Content uploaded by Mohammad Vand Jalili
Author content
All content in this area was uploaded by Mohammad Vand Jalili on Mar 15, 2023
Content may be subject to copyright.
Content uploaded by Mohammad Vand Jalili
Author content
All content in this area was uploaded by Mohammad Vand Jalili on Mar 15, 2023
Content may be subject to copyright.
*
m.vandjalili@maragheh.ac.ir
h.pezeshki@m-iau.ac.ir
.
[1]
[2]
(Artificial Intelligence)
.[3]
(CAD) [4-6]
[7]
[8]
(AI)
[10]
[24]
ANN
[25]
(ML)
(DL) ML DL
HI
ML
HI ML DL
DL ML
•
•
•
•
.
(AI)
[47]
(ANN)
(ANN)
4 (ANN)
(ANN)
(ANN)
AUC
.
-.
multi-omics
DNA RNA
FL AI
FL
ResNet-V2
٪
[56] spline
.
. K-mean C-means
.
SVM
31 (DCNN)
٪
[58]
CCNI-BCC
SL
BRAF MSI
SL SL
SL
[62]
AlexNet
SL
SL
SLBRAF
SL
)
E
(CAD )
x
(CAD
[70]
[73]
[74]
[75]
(AI)
ROI ROI
[76]
(AI)
IHC
IHC IHC(IF)
[77]
(WSI)
(WSI)
(WSI)
[80,81]
[86]
T
.[87]
[94]
[95]
[96]
TME
I-O
[97]
-
(AI)
[100]
[100]
[101]
CT [102]
CT [103]
.[101]
[PET]/CT
PET
[104]
-
.
(SVM)
[105]
(AI)
[106] CAD
[110]
[114]
""
AI
SL
HIPAA
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer
journal for clinicians. 2018 Nov;68(6):394-424.
2. Mariotto AB, Noone AM, Howlader N, Cho H, Keel GE, Garshell J, Woloshin S, Schwartz LM. Cancer
survival: an overview of measures, uses, and interpretation. Journal of the National Cancer Institute Monographs.
2014 Nov 1;2014(49):145-86.
3. Giger ML, Doi K, MacMahon H. Computerized detection of lung nodules in digital chest radiographs.
InMedical Imaging 1987 Jan 1 (Vol. 767, pp. 384-387). SPIE.
4. Carmody DP, Nodine CF, Kundel HL. An analysis of perceptual and cognitive factors in radiographic
interpretation. Perception. 1980 Jun;9(3):339-44.
5. KUNDEL HL, HENDEE WR. The Perception of Radiologic Image Information Report of an NCI
Workshop on April 15–16, 1985. Investigative Radiology. 1985 Nov 1;20(8):874-7.
6. Rao VM, Levin DC, Parker L, Cavanaugh B, Frangos AJ, Sunshine JH. How widely is computer-aided
detection used in screening and diagnostic mammography?. Journal of the American College of Radiology. 2010
Oct 1;7(10):802-5.
7. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado
GS, Darzi A, Etemadi M. International evaluation of an AI system for breast cancer screening. Nature. 2020
Jan;577(7788):89-94.
8. Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van Der Laak JA,
Hermsen M, Manson QF, Balkenhol M, Geessink O. Diagnostic assessment of deep learning algorithms for
detection of lymph node metastases in women with breast cancer. Jama. 2017 Dec 12;318(22):2199-210.
9. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017 Apr 1;69:S36-40.
10. Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and
artificial intelligence in radiology. Nature Reviews Clinical Oncology. 2022 Feb;19(2):132-46.
11. LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. The handbook of brain
theory and neural networks. 1995 Apr;3361(10):1995.
12. Paul TK, Iba H. Gene selection for classification of cancers using probabilistic model building genetic
algorithm. BioSystems. 2005 Dec 1;82(3):208-25.
13. Rajaguru H, SR SC. Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast
cancer. Asian Pacific journal of cancer prevention: APJCP. 2019;20(12):3777.
14. Sherafatian M, Arjmand F. Decision tree-based classifiers for lung cancer diagnosis and subtyping using
TCGA miRNA expression data. Oncology letters. 2019 Aug 1;18(2):2125-31.
