ArticlePDF Available

Efficacy of fumigation some ethanol plant extracts on mobile stages of flour mite Acarus siro (Acari Astigmata) in laboratory

Authors:

Abstract

Efficacy of fumigation some ethanol plant extracts on mobile stages of flour mite Acarus siro L. (Acari: Astigmata) in laboratory Zakaria Al –Naser(1) Mohamad Kanouh (2) Abstract The study was carried out at the laboratories of Plant Production Dept. Faculty of agriculture/ Damascus Univ. during 2022. Efficacy of Fumigation ethanol extracts of lavender Lavandula angustifolia Mill., thymus Thymus syriacus Boiss., tagetes Tagetes patula L. and Pine Pinus halpensis Mill. against all mobile stages of the stored flour mite Acarus siro (Acari: Acaridae: Astigmata) was investigated. The fumigation bioassay was performed with concentrations, from 25 to 300 μl/L air ethanol extracts in 1 L fumigation container. The mortality of mites were calculated at 24, 48 and 72h after the treatments. The results of fumigation bioassay showed that lavender, thymus and pine ethanol extracts at 300 μl/L air showed 100 % mortality, with LC50 of 50.42, 55.23 and 64.84 μl/L air after 72h of treatment, respectively. Followed by tagetes ethanol extract with LC50 values of 137.44 μl/L air. Efficacy of the tested ethanol plant extracts increased by increase the concentrations and exposure time. Keywords: Stored flour mite, Acarus siro, Acaridae, fumigation bioassay, ethanol plant extract. (1) Prof: Dep. of plant protection, Faculty of Agriculture, Damascus Univ. Syria (2) Doctor: Dep. of plant protection, Faculty of Agriculture, Damascus Univ. Syria
Accepted for publication in Damascus University Journal of agriculture sciences, 2023

.L siro AcarusAcari: Astigmata 




 .Mill Lavandula angustifolia  .Boiss syriacus hymusT Tagetes L. patula  .Mill Pinus halpensis    .L siro Acarus
Acari: Acaridae: Astigmata




 
50
LC

       
50
LC    

siro AcarusAcaridae
 
Accepted for publication in Damascus University Journal of agriculture sciences, 2023
on mobile stages of flour mite ethanol plant extractsfumigation some of Efficacy laboratory in (Acari: Astigmata) .L siro Acarus
Zakaria Al Naser(1) Mohamad Kanouh (2)
Abstract
The study was carried out at the laboratories of Plant Production Dept. Faculty of agriculture/
Damascus Univ. during 2022. Efficacy of Fumigation ethanol extracts of lavender Lavandula
angustifolia Mill., thymus Thymus syriacus Boiss., tagetes Tagetes patula L. and Pine Pinus
halpensis Mill. against all mobile stages of the stored flour mite Acarus siro (Acari: Acaridae:
Astigmata) was investigated. The fumigation bioassay was performed with concentrations, from 25
to 300 μl/L air ethanol extracts in 1 L fumigation container. The mortality of mites were calculated
at 24, 48 and 72h after the treatments. The results of fumigation bioassay showed that lavender,
thymus and pine ethanol extracts at 300 μl/L air showed 100 % mortality, with LC50 of 50.42, 55.23
and 64.84 μl/L air after 72h of treatment, respectively. Followed by tagetes ethanol extract with
LC50 values of 137.44 μl/L air. Efficacy of the tested ethanol plant extracts increased by increase
the concentrations and exposure time.
Keywords: Stored flour mite, Acarus siro, Acaridae, fumigation bioassay, ethanol plant extract.
(1) Prof: Dep. of plant protection, Faculty of Agriculture, Damascus Univ. Syria
(2) Doctor: Dep. of plant protection, Faculty of Agriculture, Damascus Univ. Syria

Arthropoda
Sub-Cl. AcariPalyvos et al., 2008Sanchez-Ramos et al., 2007 
 Collins, 2006Mahmood et al., 2012

Colloff, 2009Son et al., 2014
   mycotoxinsHubert et al., 2004Nesvorna et al., 2012 
            
Mahmood et al., 2012Bashir et al. 2009


Bass, 1988

AcaridaeAcari: Astigmata

Hubert et al., 2012
Al-Nasser, 2011Bashir et al., 2014Anita et al.,
2014Acarus siro L.Acari: Acaridae
     
Chmielewski, 2000
        
Mann,
2004Collins, 2006Hubert et al., 2007
Conyers and Bell, 2003     
       Collins, 2006       
      
Accepted for publication in Damascus University Journal of agriculture sciences, 2023
Hubert et al., 2007Collins, 2006Dekeyser, 2005


Tapondjou et al., 2002   
Collins, 2006Palyvos et al., 2006
          Malik et al., 2017Ahmed et al.,
2013Idrees et al., 2016Anita et al., 2014Hubert et al., 2013     
        
