionRec-
om-
mended
byPHD
Region6
Cereals523,745,414458,433,35
4
335,010,12
5
293,233,71
887,423,64876,521,75
1
101,311,64
2
88,677,88
5245,660,896215,026,5
10
20,681,60
6
18,102,57
0
Pulses15,737,543148,200,43
810,066,41094,795,3832,626,91324,737,63
53,044,22028,667,42
07,381,63869,512,88
0621,4435,852,124
Potatoes375,183,01398,800,292239,983,21
463,196,92262,625,59416,491,75
772,574,20519,111,61
3175,978,23846,341,92
0
14,815,18
93,901,416
Vegetables688,674,860592,801,75
1
440,506,10
2
379,181,53
2114,953,69198,950,54
0
133,215,06
7
114,669,6
79323,020,457278,051,5
21
27,194,32
4
23,408,49
6
Fruits453,870,726395,201,16
7
290,315,26
4
252,787,68
875,760,15765,967,02
787,795,30576,446,45
3212,886,426185,367,6
81
17,922,40
2
15,605,66
4
Plant-Oil148,562,401102,357,10
295,026,91065,472,01124,798,05417,085,46
028,737,43719,799,63
169,682,65848,010,22
95,866,4174,041,867
Nuts31,475,08598,800,29220,132,82063,196,9225,253,82516,491,75
76,088,44019,111,61
314,763,27546,341,92
01,242,8853,901,416
Sugar204,588,05361,256,181130,863,33
039,182,09234,149,86310,224,88
939,574,86011,849,20
095,961,28828,731,99
18,078,7532,418,878
Milk,equiv.diary2,553,258,895494,001,45
9
1,633,174,3
58
315,984,61
0426,190,28482,458,78
3
493,894,25
3
95,558,06
6
1,197,596,8
68
231,709,6
01
100,822,8
31
19,507,08
0
Eggs(pcs.)1,498,214,046407,747,23
6
958,322,23
2
260,812,69
4250,082,07068,061,21
8
289,809,74
4
78,873,32
4702,731,890191,252,3
69
59,161,32
6
16,101,08
2
Redmeattotal264,390,71427,664,082169,115,68
817,695,13844,132,1304,617,69251,142,8965,351,252124,011,51012,975,73
8
10,440,23
41,092,396
Whitemeat82,464,72357,304,16952,747,98836,654,21513,765,0229,565,21915,951,71311,084,73
638,679,78126,878,31
43,256,3592,262,821
Fish79,946,71655,219,88951,137,36335,321,01913,344,7169,217,31115,464,63810,681,55
937,498,71925,900,69
03,156,9282,180,517
Beef514,302,889328,970,27
9
85,847,50199,485,110241,231,91420,308,74
1
Sheepandgoat59,173,16037,849,7029,877,19111,446,26727,754,9572,336,624
Pig3,777,0102,415,938630,459730,6131,771,593149,146
Othermeat195,145,527124,823,48
4
32,573,71537,748,32891,532,3057,705,887
Meattotal(red
andwhite+in-
dustry)
6,295,0174,026,5641,050,7651,217,6882,952,655248,577
Sustainability2023,15,867529of38
Tab l eA5.ExtrapolatedConsumptionperRegions1to6inhaaccordingtoCurrentDietandPlane-
taryHealthDiet.
NecessaryhaofCropsforDirectHumanConsumptionforSelf-SufficiencyDegreeof100%(Baseline:Current
Consumption)
Region
CerealsTotal
(Wheat,Spelt,
Einkorn,Rye,
Barley,Oat,
OtherCere-
als)
Sugarfrom
SugarBeets
20%Sugarper
Beet
Potatoes
Oilfrom
Oilseed
Rape
2.3kgper1l
Oil
Legumes
(95%inHesse
forLivestock)
VegetablesSum
1-Hesse78,52312,073892096,252673324,022226,522
2-GDDa50,2267722570661,567430615,366144,893
3-GDGi13,1072015148916,0661124401037,811
4-GDKa15,1892335172518,6191302464743,818
5-FMPA36,8315663418445,147315811,268106,250
6-M-B310147735238012669498945
NecessaryhaofCropsforDirectHumanConsumptionforSelf-SufficiencyDegreeof100%(baseline:Planetary
HealthDiet)
1-Hesse68,7313615234966,31663,40120,678225,090
2-GDDa43,9632312150342,41840,55413,227143,977
3-GDGi11,47360339211,06910,583345237,572
4-GDKa13,29569945412,82812,264400043,541
5-FMPA32,2381696110231,10529,7389699105,578
6-M-B271414393261925048178,888
Tab l eA6.HerdFactors/StablePlaces,SlaughterWeightandOutputofConventionalandExtensive
Husbandry.Table adaptedandbasedon[67–76].
LivestockHerd
Factors
HerdFactors
(Extensive
Husbandry)
HerdShareProducing
“Output”/StablePlace
(SlaughterQuota)
Output
kgmilk/ani-
mal;
eggs/animal
Output
Slaughter
Weight/
Animalin
kg1)
Output(Extensive
Husbandry)
Dairycow1.330.679358.45150kg/milkp.a.
Cattle2.730.37230
Sheep 0.521.4
Goats 0.510.8
Fattening
pigs
2981.5
Layinghen 288180eggs/henp.a.
Broiler
chicken
102
Geese 4.15.2
Turkeys 2.910
Ducks 4.32.2
AdditionalInformationonA6:HerdFactor/StablePlaceFactor:
Dairycows:
Theherdfactorofdairycowsis1.33(dairycowherdplus33%ospring),sincethe
ospringgivebirthtotheirrstcalfatabout2–2.5yearsofage,thusproducingmilk,and
adairycowisslaughteredafterapprox.6years.Beforethen,thecowhastoliveinthe
herdwithoutproducingmilk.Thus,theshareoftheherdproducingmilkis67%.
Sustainability2023,15,867530of38
Weconsideredthecurrentdairycows,added1/3ofospringandcalculatedthat67%
ofthisherdproduces9,358.4kgcurrentlyor5,150kgmilk/cowp.a.withextensivehus-
bandry[72].
Cale:
TakingintoaccountHessianstatisticsfromAgriculturalholdingswithcalehusbandry
andcalepopulationon1March2020byregionalunit,StatisticsHesse[69]and,calculating
thedecreaseinanimalsineachagegroup,wecalculatedaslaughterquotaof0.37.The
averageslaughterweightofcalves,youngcaleandcaleis230kg/animal.Toslaughter
37%ofaherd,eachslaughteredanimalhastobemultipliedby2.7(1/0.37)tokeepthe
herdsizestable.Ifcalewerekeptextensively,themultiplyingfactorwouldhavetobe3
(oneanimallivesforthreeyearstoachieveanadequateslaughterquota).Tocalculatethe
producedcalemeatinkgbasedonthecurrentlivestockplustheretireddairycows,we
tookthecurrentlivestockminusthedairycows,multipliedthembytheslaughterquota
(0.37)andslaughterweight(230kg),and17%ofthedairycowsandaslaughterweightof
250kg.
Sheepandgoats:
Thesedierencesarelesssignicantforsheepandgoatsasmostfarmsinthestateof
Hessekeepsheeponpastureandgrasssilageformeatproduction.Thenumberofgoats
wasincluded,andthereareafewdairygoatfarms,butthenumberisratherinsignicant,
accountingforonly2%oftheavailablegrazinganimals.
