ArticlePDF Available

Comparison of Habitat Use Patterns between Wild Giant Pandas and Grazing Livestock

Authors:
  • China Conservation and Research Center for the Giant Panda

Abstract

This study explored the internal driving factors for the effects of livestock grazing on wild giant pandas, their habitats, and staple bamboo resources, in order to provide a basis for the construction and management of the Giant Panda National Park. Based on the survey data of random sample fields of wild giant pandas and grazing livestock in the Wolong area of the Giant Panda National Park, this paper analyzed the similarities and differences of habitat use patterns between giant pandas and grazing livestock with respect to forest structure and plant community composition. The results showed that there were significant differences in forest structure, between wild giant pandas and grazing livestock with respect to species abundance of arbor layer, coverage of shrub layer, and bamboo characteristics (coverage, density, ground diameter and plant height), while the other indicators had no statistically significant difference. As far as the composition characteristics of woody plants were concerned, the number of families, genera and species in the tree layer and shrub layer of the habitat used by giant pandas was higher than that in the grazing livestock habitat. The similarity coefficient between giant pandas and livestock was low, but when comparing the importance index of the common plant species, the only significant difference was in the three species in the shrub layer, and there was no difference in the community composition of other woody plants. This suggests that grazing livestock mainly affects the structure of the shrub layer of giant panda habitat and characteristics of bamboo. This research, coupled with other studies, shows that wild giant pandas have actively avoided areas disturbed by grazing livestock and adjusted their ranges of habitat. Therefore, an effective measure for managing the Giant Panda National Park and other protected areas is to control grazing disturbance by spatial planning of livestock-free areas and strictly controlling the species and quantity of livestock.
生态环境学报 2023, 32(2): 309-319 http://www.jeesci.com
Ecology and Environmental Sciences E-mail: editor@jeesci.com
基金项目:国家自然科学基金项目42071279;国家林业和草原局大熊猫国际合作基金项目SD0631;林护发[2017]115 号);香港海洋公园保
育基金项目(GP09_12/13;中国大熊猫保护研究中心 2018“科研年”项目(CCRCG181928
作者简介周世强1966 年生),男,教授级高级工程师,主要从事野生大熊猫种群动态、栖息地和主食竹,圈养大熊猫野化放归、野外引种和
重引入研究。E-mail: shiqiangzhou@sina.com
收稿日期:2022-11-16
野生大熊猫与放牧家畜利用生境的特征比较
周世强 1,Vanessa HULL2,张晋东 3,刘巅 1,谢浩 1,黄金燕 1,张和民 1
1. 中国大熊猫保护研究中心/大熊猫国家公园珍稀动物保护生物学国家林业和草原局重点实验室,四川 都江堰 611830
2. Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFL 32611USA
3. 西华师范大学/西南野生动植物资源保护教育部重点实验室,四川 南充 637002
摘要:为了探讨放牧家畜影响野生大熊猫及其栖息地、主食竹资源的内在驱动因素,以便为大熊猫国家公园建设和管理提供
依据。根据大熊猫国家公园卧龙片区野生大熊猫与放牧家畜的随机样地调查资料,从植物群落结构和物种组成方面,分析了
它们利用生境的异同。结果表明:从植物群落特征来看,乔木层物种丰度、灌木层盖度、主食竹的种群特征(盖度、密度、
地径和株高)等指标,野生大熊猫与放牧家畜之间具有显著性或极显著性差异,野生大熊猫利用生境的乔木层物种丰度 17.38
株,灌木层盖度 75.31%主食竹的盖度为 56.32%、种群密 48.87 culms·m2、地径 6.03 mm 和株高 143.48 cm,放牧家畜利
用生境的乔木层物种丰度 29 株,灌木层盖度 93.20%主食竹的盖度为 89.20%、种群密 66.54 culms·m2、地 3.82 mm
株高 59.68 cm而其余指标没有明显的统计学意义。就木本植物的物种组成特征而言,大熊猫利用生境的乔木层和灌木层的
科属种数量都多于放牧家畜生境,前者为乔木层 17 25 41 种、灌木层 29 49 91 种,后者乔木层 910 14 种、
灌木层 17 26 38 种;两者利用生境的植物群落相似性系数较低,乔木层仅为 0.196、灌木层为 0.245;但比较两者植物
群落共有种的重要值指数,仅灌木层的 3种树种两者之间的差异较为显著,其他木本植物都无明显的差异。从而说明放牧家
畜主要影响大熊猫栖息地的灌木层结构和主食竹种的种群特征,致使野生大熊猫主动回避被放牧家畜干扰的区域、调整其活
动空间和栖息地的范围。因此,合理规划家畜放养区域、严格控制家畜种类和数量是大熊猫国家公园和其他保护区管控放牧
干扰的有效措施。
关键词:大熊猫;放牧家畜;利用生境;植物群落;群落组成
DOI: 10.16258/j.cnki.1674-5906.2023.02.011
中图分类号:Q958; X174 文献标志码:A 文章编号:1674-5906202302-0309-11
引用格式:周世强, Vanessa HULL, 张晋东, 刘巅, 谢浩, 黄金燕, 张和民, 2023. 野生大熊猫与放牧家畜利用生境的特征比较
[J]. 生态环境学报, 32(2): 309-319.
ZHOU Shiqiang, Vanessa HULL, ZHANG Jindong, LIU Dian, XIE Hao, HUANG Jinyan, ZHANG Hemin, 2023. Comparison of
habitat use patterns between wild giant pandas and grazing livestock [J]. Ecology and Environmental Sciences, 32(2): 309-319.
生境特征,包括地形地势、植被结构、食物资
源、自然与人为干扰和水源状况等因素,既是野生
动物对栖息地选择利用的先决条件,也是其生存繁
衍、适应演化的物质基础,从而形成野生动物特有
的空间利用格局、觅食行为策略、干扰响应机制和
种内种间生存对策(魏辅文等,1998孙儒泳,2001
Mayor et al.2009Maxwell et al.2016Hecker et
al.2021详细调查和深度分析野生动物赖以生存
的生境特征,不仅可以洞悉研究对象地理分布区域
的环境条件、生境特征、资源状况,以及干扰类型
与影响强度,而且能为特定物种制定保护管理措施
(比如迁移廊道建设、保护功能区划、巡护路线设
计、监测指标选择、生态旅游规划等)提供依据,
可见野生动物利用生境的特征研究具有重要的理
论和实践意义(龚明昊等,2003马建章等,2004
Margules et al.2007Boitani et al.2012侯宁等,
2014
随着世界人口数量的增加、社会经济的迅猛发
展,导致人类活动足迹的扩散,野生动物及其栖息
地面临着森林采伐、乱挖乱采、偷猎贩卖等大量的
自然和人为威胁Erb et al.2018Jones et al.2018
在众多的人为活动中,家畜放牧是最为严重的干扰
因素之一Mishra et al.2004Arlettaz et al.2015
Maxwell et al.2016即使是世人公认的具有严格
的保护措施和良好的保护成效的自然保护地(自然
保护区、国家公园、世界遗产地等)也同样遭受着
310 生态环境学报 32 卷第 22023 2月)
严重的放牧干扰(Hüseyin et al.2007Li et al.
2021。据统计全球 65.71%的生物多样性热点地区
23/35)受到放牧影响(Steinfeld et al.2006。散
养牲畜一方面影响放养区域森林生态系统的碳储
量、栖息地的物种多样性、动物的种群数量等,另
一方面导致野生动物栖息地的破碎化、生境质量的
降低、活动空间的压缩或转移、觅食行为的改变,
以及疫病扩散等(Carmel et al.1999Adler et al.
