Preprint

X-ray studies of the pulsar PSR J1420-6048 and its TeV pulsar wind nebula in the Kookaburra region

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

We present a detailed analysis of broadband X-ray observations of the pulsar PSR J1420-6048 and its wind nebula (PWN) in the Kookaburra region with Chandra, XMM-Newton, and NuSTAR. Using the archival XMM-Newton and new NuSTAR data, we detected 68 ms pulsations of the pulsar and characterized its X-ray pulse profile which exhibits a sharp spike and a broad bump separated by ~0.5 in phase. A high-resolution Chandra image revealed a complex morphology of the PWN: a torus-jet structure, a few knots around the torus, one long (~7') and two short tails extending in the northwest direction, and a bright diffuse emission region to the south. Spatially integrated Chandra and NuSTAR spectra of the PWN out to 2.5' are well described by a power law model with a photon index Γ{\Gamma} {\approx} 2. A spatially resolved spectroscopic study, as well as NuSTAR radial profiles of the 3--7 keV and 7--20 keV brightness, showed a hint of spectral softening with increasing distance from the pulsar. A multi-wavelength spectral energy distribution (SED) of the source was then obtained by supplementing our X-ray measurements with published radio, Fermi-LAT, and H.E.S.S. data. The SED and radial variations of the X-ray spectrum were fit with a leptonic multi-zone emission model. Our detailed study of the PWN may be suggestive of (1) particle transport dominated by advection, (2) a low magnetic-field strength (B ~ 5μ{\mu}G), and (3) electron acceleration to ~PeV energies.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
  • S Abdollahi
  • F Acero
  • M Ackermann
Abdollahi, S., Acero, F., Ackermann, M., et al. 2020, ApJS, 247, 33
  • M Actis
  • G Agnetta
  • F Aharonian
Actis, M., Agnetta, G., Aharonian, F., et al. 2011, Experimental Astronomy, 32, 193
  • F Aharonian
  • A G Akhperjanian
  • A R Bazer-Bachi
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2006, A&A, 456, 245
  • H An
An, H. 2019, ApJ, 876, 150
  • H An
  • K K Madsen
  • S P Reynolds
An, H., Madsen, K. K., Reynolds, S. P., et al. 2014a, ApJ, 793, 90
Ultraviolet to Gamma Ray
  • H An
  • K K Madsen
  • N J Westergaard
An, H., Madsen, K. K., Westergaard, N. J., et al. 2014b, in Proc. SPIE, Vol. 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91441Q
  • E Anders
  • N Grevesse
Anders, E., & Grevesse, N. 1989, GeoCoA, 53, 197
  • W B Atwood
  • A A Abdo
  • M Ackermann
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
  • I Bartalucci
  • P Mazzotta
  • H Bourdin
  • A Vikhlinin
Bartalucci, I., Mazzotta, P., Bourdin, H., & Vikhlinin, A. 2014, A&A, 566, A25
  • N Bucciantini
  • J Arons
  • E Amato
Bucciantini, N., Arons, J., & Amato, E. 2011, MNRAS, 410, 381
  • N Bucciantini
  • R Ferrazzoli
  • M Bachetti
Bucciantini, N., Ferrazzoli, R., Bachetti, M., et al. 2022, arXiv e-prints, arXiv:2207.05573
  • D A Burgess
  • K Mori
  • J D Gelfand
Burgess, D. A., Mori, K., Gelfand, J. D., et al. 2022, ApJ, 930, 148
  • N D'amico
  • V M Kaspi
  • R N Manchester
D'Amico, N., Kaspi, V. M., Manchester, R. N., et al. 2001, ApJL, 552, L45
  • O C De Jager
  • B C Raubenheimer
  • J W H Swanepoel
de Jager, O. C., Raubenheimer, B. C., & Swanepoel, J. W. H. 1989, A&A, 221, 180
  • Fermi-Lat Collaboration
  • S Abdollahi
  • F Acero
Fermi-LAT collaboration, Abdollahi, S., Acero, F., et al. 2022, arXiv e-prints, arXiv:2201.11184
  • J A Gaskin
  • D A Swartz
  • A Vikhlinin
Gaskin, J. A., Swartz, D. A., Vikhlinin, A., et al. 2019, Journal of Astronomical Telescopes, Instruments, and Systems, 5, 021001
