ArticlePDF Available

Harvesting the Wind: A Study on the Feasibility and Advancements of Wind Energy in Turkey

Authors:
  • Chemical Engineering Department, Turkey

Figures

Content may be subject to copyright.



Araştırma Makalesi
www.ejosat.com ISSN:2148-2683



Research Article
 












 













              
              enerji


     
aha sonra

 mada elde
edilen 


 

       
 
         

         
   
         


      
  


   
        
 

        
    
         
        



        

        

      

  
         
 

      
       

 

   


   
        
        


        
 
 


    
       




         
 
         




         


 
        
         
 
        
  
            

      

          
          
     
          
         
            

            
    


   
 
 
       
      
       


            
 

       
  

    

          
    
         
         
  


     
        
        
 


 

        

        


         
         



        
      

      
        
     
 



      
          
      
   
      


       
       
         
      

    I     



          
        

         
      


        
  
      

        
    

      




       

       
         
      
        
 
       
       

        
       
       
         
 
        
      

        

 

       
       
        

   
    
 
        
    



         
         

  
        

  
         
      

       
 


  

           
       

       
     
   
        


           

           

 


         

     
        
       
        


          







         




          
       

       



  
         
           
         



  


           


         




          
   
 












 

        


     

        
         
        
   
        
       


 
        
 

         

  




          



         
       
       
         



        

        

         
 

              
           
       


        
      

        
          
        

  
        
       
  

 
       

        
  







          




        
        
 
         
      
        

      


 

 


 
























        

        

         
           
    

          
         


          
        
         

        
  
         
         
       

      
         
       
        
 



 

    
       
       

          


 

       
  



       
      

          



 

      


         

     



         
      




       


   

       

   


   
      


       
      

    

          

       

           
      




       
 