2001Wang et al.2019Filazzola et al.2020Lama
et al.2020Kuiken et al.2022
根据全国第四次大熊猫(Ailuropoda
melanoleuca)调查结果(20112014,在所有 17
种一般性干扰中,家畜放牧的野外遇见率占比达
26.64%居于首位,成为野生大熊猫及其栖息地面
临的重要威胁(国家林业和草原局,2021放牧对
于野生大熊猫及栖息地的影响主要体现在:1)畜
群频繁地踩踏破坏了栖息地地被层、枯枝落叶层和
土壤表层的结构与疏水性能,易引起水土流失、草
本层植物组成的变化,以及生态系统功能的发挥;
2)牲畜对主食竹的采食利用制约着竹子的自然更
新和种群恢复,甚至造成干枯死亡,从而导致大熊
猫主食竹的适口性降低、无性系种群结构的改变、
食物资源存量的亏损;3)放牧家畜的空间扩展,
不仅影响大熊猫空间利用格局、时间活动节律和采
食竹子行为,而且驱使同域分布动物的共存空间变
化、降低生物多样性的保护效果等(冉江洪等,
2003a冉江洪等,2003b康东伟等,2011Hull et
al.2014黄金燕等,2017Li et al.2017Zhang
et al.2017Wang et al.2019
关于大熊猫及其栖息地的放牧干扰研究,人们
主要采用路线调查法、样方法、红外相机技术、地
理信息系统扩展模块和 GPS 无线电颈圈跟踪等方
法,分析放牧家畜对野生大熊猫活动空间、食物资
源和栖息地选择等的影响,以及比较两者在空间利
用格局、时间活动节律、采食竹子行为和采食后主
食竹的种群特征等方面的差异(冉江洪等,2003a
冉江洪等,2003b康东伟等,2011Hull et al.2014
周世强等,2016黄金燕等,2017Li et al.2017
Zhang et al.2017Wan g et al.2019;周世强等,
2019周世强等,2021周世强等,2022。尚
到比较野生大熊猫与放牧家畜利用生境的植物群
落结构特征的报道,仅有基于地形的牲畜空间利用
特征及干扰评价的研究(陈星等,2019为此,
研究根据野生大熊猫与放牧家畜的随机样地调查
资料,从植物群落结构和群落组成方面来分析它们
利用生境的异同,从而探讨家畜放牧影响大熊猫及
其栖息地的内在驱动因素,以期为大熊猫国家公园
及其它保护地的保护管理提供参考。
1 研究地区
大熊猫国家公园(Giant Panda National Park
GPNP)卧龙片区居于世界自然遗产地——四川大
熊猫栖息地的东北部、阿坝藏族羌族自治州汶川县
境内,102°52103°24E30º4531º25N始建于
1963 年,面积 2 000 km2,是以保护大熊猫及其森
林生态系统为主的自然保护地(图 1由于地处四
川盆地向青藏高原过渡的高山峡谷地带,区内山高
谷深、地势陡峭,最低海拔(木江坪)1 150 m、最
高海拔(四姑娘山)6250 m、相对高差达到 5 100
m;并且沟壑纵横、水系发达,分布有横贯保护地
中心地带的皮条河和耿达河、北部的正河、南面的
西河与中河。
卧龙独特的地形地势不仅形成了冬季寒冷干
燥、夏季凉爽多雨的山地气候特征,以及垂直带谱明
显的植被分布规律(从低海拔到高海拔递次是常绿
阔叶林、常绿落叶阔叶混交林、落叶阔叶林、针阔混
交林、亚高山暗针叶林、山灌丛、高山草甸、流石
滩稀疏植被)而且孕育着和保存了大量的古老孑遗
物种和特有生物,成为动植物的避难所和广谱基因
库。已发现植物 4000多种,其中高等植物 2022种;
昆虫 1700 多种;脊椎动物 517 种,其中兽类 136
种,鸟类 332 种,两栖类 18 种,爬行类 19 种,
12 (卧龙自然保护区管理局等,1987杨志松
等,201920142015 年采用大熊猫新鲜粪便的
DNA 个体识别技术(微卫星标记),发现卧龙片区
现有野生大熊猫数量约 142 只(Qiao et al.2019
卧龙片区有别于其他自然保护地。区内不仅有
横贯东西的国道 350 公路、仍在建设之中的都江堰
-四姑娘山轨道交通,道路干扰(噪音、尾气、人流
等)影响着整个区域的大熊猫栖息地、物种多样性
和动物迁移或扩散;而且居住着世代生活于此的两
乡镇居民(卧龙镇、耿达镇)两镇共辖有 6个村 26
个村民小组,2019 年有农户 1 455 户,农业人口 5160
人,耕地面积 212.2 hm2因而区域经济的可持续发
展成为保护地管理机构不可忽视的工作(杨志松
等,2019。特别是 2008 年“5·12 汶川大地震”的
发生以及后续次生灾害(泥石流、滑坡等)的影响,
严重破坏了当地村民生产生活的基础设施,阻碍了
社会经济的有效发展。有鉴于此,当时乡镇政府和
保护管理机构为了尽快恢复乡村经济、提高村民收
入,从而制定了鼓励农民发展畜牧业的优惠政策,
至此家畜养殖数量得到了快速增长,据统计 2008
牲畜数量达到 1996 年前的 10 倍之多,尤其是散放
于草地牧场的牛羊马等,其经济收益约占卧龙片区
周世强等:野生大熊猫与放牧家畜利用生境的特征比较 311
国民经济收入总额的 27.60%(刘巅等,2014。由
于放养牧场毗邻野生大熊猫栖息地,受草场载畜量
的限制,家养牲畜由主人驱赶或自动侵入森林群落
中取食与游荡,对大熊猫及其栖息地造成很大的影
响,为此当地政府和管理机构已在 2012 年底要求
村民将马匹驱离、售卖,但至今仍有少量的牦牛、
黄牛和羊等家畜生活林中(Hull et al.2014;王晓
等,2018
研究工作在大熊猫国家公园卧龙片区的“核桃
坪”及其毗邻区域的“牛头山”开展,主要以“核
桃坪”为试验场地。“核桃坪”区域的覆盖面积大约
40 km2,海拔跨度从 1800 m上升至 3 200 m,其西
北部以皮条河和国道 350 线为界,东北部和西南部
分别与耿达镇的老鸦山牧场和卧龙镇的云中牧场
接壤,其余部位都属于野生大熊猫的栖息地(图 1
该区域的植被垂直分布与整个卧龙片区类似,随海
拔梯度的上升逐渐呈现为常绿落叶阔叶林、落叶阔
叶林、针阔混交林、亚高山暗针叶林、灌丛与草甸
的格局;且森林群落中生存有 3种大熊猫主食竹,
海拔 2600 m以上为上世纪 80 年代初开花枯死、
新恢复的冷箭竹(Bashania faberi)林,2600 m
下是大熊猫喜食竹笋的拐棍竹(Fargesia robusta
林,以及 23002700 m之间混生有不少的短锥玉
山竹(Yushania brevipaniculata林(卧龙自然保护
区管理局等,1987杨志松等,2019良好的栖息
地和丰富的食物资源,使该地成为卧龙片区大熊猫
分布数量较多的生境斑块之一,根据红外相机和路
线监测数据统计,以及粪便分子生物学测定结果,
息分布有 20 多只大熊猫(Huang et al.2015;张晋
东等,2017在项目实施期间,23 只马匹放养于“核
桃坪”区域“鱼丝洞”的竹林中,12 只马匹游荡在
“牛头山”附近“趴趴沟”的森林里,为分析放牧家
畜的生境利用提供了条件(Hull et al.2014
2 研究方法
2.1 样地设置与调查
为了比较野生大熊猫与放牧家畜利用生境的
差异性,根据 2010 3月—2012 6月卫星跟踪
颈圈所定位的活动位置数据,随机选择 35 个位点
(大熊猫 25 个、放牧家畜 10 个)采用手持 GPS
导航工具,分别于 2010 4月—2012 8月搜寻
位点所在地域设置 20 m×20 m 的样地,开展群落学
调查(图 1 1除记录样地的地理位置信息(经
纬度)和地形特征参数(坡度,坡向,海拔高度)
外,主要收集植物群落中乔木层和灌木层的郁闭度
和盖度、植物的种类和生长发育指数(乔木胸径、
灌木基径,高度)等。
2.2 植物群落结构特征的评估指标
参照大熊猫生境已有文献,确定使用表征生境
结构的群落学参数作为评估指标,具体包括乔木层
的郁闭度、乔木树种的数量、胸径和树高;灌木层
的覆盖度、灌木植物的数量、地径和株高;以及主
1 大熊猫国家公园卧龙片区的研究区域位置和调查样地示意图
Figure 1 Location of the research area and distribution of sampling plots in the Wolong Area
of the Giant Panda National Park
312 生态环境学报 32 卷第 22023 2月)
食竹种的盖度、种群密度、地径和高度等(表 2
数据来源为通过统计分析调查样地的资料而成,样
地面积 20 m×20 m
为了了解野生大熊猫与放牧家畜所利用生境
群落组成的异同,我们采用物种丰富度、物种丰度、
植物群落的相似性指数、植物区系成分(科属种)
以及优势组成树种等参数进行量化分析。物种丰富
度为样地乔木层和灌木层的所有树木种数;物种丰
度是指样地中乔木层和灌木层的树种个体数量总
数;植物群落的相似性指数是指大熊猫与放牧家畜
利用生境(所有样地汇总)的植物群落的相似性,
采用 Jaccard 指数公式进行计算(周世强等,2009
C
j=j/(a+bj) 1
式中:
Cj ——Jaccard 相似性指数;
j——大熊猫和放牧家畜利用生境调查样地的
共有种数;
ab——大熊猫和放牧家畜调查样地的物种
数。植物区系成分具体为所有树种分属的科属种数
量;优势组成树种采用树种的重要值排序而得,树
种重要值是通过计算各树种的相对频率(某种树种
出现的样方数/样地总样方数之比×100、相对优势
(某种树种的胸径或地径的断面积/样地所有树种
的断面积之和×100)和相对密度(某种树种的个体
数量/样地所有树种的个体数量之和×100,再将三
者之和除以 3而得,在此分别计算了整个生境和每
个样地的树种重要值。
2.4 数据处理与统计分析
野生大熊猫与放牧家畜利用生境的样地调查
资料均在 Microsoft Excel 2016 数据库中进行汇总,
并对所有数据进行核对、植物种名矫正,以及树种
重要值计算等基础性工作,同时利用 Origin 2021
件进行数据的统计、分析与制图。在进行了研究数
