Article

Discovery of novel virulence mechanisms in Clostridium botulinum type A3 using genome-wide analysis

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Objective: Clostridium botulinum type A is a neurotoxin-producing, spore-forming anaerobic bacterium that causes botulism in humans. The evolutionary genomic context of this organism is not yet known to understand its molecular virulence mechanisms in the human intestinal tract. Hence, this study aimed to investigate the mechanisms underlying virulence and pathogenesis by comparing the genomic contexts across species, serotypes, and subtypes. Methods: A comparative genomic approach was used to analyze evolutionary genomic relationships, intergenomic distances, syntenic blocks, replication origins, and gene abundance with phylogenomic neighbors. Results: Type A strains have shown genomic proximity to group I strains with distinct accessory genes and vary even within subtypes. Phylogenomic data showed that type C and D strains were distantly related to a group I and group II strains. Synthetic plots indicated that orthologous genes might have evolved from Clostridial ancestry to subtype A3 strains, whereas syntonic out-paralogs might have emerged between subtypes A3 and A1 through α-events. Gene abundance analysis revealed the key roles of genes involved in biofilm formation, cell-cell communication, human diseases, and drug resistance compared to the pathogenic Clostridia. Moreover, we identified 43 unique genes in the type A3 genome, of which 29 were involved in the pathophysiological processes and other genes contributed to amino acid metabolism. The C. botulinum type A3 genome contains 14 new virulence proteins that can provide the ability to confer antibiotic resistance, virulence exertion and adherence to host cells, the host immune system, and mobility of extrachromosomal genetic elements. Conclusion: The results of our study provide insight into the understanding of new virulence mechanisms to discover new therapeutics for the treatment of human diseases caused by type A3 strains.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Understanding its pathophysiological mechanisms is vital for controlling toxicity. Genome-scale studies on virulence and metabolic crosstalk have been of great concern in recent systems biology research [5,[10][11][12][13][14]. C. botulinum strain Hall (CBOA) has a genome consisting of a circular chromosome (3,886,916 bp) and a plasmid (16,344 bp). ...
... A precise operome annotation can lead to new functions in veterinary and human therapeutics [33]. Despite various methods developed to aid operome function from prokaryotic genomes, no combined bioinformatics prediction approach has been employed for C. botulinum strains [10][11][12][13][34][35][36]. A combined bioinformatics approach has been used to functionally annotate, characterize, and categorize operome from prokaryotes [18,37,38]. ...
... These proteins have specialized roles in virulence and host interactions, providing insights into their evolutionary relationships and functional roles. Therefore, this study enhances our understanding of its genomic and proteomic structure, offering insights into its metabolic versatility, defense strategies, and virulence mechanisms at the systems level [5,[10][11][12][13][14]. ...
... Synteny is a comparative genomics approach that aligns shared segments of DNA between a pair of genomes, highlighting differences in a shared segment location (11). The syntenic approach has been used as a visual representation for rearrangements, discovery of new shared segments, DNA order changes due to evolution, and genomic dynamics of subspecies (12)(13)(14). A range of tools exist that provide synteny block construction (e.g., Sibelia) and visualization (e.g., Synteny Portal) (15,16). ...
Article
Full-text available
Relationships between bacterial taxa are traditionally defined using 16S rRNA nucleotide similarity or average nucleotide identity. Improvements in sequencing technology provide additional pairwise information on genome sequences, which may provide valuable information on genomic relationships. Mapping orthologous gene locations between genome pairs, known as synteny, is typically implemented in the discovery of new species and has not been systematically applied to bacterial genomes. Using a data set of 378 bacterial genomes, we developed and tested a new measure of synteny similarity between a pair of genomes, which was scaled onto 16S rRNA distance using covariance matrices. Based on the input gene functions used (i.e., core, antibiotic resistance, and virulence), we observed varying topological arrangements of bacterial relationship networks by applying (i) complete linkage hierarchical clustering and (ii) K-nearest neighbor graph structures to synteny-scaled 16S data. Our metric improved clustering quality comparatively to state-of-the-art average nucleotide identity metrics while preserving clustering assignments for the highest similarity relationships. Our findings indicate that syntenic relationships provide more granular and interpretable relationships for within-genera taxa compared to pairwise similarity measures, particularly in functional contexts. IMPORTANCE Given the prevalence and necessity of the 16S rRNA measure in bacterial identification and analysis, this additional analysis adds a functional and synteny-based layer to the identification of relatives and clustering of bacteria genomes. It is also of computational interest to model the bacterial genome as a graph structure, which presents new avenues of genomic analysis for bacteria and their closely related strains and species.
... Synteny is a comparative genomics approach that aligns shared segments of DNA between a pair of genomes, highlighting differences in a shared segment location [11]. The syntenic approach has been used as a visual representation for rearrangements, discovery of new shared segments, DNA order changes due to evolution, and genomic dynamics of subspecies [12][13][14]. A range of tools exist that provide synteny block construction (e.g., Sibelia) and visualization (e.g., Synteny Portal) [15,16]. ...