... Additionally, intermittent wind patterns can pose challenges, necessitating the integration of energy storage solutions to ensure a continuous power supply. Despite these challenges, the harnessing of wind energy showcases the immense potential for providing sustainable power to fog computing systems, particularly in regions with favorable wind conditions (Ayar et al., 2023). Fig. 12 shows the wind energy-powered harvesting system. ...
Article
Full-text available
Undoubtedly, energy efficiency forms a fundamental pillar of the fog computing model. Processing data at the network's edge leads to a substantial reduction in energy consumption when contrasted with the alternative of transmitting all data to remote data centers, typically associated with cloud computing. This energy-saving approach not only promotes a more environmentally friendly footprint but also serves to prolong the operational life of battery-powered IoT devices, a particularly critical aspect, especially in remote or challenging-to-access environments. Thus, fog computing plays a crucial role in the operation of massive energy-saving IoT or green IoT networks. This study offers a comprehensive survey of recent research endeavors focused on achieving energy-efficient fog computing and eco-friendly fog computing solutions for IoT networks. The article initiates with an introductory overview of fog computing and subsequently delves into an in-depth exploration of various energy-conservation techniques tailored for fog computing environments. These techniques encompass energy-conscious architectural designs, data aggregation and compression strategies, low-power hardware implementations, energy-aware scheduling methods, task offloading mechanisms, resource utilization optimization , virtualization techniques, and energy harvesting approaches. In addition, this investigation introduces novel methodologies and outlines prospective research pathways to bolster the energy efficiency of fog computing. Moreover, practical applications are presented to highlight the potential advantages and obstacles associated with deploying energy-conscious strategies, providing insights into their effectiveness and practical implications in real-world scenarios. Essentially, this article can be considered a roadmap towards the realization of a sustainable fog computing ecosystem for extensive IoT networks. In addition, opens the door for interested researchers to follow and continue the vision of energy-efficient computing.
... Increasing the devices' total energy efficiency is the goal of developing new wind turbine designs. Increasing energy output and increased wind kinetic energy may be captured by more effective turbines [11]. Enhancing energy capture and efficiency in low wind speed regions is essential to develop double-layered wind turbines. ...
Article
Full-text available
This research investigated the electric generation capacity of a MANCESTEM wind turbine, focusing on its design, performance metrics, and comparative analysis of its inner and outer layers. The study employed a Research and Development (R & D) Research Design, aiming to identify its current, voltage, and power generation and emphasizing a strategic balance between maximizing energy capture and ensuring structural stability through detailed engineering considerations. Results indicate the turbine's consistent and stable performance in generating electrical current, voltage, and power, with the inner layer outperforming the outer layer. Statistical analysis confirmed that there is a significant difference on the current, voltage, and power generation capacities between the inner and outer layers of the turbine providing a foundation for targeted optimizations. Recommendations include optimizing the outer layer, conducting detailed performance mapping under diverse environmental conditions, and integrating smart technologies for sustained efficiency. The study contributes valuable insights to wind energy, paving the way for future advancements in turbine technology and sustainable energy solutions.
... Conventional fuels are non-renewable energy sources that are certain to run out one day. The reserves of conventional combustible (fossil) fuels (coal, mineral oil and natural gas) will be completely depleted in 50 to 200 years if they are used at today's rate (Ayar, Yalçın & Dağ, 2023). It is also known that environmental problems such as climate change, greenhouse effect and air pollution are caused by the burning of fossil fuels. ...
Article
Conventional fuels are not renewable resources and are getting depleted day by day. In addition, the by-products of the combustion of these fuels cause environmental problems. This situation, which threatens the world, has led to the search for new energy sources. Hydrogen, as an energy carrier, creates a potential for solving these problems. Hydrogen is the most abundant element in the universe, with the highest energy content per weight of all conventional fuels. But unlike conventional fuels, hydrogen is not easily found in nature and is produced from primary energy sources. Therefore, it is a renewable fuel. When used in a fuel cell, only water is produced as a by-product. From this point of view, when compared to any fuel, it stands out as a fuel with the highest energy content and does not contain carbon. The biggest problem in using hydrogen gas as a fuel is that it is not found in nature and economically cheap production methods are needed. Hydrogen can be produced in two different ways, biological and chemical. Chemical methods are not preferred because they are costly. Biological methods, on the other hand, are low-cost, sustainable, environmentally friendly methods. In this study, information of hydrogen energy and its historical development is given. Thus, a projection is made for the importance and future of hydrogen energy. Then, hydrogen production methods are explained and compared. In addition, information about hydrogen storage types is given.
