Article

Doublecortin-like kinase 1 activates NF-κB to induce inflammatory responses by binding directly to IKKβ

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Doublecortin-like kinase 1 (DCLK1), a microtubule-associated protein kinase, is involved in neurogenesis, and its levels are elevated in various human cancers. Recent studies suggest that DCLK1 may relate to inflammatory responses in the mouse model of colitis. However, cellular pathways engaged by DCLK1, and potential substrates of the kinase remain undefined. To understand how DCLK1 regulates inflammatory responses, we utilized the well-established lipopolysaccharide (LPS)-stimulated macrophages and mouse model. Through a range of macrophage-based and cell-free platforms, we discovered that DCLK1 binds directly with the inhibitor of κB kinase β (IKKβ) and induces IKKβ phosphorylation on Ser177/181 to initiate nuclear factor-κB (NF-κB) pathway. Deficiency in DCLK1, achieved by silencing or through pharmacological inhibition, prevented LPS-induced NF-κB activation and cytokine production in macrophages. We further show that mice with myeloid-specific DCLK1 knockout or DCLK1 inhibitor treatment are protected against LPS-induced acute lung injury and septic death. Our studies report a novel functional role of macrophage DCLK1 as a direct IKKβ regulator in inflammatory signaling and suggest targeted therapy against DCLK1 for inflammatory diseases.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... 51 It has been reported that DCLK1, Regulates NF-κB signaling pathway. 52 The NF-κB signaling pathway plays an important role in various cellular processes such as metastasis, DNA damage, apoptosis, tumorigenesis, and immune response against cancer. 53 There have been numerous investigations into the role of inflammation in cancer progression. ...
... Evidence has shown that DCLK1 interacts with IKKβ for NF-κB activation. 52 It was shown that DCLK1 mediates the liver inflammation caused by hepatitis. 55 The inflammatory microenvironment is a cancer trait that induces cancer progression. ...
Article
Full-text available
Cancers of the gastrointestinal (GI) tract, including colorectal, pancreatic, and hepatocellular carcinomas, represent a significant global health burden due to their high incidence and mortality rates. Doublecortin‐like kinase 1 (DCLK1), initially identified for its role in neurogenesis, has emerged as a crucial player in GI cancer progression. This review comprehensively examines the multifaceted roles of DCLK1 in GI cancers, focusing on its structural isoforms, functions in normal and inflammatory states, and contributions to cancer progression and metastasis. DCLK1 is overexpressed in various GI cancers and is associated with poor prognosis, enhanced tumorigenic potential, and increased metastatic capacity. The review discusses the molecular mechanisms through which DCLK1 influences cancer stem cell maintenance, epithelial‐mesenchymal transition (EMT), and cell survival pathways, as well as its interactions with key signaling pathways such as Notch, WNT/β‐catenin, and NF‐κB. The potential of DCLK1 as a therapeutic target is also explored, highlighting preclinical and early clinical efforts to inhibit its function using small molecule inhibitors or monoclonal antibodies. Despite significant advancements, further research is needed to fully elucidate DCLK1's role in GI cancers and to develop effective therapeutic strategies targeting this protein.
... DCLK1 can regulate its kinase activity to avoid unnecessary phosphorylation in its microtubulebinding domain (126). This is crucial for the role of DCLK1 in promoting neuronal survival following injury (127) and regulating dendritic growth and synaptic maturation (128). DCLK1 also triggers NF-κB activation, leading to the initiation of inflammatory responses in cardiac cells (128,129). ...
... This is crucial for the role of DCLK1 in promoting neuronal survival following injury (127) and regulating dendritic growth and synaptic maturation (128). DCLK1 also triggers NF-κB activation, leading to the initiation of inflammatory responses in cardiac cells (128,129). The majority of our understanding regarding DCLK1 function is confined to its role in cancer. ...
Article
Full-text available
The growing global prevalence of diabetes mellitus (DM), along with its associated complications, continues to rise. When clinically detected most DM complications are irreversible. It is therefore crucial to detect and address these complications early and systematically in order to improve patient care and outcomes. The current clinical practice often prioritizes DM complications by addressing one complication while overlooking others that could occur. It is proposed that the commonly targeted cell types including vascular cells, immune cells, glial cells, and fibroblasts that mediate DM complications, might share early responses to diabetes. In addition, the impact of one complication could be influenced by other complications. Recognizing and focusing on the shared early responses among DM complications, and the impacted cellular constituents, will allow to simultaneously address all DM-related complications and limit adverse treatment impacts. This review explores the current understanding of shared pathological signaling mechanisms among DM complications and recognizes new concepts that will benefit from further investigation in both basic and clinical settings. The ultimate goal is to develop more comprehensive treatment strategies, which effectively impact DM complications in multiple organs and improve patient care and outcomes.
... DCLK1 is an autoregulatory kinase that plays a crucial role in multiple biological processes including microtubule dynamics, intracellular trafficking, neuronal growth, cell signaling, cancer, and inflammation (16,(34)(35)(36). We recently discovered a novel function of DCLK1 in promoting SARS-CoV-2 production and exacerbation of COVID-19 (13). ...