15. Aguirre-Allende I, Enriquez-Navascues JM, Elorza-Echaniz G, Etxart-Lopetegui A, Borda-Arrizabalaga N,
Ansorena YS, Placer-Galan C. Early-rectal cancer treatment: a decision-tree making based on systematic review
and meta-analysis. Cirugía Española. 2021 Feb 1;99(2):89-107.
16. Ghiasi MM, Zendehboudi S. Application of decision tree-based ensemble learning in the classification of
breast cancer. Computers in Biology and Medicine. 2021 Jan 1;128:104089.
17. Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, Liu Y, Fan H, Shen H, Ravikumar V, Rao
A. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer cell. 2018 Apr
9;33(4):690-705.
18. Duan X, Yang Y, Tan S, Wang S, Feng X, Cui L, Feng F, Yu S, Wang W, Wu Y. Application of artificial
neural network model combined with four biomarkers in auxiliary diagnosis of lung cancer. Medical &
biological engineering & computing. 2017 Aug;55(8):1239-48.
19. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ. Artificial intelligence in radiology. Nature
Reviews Cancer. 2018 Aug;18(8):500-10.
20. Hricak H, Abdel-Wahab M, Atun R, Lette MM, Paez D, Brink JA, Donoso-Bach L, Frija G, Hierath M,
Holmberg O, Khong PL. Medical imaging and nuclear medicine: a Lancet Oncology Commission. The Lancet
Oncology. 2021 Apr 1;22(4):e136-72.
21. Grover S, Xu MJ, Yeager A, Rosman L, Groen RS, Chackungal S, Rodin D, Mangaali M, Nurkic S,
Fernandes A, Lin LL. A systematic review of radiotherapy capacity in low-and middle-income countries.
Frontiers in oncology. 2015 Jan 22;4:380.
22. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in
cancer prognosis and prediction. Computational and structural biotechnology journal. 2015 Jan 1;13:8-17.
23. Hart GR, Roffman DA, Decker R, Deng J. A multi-parameterized artificial neural network for lung cancer
risk prediction. PLoS One. 2018 Oct 24;13(10):e0205264.
24. Robertson S, Azizpour H, Smith K, Hartman J. Digital image analysis in breast pathology—from image
processing techniques to artificial intelligence. Translational Research. 2018 Apr 1;194:19-35.
25. Binczyk F, Prazuch W, Bozek P, Polanska J. Radiomics and artificial intelligence in lung cancer screening.
Translational lung cancer research. 2021 Feb;10(2):1186.
26. Huang CH, Kalaw EM. Automated classification for pathological prostate images using AdaBoost-based
Ensemble Learning. In2016 IEEE Symposium Series on Computational Intelligence (SSCI) 2016 Dec 6 (pp. 1-
4). IEEE.
27. Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J. Automated gland and nuclei
segmentation for grading of prostate and breast cancer histopathology. In2008 5th IEEE International
Symposium on Biomedical Imaging: From Nano to Macro 2008 May 14 (pp. 284-287). IEEE.
28. Singh M, Kalaw EM, Giron DM, Chong KT, Tan CL, Lee HK. Gland segmentation in prostate
histopathological images. Journal of medical imaging. 2017 Jun;4(2):027501.
29. Ali T, Masood K, Irfan M, Draz U, Nagra AA, Asif M, Alshehri BM, Glowacz A, Tadeusiewicz R,
Mahnashi MH, Yasin S. Multistage segmentation of prostate cancer tissues using sample entropy texture
analysis. Entropy. 2020 Dec 4;22(12):1370.
30. Salman S, Ma Z, Mohanty S, Bhele S, Chu YT, Knudsen B, Gertych A. A machine learning approach to
identify prostate cancer areas in complex histological images. InInformation Technologies in Biomedicine,
Volume 3 2014 (pp. 295-306). Springer, Cham.
31. DiFranco MD, O’Hurley G, Kay EW, Watson RW, Cunningham P. Ensemble based system for whole-slide
prostate cancer probability mapping using color texture features. Computerized medical imaging and graphics.
2011 Oct 1;35(7-8):629-45.
32. Doyle S, Madabhushi A, Feldman M, Tomaszeweski J. A boosting cascade for automated detection of
prostate cancer from digitized histology. InInternational conference on medical image computing and computer-
assisted intervention 2006 Oct 1 (pp. 504-511). Springer, Berlin, Heidelberg.
