ArticlePDF Available

Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil Conservation Service (SCS-CN) model

Authors:

Abstract

Precipitation and runoff are the important hydrologic component in the water resources assessment. Many methods are available to estimate surface runoff from rainfall; however, the SCS-CN method remains the most popular and frequently used method as runoff curve number (CN) is a crucial factor of the SCS-CN method and depends on land use/land cover (LC/LU), soil type, and antecedent soil moisture (AMC). This approach with the geographic information system (GIS) was applied for estimating runoff volume of Wadi Derna Basin. Soil maps were processed and classified into hydrologic soil groups (HSG), where the dominant HSG in the study area is D. The HSG and LULC layers were intersected and the CN values and the weighted curve number for each antecedent moisture (AMC) condition were assigned. As a result of the model applied, the annual runoff volume for forty years during 1960-2000 ‫الكلمات‬ ‫املفتاحية:‬ ‫السطحي‬ ‫يان‬ ‫الجر‬ ‫التربة‬ ‫رطوبة‬ ‫حاالت‬ AMC ‫درنة‬ ‫وادي‬ ‫حوض‬ ‫الجغرافية‬ ‫املعلومات‬ ‫نظم‬ GIS ‫نموذج‬ SCS-CN ‫امللخص‬ ‫تتوفر‬ ‫املائية.‬ ‫املوارد‬ ‫تقييم‬ ‫في‬ ‫الهامة‬ ‫الهيدرولوجية‬ ‫املكونات‬ ‫من‬ ‫األمطار‬ ‫تساقط‬ ‫نتيجة‬ ‫السطحي‬ ‫الجريان‬ ‫يعتبر‬ ‫الت‬ ‫وصيانة‬ ‫حفظ‬ ‫طريقة‬ ‫تظل‬ ‫ذلك‬ ‫ومع‬ ‫األمطار‬ ‫من‬ ‫السطحي‬ ‫يان‬ ‫الجر‬ ‫لتقدير‬ ‫الطرق‬ ‫من‬ ‫العديد‬ ‫األمريك‬ ‫رب‬ ‫ية‬ SCS-CN (‫السطحي‬ ‫يان‬ ‫الجر‬ ‫منحنى‬ ‫رقم‬ ‫أن‬ ‫حيث‬ ‫ا‬ ً ‫استخدام‬ ‫واألكثر‬ ‫ا‬ ً ‫شيوع‬ ‫األكثر‬ CN ‫في‬ ‫حاسم‬ ‫عامل‬ ‫هو‬) (‫األرض‬ ‫غطاء‬ ‫أو‬ ‫األرض‬ ‫استخدام‬ ‫على‬ ‫ويعتمد‬ ‫الطريقة‬ ‫هذه‬ LU/LC ‫بة‬ ‫التر‬ ‫رطوبة‬ ‫وحاالت‬ ‫بة‬ ‫التر‬ ‫ونوع‬) (AMC ‫بالتكامل‬ ‫النهج‬ ‫هذا‬ ‫تطبيق‬ ‫تم‬ ‫السطحي.‬ ‫يان‬ ‫الجر‬ ‫تقدير‬ ‫في‬) (‫الجغرافية‬ ‫املعلومات‬ ‫نظم‬ ‫مع‬ GIS) ‫ترب‬ ‫مجموعات‬ ‫إلى‬ ‫وتصنيفها‬ ‫بة‬ ‫التر‬ ‫ائط‬ ‫خر‬ ‫معالجة‬ ‫تمت‬ ‫نة.‬ ‫در‬ ‫وادي‬ ‫لحوض‬ ‫السطحي‬ ‫الجريان‬ ‫حجم‬ ‫لتقدير‬ (‫هيدرولوجية‬ HSG ‫كان‬ ‫حيث‬) HSG ‫التصنيف‬ ‫هو‬ ‫اسة‬ ‫الدر‬ ‫منطقة‬ ‫في‬ ‫السائد‬ D ‫بين‬ ‫الدمج‬ ‫تم‬ ‫كذلك‬. ‫الطبقتين‬ HSG ‫و‬ LU/LC ‫املوزون‬ ‫املنحنى‬ ‫قيم‬ ‫لحساب‬ CN (‫بة‬ ‫التر‬ ‫رطوبة‬ ‫من‬ ‫حالة‬ ‫لكل‬ AMC ‫من‬ .) ‫الفترة‬ ‫خالل‬ ‫سنة‬ ‫بعين‬ ‫أر‬ ‫ملدة‬ ‫السنوي‬ ‫السطحي‬ ‫يان‬ ‫الجر‬ ‫حجم‬ ‫متوسط‬ ‫تقدير‬ ‫تم‬ ‫يقة‬ ‫الطر‬ ‫هذه‬ ‫تطبيق‬ ‫خالل‬ 1960-2000 ‫ـ‬ ‫ب‬ ‫اسة‬ ‫الدر‬ ‫منطقة‬ ‫في‬ ‫م‬ 138.51 ‫الجريان‬ ‫حجم‬ ‫تقدير‬ ‫تم‬ ‫ذلك‬ ‫على‬ ‫عالوة‬ ‫مكعب.‬ ‫متر‬ ‫مليون‬ ‫في‬ ‫على‬ ً ‫بناء‬ ‫يتين‬ ‫مطر‬ ‫لعاصفتين‬ ‫السطحي‬ ‫عام‬ ‫أكتوبر‬ ‫ضان‬ 1945 ‫عام‬ ‫نوفمبر‬ ‫وأواخر‬ 1986 ‫متوسط‬ ‫بلغ‬ ‫حيث‬. ‫األمطار‬ ‫هطول‬ 145.7 ‫و‬ 64.14 ‫املتشكل‬ ‫السطحي‬ ‫يان‬ ‫الجر‬ ‫حجم‬ ‫أن‬ ‫الحسابات‬ ‫من‬ ‫ويتبين‬ ‫التوالي.‬ ‫على‬ ‫ملم‬ ‫عام‬ ‫فيضان‬ ‫أثناء‬ 1945 ‫بلغ‬ ‫م‬ 53.36 ‫يمثل‬ ‫بما‬ ‫مكعب‬ ‫متر‬ ‫مليون‬ 40 ٪ ‫بلغ‬ ‫بينما‬ ‫السنوي‬ ‫يان‬ ‫الجر‬ ‫حجم‬ ‫من‬ ‫نوفمبر‬ ‫فيضان‬ 1986 ‫قيمة
SEBHA UNIVERSITY JOURNAL OF PURE & APPLIED SCIENCES VOL.21 NO.2022
DOI: 10.51984/JOPAS.V21I2.2137
 