Preprint
Relationships between bacterial taxa are traditionally defined using 16S rRNA nucleotide similarity or average nucleotide identity. Improvements in sequencing technology provides additional pairwise information on genome sequences, which may provide valuable information on genomic relationships. Mapping orthologous gene locations between genome pairs, known as synteny, is typically implemented in the discovery of new species and has not been systematically applied to bacterial genomes. Using a dataset of 378 bacterial genomes, we developed and tested a new measure of synteny similarity between a pair of genomes, which was scaled onto 16S rRNA distance using covariance matrices. Based on the input gene functions used (i.e., core, antibiotic resistance, and virulence), we observed varying topological arrangements of bacterial relationship networks by applying (1) complete linkage hierarchical clustering and (2) KNN graph structures to syntenic-scaled 16S data. Our metric improved clustering quality comparatively to state-of-the-art ANI metrics while preserving clustering assignments for the highest similarity relationships. Our findings indicate that syntenic relationships provide more granular and interpretable relationships for within-genera taxa compared to pairwise similarity measures, particularly in functional contexts.
Article
Full-text available
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Article
Full-text available
Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data.
Article
Full-text available
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Article
Full-text available
CVTree is an alignment-free algorithm to infer phylogenetic relationships from genome sequences. It had been successfully applied to study phylogeny and taxonomy of viruses, prokaryotes, and fungi based on the whole genomes, as well as chloroplasts, mitochondria, and metagenomes. Here we presented the standalone software for the CVTree algorithm. In the software, an extensible parallel workflow for the CVTree algorithm was designed. Based on the workflow, new alignment-free methods were also implemented. And by examining the phylogeny and taxonomy of 13,903 prokaryotes based on 16S rRNA sequences, we showed that CVTree software is an efficient and effective tool for the studying of phylogeny and taxonomy based on genome sequences. Code availability: https://github.com/ghzuo/cvtree.
Article
Full-text available
Clostridium perfringens Type G strains cause necrotic enteritis (NE) in poultry, an economically important disease that is a major target of in-feed antibiotics. NE is a multifactorial disease, involving not only the critically-important NetB toxin, but also additional virulence and virulence-associated factors. We previously identified a C. perfringens chromosomal locus (VR-10B) associated with disease-causing strains that is predicted to encode a sortase-dependant pilus. In the current study, we sought to provide direct evidence for the production of a pilus by C. perfringens and establish its role in NE pathogenesis. Pilus structures in virulent C. perfringens strain CP1 were visualized by transmission electron microscopy (TEM) of immuno-gold labelled cells. Filamentous structures were observed extending from the cell surface in wild-type CP1, but not from isogenic pilin-null mutant strains. In addition, immuno-blotting of cell surface proteins demonstrated that CP1, but not the null mutant strains, produced a high molecular weight ladder-like pattern characteristic of a pilus polymer. Binding to collagen types I, II and IV was significantly reduced (Tukey’s; p<0.01) in all three pilin mutants compared to CP1, and could be specifically blocked by CnaA and FimA antisera, indicating that these pilins participate in adherence. Furthermore, both fimA and fimB null mutants were both severely attenuated in their ability to cause disease in an in vivo chicken NE challenge model. Together, these results provide the first direct evidence for the production of a sortase-dependant pilus by C. perfringens, and confirm its critical role in NE pathogenesis and collagen-binding. Importance In necrotic enteritis (NE), an intestinal disease of chickens, Clostridium perfringens cells adhere tightly to damaged intestinal tissue, but the factors involved are not known. We previously discovered a cluster of C. perfringens genes predicted to encode a pilus, a hair-like bacterial surface structure commonly involved in adherence. In the current study, we have directly imaged this pilus using transmission electron microscopy (TEM). We also show that inactivation of the pilus genes stops pilus production, significantly reducing the bacterium's ability to bind collagen and cause disease. Importantly, this is the first direct evidence for the production of a sortase-dependant pilus by C. perfringens, revealing a promising new target for developing therapeutics to combat this economically important disease.
Article
Full-text available
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of “genomics” has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel’s group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host–pathogen interactions.
Article
Full-text available
Peptidase clan is the largest group of proteases with common ancestry as identified by structural homology. A peptidase with unknown catalytic type is referred to as an unassigned peptidase clan, which can be classified into 8 peptidase families (U32, U40, U49, U56, U57, U62, U69, and U72). The members of this clan are widely dispersed in diverse microbial pathogens and their apparent involvement in the microbial virulence is not yet known for antibiotic drug discovery. In the present study, we have analyzed their common structural and functional characteristics using evolutionary genetic analysis. As shown by our analysis, the molecular and functional characteristics of this clan diverged across the microbial pathogens. It also indicates that the members of each family might have evolved independently and a peptidase core converged to interconnect the unassigned peptidase clan. Several evolutionary constraints have been identified as selective measures from this clan that inferred on their functional evolution and divergence. Genetic diversity analysis described that many members of this clan have evolved as new molecular functions across the microbial pathogens by imposing the Darwinian positive selection. Structural analysis of this study indicates that members of this clan have a conserved fold, convergence in functional parts, and divergence in spatial structural arrangements. As the results of our study, the neofunctionalization of several unassigned peptidases provides a full virulence for microbial pathogens occupying at the different pathophysiological niche.
Article
Full-text available
The genomic signatures of positive selection and evolutionary constraints can be detected by analyses of nucleotide sequences. One of the most widely used programs for this purpose is CodeML, part of the PAML package. Although a number of bioinformatics tools have been developed to facilitate the use of CodeML, these have various limitations. Here, we present a wrapper tool named EasyCodeML that provides a user‐friendly graphical interface for using CodeML. EasyCodeML has a custom running mode in which parameters can be adjusted to meet different requirements. It also offers a preset running mode in which an evolutionary analysis pipeline and publication‐quality tables can be exported by a single click. EasyCodeML allows visualized, interactive tree labelling, which greatly simplifies the use of the branch, branch‐site, and clade models of selection. The program allows comparison of major codon‐based models for analyses of selection. EasyCodeML is a stand‐alone package that is supported in Windows, Mac, and Linux operating systems, and is freely available at https://github.com/BioEasy/EasyCodeML.