 Rahman et al., 1997Cowan, 1999      
  Flavonoids Terpenes      
Perich et al., 1995Tereschuck et al., 1997Ottoboni1992Carum carvi L.A. siroObeng-Ofori1998Ocimum kilimandscharicum Gürke Camphor 
Miresmailli2006Rosmarinus officinalis L.
Tetranychus urticae Kochbenzyl-benzoate
Cinnamomum spp.Dianthus caryophyllus L. Jasminum officinale L.     Nikolaou et al., 2012  
2018Azadirachtin
Melia azedarach L.
 Tetranychus cinnabarinus (Boisduval)Isman2011 

             

α-PineneCampheneβ-Pineneδ-3-Careneβ-MyrceneLimoneneβ-Phellandren
Stevanovic et al., 2005Amri et al., 2012Fekih2014

             Myrceneα-PineneE-β-CaryophylleneTerpinene-4-olSabinene 
      Limonene(Z)-3-OcimeneDihydrotagetone Terpinolenep-Cymen-8-olPiperitenonePiperitoneβ-Caryophyllenetrans-Sesquisabinene hydrate-α-Terpinene1,8-CineoleLinalool
P-Cymen-8-olSagara et al., 2005Prakash et al.,
2012Rozmana2007 Thymus vulgaris L.   Lamiaceae1,8-CineoleCamphorEugenolLinalool CarvacrolThymolBorneolBornyl acetateLinalyl acetate

               Acarus siro



Acarus siro

L. Triticum aestivum  
              Lavandula angustifoliaLamiaceaeTagetes patulaAsteraceaeThymus ssyriacuLamiaceae   halepensis Pinus
Pinaceae   
 Soxhlet extractor 
 
Accepted for publication in Damascus University Journal of agriculture sciences, 2023


 
., 2010et al Dagostin
Dessiccateur


4

Harborn1984
formaldehyde

-  Harborne1984
- 
Al-khazragi, 1991
- 
  

- 



- IHP1998


- FeCl3

Adeday et al.,
2001
-   
 Shihata1951       




Negahban et al., 2007
micropipette







   
               
Abbott, 1925





50
LC
      Finney, Probit analysis, 1071

× 

SPSS. 20

0.01
.D.S.L
Accepted for publication in Damascus University Journal of agriculture sciences, 2023

 


           

 



























 

             

     
 






  
                












0.01
L.C.D



































































































0.01
L.C.D








Accepted for publication in Damascus University Journal of agriculture sciences, 2023
 






0.01
L.C.D














































0.01
L.C.D



50
LC



         
                


      


              

          

 


              
<
50
LC



           


Accepted for publication in Damascus University Journal of agriculture sciences, 2023
             

  Acarus siro          
  Lynch et al., 1991 
Prickett, 1997
  
   
     
      pirimiphos- methylStarzewski, 1991Prickett, 1997 Prickett
Buckland1997

    Chlorpyrifos-methyl    

 Park1997
LimoneneLinaloolTerpineol CaravolMyrceneRozman2007Camphor1,8 CineolCarvacrol

α-Pinene
β-PineneLimoneneLinalool1.8-CineoleAbi-Ayad et al., 2011Fekih et al., 2014Adams et al., 20142017  
             
Shaaya et al., 1997Papachristos and Stamopoulos 2002   
Khosravi et al., 2011Yazdani et al., 2013Lee2003
             
               
(Isman, 2000)
1,8-CineoleAbdelgaleil et al., 2009)Thymol
(Bonnafé et al,. 2014)  Eugenol 
(Enan, 2001)Collins2001Linalool
A. siroTyrophagus
Accepted for publication in Damascus University Journal of agriculture sciences, 2023
longior (Gervais)Psoroptes cuniculi (Delafond)    
Perrucci, 1995Perrucci et al., 1996Jeon et al., 2014
Camphor
)Schrank( putrescentiae Tyrophagus
3
= 2.25 µg/cm
50
LD
Jeon et al., 2014
AcetateLinalylEucalyptol
      Psoroptes cuniculiPerrucci, 1995   Ottoboni
1992Macchioni2002

Tyrophagus putrescentiae
 1,8-Cineole
Limonene  
 Aslan2004Ocimum basilicum L.T. vulgarisT. urticae
Miresmailli2005Jeon2014

                 =
50
LD
8.24µL/cm2T. putrescentiae

- 
- 

- 

       
    
   Pinus halepensis     Brachychiton populneum



           

