Available via license: CC BY
Content may be subject to copyright.
Submit Manuscript | http://medcraveonline.com
Introduction
For the control system in astrophysics a piezoactuator of the
nanodisplacement is applied in very large telescope, interferometer
and orbital telescope.1–9 The energy conversion is clearly for the
structural scheme of a piezoactuator.10–16 A piezoactuator is used for
the nanodisplacement in adaptive optics and telescopes.17–26
Structural scheme and characteristics
The equations27–35 of the piezoeects have form
( ) ( )( )
( )
( )
ETdD
T
ε+=
( )
( )
( ) ( ) ( )
EdTsS
t
E
+=
where
( )
D
,
( )
d
,
( )
T
,
( )
T
ε
,
( )
E
,
( )
S
,
( )
E
s
,
( )
t
d
are
matrixes of electric induction, piezomodule, strength mechanical eld,
dielectric constant, strength electric eld, relative displacement, elastic
compliance, transposed piezomodule. The matrixes coecients we
have for a PZT piezoactuator.36–52
( )
15
15
3
1 31 33
0000 0
000 00
000
d
dd
ddd
=
( )
11
22
3 3
00
00
00
T
TT
T
ε
εε
ε
=
( )
( )
11 12 13
12 11
13
13 13 33
55
5
11
5
12
00 0
00 0
00 0
000 0 0
0000 0
0 0 0 0 02
EEE
EEE
EEE
E
E
E
EE
sss
sss
sss
ss
s
ss
=
−
The equation of the mechanical characteristic is written for a
piezoactuator
( )
maxmax
1FFll −∆=∆
where max mi m
l d El∆=
for
0=F
and
max 0
E
mi m ij
F d ES s=
for
0=∆l
,
l
is the length, 0
S
is the area of a piezoactuator.
For the longitudinal piezoactuator the relative displacement8–21 is
written
3 33 3 33 3
E
S d E sT= +
where
33
d
is the longitudinal piezomodule.
In the mechanical characteristic of the longitudinal piezoactuator
for astrophysics the maximums values of the displacement
max
δ∆
and the force
max
F
are determined
max 33 3 3 3
d E dU
δδ
∆= =
,
max 3 3 3 30 3
E
F d SE s=
At
3
E
= 1.5∙105 V/m,
3 3
d
= 4∙10-10 m/V,
0
S
= 1.5∙10-4 m2,
δ
=
2.5∙10-3 m,
33
E
s
= 15∙10-12 m2/N for the longitudinal piezoactuator are
obtained
max
δ∆
= 150 nm,
max
F
= 600 N with error 10%.
Therefore, for the mechanical characteristic of the transverse
piezoactuator we have its maximums values
At
3
E
= 2.4∙105 V/m,
1 3
d
= 2∙10-10 m/V,
h
= 1∙10-2 m,
,
0
S
= 1∙10-5 m2,
11
E
s
= 12∙10-12 m2/N the parameters
are received
max
h∆
= 480 nm,
max
F
= 40 N.
The dierential equation of a piezoactuator12–52 is written
( ) ( )
2
2
2
,,0
d xs xs
dx
γ
Ξ−Ξ =
here
( )
s,xΞ
, s,
x
,
γ
are the Laplace transform of the displacement,
the parameter, the coordinate and the propagation factor.
The nanodisplacements are obtained for the longitudinal
piezoactuator
( ) ( )
ss,
1
0Ξ=Ξ
for
0=x
( ) ( )
ss,
2
Ξ=δΞ
for
δ=x
The decision of the dierential equation is determined
Taking into account the boundary conditions for two faces, we
obtain the system of the equations for the structural model of the
longitudinal piezoactuator.
Aeron Aero Open Access J. 2022;6(4):155‒158. 155
©2022 Afonin. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and build upon your work non-commercially.
Piezoactuator of nanodisplacement for astrophysics
Volume 6 Issue 4 - 2022
Afonin SM
National Research University of Electronic Technology, MIET,
Moscow, Russia
Correspondence: Afonin SM, National Research University of
Electronic Technology, MIET, 124498, Moscow, Russia,
Email
Received: September 13, 2022 | Published: September 27,
2022
Abstract
The structural scheme of a piezoactuator is obtained for astrophysics. The matrix equation
is constructed for a piezoactuator. The characteristics of a piezoactuator are received for
astrophysics.