据的正态分布和方差齐性(One-Sample
Kolmogorov-Smirnov Test 法)的检验之后,针对属
1 野生大熊猫与放牧家畜利用生境所调查样地的基本情况
Table 1 Basic information of sampling plots used by giant pandas and livestock
样地编号 研究对象 纬度 经度 海拔高度/m 坡向/(°) 坡度/(°) 坡位 竹子种类 植被类型
PP01 大熊猫 31.073 47°N 103.240 40°E 2 812 345 30 上部 冷箭竹 针阔混交林
PP02 大熊猫 31.071 41°N 103.236 48°E 2 620 153 45 中部 短锥玉山竹 针阔混交林
PP03 大熊猫 31.072 84°N 103.241 91°E 2 813 15 41 上部 冷箭竹 针阔混交林
PP04 大熊猫 31.036 40°N 103.265 40°E 2 985 180 40 上部 冷箭竹 针阔混交林
PP05 大熊猫 31.091 66°N 103.262 31°E 2 540 278 20 上部 拐棍竹 落叶阔叶林
PP06 大熊猫 31.091 21°N 103.260 80°E 2 430 218 30 下部 拐棍竹 落叶阔叶林
PP07 大熊猫 31.082 13°N 103.258 97°E 2 590 110 48 上部 短锥玉山竹 针阔混交林
PP08 大熊猫 31.036 75°N 103.266 14°E 3 010 150 30 山脊 冷箭竹 针阔混交林
PP09 大熊猫 31.037 23°N 103.264 98°E 2 990 200 30 山脊 冷箭竹 针阔混交林
PP10 大熊猫 31.066 95°N 103.232 27°E 2 620 250 38 中部 拐棍竹 落叶阔叶林
PP11 大熊猫 31.063 66°N 103.232 59°E 2 578 180 70 中部 拐棍竹 针阔混交林
PP12 大熊猫 31.063 83°N 103.232 79°E 2 595 140 55 中部 拐棍竹 针阔混交林
PP13 大熊猫 31.058 43°N 103.260 18°E 2 680 92 41 下部 冷箭竹 针阔混交林
PP14 大熊猫 31.059 17°N 103.245 60°E 3 025 60 30 上部 冷箭竹 亚高山暗针叶林
PP15 大熊猫 31.058 82°N 103.244 86°E 3 040 60 20 上部 冷箭竹 亚高山暗针叶林
PP16 大熊猫 31.058 91°N 103.244 31°E 3 055 68 5 上部 冷箭竹 亚高山暗针叶林
PP17 大熊猫 31.069 45°N 103.240 50°E 2 830 240 20 上部 短锥玉山竹 亚高山暗针叶林
PP18 大熊猫 31.064 91°N 103.255 50°E 2 660 55 38 下部 短锥玉山竹 亚高山暗针叶林
PP19 大熊猫 31.064 13°N 103.255 63°E 2 680 85 45 中部 短锥玉山竹 亚高山暗针叶林
PP20 大熊猫 31.058 94°N 103.258 83°E 2 770 120 40 下部 冷箭竹 针阔混交林
PP21 大熊猫 31.057 90°N 103.254 85°E 2 995 133 10 上部 冷箭竹 针阔混交林
PP22 大熊猫 31.061 81°N 103.229 45°E 2 380 267 40 下部 拐棍竹 落叶阔叶林
PP23 大熊猫 31.069 95°N 103.234 36°E 2 487 255 50 中部 短锥玉山竹 针阔混交林
PP24 大熊猫 31.129 71°N 103.270 69°E 2 165 230 25 山脊 拐棍竹 落叶阔叶林
PP25 大熊猫 31.074 23°N 103.232 49°E 2 515 294 5 中部 拐棍竹 针阔混交林
HP01 放牧家畜 31.044 78°N 103.251 88°E 2 860 310 15 中部 冷箭竹 落叶阔叶林
HP02 放牧家畜 31.044 32°N 103.247 98°E 2 770 264 20 中部 冷箭竹 针阔混交林
HP03 放牧家畜 31.061 27°N 103.248 27°E 2 816 320 20 下部 冷箭竹 落叶阔叶林
HP04 放牧家畜 31.057 93°N 103.250 64°E 2 897 220 25 上部 冷箭竹 针阔混交林
HP05 放牧家畜 31.059 11°N 103.248 89°E 2 860 280 18 下部 冷箭竹 落叶阔叶林
HP06 放牧家畜 31.057 02°N 103.246 60°E 2 973 90 30 上部 冷箭竹 针阔混交林
HP07 放牧家畜 31.049 67°N 103.254 30°E 3 022 340 5 山脊 冷箭竹 亚高山暗针叶林
HP08 放牧家畜 31.048 18°N 103.255 67°E 3 074 210 15 上部 冷箭竹 竹丛、草地
HP09 放牧家畜 31.046 29°N 103.255 02°E 2 956 300 60 中部 冷箭竹 竹丛
HP10 放牧家畜 31.046 43°N 103.256 40°E 2 934 190 15 中部 冷箭竹 亚高山暗针叶林
周世强等:野生大熊猫与放牧家畜利用生境的特征比较 313
于正态分布的数据,使用单因素方差分析One-way
ANOVAS和多重比较(Fisher LSD;非正态分布
的数据,采用非参数检验方法(Mann-Whitney Test
Kruskai-Wallis ANOVA Dun’s Test)进行试验
对象之间的显著性分析(叶卫平,2015。平均数±
标准差Mean±SD作为生境评估因子的统计均值,
P<0.05 表示研究对象之间的显著性差异。
3 结果与分析
3.1 野生大熊猫与放牧家畜利用生境的植物群落
特征
本文分析了野生大熊猫与放牧家畜利用生境
植物群落的乔木层和灌木层特征,鉴于灌木层中的
亚高山竹类为大熊猫的主要食物来源和放牧家畜
的主要采食对象,在此专门进行了统计(图 24
n大熊猫=25n放牧家畜=10。下同
2 野生大熊猫与放牧家畜利用生境的乔木层特征
Figure 2 Characteristics of arbor layer in habitats used by wild giant pandas and grazing livestock
2 本研究中野生大熊猫与放牧家畜利用生境的植物群落结构评估指标描述
Table 2 Description of evaluation indicators for Plant community structure of the habitats used by wild giant pandas
and grazing livestock in this study
指标 描述 范围
郁闭度 样地中所有乔木层树种覆盖的程度,通过目测获得 0.001.00
乔木胸径 样地中各乔木树种的胸高直径 (cm),采用围径尺测量,阈值:1.3 m 1.40130.00 cm
乔木树高 样地中各乔木树种的高度 (m),通过经验丰富人员的目估获得 5.0134.00 m
灌木层盖度 根据样地内的视觉估计,灌木层树木覆盖面积 (%) 0.00100%
灌木地径 样地中灌木层各树木的基部直径 (cm),通过围径尺测量 0.1018.50 cm
灌木高度 样地中灌木层各树木的高度 (m),通过钢卷尺测量 0.105.00 m
竹子盖度 根据样地内的视觉估计,竹子覆盖面积 (%) 2.00%100.00%
竹子密度 通过设置 15小样方,进行计数,通过获得样地平均密度 (culms·m2) 5.40149.5 culms·m2
竹子地径 样地中 15个样方随机选择 130 株竹子的地径 (mm),通过数显游标卡尺测量 1.020.0 mm
竹子高度 样地中 5个样方随机选择 130 株竹子的高度 (mm),通过钢卷尺测量 1.05600 cm
物种丰富度 样地中的树木种数 (S) 乔木层:114,灌木层:338
物种丰度 样地中所有树木的个体数量总和 乔木层:172,灌木层:4331
植物区系成分 植物种类所属的科属种数量 乔木层:111种—725 41 种,
灌木层:111种—29 49 94
植物群落的
相似性指数
大熊猫与放牧家畜利用生境 (所有样地汇总) 的树木种类的相似性,
采用 Jaccard 指数公式进行计算 0.0001.000
乔木层和灌木层的
优势树种 根据计算各层树木的重要值排序获得 乔木层:9.0483.95
灌木层:1.3535.75
314 生态环境学报 32 卷第 22023 2月)
分析乔木层的各项指标,野生大熊猫利用生境的森
林郁闭度与放牧家畜相差不大F=0.315P=0.579
前者平均是 0.40±0.19、后者为 0.35±0.30;物种丰
富度也差异甚微F=0.184P=0.671野生大熊猫
生境的物种数平均是 (5.38±3.17) 种,放牧家畜为
(4.88±1.36) 种;乔木层植物的个体数量(物种丰度)
两者之间具有显著性差异F=4.326P=0.046,放
牧家畜的利用生境植株数量多于大熊猫生境,约为
1.67 倍,分别是放牧家畜 (29.00±17.30) 株、大熊猫
(17.38±12.39) 株;乔木层植物的生长发育指数,野
生大熊猫与放牧家畜的利用生境都差异不明显(胸
径:F=0.124P=0.727高度:F=0.015P=0.902
前者生境的胸径和树高是 (21.64±9.98) cm
(11.41±3.03) m ,后者生境的胸径和树高为
(22.98±6.79) cm (11.26±2.79) m(图 2
野生大熊猫利用生境的灌木层盖度显著低于