            Tetranychus cinnabarinus Neoseiulus californicus   

6. Abbott, W.S.A. 1925. A method of computing the effectiveness of an insecticide. Journal
of Economic Entomology.1925, 18: 265–267.
7. Abdelgaleil, S.A.M, Mohamed, M.I.E, Badawy, M.E.I. and El-arami, S.A.A. 2009.
Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium
castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem.
Ecol., Vol. 35, P. 518-525.
8. Abi-Ayad, M, F. Z. Abi-Ayad, H.A. Lazzouni, S. A. Rebiahi, C. Ziani-Cherif and J. M.
Bessiere. 2011. Chemical composition and antifungal activity of Aleppo pine essential oil. J.
Med. Plant. Res.; 5(22): 5433-5436.
9. Adam, K., A. Sivropoulou, S. Kokkini, T. Lanaras and M. Arsenakis. 1998. Antifungal
Activities of Origanum vulgare subsphirtum, Mentha spicata, Lavandula angustifolia, and
Salvia fruticosa Essential Oils against Human Pathogenic Fungi. J. Agric. Food Chem.,
Vol. 46, P. 1739-1745.
10. Adeday ,O.; W. Aderson ,M. Young ,V. Sncickus, P. patil. and D. kolawole. 2001.
Photochemistry and antibacterial activity of san flower pharmuct.Biol.,39:1-5.
Accepted for publication in Damascus University Journal of agriculture sciences, 2023
11. Ahmed N., Rady G., Abdelnabby H., Mohamed G., Bei C., Shu S., Mo W., Wang Z.Q.
2013. Evaluation of the toxicological effect of bean flour on the mortality and population
dynamics of two storage mites. Journal of the Saudi Society of Agricultural Sciences,
http://dx.doi.org/10.1016/j.jssas.2013.08.004
12. Al Naser, Z., N. Al- Abrass. 2014. Chemical composition and fungitoxic activities of
Lavandula officinalis L. oil and comparison with synthetic fungicide on the growth some
fungi in vitro. International Journal of ChemTech Research . Vol.6, No.11, p 4918-4926,
13. Al-khazragi, S.M. 1991. Biopharmacological study of Artemisia herba alba .M.Sc. thesis.
Univ. Baghdad .
14. Al-Nasser A.S. 2011. Quantitative survey of stored products mites infesting wheat flour in
Jeddah Governorate. Journal of Entomology and Nematology, 3(6): 78-84.
15. Amri, I., Gargouri, S., Hamrouni, L., Hanana, M., Fezzani, T., Jamoussi, B. 2012. Chemical
composition, phytotoxic and antifungal activities of Pinus pinea essential oil. Journal of Pest
Science, 85(2), 199-207.
16. Anita Gulati R., Kaushik H.D., Arvind. 2014. Efficacy of Ocimum sanctum and
Glycyrrhiza glabra against stored Mite, Tyrophagus putrescentiae Schrank in oat flakes.
Biopesticide International, 10(1):41-49.
17. Aslan, I., Özbek, H., Çalmasur, O. SahIn, F .2004. Toxicity of essential oil vapours to two
greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Industrial Crops and
Products, Vol. 19, P. 167–173.
18. Bashir M.H., Ashfaq M., Afzal M., Khaliq A. 2009. Estimation of losses of wheat during
storage at farmer’s stores due to mite pests from Tehsil Toba Tek Singh. Int. J. Agric. Appl.
Sci., 1:39-42.
19. Bashir M.H., Mahmood S.U., Khan M.A., Afzal M., Zia K. 2014. Estimation of nutritional
losses caused by Rhizoglyphus tritici (Acari: Acaridae) in stored wheat. Pakistan Journal of
Agricultural Sciences, 50(4):631-635.
20. Bass E.J. 1988. Wheat Chemistry and Technology. Vol. II, Chapter 1: Wheat flour
milling. American Association of Cereal Chemistes. 1-60.
21. Bonnafé, E, F. Drouard, L. Hotier, Carayon ,P.V. Marty , M. Treilhou and C. Armengaud.
2014. Effect of a thymol application on olfactory memory and gene expression levels in the
brain of the honeybee Apis mellifera. Environ. Sci. Pollut. Res. Int.Vol. 22 (11), P.8022-
8030.
22. Chmielewski w. 2000. Life history parameters of Acarus siro L. (Acari: Acaridae) fed
buckwheat. Fagopyrum, 17:73-75.
23. Collins D.A. 2006. A review of alternatives to organophosphorus compounds for the control
of storage mites. Journal of Stored Products Research, 42:395-426.
24. Collins, D.A., D.M. armitage, D.A. cooke, A. Buckland and J. Bell. 2001. The efficacy of
alternative compounds to organophosphorus pesticides for the control of storage mite pests.
project report .No. 249, P. 30.
25. Colloff M.J. 2009. Dust mites. Dordrecht (The Netherlands): CSIRO and Springer
publishing. contact action against Tyrophagus putrescentiae (Schrank). J. Food Prot. 2014,
77, 1355–1360.
26. Conyers, S.T. and C. H. Bel. 2003.The effect of modified atmospheres on the survival of
the eggs of four storage mite species. Exp. Appl. Acarol., 31, 115–130.
27. Cowan, M.M. 1999. Plant products as antimicrobial agents. Clinical Microbiological
Reviews, 12, 564-582.
28. Dagostin, S, T. Formolo and O. Giovannini. 2010. Salvia officinalis extract can protect
grapevine against Plasmopara viticola. Plant Dis., Vol. 95, 5: 575-580.
29. Dekeyser M.A. 2005. Acaricide mode of action. Pest Manag. Sci., 61:103-110.
Accepted for publication in Damascus University Journal of agriculture sciences, 2023