33. Ayyad SM, Shehata M, Shalaby A, Abou El-Ghar M, Ghazal M, El-Melegy M, Abdel-Hamid NB, Labib
LM, Ali HA, El-Baz A. Role of AI and histopathological images in detecting prostate cancer: a survey. Sensors.
2021 Apr 7;21(8):2586.
34. Sanghavi FM, Agaian SS. Automated classification of histopathology images of prostate cancer using a Bag-
of-Words approach. InMobile Multimedia/Image Processing, Security, and Applications 2016 2016 May 19
(Vol. 9869, pp. 169-179). SPIE.
35. Gurav SB, Kulhalli KV, Desai VV. Prostate cancer detection using histopathology images and classification
using improved RideNN. Biomedical Engineering: Applications, Basis and Communications. 2019 Dec
17;31(06):1950042.
36. Li W, Li J, Sarma KV, Ho KC, Shen S, Knudsen BS, Gertych A, Arnold CW. Path R-CNN for prostate
cancer diagnosis and gleason grading of histological images. IEEE transactions on medical imaging. 2018 Oct
12;38(4):945-54.
37. Cui Y, Zhang G, Liu Z, Xiong Z, Hu J. A deep learning algorithm for one-step contour aware nuclei
segmentation of histopathology images. Medical & biological engineering & computing. 2019 Sep;57(9):2027-
43.
38. García G, Colomer A, Naranjo V. First-stage prostate cancer identification on histopathological images:
Hand-driven versus automatic learning. Entropy. 2019 Apr 2;21(4):356.
39. Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, Wey N, Wild PJ, Rueschoff JH,
Claassen M. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Scientific
reports. 2018 Aug 13;8(1):1-1.
40. Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, van der Laak J, de Kaa CH,
Litjens G. Automated gleason grading of prostate biopsies using deep learning. arXiv preprint arXiv:1907.07980.
2019 Jul 18.
41. Källén H, Molin J, Heyden A, Lundström C, Åström K. Towards grading gleason score using generically
trained deep convolutional neural networks. In2016 IEEE 13th International symposium on biomedical imaging
(ISBI) 2016 Apr 13 (pp. 1163-1167). IEEE.
42. Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergen-Van De Kaa C, Bult P,
Van Ginneken B, Van Der Laak J. Deep learning as a tool for increased accuracy and efficiency of
histopathological diagnosis. Scientific reports. 2016 May 23;6(1):1-1.
43. Tolkach Y, Dohmgörgen T, Toma M, Kristiansen G. High-accuracy prostate cancer pathology using deep
learning. Nature Machine Intelligence. 2020 Jul;2(7):411-8.
44. Tolkach Y, Dohmgörgen T, Toma M, Kristiansen G. High-accuracy prostate cancer pathology using deep
learning. Nature Machine Intelligence. 2020 Jul;2(7):411-8.
45. Duran-Lopez L, Dominguez-Morales JP, Rios-Navarro A, Gutierrez-Galan D, Jimenez-Fernandez A,
Vicente-Diaz S, Linares-Barranco A. Performance evaluation of deep learning-based prostate cancer screening
methods in histopathological images: measuring the impact of the model’s complexity on its processing speed.
Sensors. 2021 Feb 5;21(4):1122.
46. Nir G, Hor S, Karimi D, Fazli L, Skinnider BF, Tavassoli P, Turbin D, Villamil CF, Wang G, Wilson RS,
Iczkowski KA. Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple
experts. Medical image analysis. 2018 Dec 1;50:167-80.
47. Mendelson EB. Artificial intelligence in breast imaging: potentials and limitations. American Journal of
Roentgenology. 2019 Feb;212(2):293-9.
48. Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J. Artificial neural networks in medical
diagnosis. Journal of applied biomedicine. 2013 Jan 1;11(2):47-58.
49. Beura S, Majhi B, Dash R. Mammogram classification using two dimensional discrete wavelet transform
and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing. 2015 Apr 22;154:1-4.