Calculatingthenumberofgoats,sheepandotheranimalsiseasierthanforcaleas
theyareslaughteredafewweeks/monthsafterbeingborn.Wedidnotconsiderdierent
livestockforextensivehusbandryasmostgoatsandsheeparekeptextensively.Inaddi-
tion,thenumberofanimalsnecessarytosatisfythedemandisnothigh,andasamuch
lowernumberofcaleisnecessary,grazinglandwouldbeavailable.Nobroilerchickens
wouldbenecessary,asthedemandcouldbecoveredbydual-purposehensandtheir
brothers.Weincludedaslaughterquotaof0.5forsheepandgoats,andslaughterweight
of21.4kgforsheepand10.8kgforgoats.
Faeningpigs:
Theincludedslaughterweightoffaeningpigsis98kg.Theslaughterquotais2,as
eachpiglivesformax.6months;thus,perstableplace,twopigscanbefaenedperyear.
Inthecaseofextensivehusbandry,weassumedpigstobeslaughteredafter8months;
thus,theslaughterquotawouldchangeto1.5.
Breedingsowsandequines:
Thecurrentnumberofbreedingsowsperregionwasincludedbutwasnotchanged
intheotherscenarios(SSD100%,PHD,extensive).
Layinghensandpullets:
Thecurrentlayingperformanceis,onaverage,288eggs/henp.a.,andfordual-use
chickens,180eggs/henp.a.[73].Pulletswereincludedinthecurrentlivestock.
Broilerchickens:
Tocalculatethecurrentlyproducedchickenmeatinkg,weusedthecurrentlivestock
multipliedby2kgslaughterweight(i.e.,theaverageoflight,medium,andheavyfaen-
ingaccordingto[71])and10(as,onaverage,broilerchickensarereplacedafter37days).
Forextensivehusbandry,chickensareslaughteredafter81days(slaughterquota:4.5).
Otherpoultry:
Geese,turkeysandducksaccountfora12%consumptionshareintheregion.The
slaughterquotaofgeeseisestimatedtobe6.1(slaughteredafter90days),withaslaughter
weightof5.2kg;thatofturkeysis3.3(slaughteredafter126days),withaslaughterweight
of10kg;andthatofducksis2.6(slaughteredafter84days),withaslaughterweightof2.2
kg.
Alllivestock
Allcalculationsofthenecessarylivestock(SSD100%,PHDandextensive)wereper-
formedbydividingtheproductionnecessaryforSSD100%inkgbytheoutputandmul-
tiplyingbytheherdfactors(TableA6).
Sustainability2023,15,867531of38
Tab l eA7.CalculatedSharesofPlantsUsedforEnergyProduction.Becausethisshareofarableland
isnotusedtoproducefoodorfodder,itwasexcludedfromcalculationsfromtheoutset.Tablebased
on[66,82,83].
PercentagesofCropsforEnergyPurposesandIndustry(Excl.StarchProduction)
CerealsTotalWheat,Spelt,
EinkornSilageMaizeSugarBeetsPotatoesWinter
OilseedRapePulses
2.10%9.00%1.84%0.40%7.20%1.00%
HectaresUsedperRegion(1to6)forCropsforEnergyPurposesandIndustry(excl.StarchProduction)
RegionCerealstotalWheat,spelt,
EinkornSilagemaizeSugarbeetsPotatoesWinter
oilseedrapePulses
1Hesse600229793955303163128133
2GDDa1836100510531631282633
3GDGi150769391927283037
4GDKa2659128119831133147263
5FMPA1433799825135456324
6M-B410170224601599
AdditionalinformationonTables A7andS4:InGermany,about20%oftotal
croplandisusedforenergysourcingorindustrialpurposes,mainlybiogas(53%,two-
thirdsofwhichismaize),followedbyfuel(36%,74%ofwhichisrapeseed)andethanol
(26%;mainlywheat,rye,sugarbeetandcornmaize).About11%ofthe20%oflandisused
fortechnicalpurposes(46%),starch(45%),industrialsugar(5%)orcolouringplants(4%).
About60%ofthetotalcroplandisusedforlivestockfodder.Onlyabout20–22%ofthe
cropsproducedareforhumanconsumption.SpecicdataforHessewerenotavailable;
thus,weassumedthesameshares.Infurthercalculations,theseshareswerededucted
[66,82,83].
Sustainability2023,15,867532of38
FigureA1.CurrentLivestockforMeat,DairyandEggsinComparisontoNecessaryLivestockAc-
cordingtoSSD100%,PHDandExtensiveinRegions1to6.
Sustainability2023,15,867533of38
Tab l eA8.HectaresAvailableforDirectHumanConsumption.Note:ThedataforCerealstotal(re-
gion1:256,535ha)istakenfromTableA1Cerealstotal(region1:289,347ha)minustriticale(region
1:19,342ha)andcornmaize/corn-cobmix(region1:13,470ha),asbothisgrownforanimalfeed.
AvailablehaforDirectHumanConsumption,Regions1to6
Region CerealsTotalSugarBeetsPotatoesRapeSeedsLegumes(5%)VegetablesSum
1-Hesse256,53516,504442143,2046717494328,829
2-GDDa79,1088845319211,4061656582109,298
3-GDGi63,785148648711,46518715077,560
4-GDKa113,643617374220,333319763141,973
5-FMPA61,305736110147773123456982,145
6-M-B16,355313772200473519,027
Tab l eA9.Self-SuciencyDegreesofCurrentConsumptionBasedonHectaresAvailableforDirect
HumanConsumption(cf.Table A8).
Self-SufficiencyDegreeofDirectHumanConsumptionperCrop,Regions1to6(CurrentConsumption)
RegionCerealsTotalSugarBeetsPotatoesRapeSeedsLegumes(5%)VegetablesSum
1-Hesse327%137%50%45%10%31%145%
2-GDDa158%115%56%19%4%43%75%
3-GDGi487%74%33%71%17%3.7%205%
4-GDKa748%264%43%109%24%16%324%
5-FMPA166%130%24%17%4%41%77%
6-M-B527%66%22%58%18%3.7%213%
Tab l eA10.Self-SuciencyDegreesofConsumptionRecommendedbyPlanetaryHealthDietBased
onHectaresAvailableforDirectHumanConsumption(cf.Tabl e A8).
Self-SufficiencyDegreeofDirectHumanConsumptionperCrop,Regions1to6(PHD)
RegionCerealsTotalSugarBeetsPotatoesRapeSeedsLegumes(5%)VegetablesSum
1-Hesse373%457%188%65%1.1%36%146%
2-GDDa180%383%212%27%0.4%50%76%
3-GDGi556%246%124%104%1.8%4.3%206%
4-GDKa855%883%163%159%2.6%19%326%
5-FMPA190%434%92%25%0.4%47%78%
6-M-B603%219%83%84%1.9%4.3%214%
References
1. Crippa,M.;Solazzo,E.;Guizzardi,D.;Monforti-Ferrario,F.;Tubiello,F.N.;Leip,A.Foodsystemsareresponsibleforathirdof
globalanthropogenicGHGemissions.Nat.Food2021,2,198–209.hps://doi.org/10.1038/s43016-021-00225-9.
2. Li,M.;Jia,N.;Lenzen,M.;Malik,A.;Wei,L.;Jin,Y.;Raubenheimer,D.Globalfood-milesaccountfornearly20%oftotalfood-
systemsemissions.Nat.Food2022,3,445–453.hps://doi.org/10.1038/s43016-022-00531-w.
3. DevelopmentInitiativesPovertyResearchLtd.GlobalNutritionReport:ActiononEquitytoEndMalnutrition;UNICEFData:Bris-
tol,UK,2020;ISBN978-1-9164452-6-0.