30. Enan E., 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comp.
Biochem. Physiol. Part C, Vol. 130, P. 325-337.
31. Fekih, N, H. Allali, S. Merghache, F. Chaïb, D. Merghache, M. El Amine1, N. Djabou, A.
Muselli, B. Tabti, J. Costa. 2014. Chemical composition and antibacterial activity of Pinus
halepensisMiller growing in West Northern of Algeria. Asian Pac J Trop Dis 2014; 4(2): 97-
103.
32. Finney, D. J.1971. Probit analysis. 3rd ed. Cambridge University Press, London, 318 P.
33. Harborn, J. B. 1984. Phytochemcial methods, champan and Hall London,2 nd ed . New
York.
34. Hubert J., Kopecky J., Perotti M.A., Nesvorna M., Braig H.R., Sagova-Mareckova M.,
Macovei L., Zurek L. 2012. Detection and identification of species-specific bacteria
associated with synanthropic mites. Microb. Ecol., 63:919-928.
35. Hubert J., Pekar S., Aulicky R., Nesvorna M., Stejskal V. 2013. The effect of stored barley
cultivars, temperature and humidity on population increase of Acarus siro, Lepidoglyphus
destructor and Tyrophagus putrescentiae. Exp. Appl. Acarol., 60:241-252.
36. Hubert J., Stejskal V., Kubatova A., Munzbergova Z., Vanova M., Zd’arkova E. 2004.
Mites and fungi in heavily infested stores in the Czech Republic. Journal of Economic
Entomology, 97:2144-2153.
37. Hubert J., Stejskal V., Munzbergova Z., Hajslova J., Arthur F.H. 2007. Toxicity and
efficacy of selected pesticides and new acaricides to stored product mites (Acari: Acaridida).
Experimental and Applied Acarology, 42:283-290.
38. Ibrahim, S. K., A. F. Traboulsi and S. El-Haj. 2006. Effect of essential oils and plant
extracts on hatching, migration and mortality of Meloidogyne incogn. Faculty of
Agricultural Sciences, Lebanese University, Beirut, Lebanon. Phytopathol. Mediterr. 45,p.
238–246
39. Idrees A., Qasim M., Ali H., Abdul Qadir Z., Idrees A., Bashir M.H., Qing J. 2016.
Acaricidal potential of some botanicals against the stored grain mites, Rhizoglyphustritici.
Journal of Entomology and Zoology Studies, 4(1):611-617.
40. IHP. Indian Herbal pharmacopeia .1998. A Joint publication of Regional Research
laboratory . counce of scientific and industrial Research.Jammataw.1;1-10.
41. Isman , M. B. 2000. Plant essential oils for pest and disease management. Crop Protection,
Vol. 19, PP. 603-608.
42. Isman, M.B, Miresmailli, S. and Machial, C., 2011. Commercial opportunities for pesticides
based on plant essential oils in agriculture, industry and consumer products. Phytochem.
Rev., Vol. 10, P. 197-204.
43. Jeon, J.-H.; Park, J.-H.; Chung, N.; Lee, H.-S. Active monoterpene ketones isolated from
Rosmarinus officinalis with fumigant and contact action against Tyrphagus putrescentiae
(Schrank). Journal of Food Protection. Vo. 77, ISS. 8,P.1355-1360.
44. Khosravi R, Sendi JJ, Ghadamyari M and Yezdani E., 2011. Effect of sweet wormwood
Artemisia annua crude leaf extracts on some biological and physiological characteristics of
the lesser mulberry pyralid, Glyphodes pyloalis. J. Insect Sci. 11:156.
45. Lee, S.C., J. Peterson and J. R. Coats .2003. Fumigation toxicity of monoterpenoids to
several stored product insects. Journal of Stored Products Research. Vol. 39m Issu1. P. 77-
85.
46. Lynch, S. M., J. Muggleton and J. C. Starzewski. 1991. The distribution of mites in
commercial grains stores In : Prickett A. J. and Muggleton, J. (Eds) Commercial grain
stores 1988/89 England and Wales. Pest incidence and storage practice - part I and II.
London, U.K. HGCA Project Report No. 29. pp. 41-44.
Accepted for publication in Damascus University Journal of agriculture sciences, 2023