Keywords: piezoactuator, structural scheme, nanodisplacement, characteristic,
astrophysics
Aeronautics and Aerospace Open Access Journal
Research Article Open Access
Piezoactuator of nanodisplacement for astrophysics 156
Copyright:
©2022 Afonin
Citation: Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeron Aero Open Access J. 2022;6(4):155‒158. DOI: 10.15406/aaoaj.2022.06.00155
33 33 0
EE
sS
χ
=
where
( )
s
1
Ξ
,
( )
s
2
Ξ
are the Laplace transforms of the
displacements for two faces.
We have the system of the equations for the structural model of the
transverse piezoactuator
( )
( )
( )
( )
( ) ( )
( ) ( ) ( )
11
31 3
2
1 1 1 11
12
sh
ch
E
dEs h
s Ms F s
hs s
γγ
χγ
−−
−
Ξ= − +
× Ξ −Ξ
( )
( )
( )
( )
( ) ( )
( ) ( ) ( )
11
31 3
2
2 2 2 11
21
sh
ch
EdEs h
s Ms F s
hss
γγ
χγ
−−
−
Ξ= − +
× Ξ − Ξ
11 11 0
EE
sS
χ
=
Therefore, we have the system of the equations for the structural
model of the shift piezoactuator in the form
The system of the equations for the structural model of a
piezoactuator is determined for Figure 1.
Figure 1 Structural scheme of piezoactuator.
( )
( )
( )
( )
( ) ( )
( ) ( ) ( )
1
1
2
111
12
sh
c
h
mi m
ij
sl
s Ms F s
ls s
ν γγ
χγ
−−
Ψ
Ψ −
Ξ= − +
× Ξ −Ξ
( )
( )
( )
( )
( ) ( )
( ) ( ) ( )
1
1
2
222
21
sh
c
h
mi m
ij
sl
s Ms F s
lss
ν γγ
χγ
−−
Ψ
Ψ −
Ξ= − +
× Ξ − Ξ
0 ij ij
sS
χ
ΨΨ
=
where
33 31 15
3
3 31 15
, ,
,,
mi
ddd
vggg
=
=Ψ
133
133
D,D,D
E,E,E
m
33 11 55
33 1 55
1
,,
,,
E EE
ij D DD
sss
s
sss
Ψ
=
{
b,h,l δ=
{
DE
,γγ=γ
{
DE
c,cc =
Ψ
The structural scheme on Figure 1 is used for the decision of a
piezoactuator in astrophysics. The matrix of the nanodisplacement of
a piezoactuator has the form
(
)
( )
( ) ( ) ( )
( ) ( ) ( )
( )
( )
( )
1 11 12 13
1
2 21 22 23
2
ms
s WsWsWs Fs
s WsWsW s Fs
Ψ
Ξ
=
Ξ
The steady-state nanodisplacements are written for two faces of a
piezoactuator
( )
( )
1 21 2
2 11 2
mi m
mi m
d lM M M
d lM M M
ξ
ξ
=Ψ+
=Ψ+
The steady-state nanodisplacements are obtained for two faces of
the longitudinal piezoactuator
( )
( )
1 33 2 1 2
2
33 1 1 2
d UM M M
d UM M M
ξ
ξ
= +
= +
At
U
= 75 V,
1
M
= 1 kg,
2
M
= 4 kg,
3 3
d
= 4∙10-10 m/V the
steady-state nanodisplacements are determined
1
ξ
= 24 nm, 2
ξ
= 6
nm and 21
ξ+ξ
= 30 nm with error 10%.
The transfer equation of the transverse piezoactuator is determined
at one the xed face and the elastic-inertial load
( )
( )
31 3 1 11
1
EE
l
k d h CC
δ
= +
( )
1 1
E
tl
T MC C= +
tt T1=ω
,
where 31
E
k is the transfer coecient, l
C
,
E
C11
are the stiness
for the load and the transverse piezoactuator, t
T
, t
ξ
, t
ω
are the time
constant, the attenuation coecient, the conjugate frequency.
At l
C
= 0,2∙107 N/m, 1 1
E
C= 1.4∙107 N/m,
M
= 2 kg the parameters
are obtained
t
T
= 0.354∙10-3 s,
t
ω
= 2.8∙103 s-1 with error 10%.
The steady-state nanodisplacement of the transverse piezoactuator
is written for elastic-inertial load.
( )
31
3
1
1
1
1
E
E
l
dhU
h kU
CC
δ
∆= =
+
Piezoactuator of nanodisplacement for astrophysics 157
Copyright:
©2022 Afonin
Citation: Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeron Aero Open Access J. 2022;6(4):155‒158. DOI: 10.15406/aaoaj.2022.06.00155
At
δh
= 20,
11
E
l
CC
= 0.14, 31
d
= 2∙10-10 m/V the transfer
coecient of the transverse piezoactuator is received
1 3
E
k
= 3.5 nm/V
with error 10%.