Article
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to fatal outcomes for subgroups of patients with pre-existing co-morbidities. We previously reported a significant association between high expression levels of a cancer stem cell protein, doublecortin-like kinase 1 (DCLK1), in the lungs and macrophages of SARS-CoV-2-infected patients and the severity of coronavirus disease 2019 (COVID-19). Herein, we demonstrate a pivotal role of DCLK1 in the viral replication cycle and the dysregulation of cell signaling that contributes to SARS-CoV-2 pathology. Through CRISPR/Cas9-mediated DCLK1 knockout and inhibition of its kinase using a small molecule kinase inhibitor of DCLK1 (DCLK1-IN-1), we effectively blocked the viral replication-transcription processes. Furthermore, DCLK1 inhibition reversed the virus-induced positive and/or negative modulation of the cellular interactome and signaling pathways. We observed a decrease in the phosphorylation of a serine/arginine-rich region in the nucleocapsid protein, which regulates viral replication and packaging, upon treatment with DCLK1-IN-1. In a murine model of COVID-19, intranasal inoculation of SARS-CoV-2 induced severe lung pathology accompanied by increased DCLK1 expression, high titers of viral genomic and subgenomic RNAs, and elevated levels of inflammatory cytokines (interleukin-6 and tumor necrosis factor alpha). Remarkably, treatment of infected mice with DCLK1-IN-1 reduced viral RNAs, downregulated inflammatory cytokines, restored normal cell signaling pathways, and improved lung pathology. In conclusion, our findings underscore the crucial role of DCLK1 in SARS-CoV-2 pathology and suggest it as a promising target for therapeutic intervention. IMPORTANCE Severe COVID-19 and post-acute sequelae often afflict patients with underlying co-morbidities. There is a pressing need for highly effective treatment, particularly in light of the emergence of SARS-CoV-2 variants. In a previous study, we demonstrated that DCLK1, a protein associated with cancer stem cells, is highly expressed in the lungs of COVID-19 patients and enhances viral production and hyperinflammatory responses. In this study, we report the pivotal role of DCLK1-regulated mechanisms in driving SARS-CoV-2 replication-transcription processes and pathogenic signaling. Notably, pharmacological inhibition of DCLK1 kinase during SARS-CoV-2 effectively impedes these processes and counteracts virus-induced alternations in global cell signaling. These findings hold significant potential for immediate application in treating COVID-19.
... Because IκB normally binds to NF-κB, the latter's nuclear localization sequence (NLS) is masked, resulting in its main location in the cytoplasm, while removal of IκB exposes the masked site to induce the nuclear translocation of NF-κB, making it bind to the promoter regions of its downstream genes [34], such as cyclooxygenase-2 (COX-2), IL-6, and inducible nitric oxide synthase (iNOS). Furthermore, activated IKKβ mediates the Ser536 phosphorylation of NF-κB p65 to initiate reverse transcription, resulting in increased transcriptional activation [35,36]. In the non-canonical pathway, IKKα activates NF-κB as well. ...
Article
Full-text available
The effective approach to discover innovative drugs will ask natural products for answers because of their complex and changeable structures and multiple biological activities. Inhibitory kappa B kinase beta (IKKβ), known as IKK2, is a key regulatory kinase responsible for the activation of NF-κB through its phosphorylation at Ser177 and Ser181 to promote the phosphorylation of inhibitors of kappa B (IκBs), triggering their ubiquitination and degradation to active the nuclear factor kappa-B (NF-κB) cascade. Chemical inhibition of IKKβ or its genetic knockout has become an effective method to block NF-κB-mediated proliferation and migration of tumor cells and inflammatory response. In this review, we summarized the structural feature and transduction mechanism of IKKβ and the discovery of inhibitors from natural resources (e.g. sesquiterpenoids, diterpenoids, triterpenoids, flavonoids, and alkaloids) and chemical synthesis (e.g. pyrimidines, pyridines, pyrazines, quinoxalines, thiophenes, and thiazolidines). In addition, the biosynthetic pathway of novel natural IKKβ inhibitors and their biological potentials were discussed. This review will provide inspiration for the structural modification of IKKβ inhibitors based on the skeleton of natural products or chemical synthesis and further phytochemistry investigations.
Article
Full-text available
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Article
DCLK1, a tuft cell marker, is widely expressed in various tumors. Its high expression levels are closely linked to malignant tumor progression, making it a potential tumor-related marker. Recent studies have shed light on the critical roles of DCLK1 and tuft cells in the immune response and the maintenance of epithelial homeostasis, as well as targeted immune escape mechanisms in the tumor microenvironment. This review aims to comprehensively examine the current understanding of immune-related functions mediated by DCLK1 and tuft cells in epithelial tissues, including the roles of relevant cells and important factors involved. Additionally, this review will discuss recent advances in anti-tumor immunity mediated by DCLK1/tuft cells and their potential as immunotherapeutic targets. Furthermore, we will consider the potential impact of DCLK1 targeted therapy in cancer immunotherapy, particularly DCLK1 kinase inhibitors as potential therapeutic drugs in anti-tumor immunity, providing a new perspective and reference for future research.