4. RobertKoch-Institut.2.6ÜbergewichtUndAdipositas,Berlin.2008.Availableonline:hps://www.rki.de/DE/Content/Gesund-
heitsmonitoring/Studien/Kiggs/Basiserhebung/GPA_Daten/Adipositas.pdf?__blob=publicationFile(accessedon11January
2023).
5. Chioleau,Y.;Dourian,T.SustainableFoodSupplyChains:IsShorteningtheAnswer?ALiteratureReviewforaResearchand
InnovationAgenda.Sustainability2020,12,9831.hps://doi.org/10.3390/su12239831.
6. Meynard,J.-M.;Jeuroy,M.-H.;LeBail,M.;Lefèvre,A.;Magrini,M.-B.;Michon,C.Designingcoupledinnovationsforthe
sustainabilitytransitionofagrifoodsystems.Agric.Syst.2017,157,330–339.hps://doi.org/10.1016/j.agsy.2016.08.002.
7. Shindelar,R.TheEcologicalSustainabilityofLocalFoodSystems.ThinkGlobal,EatLocal:ExploringFoodways;RachelCarson
CenterforEnvironmentandSociety:Munich,Germany,2015;pp.19–24.
8. Canfora,I.IstheShortFoodSupplyChainanEcientSolutionforSustainabilityinFoodMarket?Agric.Agric.Sci.Procedia
2016,8,402–407.hps://doi.org/10.1016/j.aaspro.2016.02.036.
Sustainability2023,15,867534of38
9. Kögl,H.;Tiee,J.RegionaleErzeugung,VerarbeitungundVermarktungvonLebensmieln:StudieimAuftr agdesBundesministeriums
fürLandwirtschaft,ErnährungundVerbraucherschu:Projekräger:BundesanstaltfürLandwirtschaftundErnährung(FKZ:05HS023),
Projektlaufzeit:2006–2009,Berichtszeitraum:1999–2007;UniversitätRostockProfessurfürLandwirtschaftlicheBetriebslehreund
Management;Universitätsbibliothek:Rostock,Germany,2010;ISBN978-3-86009-086-2.
10. Mastronardi,L.;Marino,D.;Cavallo,A.;Giannelli,A.ExploringtheRoleofFarmersinShortFoodSupplyChains:TheCaseof
Italy.Int.FoodAgribus.Manag.Rev.2015,18,109–130.hps://doi.org/10.22004/ag.econ.204139.
11. Erokhin,V.;Gao,T.ImpactsofCOVID-19onTradeandEconomicAspectsofFoodSecurity:Evidencefrom45Developing
Countries.Int.J.Environ.Res.PublicHealth2020,17,5775.hps://doi.org/10.3390/ijerph17165775.
12. Mardones,F.O.;Rich,K.M.;Boden,L.A.;Moreno-Swi,A.I.;Caipo,M.L.;Zimin-Veselko,N.;Alateeqi,A.M.;Baltenweck,I.
TheCOVID-19PandemicandGlobalFoodSecurity.Front.Vet. Sci.2020,7,578508.hps://doi.org/10.3389/fvets.2020.578508.
13. Wille,W.;Rockström,J.;Loken,B.;Springmann,M.;Lang,T.;Vermeulen,S.;Garne,T.;Tilman,D.;DeClerck,F.;Wood,A.;
etal.FoodintheAnthropocene:TheEAT–LancetCommissiononhealthydietsfromsustainablefoodsystems.Lancet2019,393,
447–492.hps://doi.org/10.1016/S0140-6736(18)31788-4.
14. BMEL.Eckpunktepapier:WegzurErnährungsstrategiederBundesregierung.2022.Availableonline:
hps://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/ernaehrungsstrategie-eckpunktepapier.pdf?__blob=publica-
tionFile&v=4(accessedon25February2023).
15. Carolan,M.TheSociologyofFoodandAgriculture,3rded.;Tay lor&FrancisGroup:London,UK,2022;ISBN978-0-367-68002-2.
16. Hinrichs,C.Embeddednessandlocalfoodsystems:Notesontwotypesofdirectagriculturalmarket.J.RuralStud.2000,16,
295–303.hps://doi.org/10.1016/S0743-0167(99)00063-7.
17. Galli,F.;Brunori,G.ShortFoodSupplyChainsasDriversofSustainableDevelopment.EvidenceDocument;Documentdevelopedin
theframeworkoftheFP7projectFOODLINKS(GANo.265287);LaboratoriodistudiruraliSismondi:Pisa,Italy,2013,ISBN:
978-8-890896-01-9.
18. Prey,J.N.;Ball,A.S.;Lang,T.;Morison,J.Farmcostsandfoodmiles:AnassessmentofthefullcostoftheUKweeklyfood
basket.FoodPolicy2005,30,1–19.hps://doi.org/10.1016/j.foodpol.2005.02.001.
19. DeLind,L.B.Arelocalfoodandthelocalfoodmovementtakinguswherewewanttogo?Orarewehitchingourwagonstothe
wrongstars?Agric.Hum.Valu es2011,28,273–283.hps://doi.org/10.1007/s10460-010-9263-0.
20. Sonnino,R.;Marsden,T.Beyondthedivide:Rethinkingrelationshipsbetweenalternativeandconventionalfoodnetworksin
Europe.J.Econ.Geogr.2006,6,181–199.hps://doi.org/10.1093/jeg/lbi006.
21. ErnährungsratKöln.KonzeptzurSteigerungundEinführungvonRegionalitätundNachhaltigkeitinKölnerKitasundFamilienzentren;
ErnährungsratKöln:Köln,Germany,2023.Availableonline:hps://stern-kita.koeln/wp-content/uploads/2023/03/Konzept.pdf
(accessedon24March2023).
22. LaViaCampesina.FoodSovereignity.Availableonline:hps://viacampesina.org/en/food-sovereignty/(accessedon17January
2023).
23. Krivonos,E.;Kuhn,L.TradeanddietarydiversityinEasternEuropeandCentralAsia.FoodPolicy2019,88,101767.
hps://doi.org/10.1016/j.foodpol.2019.101767.
24. McMichael,P.Afoodregimegenealogy.J.Peasant.Stud.2009,36,139–169.hps://doi.org/10.1080/03066150902820354.
25. Pimentel,D.;Hurd,L.E.;Belloi,A.C.;Forster,M.J.;Oka,I.N.;Sholes,O.D.;Whitman,R.J.Foodproductionandtheenergy
crisis.Science1973,182,443–449.hps://doi.org/10.1126/science.182.4111.443.
26. Moschi,H.;Frick,R.;Oehen,B.Vonglobalzulokal:StärkungregionalerVersorgungskr eisläufevonStädtenalsBausteinfür
einenachhaltigeErnährungspolitik—DreiFallstudien.InSchwerpunkt:GlobalisierungGestalten;Schneider,M.,Fink-Keßler,A.,
Stodieck,F.,Eds.;ABLBauernblaVerlags -GmbH:Hamm,Germany,2018;pp.185–189,ISBN978-3-930413-63-8.
27. ErnährungsratKöln.ImpulseFürDieKommunaleErnährungswende.2019.Availableonline:hps://www.ernaehrungsrat-ko-
eln.de/ernaehrungsstrategie/(accessedon24January2023).
28. Schi,R.;Levkoe,C.Z.;Wilkinson,A.FoodPolicyCouncils:A20—YearScopingReview(1999–2019).Front.Sustain.FoodSyst.
2022,6,868995.hps://doi.org/10.3389/fsufs.2022.868995.