47. Macchioni, F., P. Cioni, G. Flamini, I. Morelli,S. Perrucci, A. Franceschi, G. Macchioni, L.
Ceccarini. 2002. Acaricidal activity of pine essential oils and their main components against
Tyrophagus putrescentiae, a stored food mite. J. Agric. Food Chem., 50, 4586–4588.
48. Mahmood S.U., Bashir M.H., Afzal M., Ashfaq M. 2012. Evaluation of germination losses
caused by mites in seeds of Maize and Mung from farmer’s holdings in Tehsil Toba Tek
Singh. Pak. J. Zool., 44:117-121.
49. Malik A., Gulati R., Duhan K., Poonia A. 2017. Comparative efficacy of different
concentrations of Withania somnifera, Pongamia pinnata and Azadirachta indica against
Tyrophagus putrescentiae (Schrank) (Acari: Acaridae) in wheat grains. Journal of
Entomology and Zoology Studies, 5(4):996-1001.
50. Mann, P.J . 2004. The Pesticide Manual . 3th ed. Database Right © 2004 BCPC (British
Crop Protection Council.
51. Miresmailli, S, Bradbury, R. and M. B. Isman. 2006. Comparative toxicity of Rosmarinus
officinalis L., Essential oil and blends of its major constituents against Tetranychus urticae
Koch (Acari: Tetranychidae) on two different host plants. Pest Manag. Sci., Vol. 62, P. 366-
371.
52. Negahban, M, S. Moharramipour and F. Sefidkon . 2007. Insecticidal activity of essential oil
from Artemisia sieberi Beser against three stored-product insects. Journal of Stored Products
Research 43: 123-128.
53. Nesvorna M., Gabrielova L., Hubert J. 2012. Tyrophagus putrescentiae is able to graze and
develop on Fusarium fungi of mycotoxins importance under laboratory conditions. J. Stored
Prod. Res., 48:37-45.
54. Nikolaou, P.; Marciniak, P.; Adamski, Z.; Ntalli, N. 2021. Controlling Stored Products’
Pests with Plant Secondary Metabolites: A Review. Agriculture, 11, 879. https://
doi.org/10.3390/agriculture11090879
55. Obeng-Ofori, D, Reichmuth, C.H., Bekele, A. J. and Hassanali, A., 1998. Toxicity and
protectant potential of camphor, a major component of essential oil of Ocimum
kilimandscharicum, against four store product beetles. Int. J. Pest Manage., Vol. 44, P. 203-
209.
56. Ong, G.S.; C.P. Somerville,T. W. Jones and J.P. Walsh. 2012. Anaphylaxis triggered by
benzyl benzoate in a preparation of depot testosterone undecanoate. Case Rep. Med.,
384054.
57. Ottoboni, F. 1992. House dust mites prevention in Italy. Boll. Zool Agr Bachic Ser. 2 24,
113–120.
58. Palyvos N.E., Athanassiou C.G., Kavallieratos N.G. 2006. Acaricidal effect of a
diatomaceous earth formulation against Tyrophagus putrescentiae (Astigmata: Acaridae)
and its predator Cheyletus malaccensis (Prostigmata: Cheyletidae) in four grain
commodities. J. Econ. Entomol., 99:229-236.
59. Palyvos N.E., Emmanouel N.G., Saitanis C.J. 2008. Mites associated with stored products in
Greece. Exp. Appl. Acarol., 44:213-226.
60. Papachristos, D.P., D. C. Stamopoulos. 2002. Toxicity of vapours of three essential oils to
the immature stages of Acanthoscelides obtectus (Say) (Coleoptera, Bruchidae). Journal of
Stored Products Research, Vol. 38, P. 365–373.
61. Park SJ, Shin SC, Lee BJ, Ahn YJ.1997. Larvicidal and antifeeding activities of oriental
medicinal plant ex-tracts against four species of forest insect pests.ApplEntomol and
Zool.;32(4):601-608.
62. Perich, M., C. Wells,W.Bertsch and K. Tredway. 1995. Isolation of the insecticidal
components of Tagetes minuta (Compositae) against mosquito larvae and adults. Journal of
American Mosquito Control Associate. 11: p.307-310.
Accepted for publication in Damascus University Journal of agriculture sciences, 2023