Article
Full-text available
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/ Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Article
Full-text available
Lipopolysaccharide (LPS) is the main structural component of the outer membrane of most Gram-negative bacteria and has diverse immunostimulatory and procoagulant effects. Even though LPS is well described for its role in the pathology of sepsis, considerable evidence demonstrates that LPS-induced signalling and immune dysregulation are also relevant in the pathophysiology of many diseases, characteristically where endotoxaemia is less severe. These diseases are typically chronic and progressive in nature and span broad classifications, including neurodegenerative, metabolic, and cardiovascular diseases. This Review reappraises the mechanisms of LPS-induced signalling and emphasises the crucial contribution of LPS to the pathology of multiple chronic diseases, beyond conventional sepsis. This perspective asserts that new ways of approaching chronic diseases by targeting LPS-driven pathways may be of therapeutic benefit in a wide range of chronic inflammatory conditions.
Article
Full-text available
Microtubule-associated doublecortin-like kinase 1 (DCLK1) is an accepted marker of tuft cells (TCs) and several kinds of cancer stem cells (CSCs), and emerging evidence suggests that DCLK1-positive TCs participate in the initiation and formation of inflammation-associated cancer. DCLK1-expressing CSCs regulate multiple biological processes in cancer, promote resistance to therapy, and are associated with metastasis. In solid tumor cancers, tumor epithelia, immune cells, cancer-associated fibroblasts, endothelial cells and blood vessels, extracellular matrix, and hypoxia all support a CSC phenotype characterized by drug resistance, recurrence, and metastasis. Recently, studies have shown that DCLK1-positive CSCs are associated with epithelial-mesenchymal transition, angiogenesis, and immune checkpoint. Emerging data concerning targeting DCLK1 with small molecular inhibitors, monoclonal antibodies, and chimeric antigen receptor T-cells shows promising effects on inhibiting tumor growth and regulating the tumor immune microenvironment. Overall, DCLK1 is reaching maturity as an anti-cancer target and therapies directed against it may have potential against CSCs directly, in remodeling the tumor microenvironment, and as immunotherapies.
Article
Full-text available
Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-β1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble β-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-β1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-β1 to the TGF-β receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-β1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-β1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.
Article
Full-text available
Immunotherapy that has proven efficacy in several solid cancers plays a partial role in improving clinical outcomes of advanced gastrointestinal (GI) cancers. There is an unmet need to find new immune-related therapeutic targets. Doublecortin-like kinase 1 (DCLK1) marks tuft cells which are recognized as cancer-initiating cells and regulators of the type II immune response, and has been studied for its role in many cancers including colon and gastric cancers, but its role in tumor immunity remains unexplored. In the current study, we analyzed colon and gastric cancer RNA sequencing data from 283 and 415 patients, respectively, from The Cancer Genome Atlas (TCGA). High DCLK1 expression predicted the worse clinical outcomes in colon and gastric cancer patients and correlated with increased immune and stromal components. Further analysis indicated that DCLK1 was strongly linked to infiltration of multiple immune cell types, especially TAMs and Treg, and strongly correlated with increased CD8+ T cell inhibitors TGFB1 and CXCL12 and their receptors, suggesting it may contribute to TAM-mediated inhibition of CD8+ T cells. Interestingly, we found that DCLK1 was a prognostic biomarker in left-sided colon cancer, which has worse outcomes and demonstrates a reduced response to existing immunotherapies. In conclusion, our results demonstrate that DCLK1 is linked with functional regulation of the tumor microenvironment and may have potential as a prognostic biomarker and adjuvant target to promote immunotherapy sensitivity in colon and gastric cancer patients.
Article
Full-text available
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by defective intestinal barrier integrity toward the microbiota and epithelial damage. Double cortin-like kinase 1 (Dclk1), a marker of intestinal tuft cells, can regulate tissue regenerative responses, but its role in epithelial repair during bacterial-dependent chronic colitis is unclear. We addressed this question using our recently developed mouse model of spontaneous microbiota-dependent colitis induced by mucin-type O-glycan deficiency (DKO), which recapitulates most features of human UC. We generated DKO mice lacking intestinal epithelial Dclk1 (DKO;Dclk1ΔIEC) and analyzed colitis onset and severity using clinical and histologic indices, immune responses by qPCR and immunostaining, and epithelial responses using proliferation markers and organoid culture. We found 3–4-week-old DKO;Dclk1ΔIEC mice developed worsened spontaneous colitis characterized by reduced body weight, loose stool, severe colon thickening, epithelial lesions, and inflammatory cell infiltrates compared with DKO mice. The primary defect was an impaired epithelial proliferative response during inflammation. Dclk1 deficiency also reduced inflammation-induced proliferation and growth of colon organoids ex vivo. Mechanistically, Dclk1 expression was important for inflammation-induced Cox2 expression and prostaglandin E2 (PGE2) production in vivo, and PGE2 rescued proliferative defects in Dclk1-deficient colonic organoids. Although tuft cells were expanded in both DKO and DKO;Dclk1ΔIEC relative to WT mice, loss of Dclk1 was associated with reduced tuft cell activation (i.e., proliferation) during inflammation. Similar results were found in DKO vs. DKO;Dclk1ΔIEC mice at 3–6 months of age. Our results support that tuft cells, via Dclk1, are important responders to bacterial-induced colitis by enhancing epithelial repair responses, which in turn limits bacterial infiltration into the mucosa.
