ArticlePDF Available

The role of soil and plant cover as drivers of soil macrofauna of the Dnipro River floodplain ecosystems

Authors:

Abstract and Figures

Floodplain ecosystems are hotspots of biological diversity and perform important ecosystem functions in the landscape. The key to understanding the sustainability of ecosystem function is knowledge of the relationships between ecosystem components. The article reveals the role of morphological and physical properties of soil, as well as phytoindication of environmental factors as drivers of biological diversity of soil macrofauna of protected ecosystems of the Dnipro River floodplain. The studies were conducted in the forest floodplain ecosystems of the “Dnipro-Orilskiy” Nature Reserve. The studies of morphological properties of soils allowed us to identify the representatives of two reference groups: Fluvisol and Gleysol. The soil physical property data were subjected to principal component analysis, which extracted four principal components whose eigenvalues exceeded unity and described 79.9% of the variation in traits. The principal components of variation in soil physical properties and phytoindication assessments of environmental factors were used as predictors of the community structure of soil macrofauna. These predictors were able to explain 29.6% of the community variation. Physical soil properties are most important as a driver of soil macrofauna. The morphological properties of the soil and phytoindicator assessments are able to explain a much smaller part of the community variation. The pure influence of the predictors is small, indicating that they interact significantly in influencing soil animals. The results obtained have implications for the development of optimal strategies for floodplain ecosystem management and biodiversity conservation.
Content may be subject to copyright.
16
*Corresponding author:

©2023 Authors.This is an open access article under the CC BY-NC-ND license (http://creativecom mons.org/licenses/by-nc-nd/4.0/ )
FOLIA OECOLOGICA – vol. 50, no. 1 (2023), doi: 10.2478/foecol-2023-0002
The role of soil and plant cover as drivers of soil macrofauna
of the Dnipro River oodplain ecosystems
1Oles Gonchar Dnipro National University, Gagarin av., 72, Dnipro, 49000, Ukraine
2   
Ukraine
Abstract
2023. The role of soil and plant cover as drivers of
Folia Oecologica, 50 (1): 16–43.
Floodplain ecosystems are hotspots of biological diversity and perform important ecosystem functions
    
    


-


-
pal components of variation in soil physical properties and phytoindication assessments of environmental




 

Keywords
biodiversity, landscape management, nature conservation, phytoindication, temporal dynamics, zoolog-
ical diagnostics
Olga Kunakh1, Yulia Zhukova1, Volodymyr Yakovenko1, Olexander Zhukov2*
Introduction
Floodplain ecosystems play an important role in the func-
tioning of landscapes (, 2003). Ecosystems located
in river valleys perform important ecological functions.

 -

species of plants and animals ( et al., 2005). A
-
tion, and animal communities is essential to understand-
      
-
ly related to the surrounding geospatial variations and
17
the nature of the rivers ( et al., 2021).
The high level of vertical and horizontal heterogeneity of
    
alluvial sediments, sedimentation regime, age of forma-
           et al.,
2017). The physical properties of alluvial soils are subject
to considerable spatial variability. Geostatistical analysis

-
tation of the spatial variability of alluvial soils is an im-
portant prerequisite for the application of precision agri-
 et al., 2005). The
   
  
the duration of the most important soil-forming processes
(et al., 2019;  and , 1982).
     -
ductive in nature ( and , 2007). In the steppe
         
   et al., 2020), but they
provide a place of concentration of regional biodiversity
and diversity of soil cover ( et al., 2020). The
     
   et al., 2018). These systems
    et
al., 2020;  et al., 2021), salt ( et al., 2015;
 et al., 2020) and air regimes ( et
al., 2016) and the impact of erosion processes of varying
intensity (  et al., 2009; 
     
  -
        and 
2009). The anthropogenic impact on any component of
-
plain ecosystems (   
ecosystems are sensitive to changes and processes that are
in other parts of the landscape and in a broad sense are a
 et al., 2010).