Article
Full-text available
Dünya çapında ve ülkemizde yaygın olarak kullanılan yenilenebilir enerji kaynaklarından rüzgâr enerjisi Türkiye’nin enerji ihtiyacının %10,6’sını karşılamaktadır. Rüzgâr türbini, rüzgârdaki kinetik enerjiyi elektrik enerjisine dönüştüren sistemdir. Rüzgâr türbinin tasarımı ve doğal faktörler üretim kapasitesini doğrudan ve dolaylı olarak etkilemektedir. Doğal faktörlerin içerisinde rüzgâr santralinin kurulduğu konum ve konumdaki hâkim hava olayları yer almaktadır. Rüzgârdan üretilen enerjinin hava sıcaklığı, nemlilik, anlık esinti ve rüzgâr hızı gibi değişkenler ile ilişkisinin olduğu düşünülmektedir. Bu çalışmada, bahsedilen hâkim hava olayları verilerinin üretilen enerji ile arasındaki ilişkinin istatistiksel analizi yapılmış ve yorumlanmıştır. Araştırma için Eskişehir bölgesinde kurulu, Kartal Res rüzgar enerji santrali seçilmiştir. İlgili rüzgar tribününden Ekim-2023 ayı için toplanan veriler ile hava koşulları verileri arasındaki ilişkiler pearson-korelasyon analizi ile belirlenmiş, üretilen enerjiye etki eden değişkenlerin belirlenmesi için ise regresyon analizi yapılmıştır. Üretilen enerjinin tahmininde rüzgar hızına bağlı olarak karesel matematiksel modelin daha iyi olduğu ortaya konmuştur. Bahsedilen karesel matematiksel modelin üretilen enerjideki değişkenliği R2(adj)=%64,2 ile iyi derecede açıkladığı tespit edilmiştir
Article
n many different places, wind energy has the potential to solve many challenges. Reducing dependency on distant power networks increases energy security, provides an alternative to energy independence, and advances environmental sustainability as a renewable energy source. Furthermore, the development of wind energy established in these regions improves regional economies and creates possibilities for employment in manufacturing, construction, maintenance, and operation. Landowners might receive more revenue from wind farms through land leasing agreements. Furthermore, wind energy diversifies the energy mix, reducing its vulnerability to fluctuations in energy prices and environmental degradation and decreasing energy expenditures for individuals and companies. Sustainable energy sources are crucial to solving communities' unique energy problems. This study aims to assess Saudi Arabia's wind energy potential. It completes assessments of wind resource availability, site suitability, wind turbine technology, energy output, environmental impact, and economic viability. Statistical techniques such as time series analysis, regression analysis, and probability distributions are utilized to understand and improve wind farm efficiency.
Article
Full-text available
Türkiye, Avrupa’nın yenilenebilir enerji potansiyeli yüksek devletleri arasında yer almasına ve enerji rezervleri açısından zengin olmasına rağmen, bu rezervleri tam kapasite ile kullanmayı sağlayacak bir teknoloji seviyesine ulaşamamıştır. Bu durum, sadece Türkiye açısından değil, dünya devletleri açısından da önem arz etmektedir. Dünyada özellikle de gelişmiş devletlerde temel bir enerji kaynağı olarak yenilenebilir enerji türleri üzerinde önemli çalışmalar yürütülmektedir. Bu gelişmiş devletlerden biri, rüzgâr enerjisi konusunda bilgi birikimine ve ileri teknolojiye sahip ülke olarak bilinen Danimarka’dır. Bu ülke, elektrik enerjisinin %48’ini 2020 yılı itibariyle rüzgâr enerjisinden elde etmektedir. 2050 yılında ise enerjisinin tamamını yenilenebilir enerjiden elde etmeyi amaçlamaktadır. Türkiye’nin de rüzgâr enerjisi potansiyelinin yüksek olması nedeniyle, Danimarka ile iş birliği çerçevesinde kurulacak rüzgâr enerjisi santralleriyle elektrik tüketiminin önemli bir kısmını rüzgâr kaynağından karşılayan bir ülke olacağı öngörülebilir. Bu çalışmada, Türkiye’nin mevcut yenilenebilir enerji potansiyelinin önemine vurgu yapılarak, Danimarka’da rüzgâr enerjisi ile ilgili düzenlemelerin Türkiye’de de uygulanabilirliği incelenmiştir. Bu kapsamda, yenilenebilir enerji sektöründe rüzgâr enerjisine ilişkin kuramsal bilgi birikiminin somutlaştırılması ve Danimarka örneğinin incelenmesi sonucu elde edilen verilerle Türkiye’de mevcut ve potansiyel durumlar için öngörüler oluşturulması hedeflenmiştir.
Article
Full-text available