Sebha University Journal of Pure & Applied Sciences
Journal homepage: www.sebhau.edu.ly/journal/index.php/jopas
*Corresponding author:
E-mail addresses: abdelwanees.ashoor@omu.edu.ly
Article History : Received 30 September 2022 - Received in revised form 22 November 2022 - Accepted 25 November 2022
 SCS-CN


Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information
systems and Soil Conservation Service (SCS-CN) model
Abdelwanees A. R Ashoor
Civil Engineering Department, Omar Al-Mukhtar University,Albeida, Libya
Keywords:
Runoff
SCS-CN method
GIS
Antecedent Soil Moisture (AMC)
Wadi Derna basin
A B S T R A C T
Precipitation and runoff are the important hydrologic component in the water resources assessment.
Many methods are available to estimate surface runoff from rainfall; however, the SCS-CN method
remains the most popular and frequently used method as runoff curve number (CN) is a crucial factor of
the SCS-CN method and depends on land use/land cover (LC/LU), soil type, and antecedent soil moisture
(AMC). This approach with the geographic information system (GIS) was applied for estimating runoff
volume of Wadi Derna Basin. Soil maps were processed and classified into hydrologic soil groups
(HSG), where the dominant HSG in the study area is D. The HSG and LULC layers were intersected and
the CN values and the weighted curve number for each antecedent moisture (AMC) condition were
assigned. As a result of the model applied, the annual runoff volume for forty years during 19602000


AMC

GIS
SCS-CN
Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  91
in the study area was estimated by 138.51 Mm3. Furthermore, a volume flood has been estimated, based
on the flood of October 1945 and late November 1986. Those events called for average precipitation of
145 and 64.14mm respectively. The rainfall of 1945 produced a volume flood of 53.36 Mm3, which
represents 40 % of annual runoff volume, while the flood of November 1986 was 14.8 Mm3, which is in
good agreement with the recorded flood in the basin. The results demonstrated that the study area has a
high potential for flood risk. Therefore, dams of Wadi Derna basin is needed periodic maintenance.
Moreover, increasing vegetation cover is required to reduce the phenomenon of desertification.


          



    




        
        
  



        
        
          
      (Soil
SCS) Conservation Service Method,  
        
        
       
   .
       
 
CN)-(SCS    

   CN)-(SCS   
GIS[3,2,1]
      
  


        

4 CN-SCS

          
5

-SCS
CN   6
  
        -SCS
CN GIS        
CN        
    7
  

SCS8
 
 CN -SCS GIS ,9
CN-SCS
        
       
   



HIDROPROJECT


  


[11]STOCKY


  

        

          
SMADA       
        

Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  92
  
    
        



        
DEM
       
  



,
,
 
  

         
         
CN-SCS




 

     

 



         
HIDROPROJECT      

[11]
 

1 

2 

3 

4    
  

 


GIS       
ArcMap 10.2.2
1 

2       

3 

4  
 
.