29. Web er, C.L.;Mahews,H.S.Food-milesandtherelativeclimateimpactsoffoodchoicesintheUnitedStates.Environ.Sci.Tech
nol.2008,42,3508–3513.hps://doi.org/10.1021/es702969f.
30. Clark,M.;Tilman,D.Comparativeanalysisofenvironmentalimpactsofagriculturalproductionsystems,agriculturalinput
eciency,andfoodchoice.Environ.Res.Le.2017,12,64016.hps://doi.org/10.1088/1748-9326/aa6cd5.
31. Kavallari,A.TheGlobalAgriculturePerspectivesSystem(GAPS).2016.Availableonline:
hps://www.fao.org/3/i6112e/i6112e.pdf(accessedon21April2023).
32. Latham,J.Themythofafoodcrisis.InRethinkingFoodandAgriculture:NewWay sForward;Kassam,A.,Kassam,L.,Eds.;Elsevier
WoodheadPublishing:Cambridge,UK,2021;pp.93–111,ISBN978-0-12816-410-5.
33. Schader,C.;Muller,A.;Scialabba,N.E.-H.;Hecht,J.;Isensee,A.;Erb,K.-H.;Smith,P.;Makkar,H.P.S.;Klocke,P.;Leiber,F.;et
al.Impactsoffeedinglessfood-competingfeedstustolivestockonglobalfoodsystemsustainability.J.R.Soc.Interface2015,
12,20150891.hps://doi.org/10.1098/rsif.2015.0891.
34. Hungerkamp,M.2,40Euromehr:DeutschesPuteneischfürVerbra uch erbaldLuxus?2023.Availableonline:
hps://www.agrarheute.com/tier/240-euro-mehr-deutsches-puteneisch-fuer-verbraucher-bald-luxus-604381(accessedon22
April2023).
Sustainability2023,15,867535of38
35. Pontius,J.;Uken,M.“NatürlichgibteskeinRechtaufBilligeisch”:InterviewmitJuliaGlöckner.2021.Availableonline:
hps://www.zeit.de/wirtschaft/2021-04/julia-kloeckner-lebensmiel-massentierhaltung-tierwohl-label-gruene-eu(accessedon
22April2023).
36. Garne,T.;Godde,C.;Muller,A.;Röös,E.;Smith,P.;deBoer,I.J.M.GrazedandConfused?RuminatingonCale,Grazing
Systems,Methane,NitrousOxide,theSoilCarbonSequestrationQuestion—AndWhatItAllMeansforGreenhouseGasEmis-
sions.2017.Availableonline:hps://www.oxfordmartin.ox.ac.uk/downloads/reports/fcrn_gnc_report.pdf(accessedon15Feb-
ruary2023).
37. Cassidy,E.S.;West,P.C.;Gerber,J.S.;Foley,J.A.Redeningagriculturalyields:Fromtonnestopeoplenourishedperhectare.
Environ.Res.Le.2013,8,034015.hps://doi.org/10.1088/1748-9326/8/3/034015.
38. Machovina,B.;Feeley,K.J.;Ripple,W.J.Biodiversityconservation:Thekeyisreducingmeatconsumption.Sci.TotalEnviron.
2015,536,419–431.hps://doi.org/10.1016/j.scitotenv.2015.07.022.
39. Wei s,A.TheEcologicalHoofprint:TheGlobalBurdenofIndustrialLivestock;ZedBooks:London,UK,2013;ISBN978-1-78032-096-
0.
40. Carolan,M.TheRealCostofCheapFood,2nded.;Routledge:London,UK,2018;ISBN978-1-13808-076-8.
41. Vali n,H.;Sands,R.D.;vanderMensbrugghe,D.;Nelson,G.C.;Ahammad,H.;Blanc,E.;Bodirsky,B.;Fujimori,S.;Hasegawa,
T.;Havlik,P.;etal.Thefutureoffooddemand:Understandingdierencesinglobaleconomicmodels.Agric.Econ.2014,45,51–
67.hps://doi.org/10.1111/agec.12089.
42. Dawson,T.P.;Perryman,A.H.;Osborne,T.M.Modellingimpactsofclimatechangeonglobalfoodsecurity.Clim.Chang.2016,
134,429–440.hps://doi.org/10.1007/s10584-014-1277-y.
43. Desiere,S.;Hung,Y.;Verbeke,W.;D’Haese,M.AssessingcurrentandfuturemeatandshconsumptioninSub-SaharaAfrica:
LearningsfromFAOFoodBalanceSheetsandLSMShouseholdsurveydata.Glob.FoodSecur.2018,16,116–126.
hps://doi.org/10.1016/j.gfs.2017.12.004.
44. FAO.FoodBalanceSheets:AHandbook;FAO:Rome,Italy,2001.
45. Prey,J.Agriculturalsustainability:Concepts,principlesandevidence.Philos.Trans.R.Soc.Lond.BBiol.Sci.2008,363,447–465.
hps://doi.org/10.1098/rstb.2007.2163.
46. Ingram,J.Afoodsystemsapproachtoresearchingfoodsecurityanditsinteractionswithglobalenvironmentalchange.Food
Sec.2011,3,417–431.hps://doi.org/10.1007/s12571-011-0149-9.
47. deShuer,O.ReportSubmiedbytheSpecialRapporteurontheRighttoFood;GeneralAssembly.2010.Availableonline:
hp://www.srfood.org/images/stories/pdf/ocialreports/20110308_a-hrc-16-49_agroecology_en.pdf(accessedon25January
2023).
48. Flies,E.J.;Brook,B.W.;Blomqvist,L.;Bueel,J.C.Forecastingfutureglobalfooddemand:Asystematicreviewandmeta-anal-
ysisofmodelcomplexity.Environ.Int.2018,120,93–103.hps://doi.org/10.1016/j.envint.2018.07.019.
49. TheWorldCounts.NumberofPlanetEarthWeNeed:ToProvideResourcesandAbsorbOurWaste.Availableonline:
hps://www.theworldcounts.com/challenges/planet-earth/state-of-the-planet/overuse-of-resources-on-earth(accessedon20
April2023).
50. Aronson,E.;Wilson,T.D.;Akert,R.M.;Sommers,S.R.SocialPsychology,9thed.;revisededitionoftheauthors’Socialpsychology,
2013;Pearson:Boston,MA,USA,2016;ISBN978-0133936544.
51. Harman,G.YourBrainonClimateChange:WhytheThreatProducesApathy,NotAction.2014.Avail ableonline:
hps://www.theguardian.com/sustainable-business/2014/nov/10/brain-climate-change-science-psychology-environment-elec-
tions(accessedon20April2023).
52. OECD/FAO.OECD-FAOAgriculturalOutlook2021–2030,Paris.2021.Availableonline:hps://doi.org/10.1787/19428846-en(ac-
cessedon28April2023).
53. HessischesStatistischesLandesamt.2.9801TAusg ewählteMerkmalefürlandwirtschaftlicheBetriebeinHessen2020nach
Kreisen.Avail abl eonline:hps://statistik.hessen.de/sites/statistik.hessen.de/les/2022-06/CIV10_1b_20.pdf(accessedon12De-
cember2022).
54. HessischesStatistischesLandesamt.CIV10-1b_20_Anhang_LandwirtschaftszählungnachKreisenHessen:6.9804.2TAnbau
aufdemAckerlandinlandwirtschaftlichenBetriebeninHessen2020nachRechtsformen,ausgewähltensozialökonomischen
ausgewähltenMerkmalenundGrößenklassenderlandwirtschaftlichgenutenFläche,BetriebstypenundArtder
Bewirtschaftung.Tabelle1–6.Availableonline:hps://statistik.hessen.de/sites/statistik.hessen.de/les/CIV10_2_20.pdf(ac-
cessedon19January2023).