放牧家畜的利用生境F=5.022P=0.032,约
者的 80.82%平均值是 75.31%±24.11%放牧家畜
93.20%±10.82%;灌木层的物种丰富度,野生大
熊猫略高于放牧家畜,两者之间差异不显著
F=0.780P=0.384前者是 (13.96±5.95) 种、后者
(12.20±3.12) 种;而灌木植物的个体数量则是放
牧家畜大于野生大熊猫,前者是后者的 1.35 倍,
别是大熊猫 (90.96±55.09) 株、放牧家畜 (122.10±
84.26) 株,但两者之间仍无明显差异(F=1.737
P=0.197。从灌木植物的生长发育来看,利用生境
的植株都是径小株矮,野生大熊猫生境的灌木平均
地径为 (3.31±1.15) cm高度 (2.50±0.65) m放牧家
畜的灌木平均地径 (3.50±0.87) cm高度 (2.12±
0.38) m经统计假设检验,无论是地径,还是高度,
两者之间都没有显著性差异(地径:F=0.203
P=0.655,高度:F=2.997P=0.093(图 3
由于野生大熊猫不仅取食高海拔地区的冷箭
竹,而且采食较低海拔区域的拐棍竹和短锥玉山
竹,加之 3种竹种的生长习性具有明显的差异,因
此导致大熊猫与放牧家畜利用生境的竹林层的结
构特征,除竹子种群密度之间没有显著性的统计学
意义外F=1.169P=0.288,盖度、地径和株高都
差异明显(F=9.66913.624 P=8.013×104
3.850×103。野生大熊猫利用生境的各项统计值分
别是盖度 56.32%±31.94%、种群密度(48.87±39.79)
culms·m2、地径 (6.03±2.73) mm 和株高 (143.48±
70.45) cm,放牧家畜递次为盖度 89.20%±14.44%
种群密度 (66.54±52.66) culms·m2、地径 (3.82±
0.34) mm 和株高 (59.68±16.13) cm(图 4
3.2 野生大熊猫与放牧家畜利用生境的群落组成
特征
统计野生大熊猫与放牧家畜利用生境的木本
植物的物种组成,我们不难发现,无论是森林林分
中的乔木层,还是灌木层,野生大熊猫利用栖息地
3 野生大熊猫与放牧家畜利用生境的灌木层特征
Figure 3 Characteristics of shrub layer in habitats used by wild giant pandas and grazing livestock
周世强等:野生大熊猫与放牧家畜利用生境的特征比较 315
的科属种都明显多于放牧家畜的利用生境,大熊猫
栖息地的乔木层中科属种数量分别是放牧家畜的
1.892.502.93 倍,前者灌木层中科属种依次为后
者的 1.711.882.47 倍(表 3。从组成植物共有
成分分析,两者木本植物种的相似系数较低,乔木
层为 0.196、灌木层为 0.245组成植物中大熊猫利
用生境的乔木层主要以蔷薇科Rosaceae、槭
Aceraceae、桦木科(Betulaceae 、杜鹃花科
Ericaceae)和松科(Pinaceae)植物为主,种数最
多达 9种;放牧家畜则为蔷薇科、杜鹃花科、槭树
科和桦木科,种数最多仅有 3种;灌木层前者主要
包括蔷薇科、忍冬科Caprifoliaceae杜鹃花科和
槭树科等植物,种数最多有 19 种,后者以蔷薇科、
忍冬科、杜鹃花科和虎耳草科Saxifragaceae)等
物为主要成分,种数最多为 12 种。
就整体数据分析野生大熊猫与放牧家畜利用
生境各组成树种的重要值指数(以全部样地为计算
单元)大熊猫生境中乔木层的优势树种(分值排列
前五,下同)主要是峨眉冷杉(31.91、糙皮桦
30.55、铁杉(29.24、疏花槭(17.74)和红桦
17.11)等植物,放牧家畜的乔木层则以峨眉冷杉
34.47糙皮桦34.22太白深灰槭Acer caesium
subsp. Giraldii34.21、疏花槭(24.10)和红桦
21.59)等为主要成分;灌木层的优势植物大熊猫
生境分别是冰川茶藨子28.83柳叶忍冬24.77
红毛花楸(24.64、腊莲绣球(21.60)和狗枣猕猴
18.76放牧家畜生境递次为西南樱桃35.75
红毛花楸29.97冰川茶藨子28.11刚毛忍冬
28.01和太白深灰槭24.31比较野生大熊猫与
放牧家畜利用生境的样地中共有树种的重要值指
数(以单个样地为计算单元),经统计检验结果表
明,乔木层中 6个共有种的重要值指数、大熊猫与
放牧家畜之间都无显著性差异P>0.05灌木层中
20 种共有植物的重要值指数、大熊猫与放牧家畜之
间除冰川茶藨子、刚毛忍冬和绣线菊具有明显的差
异外(P<0.05,其余树种都差异不明显(P>0.05
(表 4
4 讨论
野生大熊猫与放牧家畜利用生境植物群落结
构特征的异同,我们认为主要有以下几个原因:
1)野生大熊猫与放牧家畜不同的空间利用格
4 野生大熊猫与放牧家畜利用生境的竹子种群特征
Figure 4 Characteristics of bamboo population in habitats used by wild giant pandas
and grazing livestock
3 野生大熊猫与放牧家畜利用生境的物种组成
Table 3 Species composition of habitats used by wild giant
pandas and grazing livestock
林层 大熊猫 放牧家畜
乔木层 17 25 41 9 10 14
灌木层 29 49 94 17 26 38
n大熊猫=25n放牧家畜=10
316 生态环境学报 32 卷第 22023 2月)
局和种群分布模式导致它们利用生境的植被类型
及结构的变化。大熊猫营独立生活模式、随季节气
温的波动而生活在不同的海拔、坡向和森林植被
中,活动空间覆盖常绿落叶阔叶混交林、落叶阔叶
林、针阔混交林和亚高山暗针叶林;而放牧家畜属
群团共居生活模式,整个畜群活动于空间相对狭
小、植被类型单一的生境内(胡锦矗等,1985Hull
et al.2014Hull et al.2015Hull et al.2016
周世强等,2016黄金燕等,2017白文科等,2017a
白文科等,2017bBai et al.2020但两者又都有
在相同植被类型(针阔混交林、亚高山暗针叶林)
和海拔区间26003 200 m的活动习性,因而利
用生境结构中其余组成因素(如森林郁闭度、物种
丰富度、木本植物的胸(地)径和高度、主要优势
树种等)具有极大的相似性。
2)野生大熊猫与放牧家畜觅食策略和采食行
为的差异,致使两者在主食竹的种类和生长发育指
数等方面显示出不同的特征,大熊猫在不同季节选
择采食不同的竹子种类和竹子的不同构件(竹笋、
竹秆、竹枝和竹叶)据研究本区域内的大熊猫不仅
采食冷箭竹的构件,而且还选择采食拐棍竹和短锥
玉山竹的构件,放牧家畜则仅啃食冷箭竹的竹叶
(胡锦矗等,1985;黄金燕等,2017;周世强等,
2021;但大熊猫和放牧家畜最喜食的食物都属于
冷箭竹种,这是它们的相似之处。
3)野生大熊猫与放牧家畜空间扩散和家域建
立的驱动力有所不同,大熊猫是经过长期与生存环
境协同演化而形成的自主与随机的空间扩散机制,
并建立有相对固定的家域;但放牧家畜则是由牲畜
主人驱赶或自由从牧场扩散侵入邻近区域的森林
林地,没有建立固有的家域,因而具有很大的随意
性,据观察如果牲畜主人将家畜散放在低海拔的拐
棍竹林内、或牧场与拐棍竹林接壤,放牧家畜则活
动于拐棍竹林中,取食拐棍竹的竹笋和竹叶(Hull
et al.2014Zhang et al.2017Wa ng et al.2018
周世强等,2019
5 结论及保护管理建议
通过分析野生大熊猫与放牧家畜利用生境的
植物群落特征的评估指标,结果表明两者之间利用
生境的植物群落特征既有差异更有相似之处。具体
而言,从植物群落结构来看,乔木层物种丰度、灌
4 野生大熊猫与放牧家畜利用生境的共有树种重要值指数*
Table 4 Importance values index of common trees in habitat used by wild giant pandas and livestock
林层 植物种名 大熊猫 放牧家畜 n F P
乔木层
峨眉冷杉 Abies fabri 44.04±23.45 32.00±17.16 18 1.077 0.315
糙皮桦 Betula utilis 33.05±22.04 36.64±22.78 21 0.1.000 0.756
红桦 Betula albo-sinensis 25.45±12.48 34.41±13.25 13 1.380 0.265
疏花槭 Acer laxiflorum 16.86±11.38 16.81±3.57 16 1.062×104 0.992
西南樱桃 Prunus pilosiuscula 15.02±3.78 17.59±9.25 10 0.384 0.553
稠李 Prunus padus 22.22±11.34 25.79±15.54 5 0.075 0.802
灌木层
宝兴栒子 Cotoneaster moupinensis 14.78±4.86 15.77±9.93 10 0.046 0.835
冰川茶藨子 Ribes glaciale 25.62±12.44 37.36±12.42 26 4.555 0.043
糙皮桦 Betula utilis 28.47±11.90 9.03±0.04 10 4.874 0.058
大叶醉鱼草 Buddleja davidii 24.56±17.46 24.32±17.35 5 2.387×104 0.989
峨眉蔷薇 Rosa omeiensis 13.73±8.85 22.82±10.55 13 2.860 0.119
刚毛忍冬 Lonicera hispida 20.78±9.67 35.06±12.38 16 6.184 0.026