Article
Full-text available
Clostridium perfringens type F enteric diseases, which include a very common form of food poisoning and many cases of antibiotic-associated diarrhea, develop when type F strains sporulate and produce C. perfringens enterotoxin (CPE) in the intestines. Spores are also important for transmission of type F disease. Despite the importance of sporulation for type F disease and the evidence that C. perfringens sporulation begins with phosphorylation of the Spo0A transcriptional regulator, the kinase phosphorylating Spo0A to initiate sporulation and CPE production had not been ascertained. In response, the current report now provides identification of an orphan histidine kinase named CPR0195 that can directly phosphorylate Spo0A. Results using a CPR0195 null mutant indicate that this kinase is very important for initiating C. perfringens sporulation and CPE production. Therefore, the CPR0195 kinase represents a potential target to block type F disease by interfering with intestinal C. perfringens sporulation and CPE production.
Article
Full-text available
The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.
Article
Full-text available
A rod-shaped, Gram-stain-positive, obligately anaerobic, xylan-degrading bacterium, SK-Y3T, was isolated from oily-sludge of Shengli oilfield, China. Optimum growth occurred at 50 °C, at pH 7.5 and without addition of NaCl. The predominant cellular fatty acids of strain SK-Y3T were iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0, and the main polar lipids were glycolipids (GL), lipids (L), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG); no respiratory quinones were detected. The genomic DNA G+C content was 37.2 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain SK-Y3T belongs to clostridial cluster III, exhibiting 91-92% sequence similarity to the most closely related species, namely Clostridium clariflavum, Clostridium straminisolvens and Acetivibrio cellulolyticus. Based on distinct physiological and phylogenetic differences from the aforementioned described taxa, strain SK-Y3T (=DSM 103557T=ACCC 19952T) is proposed as the type strain of a novel species of a new genus, Petroclostridium xylanilyticum gen. nov., sp. nov. Furthermore, analysis through 16S rRNA gene, ribosomal protein and whole genome sequences indicated that clostridial cluster III members should be reclassified into four novel genera for which the names Hungateiclostridium gen. nov., Thermoclostridium gen. nov., Ruminiclostridium gen. nov. and Pseudoclostridium gen. nov. are proposed. In combination with the genera Anaerobacterium, Cellulosibacter, Ercella, Fastidiosipila, Mageeibacillus, Pseudobacteroides, Petroclostridium and Saccharofermentans, clostridial cluster III members formed a monophyletic clade within the order Clostridiales but that was clearly distinguished from other Ruminococcaceae members, which is proposed as a novel family, Hungateiclostridiaceae fam. nov.
Article
Full-text available
Integrated platforms for storage, management, analysis and sharing of large quantities of omics data have become fundamental to comparative genomics. CoGe (https://genomevolution.org/coge/) is an online platform designed to manage and study genomic data, enabling both data- and hypothesis-driven comparative genomics. CoGe’s tools and resources can be used to organize and analyse both publicly available and private genomic data from any species. Here, we demonstrate the capabilities of CoGe through three example workflows using 17 Plasmodium genomes as a model. Plasmodium genomes present unique challenges for comparative genomics due to their rapidly evolving and highly variable genomic AT/GC content. These example workflows are intended to serve as templates to help guide researchers who would like to use CoGe to examine diverse aspects of genome evolution. In the first workflow, trends in genome composition and amino acid usage are explored. In the second, changes in genome structure and the distribution of synonymous (Ks) and non-synonymous (Kn) substitution values are evaluated across species with different levels of evolutionary relatedness. In the third workflow, microsyntenic analyses of multigene families’ genomic organization are conducted using two Plasmodium-specific gene families—serine repeat antigen, and cytoadherence-linked asexual gene—as models. In general, these example workflows show how to achieve quick, reproducible and shareable results using the CoGe platform. We were able to replicate previously published results, as well as leverage CoGe’s tools and resources to gain additional insight into various aspects of Plasmodium genome evolution. Our results highlight the usefulness of the CoGe platform, particularly in understanding complex features of genome evolution.
Article
Full-text available
Clostridium botulinum is a foodborne bacterium capable of producing a potent botulinum neurotoxin with seven serotypes (A–G). Type A strains are being a great concern for causing foodborne, infant and wound botulism in worldwide. Antibacterial resistance is a not a big problem for treating diseases caused by this organism, but antitoxin treatment available today has not been reverse the paralysis. C. botulinum strain Hall A Sanger is a clinically important strain studied intensively for its biochemical and molecular characteristics. Gene cluster for botulinum toxin is strain-specific in nature, which might have evolved independently of each other. Type A strains have a common mechanism for transcription and metabolic regulation of botulinum toxin. BotR is a known transcriptional regulator that controls the expression of botulinum toxin in type A strains in response to nutritional factors in the gut. Two-component system is a key regulator required for the full virulence of this bacterium underlying response to the host and environmental factors. Amino-acid induced germination and chitin catabolic systems are firmly established in this organism, performing the separate processes of toxin or virulence factor synthesis, sporulation and germination. Several virulence factors have recently been identified from this genome, but molecular function of them in the gut of humans is not yet to be known. Genome-scale models are being as an integrated knowledge base for detailed understanding of its host-microbe interactions during the intoxication process.