Conclusions
The structural scheme of a piezoactuator is constructed for
astrophysics. The matrix of the nanodisplacement of a piezoactuator
is obtained. The characteristics of a piezoactuator are determined.
Acknowledgements
None.
Conict of interest
The Authors declares that there is no Conict of interest.
References
1. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann
Publisher, Oxford; 2017. 382 p.
2. Afonin SM. Absolute stability conditions for a system controlling
the deformation of an electromagnetoelastic transducer. Dokl. Math.
2006;74:943–948.
3. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA:
Kluwer Academic Publisher; 1997. 350 p.
4. Afonin SM. Generalized parametric structural model of a compound
elecromagnetoelastic transduser. Dokl Phys. 2005;50(2):77–82.
5. Afonin SM. Structural parametric model of a piezoelectric nanodis-
placement transducer. Dokl Phys. 2008;53(3):137–143.
6. Afonin SM. Solution of the wave equation for the control of an elecro-
magnetoelastic transduser. Dokl Math. 2006;73(2):307–313.
7. Cady WG. Piezoelectricity: An introduction to the theory and applica-
tions of electromechancial phenomena in crystals. New York, London:
McGraw-Hill Book Company; 1946. 806 p.
8. Mason W. Physical Acoustics: Principles and Methods. Vol.1. Part A.
Methods and Devices. New York: Academic Press; 1964. 515p.
9. Yang Y, Tang L. Equivalent Circuit Modeling of Piezoelectric Energy
Harvesters. J Int Mat Sys Str. 2009;20(18):2223–2235.
10. Zwillinger D. Handbook of Dierential Equations. Boston: Academic
Press; 1989. 673 p.
11. Afonin SM. A generalized structural-parametric model of an elecro-
magnetoelastic converter for nano- and micrometric movement control
systems: III. Transformation parametric structural circuits of an elecro-
magnetoelastic converter for nano- and micrometric movement control
systems. J Comput Syst Sci Int. 2006;45(2):317–325.
12. Afonin SM. Generalized structural-parametric model of an electromag-
netoelastic converter for control systems of nano-and micrometric mo-
vements: IV. Investigation and calculation of characteristics of step-pie-
zodrive of nano-and micrometric movements. J. Comput. Syst Sci Int.
2006;45(6):1006–1013.
13. Afonin SM. Decision wave equation and block diagram of electromag-
netoelastic actuator nano- and micro displacement for communications
systems. Int J Inf Com Sci. 2016;1(2):22–29.
14. Afonin SM. Structural-parametric model and transfer functions of
electroelastic actuator for nano- and micro displacement. Chapter 9
in Piezoelectric and Nanomaterials: Fundamentals, Developments and
Applications. Parinov IA, editor. New York: Nova Science; 2015. p.
225–242.
15. Afonin SM. A structural-parametric model of electroelastic actuator for
nano- and micro displacement of mechatronic system. Chapter 8 in Ad-
vances in Nanotechnology. Bartul Z, Trenor J, editors. New York: Nova
Science; 2017. p. 259–284.
16. Afonin SM. Electromagnetoelastic nano- and microactuators for mecha-
tronic systems. Russ. Engin. Res. 2018;38(12):938–944.
17. Afonin SM. Nano- and micro-scale piezomotors. Russ Engin Res.
2012;32(7-8):519–522.
18. Afonin SM. Elastic compliances and mechanical and adjusting char-
acteristics of composite piezoelectric transducers. Mech Solids.
2007;42(1):43–49.
19. Afonin SM. Stability of strain control systems of nano-and micro displa-
cement piezotransducers. Mech Solids. 2014;49(2):196–207.
20. Afonin SM. Structural-parametric model electromagnetoelastic actuator
nanodisplacement for mechatronics. Int J Physics. 2017;5(1):9–15.
21. Afonin SM. Structural-parametric model multilayer electromagneto-
elastic actuator for nanomechatronics. Int J Physics. 2019;7(2):50–57.
22. Afonin SM. Calculation deformation of an engine for nano biomedical
research. Int J Bio Res. 2021;1(5):1–4.
23. Afonin SM. Precision engine for nanobiomedical research. Bio Res Cli-
nical Rev. 2021;3(4):1–5.
24. Afonin SM. Solution wave equation and parametric structural schematic
diagrams of electromagnetoelastic actuators nano- and micro displace-
ment. Int J Math Ana App. 2016;3(4):31–38.
25. Afonin SM. Structural-parametric model of electromagnetoelastic actu-
ator for nanomechanics. Actuators. 2018;7(1):1–9.