Article
Full-text available
Doublecortin-like kinase 1 (DCLK1) is a member of the neuronal microtubule-associated doublecortin (DCX) family and functions in multiple stages of neural development including radial migration and axon growth of cortical neurons. DCLK1 is suggested to play the roles in part through its protein kinase activity, yet the kinase substrates of DCLK1 remain largely unknown. Here we have identified MAP7D1 (microtubule-associated protein 7 domain containing 1) as a novel substrate of DCLK1 by using proteomic analysis. MAP7D1 is expressed in developing cortical neurons, and knockdown of MAP7D1 in layer 2/3 cortical neurons results in a significant impairment of callosal axon elongation, but not of radial migration, in corticogenesis. We have further defined the serine 315 (Ser 315) of MAP7D1 as a DCLK1-induced phosphorylation site and shown that overexpression of a phosphomimetic MAP7D1 mutant in which Ser 315 is substituted with glutamic acid (MAP7D1 S315E), but not wild-type MAP7D1, fully rescues the axon elongation defects in Dclk1 knockdown neurons. These data demonstrate that DCLK1 phosphorylates MAP7D1 on Ser 315 to facilitate axon elongation of cortical neurons. This article is protected by copyright. All rights reserved.
Article
Full-text available
Doublecortin-like kinase 1 (Dclk1), a microtubule-associated kinase, marks the fifth lineage of intestinal epithelial cells called tuft cells that function as tumor stem cells in Apc mutant models of colon cancer. In order to determine the role of Dclk1 in dextran sulfate sodium (DSS) induced colonic inflammation both intestinal epithelial specific Dclk1 deficient (VillinCre;Dclk1f/f) and control (Dclk1f/f) mice were fed 3% DSS in drinking water for 9 days, allowed to recover for 2 days, and killed. The clinical and histological features of DSS-induced colitis were scored and immunohistochemical, gene expression, pro-inflammatory cytokines/chemokines, and immunoblotting analyses were used to examine epithelial barrier integrity, inflammation, and stem and tuft cell features. In DSS-induced colitis, VillinCre;Dclk1f/f mice demonstrated exacerbated injury including higher clinical colitis scores, increased epithelial barrier permeability, higher levels of pro-inflammatory cytokines and chemokines, decreased levels of Lgr5, and dysregulated Wnt/b-Catenin pathway genes. These results suggest that Dclk1 plays an important role in regulating colonic inflammatory response and colonic epithelial integrity.
Article
Full-text available
Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs.
Article
Full-text available
Doublecortin (DCX) and doublecortin-like kinase (DCLK), closely related family members, are microtubule-associated proteins with overlapping functions in both neuronal migration and axonal outgrowth. In growing axons, these proteins appear to have their primary functions in the growth cone. Here, we used siRNA to de-plete these proteins from cultured rat sympathetic neurons. Normally, microtubules in the growth cone ex-hibit a gently curved contour as they extend from the base of the cone toward its periphery. However, following depletion of DCX and DCLK, microtubules throughout the growth cone become much more curvy, with many microtubules exhibiting multiple prominent bends over relatively short distances, creating a configuration that we termed wave-like folds. Microtubules with these folds appeared as if they were buck-ling in response to powerful forces. Indeed, inhibition of myosin-II, which generates forces on the actin cyto-skeleton to push microtubules in the growth cone back toward the axonal shaft, significantly decreases the frequency of these wave-like folds. In addition, in the absence of DCX and DCLK, the depth of microtubule invasion into filopodia is reduced compared with controls, and at a functional level, growth cone responses to substrate guidance cues are altered. Conversely, overexpression of DCX results in microtubules that are straighter than usual, suggesting that higher levels of these proteins can enable an even greater resistance to folding. These findings support a role for DCX and DCLK in enabling microtubules to overcome retrograde actin-based forces, thereby facilitating the ability of the growth cone to carry out its crucial path-finding functions.
Article
Full-text available
NF-κB transcription factors are critical regulators of immunity, stress responses, apoptosis and differentiation. A variety of stimuli coalesce on NF-κB activation, which can in turn mediate varied transcriptional programs. Consequently, NF-κB-dependent transcription is not only tightly controlled by positive and negative regulatory mechanisms but also closely coordinated with other signaling pathways. This intricate crosstalk is crucial to shaping the diverse biological functions of NF-κB into cell type- and context-specific responses.
Article
Full-text available
Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
Article
Full-text available
We tested whether double cortin-like kinase-short (DCLK-short), a microtubule-associated Ser/Thr kinase predominantly expressed in the brain, is downstream of the ERK signaling pathway and is involved in proopiomelanocortin gene (POMC) expression in endocrine pituitary melanotrope cells of Xenopus laevis. Melanotropes form a well-established model to study physiological aspects of neuroendocrine plasticity. The amphibian X. laevis adapts its skin color to the background light intensity by the release of α-MSH from the melanotrope cell. In frogs on a white background, melanotropes are inactive but they are activated during adaptation to a black background. Our results show that melanotrope activation is associated with an increase in DCLK-short mRNA and with phosphorylation of DCLK-short at serine at position 30 (Ser-30). Upon cell activation phosphorylated Ser-30-DCLK-short was translocated from the cytoplasm into the nucleus, and the ERK blocker U0126 inhibited this process. The mutation of Ser-30 to alanine also inhibited the translocation and reduced POMC expression, whereas overexpression stimulated POMC expression. This is the first demonstration of DCLK-short in a native endocrine cell. We conclude that DCLK-short is physiologically regulated at both the level of its gene expression and protein phosphorylation and that the kinase is effectively regulating POMC gene expression upon its ERK-mediated phosphorylation.
