Linear optical quantum computing provides a desirable approach to quantum computing, with a short list of required elements. The similarity between photons and phonons points to the interesting potential for linear mechanical quantum computing (LMQC), using phonons in place of photons. While single-phonon sources and detectors have been demonstrated, a phononic beamsplitter element remains an outstanding requirement. Here we demonstrate such an element, using two superconducting qubits to fully characterize a beamsplitter with single phonons. We further use the beamsplitter to demonstrate two-phonon interference, a requirement for two-qubit gates, completing the toolbox needed for LMQC. This advance brings linear quantum computing to a fully solid-state system, along with straightforward conversion between itinerant phonons and superconducting qubits.