Building efficient supercomputers requires optimising communications, and their exaflopic scale causes an unavoidable risk of relatively frequent failures.For a cluster with given networking capabilities and applications, performance is achieved by providing a good route for every message while minimising resource access conflicts between messages.This thesis focuses on the fat-tree family of networks, for which we define several overarching properties so as to efficiently take into account a realistic superset of this topology, while keeping a significant edge over agnostic methods.Additionally, a partially novel static congestion risk evaluation method is used to compare algorithms.A generic optimisation is presented for some applications on clusters with heterogeneous equipment.The proposed algorithms use distinct approaches to improve centralised static routing by combining computation speed, fault-resilience, and minimal congestion risk.