55. HessischesStatistischesLandesamt.Anbau,ErtragundErnteAusgewählterGemüseartenimFreilandinHessen2021.2021.
Avail abl eonline:hps://statistik.hessen.de/unsere-zahlen/land-und-forstwirtschaft(accessedon12December2022).
56. HessischesStatistischesLandesamt.ErträgeausgewählterFeldfrüchteinHessen2014bis2021(indt/ha)—1dt—100kg.Availa-
bleonline:hps://statistik.hessen.de/unsere-zahlen/land-und-forstwirtschaft(accessedon19January2023).
57. HessischesStatistischeLandesamt.HessischeGemeindestatistikAusga be2022,Wiesbaden.2022.Availableonline:hps://statis-
tik.hessen.de/publikationen/hessische-gemeindestatistik(accessedon19January2023).
58. BundesministeriumfürErnährungundLandwirtschaft.Pro-Kopf-KonsumvonHülsenfrüchteninDeutschlandindenJahren
2008/09bis2016/2017²(inKilogramm).Availableonline:hps://de.statista.com/statistik/daten/studie/175416/umfrage/pro-
kopf-verbrauch-von-huelsenfruechten-in-deutschland-seit-1935/(accessedon28March2023).
Sustainability2023,15,867536of38
59. Statista.Pro-Kopf-KonsumvonLebensmielninDeutschlandindenJahren1900und2020(inKilogramm).Availableonline:
hps://de.statista.com/statistik/daten/studie/163514/umfrage/pro-kopf-verbrauch-von-lebensmieln-in-deutschland/(accessed
on17October2022).
60. BundesanstaltfürLandwirtschaftundErnährung.Pro-Kopf-KonsumvonFleischinDeutschlandnachArtindenJahren2019
bis2021(inKilogramm).Availableonline:hps://de.statista.com/statistik/daten/studie/311479/umfrage/pro-kopf-konsum-von-
eisch-in-deutschland-nach-arten/(accessedon28March2023).
61. BundesministeriumfürErnährungundLandwirtschaft.Pro-Kopf-KonsumvonGetreideinDeutschlandindenJahren1950/51
bis2020/21(inKilogrammMehlwert).Availableonline:hps://de.statista.com/statistik/daten/studie/175412/umfrage/pro-kopf-
verbrauch-von-getreideerzeugnissen-mehlwert-in-deutschland-seit-1935/(accessedon28March2023).
62. BundesanstaltfürLandwirtschaftundErnährung.Pro-Kopf-KonsumvonZuckerinDeutschlandindenJahren1950/51bis
2020/21(inKilogrammWe zuc ker wert).Availableonline:hps://de.statista.com/statistik/daten/studie/175483/umfrage/pro-
kopf-verbrauch-von-zucker-in-deutschland/(accessedon28March2023).
63. DeutscheGesellschaftfürErnährung.DGEQualityStandardforMealsinSchools,2nded.;DeutscheGesellschaftfürErnährung:
Bonn,Germany,2022.
64. EAT-LancetCommission.HealthyDietsfromSustainableFoodSystems:FoodPlanetHealth.Availableonline:hps://eat-
forum.org/content/uploads/2019/07/EAT-Lancet_Commission_Summary_Report.pdf(accessedon17October2022).
65. DeutscheGesellschaftfürErnährung.DGEQualityStandardforMealsinDaycareCentres.2022.Availableonline:
hps://www.tkid-aktion.de/leadmin/user_upload/medien/DGE-QST/DGE_Quality_Standard_Meals_Daycare.pdf(ac-
cessedon19April2023).
66. StatistischesBundesamt.StatistischesBundesamt,Fachserie3,R3.2.1,Feldfrüchte2021.2022.Availableonline:
hps://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruen-
land/Publikationen/Downloads-Feldfruechte/feldfruechte-jahr-2030321217164.html(accessedon27January2023).
67. IV:01—Schäfer,Mori(February2022):Expertinterviewondairyfarming,Germany.Online.TranscriptNotes.
68. IV:02—Feist,Christoph(ThreediscussionroundsinNovember2022):Expertinterviewonecologicalagricultureandcropro-
tation,Germany.Online.TranscriptNotes.
69. HessischesStatistischesLandesamt.Landwirtschaftszählung2020LandwirtschaftlicheBetriebeundViehbestände:Kennzier:
CIV10—3/20,Wiesbaden.2021.Availableonline:hps://statistik.hessen.de/sites/statistik.hessen.de/les/2022-
06/CIV10_3_20.pdf(accessedon12December2022).
70. StatistikAus tria.Lebend-undSchlachtgewichte,Schlachtausbeute,SchlachtungensowieFleischanfall.Availableonline:
hps://www.ama.at/getaachment/c9170514-b892-46-9e27-f2fd74e0d9b9/220_schlachtgew_2005-2016.pdf(accessedon29
April2022).
71. DLG-AusschussfürGeügel.HaltungvonMasthühnern:Haltungsansprüche—Füerung—Tiergesundheit.DLG-Merkbla
406.2021.Avail ableonline:hps://www.dlg.org/de/landwirtschaft/themen/tierhaltung/geuegel/dlg-merkbla-406/(accessed
on13March2023).
72. HessischerVerb andfürLeistungs-undQualitätsprüfunginderTierzuchte.V.Jahresbericht2021,2022.Availableonline
hps://www.hvl-alsfeld.de/leadmin/download/MLP/Jahresberichte/HVL_Jahresbericht_2021_Web.pdf(accessedon24March
2023).
73. StatistischesBundesamt.BetriebemitLegehennenhaltung,ErzeugteEier,Legeleistung:Bundesländer,Jahre,Haltungsformen,
GrößenklassenderHennenhaltungspläe.2021.Availableonline:hps://www-genesis.destatis.de/genesis/online?sequenz=ta-
belleErgebnis&selectionname=41323-0004&leerzeilen=false#abreadcrumb(accessedon13March2023).
74. BundesministeriumfürErnährungundLandwirtschaft.RinderhaltunginDeutschland.2023.Ava ilableonline:
hps://www.bmel-statistik.de/landwirtschaft/tierhaltung/rinderhaltung(accessedon28March2023).
75. Brüggemann,C.Lebendvieh-Export.WenigerRinderausDeutschlandexportiert.2021.Availableonline:hps://www.top-
agrar.com/rind/news/weniger-rinder-aus-deutschland-exportiert-12468630.html(accessedon28March2023).
76. Hiller,P.AufdieMischungkommtesan:EigenmischungenfürGeügelglasklarformuliert.2023.Availableonline:
hps://www.lwk-niedersach-
sen.de/lwk/news/25369_Auf_die_Mischung_kommt_es_an_Eigenmischungen_fuer_Geuegel_glasklar_formuliert(accessed
on13March2023).
77. BayerischeLandesanstaltfürLandwirtschaft.LfLGruberTabellezurMilchviehfüerung,47.Auage.Availableonline:
hps://www.l.bayern.de/mam/cms07/publikationen/daten/informationen/gruber_tabelle_fueerung_milchku-
ehe_zuchtrinder_schafe_ziegen_l-information.pdf(accessedon23March2023).
78. Ver hoeven,A.;Hoppe,S.;Hünting,K.;Beintmann,S.;Pries,M.MaisilagereicheerungoderKleegrasbetonteerung?
2018.Availableonline:hps://www.landwirtschaftskammer.de/riswick/ver-
suche/tierhaltung/fueerung/mais_klee_fueerung.htm(accessedon30January2023).