Article
Full-text available
A case of food-borne botulism occurred in Slovakia in 2015. Clostridium botulinum type A was isolated from three nearly empty commercial hummus tubes. The product, which was sold in Slovakia and the Czech Republic, was withdrawn from the market and a warning was issued immediately through the European Commission’s Rapid Alert System for Food and Feed (RASFF). Further investigation revealed the presence of botulinum neurotoxin (BoNT) subtype BoNT/A3, a very rare subtype implicated in only one previous outbreak (Loch Maree in Scotland, 1922). It is the most divergent subtype of BoNT/A with 15.4% difference at the amino acid level compared with the prototype BoNT/A1. This makes it more prone to evading immunological and PCR-based detection. It is recommended that testing laboratories are advised that this subtype has been associated with food-borne botulism for the second time since the first outbreak almost 100 years ago, and to validate their immunological or PCR-based methods against this divergent subtype.
Article
Full-text available
In 1994, analyses of clostridial 16S rRNA gene sequences led to the assignment of 18 species to Clostridium cluster XI, separating them from Clostridium sensu stricto (Clostridium cluster I). Subsequently, most cluster XI species have been assigned to the family Peptostreptococcaceae; some of them have been reassigned to new genera. However, several Clostridium species were left with their old names, creating a taxonomic conundrum and confusion regarding their status. Here, we have re-examined the phylogeny of cluster XI species by comparing the 16S rRNA gene-based trees with protein- and genome-based trees, where available. The resulting phylogeny of the Peptostreptococcaceae was consistent with the recent proposals on creating seven new genera within this family. This analysis also revealed a tight clustering of Clostridium litorale and Eubacterium acidaminophilum. Based on these data, we propose reassigning these two organisms to the new genus Peptoclostridium as Peptoclostridium litorale gen. nov. comb. nov. (the type species of the genus) and Peptoclostridium acidaminophilum comb. nov., respectively. As correctly noted in the original publications, the genera Acetoanaerobium and Proteocatella also fall within cluster XI, and can be assigned to the Peptostreptococcaceae. Clostridium sticklandii, which falls within radiation of genus Acetoanaerobium, is proposed to be reclassified as Acetoanaerobium sticklandii comb. nov. The remaining misnamed members of the Peptostreptococcaceae, [Clostridium] hiranonis, [Clostridium] paradoxum, and [Clostridium] thermoalcaliphilum, still remain to be properly classified.
Article
Full-text available
Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users.
Article
Full-text available
Background Clostridium botulinum is a diverse group of bacteria characterized by the production of botulinum neurotoxin. Botulinum neurotoxins are classified into serotypes (BoNT/A–G), which are produced by six species/Groups of Clostridia, but the genetic background of the bacteria remains poorly understood. The purpose of this study was to use comparative genomics to provide insights into the genetic diversity and evolutionary history of bacteria that produce the potent botulinum neurotoxin. Results Comparative genomic analyses of over 170 Clostridia genomes, including our draft genome assemblies for 59 newly sequenced Clostridia strains from six continents and publicly available genomic data, provided in-depth insights into the diversity and distribution of BoNT-producing bacteria. These newly sequenced strains included Group I and II strains that express BoNT/A,/B,/E, or/F as well as bivalent strains. BoNT-producing Clostridia and closely related Clostridia species were delineated with a variety of methods including 16S rRNA gene, concatenated marker genes, core genome and concatenated multi-locus sequencing typing (MLST) gene phylogenies that related whole genome sequenced strains to publicly available strains and sequence types. These analyses illustrated the phylogenetic diversity in each Group and the diversity of genomic backgrounds that express the same toxin type or subtype. Comparisons of the botulinum neurotoxin genes did not identify novel toxin types or variants. Conclusions This study represents one of the most comprehensive analyses of whole genome sequence data for Group I and II BoNT-producing strains. Read data and draft genome assemblies generated for 59 isolates will be a resource to the research community. Core genome phylogenies proved to be a powerful tool for differentiating BoNT-producing strains and can provide a framework for the study of these bacteria. Comparative genomic analyses of Clostridia species illustrate the diversity of botulinum-neurotoxin-producing strains and the plasticity of the genomic backgrounds in which bont genes are found. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2502-z) contains supplementary material, which is available to authorized users.
Article
Full-text available
The virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/) is dedicated to providing up-to-date knowledge of virulence factors (VFs) of various bacterial pathogens. Since its inception the VFDB has served as a comprehensive repository of bacterial VFs for over a decade. The exponential growth in the amount of biological data is challenging to the current database in regard to big data analysis. We recently improved two aspects of the infrastructural dataset of VFDB: (i) removed the redundancy introduced by previous releases and generated two hierarchical datasets – one core dataset of experimentally verified VFs only and another full dataset including all known and predicted VFs and (ii) refined the gene annotation of the core dataset with controlled vocabularies. Our efforts enhanced the data quality of the VFDB and promoted the usability of the database in the big data era for the bioinformatic mining of the explosively growing data regarding bacterial VFs.
Article
Full-text available
Clostridium botulinum is a gram-positive bacterium capable of producing the botulinum neurotoxin, a powerful poison that causes botulism, a severe neuroparalytic disease. Its genome has been sequenced entirely and its gene content has been analyzed. To date, 19 full genomes and 64 draft genomes are available. The geographical origin of these genomes is predominantly from the US. In the present study, 10 Italian genomes of C. botulinum group I were analyzed and compared with previously sequenced group I genomes, in order to genetically characterize the Italian population of C. botulinum group I and to investigate the phylogenetic relationships among different lineages. Using the suites of software ClonalFrame and ClonalOrigin to perform genomic analysis, we demonstrated that Italian C. botulinum group I population is phylogenetically heterogeneous encompassing different and distant lineages including overseas strains, too. Moreover, a high recombination rate was demonstrated in the evolution of C. botulinum group I species. Finally, genome sequencing of the strain 357 led us to identify a novel botulinum neurotoxin subtype, F8. Copyright © 2015. Published by Elsevier B.V.