48'
o
32 34'
o
32 59´
o
´
o


765


   70km

2
570 km8km
[11]
Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  93

      ArcGIS10.2.2



765m200m


1 The upper part
   60 %      2
330km765m
500m
    

[11]
2 The middle part
            

2
140km 30km
4.5km350m
[11]
3 The lower part
  

2
100km200m
  




[11]


         
 

  
  


.
CN)-(SCS
      
         
   
Curve Number ) CN(   
      Soil
) CN-SCSConservation Service Curve Number (
       
   Antecedent
)AMCsoil moisture condition ( AMC

  
     
(Dormant season)
(Growing season) 
    CN 
:  AMC 
CN-SCS

AMC 
AMC (mm)
 Dormant
season
 Growing
season
I
12.7
35.6
II
12.7 27.9
35.6 53.3
II
27.9
53.3
Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  94
I-MCA
II-AMC -AMC
III


CN  HSG  
 
II-AMC
I-AMCIII-CAM

w
CN

AMC  

   
 
󰇛 󰇜

(1)

 
(2)
 
(3)
 
󰇛 󰇜
(4)
 
󰇛󰇜
(5)

(6)

Q=   (mm)
P=   (mm)
S=      (mm)
V
3
mA
2
m
 CN        
         
      CN 100 ) -( 0 
CN       
          
        
          
       
0 100   (50)    
     CN   
       
  CN-SCS       
   D) -C-B-(A      
 
       
  (Hydrologic Soil Groups) 
   A D    
    A   D 
    B C    
   
:  CN -SCS
5






A

A %%
B

B%%
%%

C


          
   .
D

D




         
 



    DEM  
Digital Elevation Modeling   
SRTMShuttle Radar Topography Mission
NASA// 
      OutletArcMap 10.2.2
 

Spatial Analysis Tools   
Flow Direction  Hydrology 
       
       
       Flow
Accumulation      
        
  
       
     
  
      
Outlet
         
2
570 km  


:
ArcMap 10.2.2





2
km

238
km

8
km


km


m
Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  95
Soil Map

   
     
          
  1 : 1000000  
     Clip  tExtrac
Analysis Tool
  
Soviet terminology iesLayer Propert



    
CN-SCS



:Soviet terminology
Texture

Soil components

Code

Soil Subtypes

Soil types

Silt

Clay

Sand

Clay

24.3
54.7
21
CScp
Siallitic cinnamon compact

Siallitic cinnamon soils

Clay

29.5
42
28.5
CSt
Siallitic cinnamon typical soils

Clay

22.8
58.6
18.6
Dt
Dark compact typical soils

Dark compact soils

clay loam

41
29.5
29.5
FBd
Reddish brown arid differentiated soils

Reddish brown arid soils

sandy loam

21.8
14.9
63.3
FBsd
Reddish brown arid slightly differentiated soils

Clay

28.9
51.1
20
Ft
Red ferrisiallitic typical soils

Red ferrisiallitic soils

clay loam

39.9
36.9
23.2
Fi
Red ferrisiallitic soils of a truncated profile

Loam

47.8
24
28.2
Lcs
Cinnamonic lithosoils

Lithosols

Loam

39.1
23.5
37.4
Lfb
Reddish brown lithosols

Clay

24
49.6
26.4
RZr
Red rendzinas

Rendzina

clay loam

34.3
33.3
32.4
RZ
Dark rendzinas

Loam

40.6
22.9
36.5
Sa
Automorphic solonchaks

Saline soils and Solonchaks

Landcover/Land use (LC/LU)
  
 Land Cover 
1 : 250000

         








        
Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  96




  Precipitation data


.
:











32.47
22.35



1960-2000

32.45
22.23



1964-1997

32.46
22.15



1960-2000

32.47
21.59



1960-2000

32.43
22.01



1965-2000

    

  

     

   (Thiessen polygon)  
 (GIS)    
  
    
  
   
 
     
  
   
  
    
󰇛 󰇜
(7)

1
P
2
P
n
P
(mm)  
n
1
a
2
a
n
a   )
2
(km 
 
 (mm)


        


      

  
       


      
145.7mm





13  
      
 
0
50
100
150
200
250
300
350
400
450
    
(mm)
(1960-2000)

Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  97






   
      



   
  


:



mm



















     
   
   
 mm    
(Arc Map)  Analysis Tools  
Polygon Create Thiessen 
 
  Theissen Polygons 
         
         
   

 7     
303.50 mm

64.14mm
   
 
       SCS 
(HSG) 
        
  B
0.16 %C30 %
D70%
 
D




     Land Cover 
  (HSG)(ArcMap)

       
Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  98
 
 CN    
 (ArcMap)      
          
 )
w
CN(      
  3   
w
CN
=81.30   
I
CN
III
CN  

45  


CN   
AMC


mm≥ 27.92 P
         
mm≥ 11.72 P
mm≥ 5.1 P
     CN  
       
          
 