  • J D Gelfand
  • P O Slane
  • W Zhang
Gelfand, J. D., Slane, P. O., & Zhang, W. 2009, ApJ, 703, 2051
  • G Giacinti
  • A M W Mitchell
  • R López-Coto
Giacinti, G., Mitchell, A. M. W., López-Coto, R., et al. 2020, A&A, 636, A113
  • E V Gotthelf
Gotthelf, E. V. 2003, ApJ, 591, 361
  • H Abdalla
  • A Abramowski
H. E. S. S. Collaboration, Abdalla, H., Abramowski, A., et al. 2018, A&A, 612, A2
  • A K Harding
Harding, A. K. 1996, SSRv, 75, 257
  • A K Harding
  • A G Muslimov
Harding, A. K., & Muslimov, A. G. 1998, ApJ, 500, 862
  • J J Hester
  • K Mori
  • D Burrows
Hester, J. J., Mori, K., Burrows, D., et al. 2002, ApJL, 577, L49
  • C F Kennel
  • F V Coroniti
Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 694
  • M Kerr
Kerr, M. 2011, ApJ, 732, 38
  • M Kerr
  • P S Ray
  • S Johnston
  • R M Shannon
  • F Camilo
Kerr, M., Ray, P. S., Johnston, S., Shannon, R. M., & Camilo, F. 2015, ApJ, 814, 128
  • M Kim
  • H An
Kim, M., & An, H. 2020a, ApJ, 892, 5
  • S Kim
  • H An
Kim, S., & An, H. 2020b, Astronomische Nachrichten, 341, 170
  • T Kishishita
  • A Bamba
  • Y Uchiyama
  • Y Tanaka
  • T Takahashi
Kishishita, T., Bamba, A., Uchiyama, Y., Tanaka, Y., & Takahashi, T. 2012, ApJ, 750, 162
  • O Klein
  • T Nishina
Klein, O., & Nishina, T. 1929, Zeitschrift fur Physik, 52, 853
  • L Kuiper
  • W Hermsen
Kuiper, L., & Hermsen, W. 2015, MNRAS, 449, 3827
  • Z Cao
  • F Aharonian
Lhaaso Collaboration, Cao, Z., Aharonian, F., et al. 2021, Science, 373, 425
  • X.-H Li
  • F.-J Lu
  • Z Li
Li, X.-H., Lu, F.-J., & Li, Z. 2008, ApJ, 682, 1166
  • K Madsen
  • R Hickox
  • M Bachetti
Madsen, K., Hickox, R., Bachetti, M., et al. 2019, in Bulletin of the American Astronomical Society, Vol. 51, 166
  • K K Madsen
  • S Reynolds
  • F Harrison
Madsen, K. K., Reynolds, S., Harrison, F., et al. 2015a, ApJ, 801, 66
  • K K Madsen
  • F A Harrison
  • C B Markwardt
Madsen, K. K., Harrison, F. A., Markwardt, C. B., et al. 2015b, ApJS, 220, 8
  • H Matheson
  • S Safi-Harb
Matheson, H., & Safi-Harb, S. 2010, ApJ, 724, 572
  • T Mauch
  • T Murphy
  • H J Buttery
Mauch, T., Murphy, T., Buttery, H. J., et al. 2003, MNRAS, 342, 1117
  • K Mori
  • H An
  • D Burgess
Mori, K., An, H., Burgess, D., et al. 2021, arXiv e-prints, arXiv:2108.00557
  • R Mushotzky
  • J Aird
  • A J Barger
Mushotzky, R., Aird, J., Barger, A. J., et al. 2019, in Bulletin of the American Astronomical Society, Vol. 51, 107
  • K Nakazawa
  • K Mori
  • T G Tsuru
Nakazawa, K., Mori, K., Tsuru, T. G., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, ed. J.-W. A. den Herder, S. Nikzad, & K. Nakazawa, 106992D
  • C Y Ng
  • M S E Roberts
  • R W Romani
Ng, C. Y., Roberts, M. S. E., & Romani, R. W. 2005, ApJ, 627, 904
  • C Y Ng
  • R W Romani
Ng, C. Y., & Romani, R. W. 2004, ApJ, 601, 479
  • M Nynka
  • C J Hailey
  • S P Reynolds
Nynka, M., Hailey, C. J., Reynolds, S. P., et al. 2014, ApJ, 789, 72
  • B Posselt
  • G G Pavlov
  • P O Slane
Posselt, B., Pavlov, G. G., Slane, P. O., et al. 2017, ApJ, 835, 66
  • S P Reynolds
Reynolds, S. P. 2003, arXiv e-prints, arXiv:0308483 -. 2009, ApJ, 703, 662 -. 2016, Journal of Plasma Physics, 82, 635820501
  • M S E Roberts
  • R W Romani
Roberts, M. S. E., & Romani, R. W. 1998, ApJ, 496, 827
  • M S E Roberts
  • R W Romani
  • S Johnston
Roberts, M. S. E., Romani, R. W., & Johnston, S. 2001a, ApJL, 561, L187
  • M S E Roberts
  • R W Romani
  • S Johnston
  • A J Green
Roberts, M. S. E., Romani, R. W., Johnston, S., & Green, A. J. 1999, ApJ, 515, 712
  • M S E Roberts
  • R W Romani
  • N Kawai
Roberts, M. S. E., Romani, R. W., & Kawai, N. 2001b, ApJS, 133, 451