79. Bonsels,T.DemFuermangeltroen.2022.Avail ableonline:hps://llh.hessen.de/tier/rinder/fueerung-rinder/dem-fuer-
mangel-troen/(accessedon30January2023).
80. LandesbetriebLandwirtschaftHessen.Agrarstrukturerhebung:5.9804.1TLandwirtschaftlicheBetriebeundAnbauächender
KulturarteninHessen2020nachGrößenklassenderLandwirtschaftlichGenutenFläche,Rechtsformen,Sozialökonomischen
BetriebstypenundArtderBewirtschaftung.2021.Availableonline:hps://llh.hessen.de/unternehmen/agrarstatis-
tik/ergebnisse-der-agrarstrukturerhebung/(accessedon27January2023).
Sustainability2023,15,867537of38
81. VÖL.InternationalLegumeDay;EmailCorrespondencebetweenTrenger,E.andKirch,P.fromVÖL—Vereinigung
ÖkologischerLandbauHessenon1February2022.
82. Greenpeace.GreenpeaceNachrichten.2023.Availableonline:hps://gpn.greenpeace.de/ausgabe/01-23/brennpunkt-land-
wirtschaft/(accessedon11February2023).
83. Weltagrarbericht.EinFünfteldesdeutschenAckerlandesdientProduktionvonBiogasundBiosprit.Availableonline:
hps://www.weltagrarbericht.de/aktuelles/nachrichten/news/de/33208.html(accessedon27January2023).
84. HessischeLandesregierung.Hessen.De.Availableonline:hps://hessen.de/(accessedon23January2023).
85. UmweltHessen.Landwirtschaft:ÖkologischerLandbau.Availableonline:hps://umwelt.hessen.de/landwirtschaft/oekoland-
bau(accessedon9February2023).
86. Hartmann,S.;Dorsch,K.SofunktioniertderLuzerneanbau.Availableonline:hps://www.topagrar.com/dl/2/8/0/6/5/5/3/32-
37_Luzerne.pdf(accessedon12December2022).
87. agrarheute.Luzernesilage:PotentialfürGeügel-undSchweinefüerung.Availableonline:hps://www.agrarheute.com/man-
agement/nanzen/luzernesilage-potential-fuer-geuegel-schweinefueerung-441037(accessedon16March2023).
88. ZukunftsstiftungLandwirtschaft.GlobalField.Availableonline:hps://www.2000m2.eu/(accessedon9February2023).
89. Böhm,M.FruchtfolgeimBio-Ackerbau:Esgehtummehr!Availableonline:hps://www.bio-austria.at/a/bauern/fruchtfolge-
im-bio-ackerbau-es-geht-um-mehr/(accessedon13December2022).
90. Schindler,T.ImmerwiederFruchtfolge.Availableonline:hps://bio2030.de/wp-content/uploads/2019/01/DLG0119_64-66.pdf
(accessedon13December2022).
91. Badgley,C.;Moghtader,J.;Quintero,E.;Zakem,E.;Chappell,M.J.;Avilés-Vázquez,K.;Samulon,A.;Perfecto,I.Organicagri-
cultureandtheglobalfoodsupply.Renew.Agric.FoodSyst.2007,22,86–108.hps://doi.org/10.1017/S1742170507001640.
92. Aguilera,E.;Díaz-Gaona,C.;García-Laureano,R.;Reyes-Palomo,C.;Guzmán,G.I.;Ortolani,L.;Sánchez-Rodríguez,M.;
Rodríguez-Estévez,V.AgroecologyforadaptationtoclimatechangeandresourcedepletionintheMediterraneanregion.A
review.Agric.Syst.2020,181,102809.hps://doi.org/10.1016/j.agsy.2020.102809.
93. Leippert,F.;Darmaun,M.;Bernoux,M.;Mpheshea,M.ThePotentialofAgroecologytoBuildClimateResilientLivelihoodsandFood
Systems;FAO:Rome,Italy,2020.hps://doi.org/10.4060/cb0438en.
94. Edmondson,J.L.;Davies,Z.G.;Gaston,K.J.;Leake,J.R.Urbancultivationinallotmentsmaintainssoilqualitiesadverselyaf-
fectedbyconventionalagriculture.J.Appl.Ecol.2014,51,880–889.hps://doi.org/10.1111/1365-2664.12254.
95. Sheldrake,R.Seinginnovationfreeinagriculture.InRethinkingFoodandAgriculture:NewWays Forward;Kassam,A.,Kassam,
L.,Eds.;ElsevierWoodheadPublishing:Cambridge,UK,2021;pp.1–29,ISBN978-0-12816-410-5.
96. Vana vichi t,A.RiceberryRiceforWell-Being.2021.Availableonline:hps://www.openaccessgovernment.org/riceberry-rice-for-
well-being/119541/(accessedon15February2023).
97. Poore,J.;Nemecek,T.Reducingfood’senvironmentalimpactsthroughproducersandconsumers.Science2018,360,987–992.
hps://doi.org/10.1126/science.aaq0216.
98. GretaThunberg.SpeakingNotesforaSpeechHeldintheEuropeanParliamentinStrasbourgatanExtraordinaryMeetingof
theEnvironmentCommiee,OpentoAllMembers.2019.Available online:hps://www.europarl.europa.eu/resources/li-
brary/media/20190416RES41665/20190416RES41665.pdf(accessedon10March2023).
99. EuropeanCommission.KeyPolicyObjectivesoftheNewCAP.2021.Availableonline:hps://agriculture.ec.europa.eu/com-
mon-agricultural-policy/cap-overview/new-cap-2023-27/key-policy-objectives-new-cap_en(accessedon25February2023).
100. Zinke,O.Klimahysterie:DasdenkenLandwirtedarüber.2019.Availableonline:hps://www.agrarheute.com/management/be-
triebsfuehrung/klimahysterie-denken-landwirte-darueber-554648(accessedon9March2023).
101. DeutscheGesellschaftfürErnährung.DGE-StudiezuKosten-undPreisstruktureninderSchulverpegung(KuPS):Kostenund
WirtschaftlichkeitderSchulverpegungimFokus—EineHandreichungfürSchul-undSachaufwandsträger.2019.Avail able
online:hps://www.dge.de/leadmin/Dokumente/DGE/Projekte/BMEL-Schulverpegung-KuPS-Studie.pdf(accessedon24
March2023).
102. Nadkarni,M.DerGiftvertragEU-Mercosur.2023.Availableonline:hps://www.greenpeace.de/biodiversi-
taet/waelder/waelder-erde/eu-mercosur-abkommen(accessedon15February2023).
103. Marioi,F.;Gardner,C.D.DietaryProteinandAminoAcidsinVegetarianDiets-AReview.Nutrients2019,11,2661.
hps://doi.org/10.3390/nu11112661.
104. ZDFheute.AgrarexpertinzuKriegsfolgen“DramatischerAngebotseinbruch”beimGetreide.Availableonline:
hps://www.zdf.de/nachrichten/wirtschaft/agrar-getreide-russland-ukraine-krieg-100.html(accessedon27April2023).
105. StatistikHessen.ZahlenvonAbisZ:Land-undForstwirtschaftinHessen.Availableonline:hps://statistik.hessen.de/unsere-
zahlen/land-und-forstwirtschaft(accessedon28March2023).
106. HessischesStatistischesLandesamt.Landwirtschaftszählung2020:LandwirtschaftlicheBetriebeundBodennuung.
Kennzier:CIV10—2/2020.2022.Availableonline:hps://www.statistischebibliothek.de/mir/servlets/MCRFile-
NodeServlet/HEHeft_derivate_00011231/CIV10_2_20_2kA_a.pdf(accessedon28December2022).