2
km      55%
       74 
 
2
128.22 km  %22.5  
       
   (C)    84, 79, 73
      34.35, 31.85, 25.24
2
km5.58, 4.4%6.1, 
6.4
%
:CN     
  
Land use

HGS

 CN

2
km


Rangeland

B
61


C



D
85


Rainfed Agriculture 
C
79


D
84


Irrigated Agriculture 
C
74


D
84


Natural Forest and
Reforestations 
B
55


C
73


D
79


Bare Soil Consolidated 
C
91


D
94


Urban areas

C
81


D
88



w
CN
-
81.3


        





     
  SCS      
 2S.0 P S 
   2
=81.30
w
CN = S
mm11.72 P

         
mm 303.50
 243mm 
16138.51

        


          
145.7mm        
        
93.61mm
   53.36      

0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
020 40 60
Runoff (mm)
Rainfall (mm)
AMC I = 64.5
AMC II= 81.3
AMC III = 90.9
Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  99

       


 89.5mm

64.14mm SCS
26.12mm14.8
   
13






         



         
 SCS  
       


     
     
ArcMap 10.2.2 
D70%
        

    
w
CN   
 81.30
11.72 mm

       
 138.51   

         

        
53.36

       
  14.8

(SCS)




 


7 
       



         


[1]- Soulis, K. X. 2021. Soil conservation service curve number
(SCS-CN) method: Current applications, remaining challenges,
and future Perspectives, journal of Water, 13 (2).
[2]- Jahan, K., Pradhanang, S. M., Bhuiyan M. A. E. 2021.Surface
runoff responses to suburban growth: An integration of remote
sensing, gis, and curve number, journal of Land, 10 (5): 1–18.
[3]- Caletka, M., Michalková, M. Š., Karásek, P., & Fučík, P.
Improvement of SCS-CN initial abstraction coefficient in the
Czech Republic: A study of five catchments, journal of Water,
12(7): 1–28.
[4]- Zamot, J., Afkareen, M.Geomorphological parameters by remote
sensing and GIS techniques (A case study of flash flood in
Mikhili Village, Al Jabal Al Akhdar, NE of Libya), In The forth
international conference for geospatial technologies–Libya
GeoTec, vol. 4. 2020.
5 2020


6   2015   
       CN-SCS
   

[7]-     
2019
24
1.
[8]-  2022 

( SCS ) 
Estimation of the surface runoff depth of Wadi Derna Basin by integrating the geographic information systems and Soil… Ashoor
JOPAS Vol.21 No. 2 2022  100
21
.
[9]- Ashmawy , M., Abd El-Wah, M., Kamh, S., Abdal Azim, F. 2014.
Drainage Morphometry and Its Influence on Runoff of El - Kouf
Watershed, Ne, Libya – a Remote Sensing and Gis Approach,
2nd Scientific Conf. for Environment and Sustainable
Development in Arid and Semi-Arid Regions, Ajdabiya, Libya,
14-16 Jan.
[10]- Hamad, S. 2020. Surface runoff estimation of Wadi Ba Al-Arid
watershed NE Libya using SCS-CN, GIS and RS data, Iranian
Journal of Earth Sciences, 12(3), 168-175.
[11]- HIDROPROJEKAT, 1972. Wadi Derna Projekt: flood
protection of Derna Town. Ministry of Agriculture, Libya.
[12]- STOCKY, 2003. Determination of the 1’000- year flood of
Derna and BU Mansur Reservoirs, Ministry of Agriculture,
Libya.
[13]- ElOsta, M. M., Masoud, M. H. 2015. Implementation of a
hydrologic model and GIS for estimating Wadi runoff in Dernah
area, Al Jabal Al Akhadar, NE Libya,Journal of African Earth
Sciences, 107: 36-56.
14 2020
      
38
15        2021

       
440
16 .2021


[17]- USDA, Soil Conservation Service. 1972. National
Engineering Handbook; Sec. 4. Hydrology; USDA: Washington,
DC, USA.
[18]-    2006  

[19]- Nwer, B. A. B. 2005. The Application of Land Evaluation
Technique in the north-east of Libya,Natl. Soil Resour. Inst. ,
Fac. Environ., vol. PhD Thesis, p. 340, 2005.
20 2011
       