50. Kumar Y, Gupta S, Singla R, Hu YC. A systematic review of artificial intelligence techniques in cancer
prediction and diagnosis. Archives of Computational Methods in Engineering. 2021a Sep 27:1-
51. Kumar Y, Gupta S, Singla R, Hu YC. A systematic review of artificial intelligence techniques in cancer
prediction and diagnosis. Archives of Computational Methods in Engineering. 2021b Sep 27:1
52. Binczyk F, Prazuch W, Bozek P, Polanska J. Radiomics and artificial intelligence in lung cancer screening.
Translational lung cancer research. 2021 Feb;10(2):1186.
53. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E,
Voelkerding K. Standards and guidelines for the interpretation of sequence variants: a joint consensus
recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular
Pathology. Genetics in medicine. 2015 May;17(5):405-23.
54. Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D. Federated learning: Strategies for
improving communication efficiency. arXiv preprint arXiv:1610.05492. 2016 Oct 18.
55. Ferreira CA, Melo T, Sousa P, Meyer MI, Shakibapour E, Costa P, Campilho A. Classification of breast
cancer histology images through transfer learning using a pre-trained inception resnet v2. InInternational
conference image analysis and recognition 2018 Jun 27 (pp. 763-770). Springer, Cham.
56. Joon P, Bajaj SB, Jatain A. Segmentation and detection of lung cancer using image processing and clustering
techniques. InProgress in advanced computing and intelligent engineering 2019 (pp. 13-23). Springer, Singapore.
57. Dabass M, Vig R, Vashisth S. Five-grade cancer classification of colon histology images via deep learning.
InCommunication and Computing Systems 2019 Oct 22 (pp. 18-24). CRC Press.
58. Ting FF, Tan YJ, Sim KS. Convolutional neural network improvement for breast cancer classification.
Expert Systems with Applications. 2019 Apr 15;120:103-15.
59. Bilal M, Raza SE, Azam A, Graham S, Ilyas M, Cree IA, Snead D, Minhas F, Rajpoot NM. Development
and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and
key mutations in colorectal cancer from routine histology images: a retrospective study. The Lancet Digital
Health. 2021 Dec 1;3(12):e763-72.
60. Kather JN, Pearson AT, Halama N, Jäger D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, Neumann UP,
Grabsch HI. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
Nature medicine. 2019 Jul;25(7):1054-6.
61. De Matos J, Britto Jr AD, Oliveira LE, Koerich AL. Histopathologic image processing: A review. arXiv
preprint arXiv:1904.07900. 2019 Apr 16.
62. Jasti V, Zamani AS, Arumugam K, Naved M, Pallathadka H, Sammy F, Raghuvanshi A, Kaliyaperumal K.
Computational technique based on machine learning and image processing for medical image analysis of breast
cancer diagnosis. Security and Communication Networks. 2022 Mar 9;2022.
63. Saldanha OL, Quirke P, West NP, James JA, Loughrey MB, Grabsch HI, Salto-Tellez M, Alwers E, Cifci D,
Ghaffari Laleh N, Seibel T. Swarm learning for decentralized artificial intelligence in cancer histopathology.
Nature Medicine. 2022 Apr 25:1-8.
64. Zhang N, Lou W, Ji F, Qiu L, Tsang BK, Di W. Low molecular weight heparin and cancer survival: clinical
trials and experimental mechanisms. Journal of cancer research and clinical oncology. 2016 Aug;142(8):1807-16.
65. Zhang R, Zheng Y, Mak TW, Yu R, Wong SH, Lau JY, Poon CC. Automatic detection and classification of
colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE journal of biomedical
and health informatics. 2016 Dec 5;21(1):41-7.
66. e Gonçalves WG, Dos Santos MH, Lobato FM, Ribeiro-dos-Santos Â, de Araújo GS. Deep learning in
gastric tissue diseases: a systematic review. BMJ open gastroenterology. 2020 Mar 1;7(1):e000371.
67. Nahar VK, Allison Ford M, Brodell RT, Boyas JF, Jacks SK, Biviji-Sharma R, Haskins MA, Bass MA. Skin
cancer prevention practices among malignant melanoma survivors: a systematic review. Journal of Cancer
Research and Clinical Oncology. 2016 Jun;142(6):1273-83.