狗枣猕猴桃 Actinidia kolomikta var. gagnepainii 25.44±12.12 11.67±5.19 16 3.561 0.080
红花蔷薇 Rosa moyesii 16.07±11.54 27.93±20.28 10 1.423 0.267
红毛花楸 Rorbus rufopilosa 35.42±15.29 32.26±17.69 21 0.180 0.676
桦叶荚蒾 Viburnum betulifolium 24.89±10.66 17.04±0.47 15 1.312 0.273
假稠李 Maddensia hypoleuca 11.96±4.42 28.02±17.73 10 3.858 0.085
角翅卫矛 Euonymus acanthocarpus 11.15±6.36 8.91±0.45 11 0.345 0.572
柳叶忍冬 Lonicera lanceolata 22.54±10.54 21.83±7.29 22 0.020 0.890
山光杜鹃 Rhododendron oreodoxa 32.39±24.51 14.55±8.16 11 2.388 0.157
川滇柳 Salix dolia 19.00±0.92 24.69±13.12 6 0.333 0.595
西南樱桃 Prunus pilosiuscula 19.53±12.59 26.38±15.01 15 0.845 0.375
喜阴悬钩子 Rubus mesogaeus 23.63±4.91 15.64±1.57 5 4.547 0.123
心叶荚蒾 Viburnum cordifolium 26.98±12.00 16.34±7.00 10 1.978 0.197
绣线菊 Spiraea sp. 14.12±7.63 32.44±8.46 8 7.265 0.036
疣枝小蘖 Berberis verruculosa 15.16±5.71 11.42±5.20 6 0.653 0.462
*表中黑体数字表明 P<0.05
周世强等:野生大熊猫与放牧家畜利用生境的特征比较 317
木层盖度、主食竹的种群特征(盖度、密度、地径
和株高)等指标具有显著性(P<0.05)或极显著性
P<0.01 )差异,而其余指标没有明显的差异
P>0.05;就木本植物的物种组成而言,大熊猫利
用生境的乔木层和灌木层的科属种数量都多于放
牧家畜生境,两者的群落相似性系数较低,但比较
两者共有优势种的重要值指数,只有灌木层的 3
树种差异较为显著,其他木本植物都无明显的差
异。根据野生大熊猫与放牧家畜利用生境的植物群
落特征差异,以及以前的研究文献Hull et al.2014
周世强等,2021周世强等,2022我们不难看出
放牧家畜主要影响大熊猫栖息地内植物群落的物
种组成和主食竹种的种群特征。为此,这对大熊猫
国家公园及其他保护地的管护带来一些有益启示:
1)鉴于放牧家畜人为驱动或相邻扩散的空间特
点,保护管理机构应合理划分保护地的功能区,严
格禁止将家畜驱赶进入大熊猫栖息地或散养于与
大熊猫栖息地的邻近区域,并建立定期巡查机制;
2)根据放牧家畜的群团生活模式和反复踩踏放养
区的生活规律,控制牲畜种类和数量,采取轮休轮
牧制度,不仅降低牧场的载畜量,提高牧草植物的
生物量与生存力,而且减轻家畜对土壤的践踏强
度,防止水土流失;3)自然保护机构应利用国家
建立以国家公园为主体的自然保护地体系的战略
机遇,在进行大熊猫国家公园及其他保护地的入口
社区建设和社区发展规划中,合理调整产业结构,
降低农业、畜牧业等第一产业的比例,增加自然教
育、生态休憩等生态产品的比重,由资源消耗型、
环境破坏型向绿色节能型、环境友好型转变,以便
达到社区经济与自然保护相协调的可持续发展。
参考文献:
ADLER P, RAFF D, LAUENROTH W, 2001. The effect of grazing on the
spatial heterogeneity of vegetation [J]. Oecologia, 128(4): 465-479.
ARLETTAZ R, NUSSLÉ S, BALTIC M, V et al., 2015. Disturbance of
wildlife by outdoor winter recreation: Allostatic stress response and
altered activity-energy budgets[J]. Ecological Applications, 25,
1197-1212.
BAI W, CONNOR T, ZHANG J, et al., 2018. Long-term distribution and
habitat changes of protected wildlife: Giant pandas in Wolong Nature
Reserve, China [J]. Environment Science and Polluttion Research
Internation, 25(12): 11400-11408.
BAI W K, HUANG Q Y, ZHANG J D, et al., 2020. Microhabitat selection by
giant pandas [J]. Biological Conservation, 247: 108615.
BOITANI L, POWELL R A, 2012. Carnivore Ecology and Conservation: A
handbook of Techniques [M]. Oxford, London: Oxford University Press:
8-30.
CARMEL Y, KADMON R, 1999. Effects of grazing and topography on long-
term vegetation changes in a Med iterranean ecosystem in Israel [J]. Plant
Ecology, 145(2): 243-254.
ERB K H, KASTNER T, PLUTZAR C, et al., 2018. Unexpectedly large
impact of forest management and grazing on global vegetation biomass
[J]. Nature, 553(7686): 73-76.
FILAZZOLA A, BROWN C, DETTLAFF M A, et al., 2020.The effects of
livestock grazing on biodiversity are multi-trophic: A meta-analysis [J].
Ecology Letters, 23(8): 1298-1309.
HECKER L J, EDWARDS M A, NIELSEN S E, 2021. Assessing the
nutritional consequences of switching foraging behavior in wood bison
[J]. Ecology and Evolution, 11(22): 16165-16176.
HUANG J, LI Y Z, DU L M, et al., 2015. Genome-wide survey and analysis
of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus
on the applications of a novel microsatellite marker system [J]. BMC
Genomics, 16: 61.
HULL V, ROLOFF G, ZHANG J D, et al., 2014. A synthesis of giant panda
habitat selection [J]. Ursus, 25(2): 148-162.
HULL V, ZHANG J D, HUANG J Y, et al., 2016. Habitat use and selection
by giant pandas [J]. PLoS ONE, 11(9): e0162266.
HULL V, ZHANG J D, ZHOU S Q, et al., 2015. Space use by endangered
giant pandas [J]. Journal of Mammalogy, 96(1): 230-236.
HULL V, ZHANG J D, ZHOU S Q, et al., 2014. Impact of livestock on giant
pandas and their habitat [J]. Journal for Nature Conservation, 22(3):
256-264.
HÜSEYIN K F, SEEFELDT S S, SAHIN B, 2007. The effects of long-term
grazing exclosures on range plants in the Central Anatolian Region of
Turkey[J]. Environmental Management, 39: 326-337.
JONES K R, VENTER O, FULLER R A, et al., 2018. One-third of global
protected land is under intense human pressure [J]. Science, 360(6390):
788-791.
KANG D W, LI J Q, 2016. Premature downgrade of panda’s status [J].