.https://lapsd.wordpress.com/
21 2006

... Derna has historically faced flash floods due to its location at the end of a highland ephemeral stream. Ashoor 13 documented floods in Derna since 1942, when a flash flood caused severe losses for the German army. Major floods followed in 1956, 1959, and 1968. ...
... In response to the 1968 flood, the Libyan government commissioned a hydrologic study to develop flood control infrastructure. The Yugoslavian firm Hidroprojekt conducted the study and built two rock-filled dams with clay cores, along with supporting infrastructure for irrigation, transport, and water supply, completing construction in 1977 13 . ...
... The SRTM DEM showed lower resolution than other DEMs, and studies confirmed that JAXA-ALOS has higher accuracy than SRTM 50,51 . JAXA-ALOS 30 m was selected for modeling after accuracy assessments showed its reservoir capacity estimates were consistent with reported data 13,15 , unlike FABDEM, which overestimated the Al-Bilad reservoir capacity. ...
Article
Full-text available
On September 11, 2023, Storm Daniel unleashed unprecedented rainfall over the Wadi Derna watershed, triggering one of the most devastating floods in modern history, striking Derna, a coastal city in Libya. This study reconstructs the disaster using an integrated modeling approach that combines satellite imagery, hydrologic, hydraulic, and geotechnical simulations, machine learning, eyewitness accounts, and digital elevation data to assess the impact of cascading dam failures. Our findings reveal that the region’s dams, even if structurally sound, would have provided minimal protection against the extreme runoff. However, their failure unleashed a destructive surge wave, amplifying the disaster’s magnitude and devastation. Here, we show that the collapse of aging flood control infrastructures, compounded by inadequate risk assessment and emergency preparedness, dramatically escalated the disaster’s impact. Our findings underscore the urgent need for systematic dam safety evaluations, enhanced flood forecasting, and adaptive risk management strategies that address climate extremes and infrastructure vulnerabilities.
... Therefore, flood attenuation and impact mitigation have always been a concern for dryland communities (3). Since the 1970s, the city of Derna, Libya, lying at the mouth of the ephemeral stream Wadi Derna, has profited from the construction of two major embankment dams upstream of the town (4,5). By mitigating floods, these dams presumably provided a sense of security that led to habitation and construction along the Derna channel and floodplain-ultimately amplifying the community's vulnerability to extreme floods. ...
... Because embankment dams are typically not intended to allow overflow of water, floods exceeding their designed maximum storage capacity puts these dams in severe danger of failure (24). Before the storm Daniel flood, both dams were reported to suffer from damage caused by previous floods and were thus in an exacerbated danger of collapse (5). Moreover, the complicated political, social, and economic situation in Libya since 2011 (25) the damage was inevitable? ...
Article
Was the catastrophic flooding in Derna, Libya—one of the deadliest hydrometeorological disasters on record—an inevitable outcome of rare weather conditions, or did the design of the infrastructure fail to account for probable risks? On 10 to 11 September 2023, Storm Daniel, a Mediterranean tropical-like cyclone, caused heavy rainfall that led to the collapse of two dams and more than 5000 casualties in Derna. Using a combination of atmospheric reanalysis, satellite data, and hydrologic modeling, we overcame key limitations typical of data-scarce, high-variability regions and revealed that despite the catastrophic impact, the return periods of the rainfall and flood were only a few decades. Hydraulic simulations revealed that the dam failures amplified the damage nearly 20-fold compared to a dam-free scenario. With extensive and timely implications, our findings underscore the importance of uncertainty-aware risk assessment and highlight the value of distributed flood prevention and early warning systems in mitigating risks in vulnerable regions.
... The high flood risk and corresponding need for periodic dam maintenance had been pointed out the previous year by a Libyan hydrologist, Ashoor (2022). There were previous major flood events in 1941in , 1959in and 1968in (Petley, 2023. ...
... Nevertheless, additional capacity could have been built upon some basic downward counterfactual thinking. Ashoor (2022) had pointed out that the 1959 flood event would have overwhelmed the dams, had they existed at that time. So the flood risk to the Derna population was high. ...
Article
Full-text available
Of all natural disasters, those especially liable to exhaust capacity are those that occur without a precedent, and cause surprise to public administration officials. This paper addresses this issue. Surprise can be mitigated by considering downward counterfactuals, which can be viewed as contributing to surprise management. These are alternative realizations of historical events, where things turned for the worse. Disaster risk may be mitigated by focusing on downward counterfactuals. Particular focus is given to the earthquake and volcanic risk at Campi Flegrei, in the Naples region of Italy, where the bradyseism crisis of 1982–1983 is considered from a downward counterfactual perspective.
... This is the average number of years expected between floods of a given magnitude, and it is calculated by listing all the floods that have ever occurred and ranking them from the largest to the smallest 55 flood was estimated between 580 to 1100 m3/s Fig (4). [25] listed major flash floods that damaged the Derna city dating back to 1941 that caused significant losses for the German army. Other major flash floods occurred in 1956, 1959, and 1968. ...
Article
Full-text available