63. Perrucci, S. 1995. Acaricidal activity of some essential oils and their constituents against
Tyrophagus longior, a mite of stored food. J. Food Prot., 58 (5) : 560-563.
64. Perrucci, S.; G.Macchioni, P. C. Cioni, I., Flamini, I., Morelli,; F. Taccini. 1996.The
activity of volatile compounds from Lavandula angustifolia against Psoroptes cuniculi.
Phytother. Res. , 10, 5-8.
65. Prickett, A. J. 1997. Oilseed stores 1995, England. Pest management. MAFF, CSL Report
No. 102. pp. 8
66. Prickett, A. J. and Buckland A. 1997. Resistance to organophosphorus pesticides in
stored-product mites
67. Rahman, M. S.; V. Anwar, J. Begum and J. U. Chowdhury. 1997. Antimicrobial activities of
the alkaloids of three plant leaves. Bangladesh Journal of Botany 26(1):79-81.
68. Rozmana, V. , Kalinovica, I. and Korunicb, Z. 2007. Toxicity of naturally occurring
compounds of Lamiaceae and Lauraceae of three stored-product insects. Journal of Stored
Products Research, Vol. 43, P. 349–355.
69. Sagara, D.V., Naik, S. N. , Rout, P. K. and Rao, Y. R. 2005. Composition of Essential Oils
of Tagetes patula L. Growing in Northern India. Journal of Essential Oil Research .Vol.17
(4).
70. Sanchez-Ramos I., Alvarez-Alfageme F., Castanera P. 2007. Effects of relative humidity on
development, fecundity and survival of three storage mites. Experimental and Applied
Acarology, 41:87-100.
71. Sanchez-Ramos I., Castanera P. 2001. Acaricidal activity of natural monoterpenes on
Tyrophagus putrescentiae (Schrank), a mite of stored food. J. Stored Prod. Res., 37:93-101.
72. Shaaya, E., Kostjukovski, M., Eilberg, J., Sukprakarn, C., 1997. Plant oils as fumigants and
contact insecticides for thecontrol of stored-product insects. Journal of Stored Products
Research, Vol. 33, PP. 7–15.
73. Shihata ,I.M. 1951. A pharmacological study of Anagallis arvensis. M, D. vet. thesis Cairo
Univ.
74. Son M., Jeong K.Y., Kim B.J., Lim K.J., Lee J.H. Park J.W. 2014. IgE reactivity to Acarus
siro extract in Korean dust mite allergic patients. Exp. Appl. Acarol., 63:57-64.
75. Stevanovic T, Garneau FX, Jean FI, Gagnon H, Vilotic D, Petrovic S, Ruzic N, and Pichette
A. 2005.The essential oil composition of Pinus mugoTurra from Serbia. FlavourFragr J. 20:
96-97.
76. Szlendak, E., Conyers, C., Muggleton, J. and Thind, B. B. 2000. Pirimiphos-methyl
resistance in two stored product mites, Acarus siro and Acarus farris, as detected by
impregnated paper bioassay and esterase activity assays. Exp. Appl. Acarol., 24 : 45-54.
77. Tapondjou L.A., Adler C., Bouda H., Fontem D.A. 2002. Efficacy of powder and essential
oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-
stored product beetles. Journal of Stored Products Research, 38:395-402.
78. Tereschuck, M., M. Riera, G. Castro. and L. Abdala.1997. Antimicrobial activity of
flavonoids from leaves of Tagetes minuta. J. Ethnopharmacol. 56:p. 227-232.
79. Yazdani, (Elham), Sendi, J. J. and Aliakbar, A. 2013. Chemical composition, toxicity and
physiological effects of essential oil of Rosemarinus officinalis on lesser mulberry pyralid,
Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J. Crop. Prot., Vol. 2, P. 461-476.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
To date, only a handful of pesticides have been authorized by the European Council for the protection of stored grains. Resistance issues and ecotoxicity concerns necessitate the development of ecofriendly tools in that direction. In this review, we refer to the recent findings on plant extracts and pure plant-derived substances with promising biological activity and the potential to be used as biopesticides for stored products. The main aim of biopesticides is to be effective against target pests, without harming humans and the environment. Many plant species, among those reported herein, are part of the human diet, and are thus not harmful to humans. Edible plant extracts produced with inorganic solvents represent safe candidates for use as repellants, fumigants or contact pesticides. Cinnamon, rosemary, parsley, garlic, oregano and basil are found in products destined for human consumption but also display significant biological activities. Interestingly, cinnamon is one of the most widely tested botanical matrixes, exhibiting the best lethal effects on almost all insect and mite taxa reported herein (Acaroidea, Coleoptera and Lepidoptera), followed by basil and garlic. Prunus persica, Azadirachta indica A. Juss and Carum sp. seem to be very promising too as miticides and/or insecticides, with A. indica already being represented commercially by a plant-derived acaricidal formulation.
Article
Full-text available
In present study, bioassay of leaf powder of Withania somnifera, Pongamia pinnata and Azadirachta indica was done against T. putrescentiae in wheat grains. All the concentrations (0.5%, 0.6%, 0.7%, 1% and 2%) of all the three botanical powders were significantly better than the control (untreated wheat grains) except 0.5 percent concentration of P. pinnata. Among the botanicals, W. somnifera and A. indica at 0.7 percent concentration showed comparable mite population of 39.05 and 40.05 mites, respectively after 45 days as compared to 161.89 mites in untreated wheat grains. Protection against T. putrescentiae was 15.9 to 100, 45.7 to 100 and 33.9 to 100 percent with A. indica leaf powder, 2.3 to 100, 8.2 to 100 and 9.8 to 100 percent with P. pinnata leaf powder and 28.4 to 100, 43.7 to 100 and 22.1to 100 percent population reduction with W. somnifera leaf powder after 15, 30 and 45 days post-treatment at various concentrations.