68. Nakano K, Nemoto H, Nomura R, Inaba H, Yoshioka H, Taniguchi K, Amano A, Ooshima T. Detection of
oral bacteria in cardiovascular specimens. Oral microbiology and immunology. 2009 Feb;24(1):64-8. Nakano K,
Nemoto H, Nomura R, Inaba H, Yoshioka H, Taniguchi K, Amano A, Ooshima T. Detection of oral bacteria in
cardiovascular specimens. Oral microbiology and immunology. 2009 Feb;24(1):64-8.
69. He Z, Liu H, Moch H, Simon HU. Machine learning with autophagy-related proteins for discriminating renal
cell carcinoma subtypes. Scientific reports. 2020 Jan 20;10(1):1-7.
70. He Z, Liu H, Moch H, Simon HU. Machine learning with autophagy-related proteins for discriminating renal
cell carcinoma subtypes. Scientific reports. 2020 Jan 20;10(1):1-7.
71. Devi MA, Ravi S, Vaishnavi J, Punitha S. Classification of cervical cancer using artificial neural networks.
Procedia Computer Science. 2016 Jan 1;89:465-72.
72. Liu B, Chi W, Li X, Li P, Liang W, Liu H, Wang W, He J. Evolving the pulmonary nodules diagnosis from
classical approaches to deep learning-aided decision support: three decades’ development course and future
prospect. Journal of cancer research and clinical oncology. 2020 Jan;146(1):153-85.
73. Liu J, Ke F, Chen T, Zhou Q, Weng L, Tan J, Shen W, Li L, Zhou J, Xu C, Cheng H. MicroRNAs that
regulate PTEN as potential biomarkers in colorectal cancer: a systematic review. Journal of cancer research and
clinical oncology. 2020 Apr;146(4):809-20.
74. Nartowt BJ, Hart GR, Muhammad W, Liang Y, Stark GF, Deng J. Robust machine learning for colorectal
cancer risk prediction and stratification. Frontiers in big Data. 2020 Mar 10;3:6.
75. Slaoui M, Fiette L. Drug Safety Evaluation. Methods in Molecular Biology (Methods and Protocols).
76. Basurto-Hurtado JA, Cruz-Albarran IA, Toledano-Ayala M, Ibarra-Manzano MA, Morales-Hernandez LA,
Perez-Ramirez CA. Diagnostic Strategies for Breast Cancer Detection: From Image Generation to Classification
Strategies Using Artificial Intelligence Algorithms. Cancers. 2022 Jul 15;14(14):3442.
77. Gown AM. Diagnostic immunohistochemistry: what can go wrong and how to prevent it. Archives of
pathology & laboratory medicine. 2016 Sep;140(9):893-8.
78. Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, Beckwith BA, Evans AJ, Lal
A, Parwani AV. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College
of American Pathologists Pathology and Laboratory Quality Center. Archives of Pathology and Laboratory
Medicine. 2013 Dec;137(12):1710-22.
79. Zarella MD, Bowman D, Aeffner F, Farahani N, Xthona A, Absar SF, Parwani A, Bui M, Hartman DJ. A
practical guide to whole slide imaging: a white paper from the digital pathology association. Archives of
pathology & laboratory medicine. 2019 Feb;143(2):222-34.
80. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology—
new tools for diagnosis and precision oncology. Nature reviews Clinical oncology. 2019 Nov;16(11):703-15.
81. Tumeh PC, Hellmann MD, Hamid O, Tsai KK, Loo KL, Gubens MA, Rosenblum M, Harview CL, Taube
JM, Handley N, Khurana N. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in
patients with melanoma and NSCLC. Cancer immunology research. 2017 May;5(5):417-24.
82. Barisoni L, Lafata KJ, Hewitt SM, Madabhushi A, Balis UG. Digital pathology and computational image
analysis in nephropathology. Nature Reviews Nephrology. 2020 Nov;16(11):669-85.
83. Neltner JH, Abner EL, Schmitt FA, Denison SK, Anderson S, Patel E, Nelson PT. Digital pathology and
image analysis for robust high-throughput quantitative assessment of Alzheimer disease neuropathologic
changes. Journal of Neuropathology & Experimental Neurology. 2012 Dec 1;71(12):1075-85.