Article
Full-text available
Sepsis remains a serious clinical problem despite intense efforts to improve survival. Experimental animal models of sepsis have responded dramatically to immunotherapy blocking the activity of cytokines. Despite these preclinical successes, human clinical trials have not demonstrated any improvement in survival. We directly compared the mortality, morbidity, and immunopathology in two models of sepsis, one due to lipopolysaccharide (LPS) and the other to cecal ligation and puncture (CLP). BALB/c mice were injected intraperitoneally with 250 microg of LPS or subjected to CLP with an 18-gauge needle. Both models yielded similar mortality (> 85%) and morbidity. Additionally, neutropenia and lymphopenia developed in both groups. Plasma and peritoneal levels of cytokines (TNF, IL-1, IL-6, and the chemokines KC and MIP-2) were measured at 1.5, 4, and 8 h after challenge. LPS induced substantially higher levels of cytokines in both compartments with peak levels between 1.5 and 4 h that began to decline at 8 h. In contrast, cytokine levels in the CLP model were continuing to increase at the 8 h-time point and often exceeded the LPS-induced values at this time. Our data demonstrate that the LPS and CLP models have similar mortality but significant differences in the kinetics and magnitude of cytokine production. Immunotherapy for sepsis based on cytokine production after LPS challenge is misdirected because the LPS model does not accurately reproduce the cytokine profile of sepsis.
Article
Full-text available
Doublecortin (DCX) is a microtubule-associated protein required for neuronal migration to the cerebral cortex. DCAMKL1 consists of an N terminus that is 65% similar to DCX throughout the entire length of DCX, but also contains an additional 360 amino acid C-terminal domain encoding a putative Ca(2+)/calmodulin-dependent protein kinase. The homology to DCX suggested that DCAMKL1 may regulate microtubules, as well as mediate a phosphorylation-dependent signal transduction pathway. Here we show that DCAMKL1 is expressed throughout the CNS and PNS in migrating neuronal populations and overlaps in its expression with DCX and microtubules. Purified DCAMKL1 associates with microtubules and stimulates polymerization of purified tubulin and the formation of aster-like microtubule structures. Overexpressed DCAMKL1 leads to striking microtubule bundling in cell lines and cultured primary neural cells. Time-lapse imaging of cells transfected with a DCAMKL1-green fluorescent protein fusion protein shows that the microtubules associated with the protein remain dynamic. DCAMKL1 also encodes a functional kinase capable of phosphorylating myelin basic protein and itself. However, elimination of the kinase activity of DCAMKL1 has no detectable effect on its microtubule polymerization activity. Because DCAMKL1 is coexpressed with DCX, the two proteins form a potentially mutually regulatory network linking calcium signaling and microtubule dynamics.
Article
Full-text available
Alternative splicing of mRNA transcripts expands the range of protein products from a single gene locus. Several splice variants of DCLK(doublecortin-like kinase) have previously been reported. Here, we report the genomic organization underlying the splice variants ofDCLK and examine the expression profile of two splice variants affecting the kinase domain of DCLK and CPG16 (candidate plasticity gene 16), one containing an Arg-rich domain and the other affecting the C terminus of the protein. These splice alternatives were differentially expressed in embryonic and adult brain. Both splice variants disrupted DCLK PEST domains; however, all splice variants remained sensitive to proteolysis by calpain. The adult-specific C-terminal splice variant of DCLK had reduced autophosphorylation activity, but similar kinase activity for myelin basic protein relative to the embryonic splice variant. The splice variant adding an Arg-rich domain gained an autophosphorylation site at Ser-382. Although this protein isoform was expressed mainly in the adult brain, the phosphorylated form was strongly enriched in embryonic brain and adult olfactory bulb, suggesting a possible role in migrating neurons.
Article
Full-text available
The doublecortin-like domains (DCX), which typically occur in tandem, are novel microtubule-binding modules. DCX tandems are found in doublecortin, a 360-residue protein expressed in migrating neurons; the doublecortin-like kinase (DCLK); the product of the RP1 gene that is responsible for a form of inherited blindness; and several other proteins. Mutations in the gene encoding doublecortin cause lissencephaly in males and the 'double-cortex syndrome' in females. We here report a solution structure of the N-terminal DCX domain of human doublecortin and a 1.5 A resolution crystal structure of the equivalent domain from human DCLK. Both show a stable, ubiquitin-like tertiary fold with distinct structural similarities to GTPase-binding domains. We also show that the C-terminal DCX domains of both proteins are only partially folded. In functional assays, the N-terminal DCX domain of doublecortin binds only to assembled microtubules, whereas the C-terminal domain binds to both microtubules and unpolymerized tubulin.