Article
Full-text available
The present study was conducted to evaluate the susceptibility of Rhizoglyphus tritici against the comparative potential of ether extracts from Azadirachta indica, Eucalyptus sp., Citrullus colocynthis, Allium sativum, Nicotiana tabacum, Curcuma longa, Nerium indicum, Syzygium aromaticum, Ocimum tenuiflorum and Cassia fistula. The whole trial was executed under laboratory conditions with five concentrations from T1-T5 (0.5%, 1%, 2%, 4% and 8%), and four exposure periods (7, 14, 21 and 28 days). The percentage inhibition of mite population was both time-dependent and concentrationdependent. All the plant extracts exhibited significant acaricidal potential for adult mite as compared to control. The significant population inhibition percentage trend was observed of C. longa 91%, 95.54%, 94.97% and 97.46% and S. aromaticum 88.06%, 92.17%, 95.27% and 96.67% followed by C. fistula 92.03%, 93.27%, 93.22% and 92.07% while least population inhibition percentage was observed of N. tabacum 84.70%, 85..08%, 90.70% and 93.14% after 7, 14, 21 and 28 days. The median lethal concentrations were also calculated for all extracts, and it was observed that S. aromaticum was highly toxic to mites at lowest concentration 0.128, 0.028, 0.006 and 0.005 followed by C. longa 0.071, 0.036, 0.027 and 0.016 while least toxicity was observed in C. colocynthis 0.047, 0.030, 0.009 and 0.009 against R. tritici, and lethal concentration (LC50) decreased with an increasing time of exposure of the R. tritici to the ether extract. It was concluded that acaricidal potential of plants is directly proportional to time exposure and during first and second week C. fistula and S. aromaticum followed C. longa but suddenly after two weeks acaricidal potential of S. aromaticum was boost up and it was concluded that C. fistula, S. aromaticum and C. longa proved to be more effective gainst stored grain mites as compared to the others plant extracts. Perhaps, this new study will provide the basis for further investigation in order to develop new and safer acaricides in field conditions.
Article
Full-text available
The nematicidal activity of the essential oil/pure components and plant extracts of naturally grown aromatic plant species against hatching, migration and mortality of the root knot nematode Meloidogyne incognita was investigated. The pure components carvacrol, thymol, and linalool at 1, 2 and 4 mg liter-1 concentrations were the most toxic against M. incognita second-stage juveniles (J2s) followed by terpineol and menthone. Hatching was completely inhibited at low concentrations (2, 4 mg liter-1) of carvacrol, thymol, and linalool. Clove extracts (1 mg liter-1) of Allium sativum significantly reduced hatching activity to below 8%, followed by flower extracts of Foeniculum vulgare which reduced hatching to below 25%. These extracts were also toxic against J2s of M. incognita (LC50 43) followed by leaf extracts of Pinus pinea, Origanum syriacum, Mentha microcorphylla, Eucalyptus spp. and Citrus sinensis with an estimated LC50 of 44, 50, 65, 66 and 121 ppm respectively. Flower extracts of F. vulgare had the highest effect on J2 mortality in sand (86%). The highest concentration of essential oils (6%) was detected in leaf extracts of Origanium syriacum. Over 30 major components were identified in all the plant extracts tested.
Article
Full-text available
The stored grain mites which are one of the important pests of stored grains can modify the chemical composition of the stored wheat. The change in quality of wheat grains in terms of physical characteristics (thousand kernel weight, moisture, wet and dry gluten), chemical characteristics (crude protein, crude fat, fiber, ash and starch) and flour quality tests (falling number and dough rheological characteristics) of wheat variety Lasani-08 when infested by varying levels of mite infestation for six months were observed under laboratory conditions. Maximum moisture contents (18.13%) were observed in grains having highest number of mites (7513), while minimum moisture contents (16.40%) were found in the grains without mites. Thousand kernel weight, wet gluten, dry gluten, crude protein, fat and starch contents were found minimum in the treatments having maximum number of mite population that was 26.07g, 23.33%, 7.13%, 10.07%, 0.72% and 64.14% respectively as compared to control which was 38.50g, 30.47%, 9.20%, 13.85%, 1.28% and 66.17% after six months of storage. The fiber contents increased significantly in highly infested grains (3.47%) as compared in control (1.07%). The ash contents increased in the infested grains, which was from 1.23% in control to 3.47% in the treatment initially treated with 20 pairs of mites. Falling number, water absorption, dough development time, dough stability, mixing tolerance index and softening of dough was also decreased to 428.33 sec, 56.03%, 3.27 min, 4.30 min, 49.67 BU and 76.67 BU, respectively in the highly infested grains as compared to control which was 651.67 sec, 60.73%, 5.13 min, 6.03 min, 67.67 BU and 141.67 BU, respectively. The results will help to determine the nutritional changes in mite infested wheat during storage.