Article
Full-text available
Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Article
Full-text available
Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.
Article
Full-text available
Recent developments in whole genome sequencing have made a substantial contribution to understanding the genomes, neurotoxins and biology of Clostridium botulinum Group I (proteolytic C. botulinum) and C. botulinum Group II (non-proteolytic C. botulinum). Two different approaches are used to study genomics in these bacteria; comparative whole genome microarrays and direct comparison of complete genome DNA sequences. The properties of the different types of neurotoxin formed, and different neurotoxin gene clusters found in C. botulinum Groups I and II are explored. Specific examples of botulinum neurotoxin genes are chosen for an in-depth discussion of neurotoxin gene evolution. The most recent cases of foodborne botulism are summarised.
Article
Full-text available
DNA-end resection is a highly regulated and critical step in the response and repair of DNA double-strand breaks. In higher eukaryotes, CtIP regulates resection by integrating cellular signals via its posttranslational modifications and protein-protein interactions, including cell-cycle-controlled interaction with BRCA1. The role of BRCA1 in DNA-end resection is not clear. Here, we develop an assay to study DNA resection in higher eukaryotes at high resolution. We demonstrate that the BRCA1-CtIP interaction, albeit not essential for resection, modulates the speed at which this process takes place.
Article
Full-text available
Background In the United States, most Clostridium botulinum type A strains isolated during laboratory investigations of human botulism demonstrate the presence of an expressed type A botulinum neurotoxin (BoNT/A) gene and an unexpressed BoNT/B gene. These strains are designated type A(B). The most common pulsed-field gel electrophoresis (PFGE) pattern in the C. botulinum PulseNet database is composed of A(B) strains. The purpose of this study was to evaluate the ability of genome sequencing and multi-loci variable number of tandem repeat analysis (MLVA) to differentiate such strains. Results The genome sequences of type A(B) strains evaluated in this study are closely related and cluster together compared to other available C. botulinum Group I genomes. In silico multilocus sequence typing (MLST) analysis (7-loci) was unable to differentiate any of the type A(B) strains isolated from seven different outbreak investigations evaluated in this study. A 15-locus MLVA scheme demonstrated an improved ability to differentiate these strains, however, repeat unit variation among the strains was restricted to only two loci. Reference-free single nucleotide polymorphism (SNP) analysis demonstrated the ability to differentiate strains from all of the outbreaks examined and a non-outbreak associated strain. Conclusions This study confirms that type A(B) strains that share the same PFGE pattern also share closely-related genome sequences. The lack of a complete type A(B) strain representative genome sequence hinders the ability to assemble genomes by reference mapping and analysis of SNPs at pre-identified sites. However, compared to other methods evaluated in this study, a reference-free SNP analysis demonstrated optimal subtyping utility for type A(B) strains using de novo assembled genome sequences.
Article
Full-text available
The last step of peptidoglycan polymerization involves two families of unrelated transpeptidases that are the essential targets of β-lactam antibiotics. d,d-transpeptidases of the penicillin-binding protein (PBP) family are active-site serine enzymes that use pentapeptide precursors and are the main or exclusive cross-linking enzymes in nearly all bacteria. However, peptidoglycan cross-linking is performed mainly by active-site cysteine l,d-transpeptidases that use tetrapeptides in Mycobacterium tuberculosis, Clostridium difficile, and β-lactam-resistant mutants of Enterococcus faecium. We have investigated reprogramming of the E. faecium peptidoglycan assembly pathway by a switch from pentapeptide to tetrapeptide precursors and bypass of PBPs by l,d-transpeptidase Ldtfm. Mutational alterations of two signal transduction systems were necessary and sufficient for activation of the l,d-transpeptidation pathway, which is essentially cryptic in wild-type strains. The first one is a classical two-component regulatory system, DdcRS, that controls the activity of Ldtfm at the substrate level. As previously described, loss of DdcS phosphatase activity leads to production of the d,d-carboxypeptidase DdcY and conversion of the pentapeptide into the tetrapeptide substrate of Ldtfm. Here we show that full bypass of PBPs by Ldtfm also requires increased Ser/Thr protein phosphorylation resulting from impaired activity of phosphoprotein phosphatase StpA. This enzyme negatively controlled the level of protein phosphorylation both by direct dephosphorylation of target proteins and by dephosphorylation of its cognate kinase Stk. In combination with production of DdcY, increased protein phosphorylation by this eukaryotic-enzyme-like Ser/Thr protein kinase was sufficient for activation of the l,d-transpeptidation pathway in the absence of mutational alteration of peptidoglycan synthesis enzymes.
Article
Full-text available
Botulinum neurotoxins (BoNTs) are produced by anaerobic bacteria of the genus Clostridium and cause a persistent paralysis of peripheral nerve terminals, which is known as botulism. Neurotoxigenic clostridia belong to six phylogenetically distinct groups and produce more than 40 different BoNT types, which inactivate neurotransmitter release owing to their metalloprotease activity. In this Review, we discuss recent studies that have improved our understanding of the genetics and structure of BoNT complexes. We also describe recent insights into the mechanisms of BoNT entry into the general circulation, neuronal binding, membrane translocation and neuroparalysis.