107. StatistischesBundesamt.FeldfrüchteundGrünland:AckerlandnachHauptfruchtgruppenundFruchtarten.2022.Available
online:hps://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-
Gruenland/Tabellen/ackerland-hauptnuungsarten-kulturarten.html(accessedon28December2022).
Sustainability2023,15,867538of38
108. StatistischesBundesamt.WachstumundErnte—Feldfrüchte—Fachserie3:Reihe3.2.1—16/2021,2022.Availableonline:
hps://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruen-
land/Publikationen/Downloads-Feldfruechte/feldfruechte-jahr-2030321217164.html(accessedon28December2022).
109. BundesministeriumfürErnährungundLandwirtschaft.Ackerbau.2020.Availableonline:
hps://www.bmel.de/DE/themen/landwirtschaft/panzenbau/ackerbau/ackerbau_node.html(accessedon28December2022).
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualau-
thor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto
peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.
... Barriers to accessing healthy food can include financial constraints and lack of geographic proximity (Kassam and Bernardo, 2022), poverty, climate change, and development disparities (Gunaratne et al., 2021), and people's dietary habits disconnected from locally available resources and land (Schön and Böhringer, 2023). ...
... It encourages farmers to adopt crop rotation systems and more extensive husbandry practices. These practices aim to measure outcomes such as the number of animals needed to meet the demand for regional animal products, the number of livestock required to achieve complete self-sufficiency, and the amount of food grown locally to feed the local population in a plant-based, healthy, appealing, and diverse manner (Schön and Böhringer, 2023). ...
Article
Full-text available
Food sovereignty, as defined by the comprehensive definition offered in the 2007 Nyéléni Forum, encompasses essential action lines for transforming a food system based on food sovereignty principles. Understanding how current food system initiatives align with these principles is essential for identifying the necessary processes of change to drive this transformation. This study aimed to consolidate the contributions of advancements in food sovereignty to the existing literature. A systematic literature review was conducted to achieve this, analyzing 250 papers published between 2008 and 2023. The focus was on the research methods employed by the authors, food initiatives within the domains of food sovereignty, and the key drivers of a food system rooted in food sovereignty principles. The findings revealed that approximately 36% of the studies utilized interviews, surveys, and questionnaires for data collection, while 34% concentrated on targeted fieldwork through case studies. Around 19% of the studies involved in-depth interaction with specific groups, and just under 10% employed document analysis methods. The most extensively discussed domain was the use of agroecological management practices for food production, followed by the valuation of traditional knowledge, the promotion of social justice and equity, self-determination through the transformation of economic and political institutions, and the localization of food production and consumption. The food initiatives outlined overarching goals within each domain of food sovereignty, with three common goals identified across these domains: food security and consumption, environmental stewardship, and crisis preparedness. Furthermore, 29 drivers of a food system based on the domains of food sovereignty were identified, encompassing networks and a holistic approach present in all 5 domains. The study also highlights the implications for supporters of food sovereignty within the context of the identified goals of the food initiatives.
... Some improvements (e.g., the addition of integrated biomass systems and forest management) may result in increased bioenergy production, while others (e.g., reserving more land for nature protection to reflect higher ambitions concerning conservation) will very likely decrease the amount of bioenergy. In particular, a reduction in meat consumption and the associated decrease in area requirements for grazing land can bring opportunities for other land use forms (Mazac et al., 2022;Parzianello and Carvalho, 2023;Schön and Böhringer, 2023). As an example, the use of agri-photovoltaic, which combines the development of the same land area for solar plants and agriculture, could overcome the shortage of space and land use competition (Chatzipanagi et al., 2023;Klabunde and Engel, 2023). ...
Article
Full-text available
Coal has been one of the main fuels used in Europe. Its decreasing role due to the ongoing transformation of the energy system will create significant socio-economic challenges. The switch into renewable energy systems could be an alternative to maintain jobs and economic activities within the affected regions. Biomass use and bioenergy can play an important role in the energy transition. Instead of energy crops, forest and agricultural residues should be used as biogenic energy sources in the future to avoid impacts on land use and food security. The main objective of this article is to investigate the biomass potential of a coal region and to provide scenarios for the future development of bioenergy production. Due to the changing framework conditions and, as a result, the different biomass focuses, previous bioenergy potential estimates must be reviewed. The methods for determining the potential of biomass for energy production was used for Lusatia (in German: Lausitz), the second largest coal region in Germany. These methods can also be applied in other regions. As a first step, the regional status quo assessment of cultivated areas and yields had decisive relevance for calculating biomass potential ranges. In a second step, the current bioenergy facilities in the region were identified, with a focus on power and heat production. The third step was the estimation of future regional bioenergy use. Therefore, the regional potential was gathered with the generally supra-regional framework conditions. For this purpose, national scenario studies were used, which contain the relevant target values and framework conditions. Two scenarios were developed for future bioenergy estimations: a conservative path based on the current policies and a progressive path, derived from the goal of climate neutrality by 2045. The results show a qualitative comparison among both scenarios and the previously determined potential ranges. Bioenergy can probably contribute to achieving climate neutrality with an increase in wood-fired systems, while agricultural bioenergy potential is likely to decline. In the discussion section, however, the uncertainty of these results is pointed out, as future use of bioenergy will be heavily influenced by the regulatory framework, competition with material use and the influences of climate change.
Article
Full-text available
Food trade plays a key role in achieving global food security. With a growing consumer demand for diverse food products, transportation has emerged as a key link in food supply chains. We estimate the carbon footprint of food-miles by using a global multi-region accounting framework. We calculate food-miles based on the countries and sectors of origin and the destination countries, and distinguish the relevant international and domestic transport distances and commodity masses. When the entire upstream food supply chain is considered, global food-miles correspond to about 3.0 GtCO2e (3.5–7.5 times higher than previously estimated), indicating that transport accounts for about 19% of total food-system emissions (stemming from transport, production and land-use change). Global freight transport associated with vegetable and fruit consumption contributes 36% of food-miles emissions—almost twice the amount of greenhouse gases released during their production. To mitigate the environmental impact of food, a shift towards plant-based foods must be coupled with more locally produced items, mainly in affluent countries.
Article
Full-text available
The proliferation of food policy councils (FPCs) in the past two decades has been accompanied by increasing academic interest and a growing number of research studies. Given the rapid interest and growth in the number of FPCs, their expanding geographic distribution, and the research on their activities, there is a need to assess the current state of knowledge on FPCs, gaps in that knowledge, and directions for future research. To address this need, we undertook a scoping review of the scholarly literature published on FPCs over the past two decades. The review identified four main themes in the FPC research—(1) Activities of FPCs; (2) Organizational dimensions; (3) Challenges; and, (4) Facilitators. We also note a significant sub-theme related to equity and diversity, race and class representation in FPCs. These themes frame a growing body of knowledge on FPCs along with key gaps in the current body of literature, which may help to direct research on these organizations for those interested in approaches to food systems change and cross-sectoral collaborative approaches to social-ecological governance.