Renewable energy is a main avenue to reduce greenhouse gas emissions and mitigate climate change, as well as health impacts, associated with mining, refining and burning fossil fuels. Isolated locations with consistent natural energy resources patterns, such as Hawaii, have great potential to reduce their dependence on fossil fuels and generate energy locally. Using a regional atmospheric model, we explored the wind-power potential of Oahu at high resolution (1 km) and over a period (2005–2014) that allowed the assessment of variability from hourly to interannual. A validation of the model using both weather stations and wind farms showed the need for observational data at the turbine hub height to correctly estimate model errors for wind power applications because the model response can be quite different at standard near-surface wind measurement heights. The model performance at larger timescales evidences the potential for long-term assessment of wind characteristics. On the other hand, the model errors at sub-daily timescales indicated limitations of short-term planning, except for sudden changes in wind speed, which were accurately simulated. Our results identify optimal locations for wind power plants from capacity factor estimates, which include analysis of mean, variability at different timescales, ramps, and sustained periods of low generation.
Chapter
Full-text available
Wind energy technology is based on the ability to capture the energy contained in air motion. Wind power quantifies the rate of this kinetic energy extraction. Wind power is also the rate of kinetic energy flow carried by the moving air. Because the motion is both the source of the energy and the means of its transport, the efficiency of wind power extraction is a balance of slowing down the wind while maintaining a sufficient flow. This chapter quantifies these fundamental concepts and discusses the nature of wind.
Article
The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind power is integrated into grids on large scales. Therefore, accurate forecasting of wind speed and wind power (WS/WP) has gradually taken on a key role in reducing wind power fluctuations in system dispatch planning. With the development of artificial intelligence technologies, especially deep learning, increasing numbers of deep learning-based models are being considered for WS/WP forecasting due to their superior ability to deal with complex nonlinear problems. This paper comprehensively reviews the various deep learning technologies being used in WS/WP forecasting, including the stages of data processing, feature extraction, and relationship learning. The forecasting performance of some popular models is tested and compared using two real-world wind datasets. In this review, three challenges to accurate WS/WP forecasting under complex conditions are identified, namely, data uncertainties, incomplete features, and intricate nonlinear relationships. Moreover, future research directions are summarized as a guide to improve the accuracy of WS/WP forecasts.
Article
Wind energy is a virtually carbon-free and pollution-free electricity source, with global wind resources greatly exceeding electricity demand. Accordingly, the installed capacity of wind turbines grew at an annualized rate of >20% from 2000 to 2019 and is projected to increase by a further 50% by the end of 2023. In this Review, we describe the factors that dictate the wind resource magnitude and variability and illustrate the tools and techniques that are being used to make projections of wind resources and wind turbine operating conditions. Natural variability due to the action of internal climate modes appears to dominate over global-warming-induced non-stationarity over most areas with large wind energy installations or potential. However, there is evidence for increased wind energy resources by the end of the current century in northern Europe and the US Southern Great Plains. New technology trends are changing the sensitivity of wind energy to global climate non-stationarity and, thus, present new challenges and opportunities for innovative research. The evolution of climate modelling to increasingly address mesoscale processes is providing improved projections of both wind resources and wind turbine operating conditions, and will contribute to continued reductions in the levelized cost of energy from wind power generation. Wind energy production has increased in recent years to mitigate climate change. However, climate change may itself modify wind energy resources. This Review discusses the climatic mechanisms influencing current and future wind energy production, finding spatial variability in projected responses and a dominance of internal variability.
Article
Wind energy is a significant and eligible source that has the potential for producing energy in a continuous and sustainable manner among renewable energy sources. However, wind energy has several challenges, such as initial investment costs, the stationary property of wind plants, and the difficulty in finding wind-efficient energy areas. In this study, long-term wind power forecasting was performed based on daily wind speed data using five machine learning algorithms. We proposed a method based on machine learning algorithms to forecast wind power values efficiently. We conducted several case studies to reveal performances of machine learning algorithms. The results showed that machine learning algorithms could be used for forecasting long-term wind power values with respect to historical wind speed data. Furthermore, the results showed that machine learning-based models could be applied to a location different from model-trained locations. This study demonstrated that machine learning algorithms could be successfully used before the establishment of wind plants in an unknown geographical location whether it is logical by using the model of a base location.
Article