Article
Full-text available
The identification of virulent proteins in any de-novo sequenced genome is useful in estimating its pathogenic ability and understanding the mechanism of pathogenesis. Similarly, the identification of such proteins could be valuable in comparing the metagenome of healthy and diseased individuals and estimating the proportion of pathogenic species. However, the common challenge in both the above tasks is the identification of virulent proteins since a significant proportion of genomic and metagenomic proteins are novel and yet unannotated. The currently available tools which carry out the identification of virulent proteins provide limited accuracy and cannot be used on large datasets. Therefore, we have developed an MP3 standalone tool and web server for the prediction of pathogenic proteins in both genomic and metagenomic datasets. MP3 is developed using an integrated Support Vector Machine (SVM) and Hidden Markov Model (HMM) approach to carry out highly fast, sensitive and accurate prediction of pathogenic proteins. It displayed Sensitivity, Specificity, MCC and accuracy values of 92%, 100%, 0.92 and 96%, respectively, on blind dataset constructed using complete proteins. On the two metagenomic blind datasets (Blind A: 51-100 amino acids and Blind B: 30-50 amino acids), it displayed Sensitivity, Specificity, MCC and accuracy values of 82.39%, 97.86%, 0.80 and 89.32% for Blind A and 71.60%, 94.48%, 0.67 and 81.86% for Blind B, respectively. In addition, the performance of MP3 was validated on selected bacterial genomic and real metagenomic datasets. To our knowledge, MP3 is the only program that specializes in fast and accurate identification of partial pathogenic proteins predicted from short (100-150 bp) metagenomic reads and also performs exceptionally well on complete protein sequences. MP3 is publicly available at http://metagenomics.iiserb.ac.in/mp3/index.php.
Article
Full-text available
Clostridium botulinum encompasses bacteria that produce at least one of the seven serotypes of botulinum neurotoxin (BoNT/A-G). The availability of genome sequences of four closely related Type A1 or A1(B) strains, as well as the A1-specific microarray, allowed the analysis of their genomic organizations and evolutionary relationship. The four genomes share >90% core genes and >96% functional groups. Phylogenetic analysis based on COG shows closer relations of the A1(B) strain, NCTC 2916, to B1 and F1 than A1 strains. Alignment of the genomes of the three A1 strains revealed a highly similar chromosomal structure with three small gaps in the genome of ATCC 19397 and one additional gap in the genome of Hall A, suggesting ATCC 19379 as an evolutionary intermediate between Hall A and ATCC 3502. Analyses of the four gap regions indicated potential horizontal gene transfer and recombination events important for the evolution of A1 strains.
Article
Full-text available
Fic proteins are ubiquitous in all of the domains of life and have critical roles in multiple cellular processes through AMPylation of (transfer of AMP to) target proteins. Doc from the doc-phd toxin-antitoxin module is a member of the Fic family and inhibits bacterial translation by an unknown mechanism. Here we show that, in contrast to having AMPylating activity, Doc is a new type of kinase that inhibits bacterial translation by phosphorylating the conserved threonine (Thr382) of the translation elongation factor EF-Tu, rendering EF-Tu unable to bind aminoacylated tRNAs. We provide evidence that EF-Tu phosphorylation diverged from AMPylation by antiparallel binding of the NTP relative to the catalytic residues of the conserved Fic catalytic core of Doc. The results bring insights into the mechanism and role of phosphorylation of EF-Tu in bacterial physiology as well as represent an example of the catalytic plasticity of enzymes and a mechanism for the evolution of new enzymatic activities.
Article
Full-text available
Objective The Working Group on Civilian Biodefense has developed consensus-based recommendations for measures to be taken by medical and public health professionals if botulinum toxin is used as a biological weapon against a civilian population.Participants The working group included 23 representatives from academic, government, and private institutions with expertise in public health, emergency management, and clinical medicine.Evidence The primary authors (S.S.A. and R.S.) searched OLDMEDLINE and MEDLINE (1960–March 1999) and their professional collections for literature concerning use of botulinum toxin as a bioweapon. The literature was reviewed, and opinions were sought from the working group and other experts on diagnosis and management of botulism. Additional MEDLINE searches were conducted through April 2000 during the review and revisions of the consensus statement.Consensus Process The first draft of the working group's consensus statement was a synthesis of information obtained in the formal evidence-gathering process. The working group convened to review the first draft in May 1999. Working group members reviewed subsequent drafts and suggested additional revisions. The final statement incorporates all relevant evidence obtained in the literature search in conjunction with final consensus recommendations supported by all working group members.Conclusions An aerosolized or foodborne botulinum toxin weapon would cause acute symmetric, descending flaccid paralysis with prominent bulbar palsies such as diplopia, dysarthria, dysphonia, and dysphagia that would typically present 12 to 72 hours after exposure. Effective response to a deliberate release of botulinum toxin will depend on timely clinical diagnosis, case reporting, and epidemiological investigation. Persons potentially exposed to botulinum toxin should be closely observed, and those with signs of botulism require prompt treatment with antitoxin and supportive care that may include assisted ventilation for weeks or months. Treatment with antitoxin should not be delayed for microbiological testing.