Science, 354(6310): 295-295.
KUIKEN T, CROMIE R, 2022. Protect wildlife from livestock diseases [J].
Science, 378(6615): 5.
LAMA S, SHRESTHA S, KOJU N P, et al., 2020. Assessment of the impacts
of livestock grazing on endangered Red Panda (Ailurus fulgens) habitat
in Eastern Nepal [J]. Open Journal of Ecology, 10(3): 97-110.
LI B B V, JIANG B K, 2021. Responses of forest structure, functions, and
biodiversity to livestock disturbances: A global meta-analysis [J]. Global
Change Biology, 27(19): 4745-4757.
LI B B V, PIMM S L, 2016. China’s endemic vertebrates sheltering under the
protective umbrella of the giant panda [J]. Conservation Biology, 30(2):
329-339.
LI B B V, PIMM S L, LI S, et al., 2017. Free-ranging livestock threaten the long-
term survival of giant pandas [J]. Biological Conservation, 216: 18-25.
MARGULES C R, SARKAR S, 2007. Systematic Conservation Planning
[M]. Cambridge: Cambridge University Press: 197-226.
MAXWELL S L, FULLER R A, BROOKS T M, et al., 2016. Biodiversity: The
ravages of guns, nets and bulldozers [J]. Nature, 536(7615): 143-145.
MAYOR S J, SCHNEIDER D C, SCHAEFER J A, et al., 2009. Habitat
selection at multiple scales [J]. Ecoscience, 16(2): 238-247.
MISHRA C, VAN WIEREN S E, KETNER P, et al., 2004. Competition
between domestic livestock and wild bharal Pseudois nayaur in the
Indian Trans-Himalaya [J]. Journal of Applied Ecology, 41(2): 344-354.
MORRISON M, MARCOT B G, MANNAN R W, 2006. Wildlife-habitat
relationships: concepts and applications [M]. Third Edition. Washington,
Covelo, London: Island Press: 1-376.
QIAO M J, CONNOR T, SHI X G, et al., 2019. Population genetics reveals high
connectivity of giant panda populations across human disturbance features
318 生态环境学报 32 卷第 22023 2月)
in key nature reserve [J]. Ecology and Evolution, 9(4): 1809-1819.
REN H Y, TAUBE F, STEIN C, et al., 2018. Grazing weakens temporal
stabilizing effects of diversity in the Eurasian steppe [J]. Ecology and
Evolution, 8(1): 231-241.
STEINFELD H, GERBER P, WASSENAAR T D, et al., 2006. Livestock’s
long shadow: Environmental issues and options [M]. Food and
Agriculture Organisation, Rome, Italy.
SWAISGOOD R, WANG D, WEI F, 2016. Ailuropoda melanoleuca (errata
version published in 2017) The IUCN Red List of Threatened Species 2016:
e.T712A121745669 [EB/OL]. [2022-11-03]. https://www.iucnredlist.
org/species/712/121745669.
VAN UYTVANCK J, HOFFMANN M, 200 9. Impact of grazing management
with large herbivores on forest ground flora and bramble understorey [J].
Acta Oecologica, 35(4): 523-532.
WANG L, DELGADO-BAQUERIZO M, WANG D L, et al., 2019.
Diversifying livestock promotes multidiversity and multifunctionality in
managed grasslands [J]. Proceedings of the National Academy of
Sciences, 116(13): 6187-6192.
WANG X, HUANG J Y, CONNOR T A, et al., 2019. Impact of livestock
grazing on biodiversity and giant panda habitat [J]. The Journal of
Wildlife Management, 83(7): 1592-1597.
ZHANG J D, HULL V, OUYANG Z Y, et al., 2017. Divergent responses of
sympatric species to livestock encroachment at fine spatiotemporal
scales [J]. Biological Conservation, 209: 119-129.
白文科, 张晋东, 董鑫, , 2017a. 卧龙自然保护区大熊猫空间利用格
局动态变化特征[J]. 兽类学报, 37(4): 327-335.
BAI W K, ZHANG J D, DONG X, et al., 2017a. Dynamics of the space
use patterns of giant pandas in Wolong Nature Reserve [J]. Acta
Theriologica Sinica, 37(4): 327-335.
白文科, 张晋东, 杨霞, , 2017b. 基于 GIS 的卧龙自然保护区大熊猫
生境选择与利用[J]. 生态环境学报, 26(1):73-80.
BAI W K, ZHANG J D, YANF X, et al., 2017b. GIS-based research on
giant panda selection and use in Wolong Nature Reserve [J]. Ecology and
Environmental Sciences, 26(1):73-80.
陈星, 赵联军, 胡茜茜, . 2019. 基于地形的牲畜空间利用特征及干扰
评价——以王朗国家级自然保护区为例[J]. 生物多样性, 27(6): 630-637.
CHEN X, ZHAO L J, HU X X, et al., 2019. Impact of livestock terrain
utilization patterns on wildlife: A case study of Wanglang National
Nature Reserve [J]. Biodiversity Science, 27(6): 630-637.
龚明昊, 于长青, 陈劲松, , 2003.大熊猫走廊带研究[M]. 北京: 中国
林业出版社: 1-83.
GONG M H, YU C Q, CHEN J S, et al., 2003. Study on the corridors of
giant panda [M]. Beijing: China Forestry Publishing House: 1-83.
国家林业和草原局, 2021. 全国第四次大熊猫调查报告[M]. 北京: 科学
出版社: 67-102.
State Forestry and Grassland Administration, 2021. The 4th National
Survey Report on Giant Panda in China [M]. Beijing: Science Press:
67-102.
侯宁, 戴强, 冉江洪, , 2014. 大相岭山系泥巴山大熊猫生境廊道设计
[J]. 应用与环境生物学报, 20(6): 1039-1045.
HOU N, DAI Q, RAN J H, et al., 2014. A corridor design for the giant
panda in the Niba Mountain of China [J]. Chinese Journal of Applied
and Environmental Biology, 20(6): 1039-1045.
胡锦矗, SCHALLER G B, 潘文石, , 1985. 卧龙的大熊猫[M]. 成都:
四川科学技术出版社: 13-112.
HU J C, SCHALLER G B, PAN W S, et al., 1985. Wolong’s Giant panda
[M]. Chengdu: Sichuan Publishing House of Science and Technology
Press: 13-112.
黄金燕, 刘巅, 张明春, , 2017. 放牧对卧龙大熊猫栖息地草本植物物
种多样性与竹子生长影响[J]. 竹子学报, 36(2): 57-64.
HUNAG J Y, LIU D, ZHANG M C, et al., 2017. Grazing impacts on the
herbaceous species diversity and bamboo growth in the giant panda
habitat in Wolong National Nature Reserve [J]. Journal of Bamboo
Research, 36(2): 57-64.
康东伟, 赵联军, 宋国华, 2011. 四川王朗国家级自然保护区大熊猫与家
畜竞争关系[J]. 东北林业大学学报, 39(7): 74-76.
KANG D W, ZHAO L J, SONG G H, et al., 2011. Competition
relationship between giant panda and livestock in Wanglang National
Nature Reserve, Sichuan [J]. Journal of Northeast Forest University,
39(7): 74-76.
刘巅, 黄金燕, 谢浩, , 2014. 汶川地震对卧龙自然保护区社区经济的
影响[J]. 四川林业科技, 35(6): 77-80.
LIU D, HUANG J Y, XIE H, et al., 2014. Effect of Wenchuan earthquake
on community economy in Wolong Nature Reserve [J]. Journal of
Sichuan Forest Science and Technology, 35(6): 77-80.
马建章, 邹红菲, 贾竞波, 2004. 野生动物管理学[M]. 2. 哈尔滨:
东北林业大学出版社: 1-398.
MA J Z, ZOU H F, JIA J B, 2004. Wildlife Management [M]. Second
Edition. Haerbin: Publishing House of Northeast Forest University: 1-398.
冉江洪, 刘少英, 王鸿加, , 2003a. 放牧对冶勒自然保护区大熊猫生
境的影响[J]. 兽类学报, 23(4): 288-294.
RAN J H, LIU S Y, WANG H J, et al., 2003a. Effect of grazing on giant
pandas’ habitat in Yele Nature Reserve [J]. Acta Theriologica Sinica,
23(4): 288-294.
冉江洪, 刘少英, 王鸿加, , 2003b. 小相岭大熊猫与放牧家畜的生境
选择[J]. 生态学报, 23(11): 2253-2259.
RAN J H, LIU S Y, WANG H J, et al., 2003b. Habitat selection by giant
pandas and grazing livestock in the Xiaoxiangling mountains of Sichuan
province [J]. Acta Ecologica Sinica, 23(11): 2253-2259.
孙儒泳, 2001. 动物生态学原理[M]. 3, 北京: 北京师范大学出版
: 19-120.