Article
Full-text available
Doublecortin (DCX) domains serve as protein-interaction platforms. Mutations in members of this protein superfamily are linked to several genetic diseases. Mutations in the human DCX gene result in abnormal neuronal migration, epilepsy, and mental retardation; mutations in RP1 are associated with a form of inherited blindness, and DCDC2 has been associated with dyslectic reading disabilities. The DCX-repeat gene family is composed of eleven paralogs in human and in mouse. Its evolution was followed across vertebrates, invertebrates, and was traced to unicellular organisms, thus enabling following evolutionary additions and losses of genes or domains. The N-terminal and C-terminal DCX domains have undergone sub-specialization and divergence. Developmental in situ hybridization data for nine genes was generated. In addition, a novel co-expression analysis for most human and mouse DCX superfamily-genes was performed using high-throughput expression data extracted from Unigene. We performed an in-depth study of a complete gene superfamily using several complimentary methods. This study reveals the existence and conservation of multiple members of the DCX superfamily in different species. Sequence analysis combined with expression analysis is likely to be a useful tool to predict correlations between human disease and mouse models. The sub-specialization of some members due to restricted expression patterns and sequence divergence may explain the successful addition of genes to this family throughout evolution.
Article
Full-text available
Doublecortin (DCX) has recently been promulgated as a selective marker of cells committed to the neuronal lineage in both the developing and the adult brain. To explore the potential of DCX-positive (DCX+) cells more stringently, these cells were isolated by flow cytometry from the brains of transgenic mice expressing green fluorescent protein under the control of the DCX promoter in embryonic, early postnatal, and adult animals. It was found that virtually all of the cells (99.9%) expressing high levels of DCX (DCX(high)) in the embryonic brain coexpressed the neuronal marker betaIII-tubulin and that this population contained no stem-like cells as demonstrated by lack of neurosphere formation in vitro. However, the DCX+ population from the early postnatal brain and the adult subventricular zone and hippocampus, which expressed low levels of DCX (DCX(low)), was enriched for neurosphere-forming cells, with only a small subpopulation of these cells coexpressing the neuronal markers betaIII-tubulin or microtubule-associated protein 2. Similarly, the DCX(low) population from embryonic day 14 (E14) brain contained neurosphere-forming cells. Only the postnatal cerebellum and adult olfactory bulb contained some DCX(high) cells, which were shown to be similar to the E14 DCX(high) cells in that they had no stem cell activity. Electrophysiological studies confirmed the heterogeneous nature of DCX+ cells, with some cells displaying characteristics of immature or mature neurons, whereas others showed no neuronal characteristics whatsoever. These results indicate that DCX(high) cells, regardless of location, are restricted to the neuronal lineage or are bone fide neurons, whereas some DCX(low) cells retain their multipotentiality.
Article
Doublecortin‑like kinase 1 (DCLK1) has been identified as a novel biomarker of cancer stem cells among several different cancer types, including colon, breast, pancreas, kidney, liver, stomach and esophageal cancers. Studies have demonstrated that DCLK1 regulates tumorigenesis and epithelial‑mesenchymal transformation via several important pathways, such as Notch, Wnt/β‑catenin, RAS and multiple microRNAs. The function and biological mechanisms, including their association with the molecular structure and isoforms of DCLK1, are gradually being elucidated. However, the currently available knowledge regarding DCLK1 in terms of developing effective anti‑cancer drugs remains incomplete. In the present review, the molecular characteristics, biomarker function and biological mechanisms of DCLK1 are summarized and DCLK1 is proposed as a potential anti‑tumor target via the glucose metabolism pathway.
Article
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Article
Myeloid differentiation primary response protein 88 (MyD88), an essential adapter protein used by toll-like receptors (TLR), is a promising target molecule for the treatment of respiratory inflammatory diseases. Previous studies explored the activities of novel 2-amino-4-phenylthiazole analogue (6) in inflammation-induced cancer, and identified the analogue as an inhibitor of MyD88 toll/interleukin-1 receptor (TIR) homology domain dimerization. Here, we describe the synthesis of 47 new analogues by modifying different sites on this lead compound and assessed their anti-inflammatory activities in lipopolysaccharide-induced mouse primary peritoneal macrophages (MPMs). The most promising compound, 15d, was found to effectively interact with MyD88 protein and prevented formation of the MyD88 homodimeric complex. Furthermore, 15d showed in vivo anti-inflammatory activity in LPS-caused model of acute lung injury. This work provides new candidates as MyD88 inhibitors to combat inflammation diseases.
Article
Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase that belongs to the family of microtubule-associated proteins. Originally identified for its role in neurogenesis, DCLK1 has recently been shown to regulate biological processes outside of the CNS. DCLK1 is among the 15 most common putative driver genes for gastric cancers and is highly mutated across various other human cancers. However, our present understanding of how DCLK1 dysfunction leads to tumorigenesis is limited. Here, we provide evidence that DCLK1 kinase activity negatively regulates microtubule polymerization. We present the crystal structure of the DCLK1 kinase domain at 1.7 Å resolution, providing detailed insight into the ATP-binding site that will serve as a framework for future drug design. This structure also allowed for the mapping of cancer-causing mutations within the kinase domain, suggesting that a loss of kinase function may contribute to tumorigenesis.