Article
Full-text available
Background For the last 25 years species delimitation in prokaryotes (Archaea and Bacteria) was to a large extent based on DNA-DNA hybridization (DDH), a tedious lab procedure designed in the early 1970s that served its purpose astonishingly well in the absence of deciphered genome sequences. With the rapid progress in genome sequencing time has come to directly use the now available and easy to generate genome sequences for delimitation of species. GBDP (Genome Blast Distance Phylogeny) infers genome-to-genome distances between pairs of entirely or partially sequenced genomes, a digital, highly reliable estimator for the relatedness of genomes. Its application as an in-silico replacement for DDH was recently introduced. The main challenge in the implementation of such an application is to produce digital DDH values that must mimic the wet-lab DDH values as close as possible to ensure consistency in the Prokaryotic species concept. Results Correlation and regression analyses were used to determine the best-performing methods and the most influential parameters. GBDP was further enriched with a set of new features such as confidence intervals for intergenomic distances obtained via resampling or via the statistical models for DDH prediction and an additional family of distance functions. As in previous analyses, GBDP obtained the highest agreement with wet-lab DDH among all tested methods, but improved models led to a further increase in the accuracy of DDH prediction. Confidence intervals yielded stable results when inferred from the statistical models, whereas those obtained via resampling showed marked differences between the underlying distance functions. Conclusions Despite the high accuracy of GBDP-based DDH prediction, inferences from limited empirical data are always associated with a certain degree of uncertainty. It is thus crucial to enrich in-silico DDH replacements with confidence-interval estimation, enabling the user to statistically evaluate the outcomes. Such methodological advancements, easily accessible through the web service at http://ggdc.dsmz.de, are crucial steps towards a consistent and truly genome sequence-based classification of microorganisms.
Article
Full-text available
Twenty-six isolates of Clostridium perfringens of different MLST types from chickens with necrotic enteritis (NE) (15 netB-positive) or from healthy chickens (6 netB-positive, 5 netB-negative) were found to contain 1-4 large plasmids, with most netB-positive isolates containing 3 large and variably sized plasmids which were more numerous and larger than plasmids in netB-negative isolates. NetB and cpb2 were found on different plasmids consistent with previous studies. The pathogenicity locus NELoc1, which includes netB, was largely conserved in these plasmids whereas NeLoc3, present in the cpb2 containing plasmids, was less well conserved. A netB-positive and a cpb2-positive plasmid were likely to be conjugative, and the plasmids were completely sequenced. Both plasmids possessed the intact tcp conjugative region characteristic of C. perfringens conjugative plasmids. Comparative genomic analysis of nine CpCPs, including the two plasmids described here, showed extensive gene rearrangements including pathogenicity locus and accessory gene insertions around rather than within the backbone region. The pattern that emerges from this analysis is that the major toxin-containing regions of the variety of virulence-associated CpCPs are organized as complex pathogenicity loci. How these different but related CpCPs can co-exist in the same host has been an unanswered question. Analysis of the replication-partition region of these plasmids suggests that this region controls plasmid incompatibility, and that CpCPs can be grouped into at least four incompatibility groups.
Article
Full-text available
Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.
Article
Full-text available
The use of trivalent equine antitoxin in treating foodborne botulism has not been adequately assessed. One hundred thirty-two cases of type A foodborne botulism reported to the Centers for Disease Control in the period from 1973 to 1980 are reviewed to evaluate the effect of antitoxin therapy and other factors on the outcomes of patients with botulism. The fatality rates were higher in patients over 60 years old and in those who were index patients (the first or only patient in an outbreak). The clinical course was longer in patients over 60 years old, patients whose incubation period was less than 36 hours, and index patients. Patients who had received trivalent equine antitoxin had a lower fatality rate and a shorter course than those who did not receive antitoxin, even after controlling for age and incubation period. Patients who received antitoxin in the first 24 hours after onset had a shorter course but about the same fatality rate as those who received antitoxin later. These results suggest that trivalent antitoxin has a beneficial effect on survival and shortens the course of patients with type A botulism.
Article
Full-text available
Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.
Article
Full-text available
It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota-based screening can eliminate ambiguous synteny blocks and focus on specific genomic evolutionary events, like the divergence of lineages (in cross-species comparisons) and the most recent WGD (in self comparisons). The QUOTA-ALIGN algorithm screens a set of synteny blocks to retain only those compatible with a user specified ploidy relationship between two genomes. These blocks, in turn, may be used for additional downstream analyses such as identifying true orthologous regions in interspecific comparisons. There are two major contributions of QUOTA-ALIGN: 1) reducing the block screening task to a BIP problem, which is novel; 2) providing an efficient software pipeline starting from all-against-all BLAST to the screened synteny blocks with dot plot visualizations. Python codes and full documentations are publicly available http://github.com/tanghaibao/quota-alignment. QUOTA-ALIGN program is also integrated as a major component in SynMap http://genomevolution.com/CoGe/SynMap.pl, offering easier access to thousands of genomes for non-programmers.
Article
Acetoanaerobium sticklandii DSM519 (CST) is a hype-ammonia producing non-pathogenic anaerobe that can use amino acids as important carbon and energy sources through the Stickland reactions. Biochemical aspects of this organism have been extensively studied, but systematic studies addressing its metabolic discrepancy remain scant. In this perspective, we have intensively analyzed its genomic and metabolic characteristics to comprehend the evolutionary conservation of amino acid catabolism by a comparative genomic approach. The whole-genome data indicated that CST has shown a phylogenomic similarity with hyper-ammonia producing, purinolytic, and proteolytic pathogenic Clostridia. CST has shown to common genomic context sharing across the purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genome syntenic analysis described that syntenic orthologs might be originated from the recent ancestor at a slow evolution rate and syntenic-out paralogs evolved from either CDF or CAC via α-event and β-event. Collinearity of either gene orders or gene families was adjusted with syntenic out-paralogs across these genomes. The genome-wide metabolic analysis predicted 11 unique putative metabolic subsystems from the CST genome for amino acid catabolism and hydrogen production. The in silico analysis of our study revealed that a characteristic system for amino acid catabolism-directed biofuel synthesis might have slowly evolved and established as a core genomic content of CST.