The dams in Libya have been built primarily for flood control, as seen with the Wadi Darna, Wadi Mejenin, and Wadi Qattarah Dams, as well as for supplying water to agricultural regions, including the Wadi Mejenin, Wadi Kaam, and Wadi Qattarah Dams. However, the effectiveness of these structures in managing floods and providing agricultural water has been inadequate. A recent example of this is the devastating dam failures at Wadi Derna, when the dams did not protect the city but instead the flood was made worse. Nevertheless, the destructive "Storm Daniel" event that struck northeastern Libya recently exceeded even the rainfall's dam design capability. Additionally, the dams' long-term flows and rainfall should be re-evaluated, and the size of the spillway and gates should be confirmed to determine whether the structures could sustain more severe floods like Daniel. The failure of the Derna and Abu Mansour dams offers significant insights for enhancing dam safety in Libya, particularly concerning the nine large dams. It is essential to assess all Libyan dams regarding their design, safety measures, and structural integrity to avert similar catastrophic incidents both in Libya and worldwide. It is essential to establish early warning systems to mitigate the impact of natural disasters. Creating flood hazard and risk maps in areas susceptible to flooding, particularly in seasonal wadis, which will serve as a foundation for developing future flood risk management strategies.
... Both failed dams in Libya were over 50 years old and had been reported to suffer from significant structural issues and inadequate maintenance 6,11 . Signs of defects and cracks in these aging dams were first reported in 1998. ...
Article
Full-text available
In Derna, Libya, a record-breaking storm and subsequent dam failures on September 10, 2023, caused over 11,000 deaths. Analyzing satellite data from 2016-2023, we found 1.8 mm/yr of differential settlement in dams contributed to their failure, and flooding damaged~8570 buildings. We argue that the interplay of aging infrastructure, political instability, climate change, and human decisions drove this disaster, stressing the need for a holistic 'healthcare' management approach to prevent future catastrophes.
... A relevant report by Ashoor [9] addressed potential floods in Derna caused by high precipitation. The model applied by Ashoor estimated the annual runoff volume for the study area for a forty-year period to be 138.51 ...
Article
Full-text available
The catastrophic failure of two dams in Libya on 10 and 11 September 2023 resulted in the devastating flooding of the city of Derna, which is located downstream of the dams, causing more than 6000 fatalities and displacing thousands of residents. The failure was attributed to heavy rainfall from Storm Daniel, leading to the dams reaching full capacity and subsequently overflowing and failing. This paper presents an analysis of the dam break, including the modelling of flow discharge and the resulting flooding of Derna. For validation purposes, this study compares the modelled quantities with post-event satellite imagery from UNOSAT and Copernicus, local reports, and data collected from social media using AI detection. The findings provide valuable insights into the dynamics of the dam break and its initial parameters, as well as an assessment of the accuracy of the results. The analysis is performed using a rapid estimation technique developed by JRC to provide the international emergency community with a swift overview of the impact and damage assessment of potential or actual dam break events. The use of all available data shows a satisfactory comparison with the calculated quantities. The rapid modelling of dam break events and combined analysis of multiple data types are proven suitable for promptly assessing the expected dynamic of the event, as well as reconstructing the unknown initial conditions before the break. Incorporating sensitivity analyses provides an estimate of the uncertainties associated with the deduced values of the unknown parameters and their relative importance in the analysis.
Article
Full-text available
Water structures' resilience to accelerated global warming impacts is attracting increased attention. Adaptation to unprecedented flash floods in semi-arid regions (e.g., Middle East and North Africa (MENA)) is becoming more challenging under the huge uncertainty of their frequency and intensity, lack of accurate hydrological studies, and water-resilient cities' absence in these wadi systems. Ten to twenty percent of Derna's population (∼90,000 people) were reported dead and missing along with more than 35,000 residents having been displaced (also, 737 completely collapsed, and 2859 partially collapsed houses) following two destruction waves after two dams' failures during unprecedented storm Daniel on the 11th of September 2023. In this study, we extensively investigated the causes and consequences of this significant main dam breach. We started by discussing the history of dams in the region and the Derna flash flood protection system design background. Then, we rebuilt the most probable scenarios and simulated the dam break analysis validated by a field survey. No matter how well-maintained the main dam was, the unprecedented Daniel storm flood highly exceeded its design capacity. Aside from the widely reported poor maintenance, our investigation of the overflow shafts of the two dams raised a potentially fatal design issue with the main dam. We concluded the most probable dynamics of the two dams' failure through two waves of destruction confirmed by diverse field observations. Ironically, the study concluded that a similar flood induced by the storm could leave much less damage in the case of the absence of any dams (i.e., far less maximum depth and velocity occurrence and fewer flooded areas). Therefore, it is imperative to review the design assumptions of comparable dams and upgrade or directly dismantle aging dams including those with reported low annual storage-to-design capacity ratios. Concurrently, reallocation of people and infrastructure from vulnerable low-lying regions, should be considered if achieving a complete and resilient system proves unattainable.