Load forecasting is very important for planning and operation in power system energy management. It reinforces the energy efficiency and reliability of power systems. Problems of power systems are tough to solve because power systems are huge complex graphically, widely distributed and influenced by many unexpected events. It has taken into consideration the various demographic factors like weather, climate, and variation of load demands. In this paper, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models were used to analyse data collection obtained from the Metrological Department of Malaysia. The data sets cover a seven-year period (2009- 2016) on monthly basis. The ANN and ANFIS were used for long-term load forecasting. The performance evaluations of both models that were executed by showing that the results for ANFIS produced much more accurate results compared to ANN model. It also studied the effects of weather variables such as temperature, humidity, wind speed, rainfall, actual load and previous load on load forecasting. The simulation was carried out in the environment of MATLAB software.
Article
Nowadays, due to some environmental restrictions and decrease of fossil fuel sources, renewable energy sources and specifically wind power plants have a major part of energy generation in the industrial countries. To this end, the accurate forecasting of wind power is considered as an important and influential factor for the management and planning of power systems. In this paper, a novel intelligent method is proposed to provide an accurate forecast of the medium-term and long-term wind power by using the uncertain data from an online supervisory control and data acquisition (SCADA) system and the numerical weather prediction (NWP). This new method is based on the particle swarm optimization (PSO) algorithm and applied to train the Type-2 fuzzy neural network (T2FNN) which is called T2FNN-PSO. The presented method combines both of fuzzy system's expert knowledge and the neural network's learning capability for accurate forecasting of the wind power. In addition, the T2FNN-PSO can appropriately handle the uncertainties associated with the measured parameters from SCADA system, the numerical weather prediction and measuring tools. The proposed method is applied on a case study of a real wind farm. The obtained simulation results validate effectiveness and applicability of the proposed method for a practical solution to an accurate wind power forecasting in a power system control center.
Article
The energy sector has links to various local and global issues. Wind energy, a low carbon renewable energy source, exhibits promise in dealing with many crucial issues, such as sustainable development and global warming. While the synergy between many advantages of wind energy and favorable laws makes the wind market bloom, efficient and reliable utilization of a wind system requires investment in the infrastructure beyond power generation facilities. To increase the reliability of the current electrical systems and to make them more capable of dealing with the challenges of wind energy would be possible with the utilization of smart grid systems. The integration of sustainable energy resources with smart grids such that energy becomes bidirectional has many far-reaching advantages in the sector. Therefore, this paper addresses the main topics of wind energy and smart grids and proposes a framework for the implementation of a smart grid in İzmir for wind energy. This application model is an example and can be of interest to researchers from many countries seeking to integrate renewable resources with fossil fuels to meet their future energy needs.
Chapter
this chapter presents a comprehensive coverage on the modeling and control design of variable speed wind energy conversion systems. Different wind turbine, generator configurations and converter topologies are presented. The stability and power quality issues are also studied. In the simulation studies presented a squirrel-cage induction generator (SCIG)-based wind energy conversion system (WECS) is considered. The first control scheme considered in this chapter is based on vector control theory. Indirect field oriented control (IFOC) scheme with proportional and integral (PI) are designed for SCIG speed control. A simple maximum power point tracking (MPPT) strategy is used to determine the optimal speed under variable wind speed conditions which is then used as the reference in the IFOC scheme. Power flow between the supply and the inverter is regulated via simultaneous control of the active and reactive currents of the grid and the DC link voltage. The second control approach discussed in this chapter is based on direct torque control (DTC) theory which has been successfully used to a variety of high performance industrial AC drives. The DTC space vector modulation (DTC-SVM) is designed and applied to two and three level voltage source inverter (VSI) to improve the energy efficiency of the variable speed SCIG-based WECS. Three different topologies are proposed to control the torque and flux of the SCIG. A series of simulations are presented to demonstrate the performance of these proposed control schemes under a variety of operating conditions including symmetrical and asymmetrical faults. Electric power quality issues are also analysed and discussed in terms of harmonics and compared with respect to different converter topologies and control strategies.