Article
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We previously showed that a tumor/cancer stem cell (CSC) marker, doublecortin-like kinase (DCLK1) positively regulates hepatitis C virus (HCV) replication, and promotes tumor growth in colon and pancreas. Here, we employed transcriptome analysis, RNA interference, tumor xenografts, patient's liver tissues and hepatospheroids to investigate DCLK1-regulated inflammation and tumorigenesis in the liver. Our studies unveiled novel DCLK1-controlled feed-forward signaling cascades involving calprotectin subunit S100A9 and NFκB activation as a driver of inflammation. Validation of transcriptome data suggests that DCLK1 co-expression with HCV induces BRM/SMARCA2 of SW1/SNF1 chromatin remodeling complexes. Frequently observed lymphoid aggregates including hepatic epithelial and stromal cells of internodular septa extensively express DCLK1 and S100A9. The DCLK1 overexpression also correlates with increased levels of S100A9, c-Myc, and BRM levels in HCV/HBV-positive patients with cirrhosis and HCC. DCLK1 silencing inhibits S100A9 expression and hepatoma cell migration. Normal human hepatocytes (NHH)-derived spheroids exhibit CSC properties. These results provide new insights into the molecular mechanism of the hepatitis B/C-virus induced liver inflammation and tumorigenesis via DCLK1-controlled networks. Thus, DCLK1 appears to be a novel therapeutic target for the treatment of inflammatory diseases and HCC.
Article
Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease.
Article
Inflammation is involved in the development and/or progression of many diseases including diabetic complications. Investigations on novel anti-inflammatory agents may offer new approaches for the prevention of diabetic nephropathy. Our previous bioscreening of synthetic analogues of curcumin revealed C66 as a novel anti-inflammatory compound against LPS challenge in macrophages. In this study, we hypothesized that C66 affects high glucose (HG)-induced inflammation profiles in vitro and in vivo and then prevents renal injury in diabetic rats via its anti-inflammatory actions. Primary peritoneal macrophages (MPM), prepared from C57BL/6 mice, were treated with HG in the presence or absence of C66. Diabetes was induced in Sprague-Dawley rats with streptozotocin, and the effects of C66 (0.2, 1.0 or 5.0 mg·kg(-1) ), administered daily for 6 weeks, on plasma TNF-α levels and expression of inflammatory genes in the kidney were assessed. Pretreatment of MPMs with C66 reduced HG-stimulated production of TNF-α and NO, inhibited HG-induced IL-1β, TNF-α, IL-6, IL-12, COX-2 and iNOS mRNA transcription, and the activation of JNK/NF-kB signalling. In vivo, C66 inhibited the increased plasma TNF-α levels and renal inflammatory gene expression, improved histological abnormalities and fibrosis of diabetic kidney, but did not affect the hyperglycaemia in these diabetic rats. The anti-inflammatory effects of C66 are mediated by inhibiting HG-induced activation of the JNK/NF-κB pathway, rather than by reducing blood glucose in diabetic rats. This novel compound is a potential anti-inflammatory agent and might be beneficial for the prevention of diabetic nephropathy.
Article
Mutations in the human doublecortin (DCX), a brain-specific putative signaling protein, cause X-linked lissencephaly and subcortical band heterotopia. A predicted 740-amino-acid protein from human brain has two distinct regions, an N-terminal 345-amino-acid region 78% similar to the DCX protein and a C-terminal 427-amino-acid region that contains two transmembrane domains and is 98% homologous to a rat Ca2+/calmodulin-dependent protein kinase. We have designated this protein DCAMKL1. It maps to chromosome 13q12.3-q13, within a 540-kb YAC clone containing markers D13S805 and D13S1164. Northern analysis detected three major transcript isoforms of the DCAMKL1 gene expressed differentially and predominantly in human fetal and adult brain and during mouse embryogenesis (11-17 dpc). These results and its homology with the DCX and Ca2+/calmodulin dependent kinase proteins suggest a likely role for DCAMKL1 transmembrane protein in developing and adult brain, possibly in a pathway of cortical development.
Article
IκB [inhibitor of nuclear factor κB (NF-κB)] kinase (IKK) phosphorylates IκB inhibitory proteins, causing their degradation and activation of transcription factor NF-κB, a master activator of inflammatory responses. IKK is composed of three subunits—IKKα and IKKβ, which are highly similar protein kinases, and IKKγ, a regulatory subunit. In mammalian cells, phosphorylation of two sites at the activation loop of IKKβ was essential for activation of IKK by tumor necrosis factor and interleukin-1. Elimination of equivalent sites in IKKα, however, did not interfere with IKK activation. Thus, IKKβ, not IKKα, is the target for proinflammatory stimuli. Once activated, IKKβ autophosphorylated at a carboxyl-terminal serine cluster. Such phosphorylation decreased IKK activity and may prevent prolonged activation of the inflammatory response.