Article
Full-text available
The cover management factor is one of the main five factors that is used within the universal soil loss equation to reflect the effect of cropping and management practices on soil erosion rates. It is determined through tables and equations derived in tropical and European conditions, which are not suitable for semi-arid regions with different climate, topography, and soil characteristics. Therefore, this study considers al-Arish basin in Sinai Peninsula, Egypt as a semi-arid study area to generate a cover management factor’s equation in terms of the Normalized Difference Vegetation Index using hydrological modeling and satellite images processing. To verify the proposed equation, it was applied to the Derna catchment in Libya and compared with European and tropical ones with respect to the hydrological outputs. Statistical analysis indicates that the proposed equation determines the cover management factor more accurately than those developed for tropical or European regions, as the correlation coefficient between the cover management factor and the hydrological results was 0.71, while it was about 0.20 for the European and tropical, equations, also the degree of agreement between the proposed equation’s results and the hydrological simulation was 0.768 while it was 0.001 and 0.02 for the tropical and European equations respectively. By utilizing the newly developed equation, the soil erosion can be estimated more accurately for the semi-arid regions, and a better understanding of the relation between the vegetation cover and soil erosion can be drawn.
Article
Full-text available
Flooding, and then Collapse of valley of Derna two dams caused by Hurricane Daniel while passing along the Eastern Coast of Libya, were a new catastrophe witnessed by Libyans on September 11, 2023. As the largest natural disaster in Libya, and thus far the deadliest climate event in the world in 2023, the flood resulted in thousands of fatalities, destruction of properties, damage to infrastructure, total destruction of whole neighborhoods, and the displacement of tens of thousands of residents. To confront the challenges associated with flood risks, simulating rainfall and floodwater flow using Agent Based Modeling (ABM) has become increasingly common in recent years due to its simulation capabilities in mitigating natural phenomena such as flood impacts. This paper presents the use of a model that simulates the hydrology in valley of Derna in order to manage rainfall flooding risks. The paper showcases the benefit of integrating remote sensing, geographic information systems, and artificial intelligence in the field of hydrology. The practical application of the simulation system demonstrates the distinctive ability of ABM in tracing water paths and predicting flood occurrences. Lack of data and model complexity are among the challenges that flood modeling must overcome. The paper discusses the prospects for development and progress in water flow modeling using an advanced technique, and integrates models to enhan
Article
Full-text available
Suburban growth and its impacts on surface runoff were investigated using the soil conservation service curve number (SCS-CN) model, compared with the integrated advanced remote sensing and geographic information system (GIS)-based integrated approach, over South Kingston, Rhode Island, USA. This study analyzed and employed the supervised classification method on four Landsat images from 1994, 2004, 2014, and 2020 to detect land-use pattern changes through remote sensing applications. Results showed that 68.6% urban land expansion was reported from 1994 to 2020 in this suburban area. After land-use change detection, a GIS-based SCS-CN model was developed to examine suburban growth and surface runoff estimation. The developed model demonstrated the spatial distribution of runoff for each of the studied years. The results showed an increasing spatial pattern of 2% to 10% of runoff from 1994 to 2020. The correlation between runoff co-efficient and rainfall indicated the significant impact of suburban growth in surface runoff over the last 36 years in South Kingstown, RI, USA, showing a slight change of forest (8.2% area of the total area) and agricultural land (4.8% area of the total area). Suburban growth began after 2000, and within 16 years this land-use change started to show its substantial impact on surface runoff. We concluded that the proposed integrated approach could classify land-use and land cover information to understand suburban growth and its potential impact on the area.
Article
Full-text available
Predicting runoff in ungauged or poorly gauged watersheds is one of the key prob-lems in applied hydrology. Thus, simple methods for runoff estimation are particularly important in hydrologic applications, such as flood design or water balance calculation models. Τhe aim of this special issue is to present the latest developments in the SCS-CN methodology including but not limited to novel applications, theoretical and conceptual studies broadening the current understanding, studies extending the method’s application in other geographical regions or other scientific fields, substantial evaluation studies, and ulti-mately key advancements towards addressing the key remaining challenges.
Conference Paper
Full-text available
Libya is located in north Africa which is an area influenced by Mediterranean depressions during winter season with fluctuated periods of intensive rain. These rain storms are well observed on the land areas in west, south and east of Libya and lead to cause floods. The flash floods are well-known phenomenon in Al Jabal Al Akhdar area and it causes many damages yearly, therefore, it can be considered as the main natural hazard in Al Jabal Al Akhdar area and in Libya as a whole. This study has documented and discussed the tragic flood that occurred on the 27th of September in 2018 in the Mikhili village, where the floods swept through the village and caused many damages in properties and lives and it washed away some travellers' cars and likewise cars of the local residents. Remote sensing and GIS techniques have been used in addition to field investigation for studying the geomorphic parameters of the target area for risk assessment of rain water discharge on Mikhili village. In spite of the study area is at low risk of flood, the current study has proved that the Mikhili village is a vulnerable area due to its location on the end of wadi Ar Ramalh. The drainage pattern, large area of water catchment, intensity of rain in short time, the speed of runoff water, low infiltration rate, area topography besides to hydrologic factors, all these reasons were behind a tragic flash flood on Mikhili village.