SUN R Y, 2001. Principles of animal ecology [M]. Third Edition.
Beijing: Publishing House of Beijing Normal University: 19-120.
王晓, 李玉杰, 李程, , 2018. 卧龙自然保护区放牧对大熊猫的影响
[J]. 西华师范大学学报 (自然科学版), 39(1): 11-15.
WANG X, LI Y J, LI C, et al., 2018. The impact of livestock on giant
pandas in Wolong Nature Reserve [J]. Journal of China West Normal
University (Natural Sciences), 39(1): 11-15.
魏辅文, 冯祚建, 王祖望, 1998. 野生动物对生境选择的研究概况[J].
物学杂志, 33(4): 48-52.
WEI F W, FENG Z J, WANG Z W, 1998. General situation of research
on habitat selection of wild animals [J]. Chinese Journal of Zoology,
33(4): 48-52.
卧龙自然保护区管理局, 南充师范学院生物系, 四川省林业厅保护
, 1987. 卧龙植被及资源植物[M]. 成都: 四川科学技术出版
: 11-194.
Wolong Nature Reserve Administration, Biology of Nanchong Normal
Collage, Department of Sichuan Forest Office, 1987. Wolong Plant
vegetation and resource plants [M]. Chengdu: Sichuan Publishing House
of Science & Technology: 11-194
杨志松, 周材权, 何挺美, , 2019. 四川卧龙国家级自然保护区综合科
学考察报告[M]. 北京: 中国林业出版社: 27-198.
YANG Z S, ZHOU C Q, HE T M, et al., 2019. A comprehensive
investigation report of Wolong National Nature Reserve in Sichuan
周世强等:野生大熊猫与放牧家畜利用生境的特征比较 319
province [M]. Beijing: China Forestry Publishing House: 27-198.
叶卫平, 2015. Origin 9. 1 科技绘图及数据分析[M]. 北京: 机械工业出版
: 1-462.
YE W P, 2015. Origin 9. 1 Scientific and technical drawing and data
analysis [M]. Beijing: Machinery Industry Press: 1-462.
张晋东, 李玉杰, 王玉君, , 2017. 野生大熊猫种群数量两种调查方法
对比[J]. 应用与环境生物学报, 23(6): 1142-1147.
ZHANG J D, LI Y J, WANG Y J, et al., 2017. Comparison of two
investigation methods for population of wild giant pandas [J]. Chinese
Journal of Applied and Environmental Biology, 23(6): 1142-1147.
周世强, 黄金燕, 张亚辉, , 2009. 卧龙自然保护区大熊猫栖息地植物
群落多样性Ⅴ: 不同竹林的物种多样性[J]. 应用与环境生物学报,
15(2): 180-187.
ZHOU S Q, HUANG J Y, ZHANG Y H, et al., 2009. Diversity of plant
community of giant panda’s habitat in the Wolong Nature Reserve V;
species diversity in different bamboo forests [J]. Chinese Journal of
Applied and Environmental Biology, 15(2): 180-187.
周世强, HULL V, 张晋东, , 2016. 野生大熊猫与放牧家畜的空间利用
格局比较[J]. 兽类学报, 36(2): 138-151.
ZHOU S Q, HULL V, ZHANG J D, et al., 2016. Comparative space use
patterns of wild giant pandas and livestock [J]. Acta Theriologica Sinica,
36(2): 138-151.
周世强, 张晋东, HULL V, , 2019. 野生大熊猫与放牧家畜的活动格局
比较[J]. 生态学报, 39(3): 1071-1081.
ZHOU S Q, ZHANG J D, HULL V, et al., 2009. Comparative activity
patterns of wild giant pandas and livestock [J]. Acta Ecologica Sinica,
39(3): 1071-1081.
周世强, 张晋东, HULL V, , 2021. 野生大熊猫与放牧家畜采食竹子行
为的比较[J]. 应用与环境生物学报, 27(5): 1203-1209.
ZHOU S Q, ZHANG J D, HULL V, et al., 2021. Comparison of the
bamboo-grazing behavior of giant pandas and livestock [J]. Chinese
Journal of Applied and Environmental Biology, 27(5): 1203-1209.
周世强, 张晋东, HULL V, , 2022. 野生大熊猫与放牧家畜采食对冷箭
竹无性系种群特征的影响[J]. 竹子学报, 41(2): 50-59.
ZHOU S Q, ZHANG J D, HULL V, et al., 2022. Effects of herbivory by
Ailuropoda melanoleuca and grazing livestock on population
characteristics of Bashania faberi clones [J]. Journal of Bamboo
Research, 41(2): 50-59.
Comparison of Habitat Use Patterns between Wild Giant Pandas
and Grazing Livestock
ZHOU Shiqiang1*, Vanessa HULL2, ZHANG Jindong3, LIU Dian1, XIE Hao1, HUANG Jinyan1, ZHANG Hemin1
1. Key Laboratory of the National Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park,
China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, P. R. China;
2. Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA;
3. Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637002, P. R. China
Abstract: This study explored the internal driving factors for the effects of livestock grazing on wild giant pandas, their habitats, and
staple bamboo resources, in order to provide a basis for the construction and management of the Giant Panda National Park. Based on
the survey data of random sample fields of wild giant pandas and grazing livestock in the Wolong area of the Giant Panda National
Park, this paper analyzed the similarities and differences of habitat use patterns between giant pandas and grazing livestock with respect
to forest structure and plant community composition. The results showed that there were significant differences in forest structure,
between wild giant pandas and grazing livestock with respect to species abundance of arbor layer, coverage of shrub layer, and bamboo
characteristics (coverage, density, ground diameter and plant height), while the other indicators had no statistically significant
difference. As far as the composition characteristics of woody plants were concerned, the number of families, genera and species in the
tree layer and shrub layer of the habitat used by giant pandas was higher than that in the grazing livestock habitat. The similarity
coefficient between giant pandas and livestock was low, but when comparing the importance index of the common plant species, the
only significant difference was in the three species in the shrub layer, and there was no difference in the community composition of
other woody plants. This suggests that grazing livestock mainly affects the structure of the shrub layer of giant panda habitat and
characteristics of bamboo. This research, coupled with other studies, shows that wild giant pandas have actively avoided areas disturbed
by grazing livestock and adjusted their ranges of habitat. Therefore, an effective measure for managing the Giant Panda National Park
and other protected areas is to control grazing disturbance by spatial planning of livestock-free areas and strictly controlling the species
and quantity of livestock.
Keywords: giant panda (Ailuropoda melanoleuca); grazing livestock; used habitat; plant community; community components
... Grazing impacts giant pandas mainly by way of livestock invading their habitats, compressing their ecological niches, competing for food resources, trampling vegetation, and ultimately leading to a decline in habitat quality [17][18][19]. Previous studies have shown that giant pandas significantly avoid areas with high grazing intensity, preferring areas with low grazing intensity or no grazing disturbance, which has led to the shifting of giant panda populations towards higher-elevation areas [20]. ...
Article
Full-text available
Grazing is the primary human-induced disturbance affecting giant panda (Ailuropoda melanoleuca) habitats and has a severe impact on the long-term sustainability of the giant panda population. To address the lack of quantitative studies on grazing’s impact on habitat quality, we selected China’s most heavily grazed giant panda nature reserve. Utilizing the Maxent model and stoichiometric analysis, we investigated habitat quality degradation caused by grazing and quantified changes in bamboo nutritional quality and soil physicochemical properties. The results indicate that grazing has significantly reduced the suitable habitat area for giant pandas from 101.87 km2 to 80.64 km2. Specifically, high-suitability habitats declined by 14.14%, moderate-suitability habitats declined by 22.70%, and low-suitability habitats declined by 22.88%. Grazing has forced pandas to move to higher altitudes (2650–3057 m) with taller (12–20 m) trees, denser (28–55 plants) shrubs, and sparser (30–69%) bamboo. Additionally, the soil water content has decreased, while soil bulk density, total N, available N, and pH have significantly increased. Reductions in crude protein and ether extract, along with increased crude fiber and ash, have lowered bamboo’s nutritional value and palatability. This study elucidates how grazing degrades giant panda habitat quality and provides a scientific basis for its conservation management.