26. Afonin SM. Structural-parametric model and diagram of a multi-
layer electromagnetoelastic actuator for nanomechanics. Actuators.
2019;8(3):1–14.
27. Afonin SM. Structural-parametric models and transfer functions of elec-
tromagnetoelastic actuators nano- and micro displacement for mecha-
tronic systems. Int J Theo App Math. 2016;2(2):52–59.
28. Afonin SM. Design static and dynamic characteristics of piezoelectric
nanomicro transducers. Mech. Solids. 45(1):123–132.
29. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Mech
Eng. 2018;18(2):19–23.
30. Afonin SM. Multilayer electromagnetoelastic actuator for robotics
systems of nanotechnology. 2018 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus).
2018;1698–1701.
31. Afonin SM. A block diagram of electromagnetoelastic actuator nanodis-
placement for communications systems. Tran Net Com. 2018;6(3):1–9.
32. Afonin SM. Decision matrix equation and block diagram of multilayer
electromagnetoelastic actuator micro and nanodisplacement for commu-
nications systems. Tran Net Com. 2019;7(3):11–21.
33. Afonin SM. Condition absolute stability control system of electro-
magnetoelastic actuator for communication equipment. Tran Net Com.
2020;8(1):8–15.
34. Afonin SM. A Block diagram of electromagnetoelastic actuator for con-
trol systems in nanoscience and nanotechnology. Tran Mach Learn Art
Int. 2020;8(4):23–33.
35. Afonin SM. Optimal control of a multilayer electroelastic engine
with a longitudinal piezoeect for nanomechatronics systems. ASI.
2020;3(4):1–7.
36. Afonin SM. Coded сontrol of a sectional electroelastic engine for nano-
mechatronics systems. ASI. 2021;4(3):1–11.
Piezoactuator of nanodisplacement for astrophysics 158
Copyright:
©2022 Afonin
Citation: Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeron Aero Open Access J. 2022;6(4):155‒158. DOI: 10.15406/aaoaj.2022.06.00155
37. Afonin SM. Structural scheme actuator for nano research. COJ Rev Res.
2020;2(5):1–3.
38. Afonin SM. Structural–parametric model electroelastic actuator nano
and micro displacement of mechatronics systems for nanotechnology
and ecology research. MOJ Eco Environ Sci. 2018;3(5):306‒309.
39. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron
Aero Open Access J. 2018;2(5):270–272.
40. Afonin SM. Condition absolute stability of control system with electro
elastic actuator for nano bioengineering and microsurgery. Sur Case Stu-
dies Open Access J. 2019;3(3):307–309.
41. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio
Biomech. 2019;3(2):56–57.
42. Afonin SM. Frequency criterion absolute stability of electromagneto-
elastic system for nano and micro displacement in biomechanics. MOJ
App Bio Biomech. 2019;3(6):137–140.
43. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ
App Bio Biomech. 2020;4(2):30–31.
44. Afonin SM. Structural scheme of electromagnetoelastic actuator for
nano biomechanics. MOJ App Bio Biomech. 2021;5(2):36–39.
45. Afonin SM. Multilayer engine for microsurgery and nano biomedicine.
Sur Case Studies Open Access J. 2020;4(4): 423–425.
46. Afonin SM. A structural-parametric model of a multilayer electroelastic
actuator for mechatronics and nanotechnology. Chapter 7 in Advances
in Nanotechnology. Bartul Z, Trenor J, editors. New York: Nova Sci-
ence; 2019. p. 169–186.
47. Afonin SM. Electroelastic digital-to-analog converter actuator nano
and micro displacement for nanotechnology. Chapter 6 in Advances in
Nanotechnology. Bartul Z, Trenor J, editors. New York: Nova Science;
2020. p. 205–218.
48. Afonin SM. Characteristics of an electroelastic actuator nano- and micro
displacement for nanotechnology. Chapter 8 in Advances in Nanotech-
nology. Bartul Z, Trenor J, editors. New York: Nova Science; 2021. p.
251–266.
49. Afonin SM. An absolute stability of nanomechatronics system with elec-
troelastic actuator. Chapter 9 in Advances in Nanotechnology. In: Bartul
Z, Trenor J, editors. New York: Nova Science; 2022. p. 183–198.
50. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano
and micro range. Rus Eng Res. 2021;41(4): 285–288.
51. Encyclopedia of Nanoscience and Nanotechnology. Nalwa HS, editor.
Los Angeles: American Scientic Publishers; 2004.
52. Springer Handbook of Nanotechnology. Bhushan B, editor. New York:
Springer; 2004. 1222 p.