Article
The Integrated Microbial Genomes & Microbiomes system v.5.0 (IMG/M: https://img.jgi.doe.gov/m/) contains annotated datasets categorized into: archaea, bacteria, eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts, and metatranscriptomes. Source datasets include those generated by the DOE's Joint Genome Institute (JGI), submitted by external scientists, or collected from public sequence data archives such as NCBI. All submissions are typically processed through the IMG annotation pipeline and then loaded into the IMG data warehouse. IMG's web user interface provides a variety of analytical and visualization tools for comparative analysis of isolate genomes and metagenomes in IMG. IMG/M allows open access to all public genomes in the IMG data warehouse, while its expert review (ER) system (IMG/MER: https://img.jgi.doe.gov/mer/) allows registered users to access their private genomes and to store their private datasets in workspace for sharing and for further analysis. IMG/M data content has grown by 60% since the last report published in the 2017 NAR Database Issue. IMG/M v.5.0 has a new and more powerful genome search feature, new statistical tools, and supports metagenome binning.
Article
To clarify the taxonomic position of Eubacterium combesii, the whole genome of its type strain, DSM 20696T, was sequenced. Comparison of this sequence with known sequences of other bacteria confirmed that E. combesii represented a member of the Clostridium sporogenes/Clostridium botulinum Group I clade. However, the results of phylogenetic analysis also demonstrated that the latter two species did not form the same genetic entity and that E. combesii was in the C. botulinum Group I subclade. Meanwhile, we showed that E. combesii DSM 20696T did not produce botulinum neurotoxins (BoNTs) and thus should be identified as a strain of C. sporogenes in accordance with the current nomenclature of BoNT-producing clostridia, which is based, in particular, on Opinion 69 issued by the Judicial Commission of the ICSB. However, review of the corresponding Request for an Opinion revealed that it had been based on an erroneous statement. Therefore, we request reconsideration of Opinion 69 and propose to reclassify Eubacterium combesii as a later synonym of Clostridium botulinum. The results of phylogenetic analysis of the other five groups of BoNT-producing clostridia indicated that all the groups were far distant from each other. However, the members of Groups IV-VI are classified as strains of different species, while all members of Groups I-III are designated C. botulinum. Meanwhile, similarly to Group I, Groups II and III are also polyphyletic and appear to consist of two and four species, respectively. These results demonstrate, once again, discrepancies in the nomenclature of BoNT-producing bacteria and corroborate our request for reconsideration of Opinion 69.
Article
Clostridium difficile is a major pathogen responsible for a range of diseases in humans and animals. The genetic tools used to explore C. difficile biology are a relatively recent development in comparison to those used to investigate some other pathogens. Consequently, a rapid and haphazard dispersal of strains throughout the scientific community has led to the evolution of different C. difficile lineages within strains in different geographical locations and these genotypic differences are likely to affect the phenotype of the organism. Here we review the history of C. difficile 630, the first genome-sequenced C. difficile isolate and the most widely distributed reference strain, and its derivatives. We also invite researchers to take part in a community wide genome sequencing study to trace the evolution of these strains as they have travelled between laboratories around the world.
Article
Methanosarcina mazei Go1 is a heterotrophic methanogenic archaean contributing a significant role in global methane cycling and biomethanation process. Phylogenomic relatedness and metabolic discrepancy of this genome were described herein by comparing its whole genome sequence, intergenomic distance, genome function, synteny homologs and origin of replication, and marker genes with very closely related genomes, Methanosarcina acetivorans and Methanosarcina barkeri. Phylogenomic analysis of this study revealed that genome functional feature and metabolic core of M. mazei and M. barkeri could be originated from M. acetivorans. The metabolic core of these genomes shares a common evolutionary origin to perform the metabolic activity at different environmental niches. Genome expansion, dynamics and gene collinearity were constrained and restrained the conservation of the metabolic core genes by duplication events occurring across methanosarcinal genomes. The Darwinian positive selection was an evolutionary constraint to purify the function of core metabolic genes. Using genome-wide metabolic survey, we found the existence of four novel putative metabolic pathways such as complete methanogenesis from acetate, indole-3-acetate biosynthesis V, 4-aminobutyrate degradation III, galactosamine biosynthesis I and siroheme biosynthesis. Overall, the present study would provide a stand point to revisit its phylogenomic status in order to understand the origin and evolution history of this organism.
Article
A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.
Article
Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell.
Chapter
This chapter develops several forms of the Pearson correlation coefficient in the different domains. This coefficient can be used as an optimization criterion to derive different optimal noise reduction filters [14], but is even more useful for analyzing these optimal filters for their noise reduction performance.
Article
Botulism was believed to be a rare disease in both the US and UK in the 1920's, until two deadly outbreaks altered that view and launched public health measures to control it. In the United States, the ripe olive scare of 1920 found glass-packaged olives linked to multiple deaths. In the United Kingdom, eight deaths from glass-potted duck paste, in the summer of 1922 at Loch Maree, Scotland will always be associated with botulism.