Article
Full-text available
Population characteristics are the most intuitive and measurable biological indicators of plants and the functional responses of plants to external interferences and environmental fluctuations. By analyzing the population characteristics of Bashania faberi clones after feeding by the wild giant pandas (Ailuropoda melanoleuca) and grazing livestock,we can understand the impact intensity of the giant pandas and grazing livestock on the clonal population dynamics of Bashania faberi,and the response strategy of clonal populations of Bashania faberi to herbivory of different animals. Therefore,the clonal population characteristics of Bashania faberi in Wolong Area of the Giant Panda National Park after feeding by giant pandas and grazing livestock were determined by quadrat method,and compared with those in the control plots. The results showed that wild giant pandas and grazing livestock reduced the coverage of bamboo forest to 87.85% and 52.95% of the control,respectively. The impact intensity of grazing livestock was 1.66 times that of wild giant pandas. Feeding by grazing livestock hindered the germination,regeneration,growth and development of one-year-old bamboo. Compared with the control,the density of one-year-old bamboo decreased by 97.07%,the basal diameter decreased by 27.78%,and the plant height decreased by 87.93%. Grazing livestock had no significant impact on the basal diameters of bamboo culms of other ages or populations (P>0.05),but significantly reduced the heights of other bamboo culms (P<0.05). Feeding by wild giant pandas mainly affected the number of one-year-old bamboo,causing a decrease of density by 28.13%,and was conducive to maintaining the numbers of two-year-old and even older bamboo and the populations,as well as the basal diameters and the plant heights of bamboo ramets of all ages. Therefore,the diameter distribution of the bamboo populations in the plots for livestock grazing was similar to that in the control plots,which followed a normal distribution pattern with the majority being 3.1 ~ 6.0 mm and accounting for 82.21% of the total number. However,the height distribution was quite different,and the peak shifted to the lower end. The number of bamboo culms less than 60 cm in height accounted for 41.21%. The population structure (basal diameter and plant height) of bamboo in the plots for wild giant panda herbivory had a similar normal distribution like that in control plots. Most bamboo culms were 2.1 ~ 6.0 mm in basal diameter,accounting for 79.44% of the total number,and were 61 ~ 140 cm in plant height,accounting for 70.01%. Thus,livestock grazing has a much greater impact on the clonal populations of Bashania faberi than wild giant panda herbivory,and excessive feeding will lead to the degradation of Bashania faberi resource. Therefore,restricting the quantity of grazing livestock and their grazing area is an effective measure to protect the wild giant pandas and their habitats.
Article
Full-text available
Aspects of an animal′s activity patterns such as circadian rhythm and activity level are caused by intrinsic mechanisms and environmental effects, and in turn affect an animal′ s energy metabolism abilities, foraging behavior strategies, and evolutionary adaptation. Using GPS collars with dual⁃axis accelerometers fitted on wild giant pandas and livestock (horses), we collected activity data from 2010 to 2012 in the Hetaoping Research and Conservation Center for the Giant Panda and the adjacent area of the Wolong National Nature Reserve. Representative individuals, namely three adult giant pandas and three horses, were selected as samples. Indices of activity levels, active time percentage, activity fragmentation rate, and active segment duration were compared between the groups in order to reveal intrinsic features of the giant pandas and livestock in terms of time utilization. The results showed that the wild pandas and livestock had differences in activity intensity, percentage of active time, and activity fragmentation rate (all P < 0.0001). There was no significant statistical difference between them in the duration of activity segments (P = 0.4107). Wild pandas showed activity patterns with a low activity level, less active time, high activity fragmentation rate, and low duration of activity segments, which varied greatly between different months (seasons) (P < 0.0001). Livestock exhibited distinctive time⁃use patterns, i.e. elevated activity levels, multiple active times, slightly lower activity segment ratios, and somewhat longer duration of action segments. The discrete time⁃use patterns and spatial utilization models stemmed from the differences in utilization patterns, impact strength, and specific distribution in habitats and food resources of the animals. Therefore, rational planning and control of the extent of free⁃range areas for livestock is an effective way to harmonize nature conservation management with community economic development.
Article
Full-text available
Habitat use describes how wildlife utilize natural resources and their activity patterns,and has great influence on the genetic exchange between local populations and their viability. Between 2010 and 2012,we collected habitat data and GPS data from giant pandas and livestock—domestic horses at the Hetaoping section of Wolong National Nature Reserve and surrounding areas by using GPS collar tracking technology. Afterwards, we selected GPS data from a representative 3 pandas and 3 horses and calculated the terrain,home range, daily movement distance and number of core areas by applying analyses such as digital elevation model ( DEM) and animal movement module. Finally, we analyzed and tested whether there were significant difference between the habitat use of giant pandas and of livestock. The results showed that there were significant differences in habitat use between giant pandas and livestock in terms of altitude, slope and aspect of the terrain,home range, daily movement distance and number of core areas both seasonally and yearly. For giant pandas, habitat use changed between Fargesia robusta,Yushania brevipaniculata and Bashania faberi bamboo forests according to season and food abundance ( bamboo shoots, bamboo stems, bamboo branches and leaves),and exhibited a random dispersal pattern across a large activity range ( altitude range, home range) ,short daily movement distance, large number of core areas and high variation between individuals and months. For livestock depending on the original release site and disturbance level, habitat use exhibited a different pattern, however, compared with that of giant pandas,horses featured small home ranges, long daily movement distance, small number of core areas, and low variation between individual groups and months. These two divergent habitat use patterns put distinctive levels of pressure on local natural resources: the one adopted by giant pandas is beneficial for the recovery of bamboo resources and the sustainable development of the ecosystem; on the contrary, the one adopted by livestock will cause deterioration of the bamboo resources and destruction to the integrity of the ecosystem. Consequently, it is urgent for Wolong National Nature Reserve to reinforce the management of domestic grazing animals, and coordinate economic development of local communities with biodiversity conservation.
Article
The giant panda (Ailuropoda melanoleuca) is a flagship species of wildlife protection. Much attention has been paid to its survival status and conservation. Population size serves as the basis for giant-panda conservation. So far, the accuracy, operability, and cost of two main survey methods of panda population estimation (distance-bamboo stem fragments method and molecular biological method) have been controversial. We estimated the panda population using both the distance-bamboo stem fragments method and molecular biological method in the main panda distribution areas of the Wolong Nature Reserve in China, and compared the advantages and disadvantages of the two methods. The results showed a more than 50% lower population estimate for the distance-bamboo stem fragments method compared to the molecular biological method. To improve the sensitivity of the methods for identifying panda individuals and considering the characteristics of giant panda behavior, we propose to reduce the distance threshold value for identifying different individuals in the high-density area of a giant-panda distribution.
Article
Impact of grazing on giant pandas' habitat was studied at Yele Nature Reserve, Sichuan in 2001. Forage ratio selection index is used to assess the bamboo utilization of both giant pandas and grazing. Among 482 sampling spots of our survey, panda traces at 54 sampling spots, grazing at 159 sampling spots were recorded. We use bamboo coverage, height, growth status, density and elevation to characterize habitats of both the giant panda and livestock and sort grazing intensity into intensive, medium, and weak. The results of analyses of Forage ratios, contingency tables and Pearson correlation suggest that a) the giant panda preferred to habitats of 2 - 3 m height bamboo, bamboo coverage of 50% - 100%, better bamboo growth status at elevation of 2 870 - 3 900 m; b) livestock, occurring at elevation of 2 700 - 4 000 m, showed no preference the above factors; c) at intensive grazing sampling spots no panda traces was found and bamboo coverage was less than 50% at 80% of sampling spots; d) bamboo density and adult bamboo density were less at the sampling spots where grazing occurred than the sampling spots where giant pandas occurred, but proportion of dead bamboo individuals was higher than the sampling spots of giant panda, e) and with the presence of bamboo or not and bamboo coverage is dependent on grazing intensity; f) giant panda avoid the grazing habitat. It is concluded that grazing has definite impact on pandas' habitats and therefore it should take measures to control grazing activities in the nature reserve.
Article
Habitat corridor is an effective way to enhance gene communication, and avoid extinction of small populations. The Niba Mountain, as a part of the Daxiangling Mountains, is the key area to connect the central populations of the giant panda in the Daxiangling Mountains with the populations in the Qionglai Mountains. In order to research the design method of the corridor for the giant panda and promote the construction of the Niba Mountain corridor, we designed a giant panda habitat corridor in the Niba Mountain based on the third national survey on the giant panda (2000-2001) and field survey data from 2011 to 2012. Maxent model, Linkage mapper corridor design software, and a least-cost path model (LCP) were used to design the corridor. The habitat corridor to build is 2 250 m in width and 15.76 km in length, covering an area of 38.5 km2 and distributing between the altitudes of 1 400 m and 3 000 m. Vegetation types of the corridor are mainly broad-leaved forests, shrubs, and coniferous forests. Most of the areas are moderately suitable and unsuitable habitat, accounting for 74.19% and 25.29%, respectively, of the total area. Only 0.52% is suitable habitat. Therefore, to ensure smooth passing-through of the giant panda, the designed corridor needs further transformation and protection to increase the area of suitable habitat.
Wolong's Giant panda
  • Hu J C
  • Schaller G B
  • Pan W S
HU J C, SCHALLER G B, PAN W S, et al., 1985. Wolong's Giant panda