84. Dixon AR, Bathany C, Tsuei M, White J, Barald KF, Takayama S. Recent developments in multiplexing
techniques for immunohistochemistry. Expert review of molecular diagnostics. 2015 Sep 2;15(9):1171-86.
85. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki-Teeri P, Hemmes A, Välimäki K, Lundin J,
Kallioniemi O, Pellinen T. Systems pathology by multiplexed immunohistochemistry and whole-slide digital
image analysis. Scientific reports. 2017 Nov 14;7(1):1-3.
86. Carstens JL, Correa de Sampaio P, Yang D, Barua S, Wang H, Rao A, Allison JP, LeBleu VS, Kalluri R.
Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nature
communications. 2017 Apr 27;8(1):1-3.
87. Feng Z, Puri S, Moudgil T, Wood W, Hoyt CC, Wang C, Urba WJ, Curti BD, Bifulco CB, Fox BA.
Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from
melanoma. Journal for immunotherapy of cancer. 2015 Dec;3(1):1-1.
88. Lopès A, Cassé AH, Billard E, Boulcourt-Sambou E, Roche G, Larois C, Barnich N, Naimi S, Bonnet M,
Dumas B. Deciphering the immune microenvironment of a tissue by digital imaging and cognition network.
Scientific reports. 2018 Nov 12;8(1):1-6.
89. Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ, Lujan GM, Molani MA,
Parwani AV, Lillard K, Turner OC. Introduction to digital image analysis in whole-slide imaging: a white paper
from the digital pathology association. Journal of pathology informatics. 2019 Jan 1;10(1):9.
90. Heindl A, Nawaz S, Yuan Y. Mapping spatial heterogeneity in the tumor microenvironment: a new era for
digital pathology. Laboratory investigation. 2015 Apr;95(4):377-84.
91. Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page
DB, Robins H. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. Journal for
immunotherapy of cancer. 2016 Dec;4(1):1-25.
92. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer
M, Zhao S. Applications of machine learning in drug discovery and development. Nature reviews Drug
discovery. 2019 Jun;18(6):463-77.
93. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology—
new tools for diagnosis and precision oncology. Nature reviews Clinical oncology. 2019 Nov;16(11):703-15.
94. Serag A, Ion-Margineanu A, Qureshi H, McMillan R, Saint Martin MJ, Diamond J, O'Reilly P, Hamilton P.
Translational AI and deep learning in diagnostic pathology. Frontiers in medicine. 2019 Oct 1;6:185.
95. Ganesan S, Madabhushi A, Basavanhally A, Xu J, Bhanot G, Barnard N, Toppmeyer D. Computerized
Histologic Image-Based Risk Score (IbRiS) Classifier for ER+ Breast Cancer. Cancer Research. 2009 Dec
15;69(24_Supplement):3046-.
96. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, Van De Vijver MJ, West RB, Van De Rijn M,
Koller D. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival.
Science translational medicine. 2011 Nov 9;3(108):108ra113-.
97. Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in translational
medicine and clinical practice. Modern Pathology. 2022 Jan;35(1):23-32.
98. Zhang J, Wang G, Ren J, Yang Z, Li D, Cui Y, Yang X. Multiparametric MRI-based radiomics nomogram
for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive
ductal carcinoma. European Radiology. 2022 Jun;32(6):4079-89.
99. Schaffter T, Buist DS, Lee CI, Nikulin Y, Ribli D, Guan Y, Lotter W, Jie Z, Du H, Wang S, Feng J.
Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms.
JAMA network open. 2020 Mar 2;3(3):e200265-.
100. Grimm LJ, Mazurowski MA. Breast cancer radiogenomics: current status and future directions. Academic
Radiology. 2020 Jan 1;27(1):39-46.
101. Zhang Y, Jiang B, Zhang L, Greuter MJ, de Bock GH, Zhang H, Xie X. Lung nodule detectability of
artificial intelligence-assisted CT image reading in lung cancer screening. Current Medical Imaging. 2022 Mar
1;18(3):327-34.
102. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G,
Naidich DP. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed
tomography. Nature medicine. 2019 Jun;25(6):954-61.