Article
Full-text available
This study were conducted in 2013 - 2014 at Department of Plant Protection, and National Commission for Biotechnology (NCBT) in Faculty of Agriculture, Damascus University. Components of essential oils from the Lavandula officinalis L. were determined using Gas Chromatography- Mass Spectrometry (GC-MS). The results showed that yield of lavender oils province were 2.71% (fresh flowers) and 0.52% (fresh leaves). Thirty- eight and Thirty -one compounds were identified in the two essential oils, respectively. The important components were Linalool (33.16% & 9.34%), Borneol (18.89% & 6.75%), Eucalyptol (8.85% & 22.40%) and Champhor (7.15% & 23.34%) in fresh flowers and leaves, respectively. The fungistatic activity of the essential oils was tested against Fusarium solani (Mart.) Sacc, F. oxysporum Schltdl, Aspergillus niger Van., Botrytis cinerea (Pers.:Fr.) and Penicillium digitatum (Pers.: Fr.) on PDA medium by the poisoned food technique. The results showed that essential oil from fresh flowers of L. officinalis L. at 500, 1000 and 1500 ppm exhibited strong antifungal activity than oil obtained from fresh leaves on the tested fungi. Large percentage antifungal activities of lavender oil are related with Linalool and Borneol of terpenes as the important compounds. Benomyl fungicide at 120 ppm had completely inhibitory effect on tested fungi.The essential oil from fresh flowers showed the highest fungistatic activity with significant differences in dose. Fusarium solani, F. oxysporum and A. niger were the most sensitive fungi P. Digitatum and B. cinerea the most resistant of two the essential oils. Therefore, essential oils from fresh flowers of L. officinalis L. could be used to control the fungal Fusarium solani, F. oxysporum and A. niger. © 2014, International Journal of ChemTech Research. All rights reserved.
Article
Full-text available
The present studies were conducted to determine the impact of mite population on germination in seeds of Maize and Mung from farmer's holdings of Tehsil Toba Tek Singh viz., Toba Tek Singh, Janiwala, Dabawala, Jalalpur, Dulum, Rajana, Bairianwala, Pairra and Chatiana. Mite population and germination were recorded at the initial stage of the experiment and after three months of storage. The results revealed highly significant differences between pest mite populations at different localities. In Maize maximum and minimum initial and final population of harmful mites were recorded from Rajana which was 3.33 and 6.66 respectively. In mung, maximum initial and final population of harmful mites was 2.33 and 5.33 respectively, from Rajana. Significant variations were recorded in initial and final germination percentage of the both commodities which ranged 86-91, 74.67-81 respectively, in maize and 85.83-91.83, 75.33-85.33 respectively in mung. Negative correlation was observed between harmful mite population and final germination percentage of maize and mung with correlation coefficients of -0.07 and -0.507 respectively.
Article
Methanol extracts from 77 oriental medicinal plant species in 42 families were tested for their larvicidal and antifeeding activities against larvae of Lymantria dispar L., Acantholyda posticalis MATSUMURA, Hyphantria cunea DRURY and Dendrolimus spectabilis BUTLER, using leaf-dipping method. Insecticidal and antifeeding activities varied with both plant and insect species. The extracts of Leonurus sibiricus leaves, Cynanchum wilfordii roots and Astragalus membranaceus roots revealed both potent larvicidal and antifeeding activities against L. dispar. Especially, A. membranaceus extract was highly toxic to A. posticalis larvae. Strong antifeeding activity against both L. dispar and H. cunea was obtained from the extract of Jeffersonia dubia roots. As naturally occurring insecticides, these plant-derived materials could be useful as an alternative for synthetic insecticides for managing field populations of these forest insect pests.
Article
Investigations on the efficacy of Ocimum sanctum and Glycyrrhiza glabra extracts were carried out against Tyrophagus putrescentiae (Schrank), a pest of stored grains in oat flakes. Lowest number of live mites was obtained with highest concentration of both the extracts tested (10%) followed by 5, 2, 1 as compared to control (untreated oat flakes). Irrespective of concentration, 20.12 mites were recovered on first sampling day (i.e., 15 days), which significantly increased in 30 (49.56 mites) and 45 days post-treatment (82.08 mites) in O. sanctum treated oat flakes with initial inoculums of 20 mites but significantly lower than recorded in controls (132.73 mites). Similar trend was witnessed in G. glabra treated oat flakes; showing 16.96, 39.96 and 68.32 mites after 15, 30 and 45 days post-treatment. O. sanctum treatments provided 67.04-92.13, 67.91-87.22 and 66.08-88.35% relative protection whereas, G. glabra extract provided 71.53-94.75, 78.34-92.36 and 77.26-92.05% population reduction against T. putrescentiae after 15, 30 and 45 days post-treatment at respective concentrations. Amongst the two, aqueous extract of G. glabra was more effective in reducing the mite population at all the concentrations tested.