Article
Full-text available
The aim of this study is to estimate runoff in Wadi Ba Al Arid watershed for a period of ten years 2009-2018 by Soil Conservation Service Curve Number (SCS-CN) method in combination with the GIS techniques using remote sensing data. The used data are the daily rainfall data from NASA Prediction of Worldwide Energy Resource (POWER), digital elevation data (DEM) from ALOS PALSAR RTC , satellite imagery from the European Space Agency (ESA) Sentinel, and soil data represented in soil maps of a scale 1: 50,000 and some local studies carried out by several Libyan institutions. The overall area of the watershed is about 136.4 km2 and perimeter107.3 Km. The watershed upstream and downstream is well recognized due to the topographical difference as a result of the tectonic geology. Soil maps were processed and classified into hydrologic soil groups (HSG), where the dominant HSG in the study area are C and D. The Landcover/Land use (LULC) was classified into five classes (forest, shrubs, agriculture, barren land) and built up. The HSG and LULC layers were intersected and the CN values and the weighted curve number for each Antecedent Moisture (AMC) condition were assigned. Furthermore, the runoff depth was estimated and the average runoff volume for ten years during 2009–2018 in the study area was estimated by 1.67 Mm3 which represents 4.6 % of the observed average annual rainfall as 264.3 mm during 2009-2018. The rainfall-runoff relationship has shown a strong correlation with the value of 0.75.
Article
Full-text available
The SCS-CN method is a globally known procedure used primarily for direct-runoff estimates. It also is integrated in many modelling applications. However, the method was developed in specific geographical conditions, often making its universal applicability problematic. This study aims to determine appropriate values of initial abstraction coefficients λ and curve numbers (CNs), based on measured data in five experimental catchments in the Czech Republic, well representing the physiographic conditions in Central Europe, to improve direct-runoff estimates. Captured rainfall-runoff events were split into calibration and validation datasets. The calibration dataset was analysed by applying three approaches: (1) Modifying λ, both discrete and interpolated, using the tabulated CN values; (2) event analysis based on accumulated rainfall depth at the moment runoff starts to form; and (3) model fitting, an iterative procedure, to search for a pair of λ, S (CN, respectively). To assess individual rainfall characteristics’ possible influence, a principal component analysis and cluster analysis were conducted. The results indicate that the CN method in its traditional arrangement is not very applicable in the five experimental catchments and demands corresponding modifications to determine λ and CN (or S, respectively). Both λ and CN should be viewed as flexible, catchment-dependent (regional) parameters, rather than fixed values. The acquired findings show the need for a systematic yet site-specific revision of the traditional CN method, which may help to improve the accuracy of CN-based rainfall-runoff modelling.
Article
This study has investigated the relationship between rainfall-runoff in Dernah area, Al Jabal Al Akhadar, NE Libya. It provides flash flood hazard warnings for ungauged basins using geographic information system (GIS). The study examined the morphometric parameters of four Wadis (Wadi Dernah, Wadi Bum Safer, Wadi Al Nagah and Wadi Bir Al Yajur) with emphasis on their implication for hydrologic processes through the integration analysis between morphometric parameters and GIS techniques. Data for this study were obtained from ASTER data for digital elevation model (DEM) with 30 m resolution, topographic map (1: 50,000), geological maps (1,250,000) which were checked during the field work. About 36 morphometric parameters were measured and calculated and interlinked to produce nine effective parameters for evaluating the flash flood hazard degree of the study area. The study basins are classified according to their hazards into three groups; Basins of low hazard degree (Wadi Al Nagah and Wadi Bir Al Yajur); Basins of medium hazard degree (Wadi Dernah); Basins of high hazard degree (Bum Safer). Software (SMADA 6) is applied to generate the hydrograph of subbasins of both medium and high hazard degrees. As a result of the model applied to Wadi Dernah, rainfall events of a total of 60, 70, 90, 110 and 120 mm of return periods 5, 10, 25, 50 and 100 years produce a discharge volume of 9.1×106, 13.5×106, 22.3×106, 34.0×106 and 39.7×106 m3 respectively. While in case of Wadi Bum Safer the discharge volume is 22.1×106, 30.5×106, 46.1×106, 65.6×106 and 74.8×106 m3.
Drainage Morphometry and Its Influence on Runoff of El -Kouf Watershed
  • M -Ashmawy
  • Abd El-Wah
  • M Kamh
  • S Azim
-Ashmawy, M., Abd El-Wah, M., Kamh, S., Abdal Azim, F. 2014. Drainage Morphometry and Its Influence on Runoff of El -Kouf Watershed, Ne, Libya -a Remote Sensing and Gis Approach, 2nd Scientific Conf. for Environment and Sustainable Development in Arid and Semi-Arid Regions, Ajdabiya, Libya, 14-16 Jan.
Determination of the 1'000-year flood of Derna and BU Mansur Reservoirs, Ministry of Agriculture
  • Stocky
-STOCKY, 2003. Determination of the 1'000-year flood of Derna and BU Mansur Reservoirs, Ministry of Agriculture, Libya.