Article
Full-text available
We have developed a new global food emissions database (EDGAR-FOOD) estimating greenhouse gas (GHG; CO2, CH4, N2O, fluorinated gases) emissions for the years 1990–2015, building on the Emissions Database of Global Atmospheric Research (EDGAR), complemented with land use/land-use change emissions from the FAOSTAT emissions database. EDGAR-FOOD provides a complete and consistent database in time and space of GHG emissions from the global food system, from production to consumption, including processing, transport and packaging. It responds to the lack of detailed data for many countries by providing sectoral contributions to food-system emissions that are essential for the design of effective mitigation actions. In 2015, food-system emissions amounted to 18 Gt CO2 equivalent per year globally, representing 34% of total GHG emissions. The largest contribution came from agriculture and land use/land-use change activities (71%), with the remaining were from supply chain activities: retail, transport, consumption, fuel production, waste management, industrial processes and packaging. Temporal trends and regional contributions of GHG emissions from the food system are also discussed. Data on GHG emissions from the food system are mostly scattered across sectors and remain unavailable in many countries. EDGAR-FOOD, a globally consistent food emission database, brings together emissions from food-related land use and land-use change, production, processing, distribution, consumption and residues over 1990–2015 at country level.
Article
Full-text available
We present scientific perspectives on the impact of the COVID-19 pandemic and global food security. International organizations and current evidence based on other respiratory viruses suggests COVID-19 is not a food safety issue, i.e., there is no evidence associating food or food packaging with the transmission of the virus causing COVID-19 (SARS-CoV-2), yet an abundance of precaution for this exposure route seems appropriate. The pandemic, however, has had a dramatic impact on the food system, with direct and indirect consequences on lives and livelihoods of people, plants, and animals. Given the complexity of the system at risk, it is likely that some of these consequences are still to emerge over time. To date, the direct and indirect consequences of the pandemic have been substantial including restrictions on agricultural workers, planting, current and future harvests; shifts in agricultural livelihoods and food availability; food safety; plant and animal health and animal welfare; human nutrition and health; along with changes in public policies. All aspects are crucial to food security that would require “One Health” approaches as the concept may be able to manage risks in a cost-effective way with cross-sectoral, coordinated investments in human, environmental, and animal health. Like climate change, the effects of the COVID-19 pandemic will be most acutely felt by the poorest and most vulnerable countries and communities. Ultimately, to prepare for future outbreaks or threats to food systems, we must take into account the Sustainable Development Goals of the United Nations and a “Planetary Health” perspective.
Article
Full-text available
Short food supply chains (SFSCs) are increasingly garnering attention in food systems research, owing to their rising popularity among consumers, producers and policy-makers in the last few decades. Written with the aim to identify research gaps for the Horizon Europe research and innovation programme, this literature review provides a state of play of the definition and characterisation of SFSCs, and of their sustainability. Drawing on hypotheses about SFSC sustainability elaborated in an expert network in France, this review summarises a wide range of papers from various disciplines in the SFSC literature, written in English or French, while specifically highlighting the empirical results derived from European projects. Though the literature tends to generally agree on the social benefits of SFSCs, their economic and environmental impacts typically elicit more heterogeneous outcomes, while their health/nutrition and governance dimensions remain under-explored. Based on this review, recommendations for a future research and innovation programme are outlined, addressing the contribution of SFSCs to agrifood system transition and resilience in the current context of the Covid-19 crisis and of the Green New Deal objectives.
Chapter
Full-text available
Previously I have suggested that the fate of the global food chain rests on a moral question. Customers will either come to believe that sustainable organic local and ethical (SOLE) food can feed the globe, or they will acquiesce to the narrative of the industrialised food system on the decisive grounds of moral necessity–that only pesticides, corporate concentration, and GMOs can forestall mass starvation. The defining assertion in this space is the claim of a potential global food production deficit: the supposed challenge of 'feeding the 10 billion'. The crisis narrative has been led by the UN's Food and Agriculture Organisation (FAO) whose mathematical modelling of the food system has predicted a 70% increase (now 60%) in the annual amount of food needed by 2050. By carefully examining the assumptions underlying its modelling, however, I show here that FAO modellers have consistently underestimated global food supplies and consistently overestimated food demand. But, as shown by its ability to adjust to the biofuel boom, the food system contains massive amounts of under-utilised capacity which goes uncounted by current quantitative models.
Book
Thoroughly revised and updated, the third edition of The Sociology of Food and Agriculture provides a cutting-edge, comprehensive introduction to the study of food and society. The book begins by examining the food economy, with chapters focusing on foodscapes, the financialization of food, and a new chapter dedicated to food and nutrition (in)security. In Part II, the book addresses community and culture. While some books only look at the interrelationships between food and culture, this section problematizes the food system from the standpoint of marginalized bodies. It contains chapters focusing on agricultural and food labor and the peasantries, topics which are often overlooked, and gender, ethnicity, and poverty. Part III examines food and the environment, with chapters addressing important topics such as agro-ecosystems, food justice, sustainable food, and agriculture and food sovereignty. The final part focuses on food futures and includes a brand-new chapter on sustainable diets and ethical consumption. The book concludes by showcasing how we can rethink food production and consumption in a way that can help heal social, political, and cultural divisions. All chapters draw on international case studies and include learning objectives, suggested discussion questions, and recommendations for further reading to aid student learning. The Sociology of Food and Agriculture is perfect for students of food studies, including food justice, food and nutrition security, sustainable diets, food sovereignty, environmental sociology, agriculture, and cultural studies.
Chapter
Agricultural systems operate within a scientific and economic environment based on a materialist philosophy of nature, a belief system grounded in a 19th century ideology. Underlying this ideology is a vision of science led by a scientific priesthood, guided by a fantasy of scientific omniscience and mechanical determinism. We uncritically assume the tenets of conventional science are true. However, the paradigm of mechanistic materialism is now being challenged by a view of nature as organic and alive, a more holistic paradigm. The sciences in general and agricultural science in particular are being held back by these assumptions that have hardened into dogmas and act as barriers against open-minded thinking. By becoming aware of these assumptions, it becomes easier to see how research in agriculture could move in a more holistic direction and more effectively address the many related global challenges we face. In the light of this, several new possibilities for agricultural research and development are suggested. Some depend on a change in worldview; others make sense within both materialist and nonmaterialist frameworks of thought. Ultimately, innovation in agriculture will be most free when no particular orthodoxy dominates, and when scientific research is carried out pragmatically, liberated from the dogmas of materialism, molecular triumphalism, and neoliberal capitalism.
Book
Given the central role of the food and agriculture system in driving so many of the interconnected ecological, social and economic crises we currently face, Rethinking Food and Agriculture reviews, reassesses and reimagines the current food and agriculture system and the narrow paradigm in which it operates. The book explores and uncovers some of the key drivers and root causes of unsustainability, degradation of the agricultural environment, destruction of nature and drawbacks in the dominant science and knowledge system. It reviews efforts towards ‘sustainable development’ and reassesses whether they have led to improved sustainability, equity and justice. The book highlights the many ways that farmers and their communities, civil society groups, social movements, development experts, scientists and others have been raising awareness of these issues, implementing solutions and forging ‘new ways forward’. These ways forward include alternative paradigms of agriculture, human nutrition and political economy, which are more sustainable and just. The book proposes ways to move beyond the current limited view of agro-ecological sustainability towards overall sustainability of the food and agriculture system based on ‘inclusive responsibility’. Inclusive responsibility encourages ecosystem sustainability based on agro-ecological and planetary limits to sustainable resource use. It also places importance on quality of life, pluralism, equity and justice for all. It emphasises the health, well-being, sovereignty, dignity and rights of all stakeholders, as well as of nonhuman animals and the natural world. The book brings together some of the most experienced and forward-thinking academics, activists, development professionals and practitioners in the field. It is a valuable resource for all stakeholders in the public, private and civil sectors of the food and agriculture system including students, academics, activists, researchers, policymakers and politicians.