Article
Recently, we have cloned two splice variants of the doublecortin-like kinase (DCLK) gene, called DCLK-short-A and -B, both of which encode calcium/calmodulin-dependent protein kinase (CaMK)-like proteins with different C-terminal ends. Using in situ hybridization, we have found that both are highly expressed in limbic structures of the brain and that their expression differs in a number of brain areas. DCLK-short-A is relatively more strongly expressed than DCLK-short-B in the subependymal zone. The DCLK-short-B variant shows stronger expression in the cortex, the ventromedial and dorsomedial hypothalamic nuclei, the arcuate nucleus, the zona incerta and the subincertal nucleus. Also, within the hippocampus, the relative distribution of these two splice variants differs. DCLK-short-B expression compared to DCLK-short-A is highest in the CA1 area. The expression of the A variant is highest in the CA3/CA4 area. Additionally, DCLK-short-B is expressed at a higher level than DCLK-short-A in the substantia nigra and the mammillary nucleus. Both DCLK-short-A and -B were located in the cytoplasm, however DCLK-short-B was also found specifically in growth cone like structures and near the nucleus. Both DCLK-short proteins phosphorylate autocamtide and syntide, two highly specific CaMK substrates. Finally, removal of the C-terminal end of DCLK-short leads to a 10-fold increase of kinase activity, indicating that the different C-termini represent auto-inhibitory domains. Our results indicate that DCLK-short-A and -B control different neuronal processes that overlap with those controlled by CaMKs.
Article
The potential role of doublecortin (Dcx), encoding a microtubule-associated protein, in brain development has remained controversial. Humans with mutations show profound alterations in cortical lamination, whereas in mouse, RNAi-mediated knockdown but not germline knockout shows abnormal positioning of cortical neurons. Here, we report that the doublecortin-like kinase (Dclk) gene functions in a partially redundant pathway with Dcx in the formation of axonal projections across the midline and migration of cortical neurons. Dosage-dependent genetic effects were observed in both interhemispheric connectivity and migration of cortically and subcortically derived neurons. Surprisingly, RNAi-mediated knockdown of either gene results in similar migration defects. These results indicate the Dcx microtubule-associated protein family is required for proper neuronal migration and axonal wiring.
Article
Although mutations in the human doublecortin gene (DCX) cause profound defects in cortical neuronal migration, a genetic deletion of Dcx in mice produces a milder defect. A second locus, doublecortin-like kinase (Dclk), encodes a protein with similar "doublecortin domains" and microtubule stabilization properties that may compensate for Dcx. Here, we generate a mouse with a Dclk mutation that causes no obvious migrational abnormalities but show that mice mutant for both Dcx and Dclk demonstrate perinatal lethality, disorganized neocortical layering, and profound hippocampal cytoarchitectural disorganization. Surprisingly, Dcx(-/y);Dclk(-/-) mutants have widespread axonal defects, affecting the corpus callosum, anterior commissure, subcortical fiber tracts, and internal capsule. Dcx/Dclk-deficient dissociated neurons show abnormal axon outgrowth and dendritic structure, with defects in axonal transport of synaptic vesicle proteins. Dcx and Dclk may directly or indirectly regulate microtubule-based vesicle transport, a process critical to both neuronal migration and axon outgrowth.
Article
The mechanisms controlling neurogenesis during brain development remain relatively unknown. Through a differential protein screen with developmental versus mature neural tissues, we identified a group of developmentally enriched microtubule-associated proteins (MAPs) including doublecortin-like kinase (DCLK), a protein that shares high homology with doublecortin (DCX). DCLK, but not DCX, is highly expressed in regions of active neurogenesis in the neocortex and cerebellum. Through a dynein-dependent mechanism, DCLK regulates the formation of bipolar mitotic spindles and the proper transition from prometaphase to metaphase during mitosis. In cultured cortical neural progenitors, DCLK RNAi Lentivirus disrupts the structure of mitotic spindles and the progression of M phase, causing an increase of cell-cycle exit index and an ectopic commitment to a neuronal fate. Furthermore, both DCLK gain and loss of function in vivo specifically promote a neuronal identity in neural progenitors. These data provide evidence that DCLK controls mitotic division by regulating spindle formation and also determines the fate of neural progenitors during cortical neurogenesis.
Article
During corticogenesis, progenitors divide within the ventricular zone where they rely on radial process extensions, formed by radial glial cell (RG) scaffolds, along which they migrate to the proper layers of the cerebral cortex. Although the microtubule-associated proteins doublecortin (DCX) and doublecortin-like kinase (DCLK) are critically involved in dynamic rearrangement of the cytoskeletal machinery that allow migration, little is known about their role in early corticogenesis. Here we have functionally characterized a mouse splice-variant of DCLK, doublecortin-like (DCL), exhibiting 73% amino acid sequence identity with DCX over its entire length. Unlike DCX, DCL is expressed from embryonic day 8 onwards throughout the early neuroepithelium. It is localized in mitotic cells, RGs and radial processes. DCL knockdown using siRNA in vitro induces spindle collapse in dividing neuroblastoma cells, whereas overexpression results in elongated and asymmetrical mitotic spindles. In vivo knockdown of the DCLK gene by in utero electroporation significantly reduced cell numbers in the inner proliferative zones and dramatically disrupted most radial processes. Our data emphasize the unique role of the DCLK gene in mitotic spindle integrity during early neurogenesis. In addition, they indicate crucial involvement of DCLK in RG proliferation and their radial process stability, a finding that has thus far not been attributed to DCX or DCLK.
  • O Patel
  • W Dai
  • M Mentzel
  • M Griffin
  • J Serindoux
  • Y Gay
Patel O, Dai W, Mentzel M, Griffin M, Serindoux J, Gay Y, et al. Biochemical and Structural Insights into Doublecortin-like Kinase Domain 1. Structure. 2016;24:1550-61.