103. Zhao W, Yang J, Sun Y, Li C, Wu W, Jin L, Yang Z, Ni B, Gao P, Wang P, Hua Y. 3D deep learning from
CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. Cancer research. 2018 Dec
15;78(24):6881-9.
104. Ravenel JG, Rosenzweig KE, Kirsch J, Ginsburg ME, Kanne JP, Kestin LL, Parker JA, Rimner A, Saleh
AG, Mohammed TL. ACR Appropriateness Criteria non-invasive clinical staging of bronchogenic carcinoma.
Journal of the American College of Radiology. 2014 Sep 1;11(9):849-56.
105. Kumar Y, Gupta S, Singla R, Hu YC. A systematic review of artificial intelligence techniques in cancer
prediction and diagnosis. Archives of Computational Methods in Engineering. 2021 Sep 27:1-28.
106. Serag A, Ion-Margineanu A, Qureshi H, McMillan R, Saint Martin MJ, Diamond J, O'Reilly P, Hamilton P.
Translational AI and deep learning in diagnostic pathology. Frontiers in medicine. 2019 Oct 1;6:185.
107. Madabhushi A, Agner S, Basavanhally A, Doyle S, Lee G. Computer-aided prognosis: predicting patient and
disease outcome via quantitative fusion of multi-scale, multi-modal data. Computerized medical imaging and
graphics. 2011 Oct 1;35(7-8):506-14.
108. Amiri Z, Mohammad K, Mahmoudi M, Parsaeian M, Zeraati H. Assessing the effect of quantitative and
qualitative predictors on gastric cancer individuals survival using hierarchical artificial neural network models.
Iranian Red Crescent Medical Journal. 2013 Jan;15(1):42.
109. Afshar S, Afshar S, Warden E, Manochehri H, Saidijam M. Application of artificial neural network in
miRNA biomarker selection and precise diagnosis of colorectal cancer. Iranian biomedical journal. 2019
May;23(3):175.
110. Vogel L. Rise of medical AI poses new legal risks for doctors.
111. Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van Der Laak JA,
Hermsen M, Manson QF, Balkenhol M, Geessink O. Diagnostic assessment of deep learning algorithms for
detection of lymph node metastases in women with breast cancer. Jama. 2017 Dec 12;318(22):2199-210.
112. Bandi P, Geessink O, Manson Q, Van Dijk M, Balkenhol M, Hermsen M, Bejnordi BE, Lee B, Paeng K,
Zhong A, Li Q. From detection of individual metastases to classification of lymph node status at the patient level:
the camelyon17 challenge. IEEE transactions on medical imaging. 2018 Aug 26;38(2):550-60.
113. Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman J, Haghighi M, Heng C, Becker T, Doan M,
McQuin C, Rohban M. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nature
methods. 2019 Dec;16(12):1247-53.
114. Altini N, Prencipe B, Cascarano GD, Brunetti A, Brunetti G, Triggiani V, Carnimeo L, Marino F, Guerriero
A, Villani L, Scardapane A. Liver, kidney and spleen segmentation from CT scans and MRI with deep learning:
A survey. Neurocomputing. 2022 Jun 14;490:30-53.
115. Robertson S, Azizpour H, Smith K, Hartman J. Digital image analysis in breast pathology—from image
processing techniques to artificial intelligence. Translational Research. 2018 Apr 1;194:19-35.
116. Luchini C, Pea A, Scarpa A. Artificial intelligence in oncology: current applications and future perspectives.
British Journal of Cancer. 2022 Jan;126(1):4-9.
117. Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, Kather JN. Deep learning in cancer pathology: a
new generation of clinical biomarkers. British journal of cancer. 2021 Feb;124(4):686-96.
118. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, Brogi E, Reuter
VE, Klimstra DS, Fuchs TJ. Clinical-grade computational pathology using weakly supervised deep learning on
whole slide images. Nature medicine. 2019 Aug;25(8):1301-9.
119. Echle A, Grabsch HI, Quirke P, van den Brandt PA, West NP, Hutchins GG, Heij LR, Tan X, Richman SD,
Krause J, Alwers E. Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning.
Gastroenterology. 2020 Oct 1;159(4):1406-16.
120. Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine
learning in medical imaging. Nature Machine Intelligence. 2020 Jun;2(6):305-11.