        -
action of soil, vegetation and soil biota ( et al.,
   -

naturally or as a result of catastrophic events (et
        
      
possible based on an understanding of the interactions

soil cover ( et al., 2016; et al., 2022). The
important role in procedures of development of optimum
   
-
       
ecosystem ( et al., 2015;  et
al., 2022).
Floodplain ecosystems have an important eco-
nomic value (  
       -
nities for human economic activity are severely limited.
Such locations become natural reserves of biological diversi-
ty (
 -
plemented and biodiversity must be incorporated into man-

      et al.,
2016). The application of these results to landscape man-
           
macrofauna. Typically, the soil macrofauna is not a popular
target for biodiversity conservation. When selecting species
for protection, an emotional component plays an important


Ukraine from the soil macrofauna only one species of ear th-
   , 2009), one species of Chilo-
poda (, 2009) there are no species of spiders,
-

(, 2010;  et al., 2020). The maintenance of a high
level of abundance and species diversity of soil animal com-

them ( and , 2021;  et al., 2022).
-
ical properties and provides the formation of soil structure,
     
( et al., 2016; , 2000;   and ,
1999). The number of species, population abundance and
biomass of soil macrofauna are declining in a range of eco-
systems from nature reserves to managed agro-ecosystems.
The main reason for this decline is the reduction of avail-
able organic matter and essential elements in the soil of the
agroecosystem (and , 1997).
 
soil macrofauna community diversity and the factors that
     -
standing the patterns of functioning and sustainability of
 , 2007;  et al., 2010).
The diversity of animal communities depends on the his-
tory ( and , 2009;  et al., 1996),
       et al., 2015),
and factors of a neutral nature ( and , 2007;
 et al., 2009;  et al., 2021). The environ-

features of soil properties and soil regimes ( et al.,
2021;  et al., 2019). The variability of soil chemical
properties determines habitat properties and the availability
of nutrients to animals and chemical elements that form the
protective structures of pedobionts ( et al., 2015;-
 et al., 2022;  et al., 2018;  et al., 2019). An
-
cal properties of the soil (
ability and energy requirements for animals to move through
the soil. The physical properties of the soil also regulate the
aeration regime (      
( et al., 2021), and the salinity regime ( et al., 2019;
           
( et al., 2019;  et al., 2019).
The role of history in the formation of biodi-
versity patterns of soil macrofauna communities is ver y
18
      -
ral patterns have a hierarchical multiscale structure
( et al., 2022;  et al., 2021; 
 
  -
          
time is superimposed on the lack of series of data on the

-

        
     
        

the controlling factor. This approach proceeds from the
          
the community may have formed in a temporal pattern
that corresponds to the rhythm of the controlling factor.
If the temporal patterns of the factors do not correspond
     




(, 1996).
The morphological feat ures of soils are very
      

run into hundreds and thousands of years ( et
al., 2014). The physical properties of soils may be close-
ly related to morphological features and have the same
temporal rhythm of variability (, 2011). Or they may
change very rapidly and be characterized by rhythmic

et al., 2015;  et al., 2019;  et al., 2018). The
rhythm of ecological processes, commensurate in time
         
to the phytoindicator assessments of environmental fac-
tors (   

on the soil macrofauna community can model the role of
ecological drivers in the hierarchy of temporal patterns.
   
role of soil morphological and physical properties and
phytoindication assessments of environmental factors as
drivers of biological diversity of soil macrofauna of pro-

Materials and methods
Study sites
-

         
1990 ( et al., 2022). The area of the reserve is
   
changes in the relief on the territory of the reserve oc-
   
       







19
plant in the 1960s and the construction of Dniprodzer-

51.4 m above the sea level. Thus, after the construction of
the cascade of Dnipro reservoirs, the total rise in the level
-
       
  -
 

also decreased.
Sampling design

   

 
(Fig. 1). The numbering of sampling plots is given in ac-
 et al. (2019). The sam-
pling plots each consisted of 7 transects. Each transect


-



in such samples visible to the naked eye (macroscopic or-
ganisms) ( and , 2002;  et al., 2003;
, 2016). Geobionts (large soil invertebrates that
permanently inhabit the soil) and geophiles (organisms
that live in the soil only for particular phases of their
li ve s) ( , 1992; 
assessed. Samples consisted of single blocks of soil, 25 ×

the soil surface prior to taking the soil samples. The litter

         
stored in 4% formaldehyde ( et al., 2004).
      
         
       

its largest side along the largest local elevation gradient


The habitat type according to EUNIS (European Nature
Information System): G1.223 Southeast European Fraxi-
nus – Quercus – Alnus forests-
 
resource): Fluvic Calcic Mollic Gleysol (Loamic, Humic).



The habitat type according to EUNIS: G1.1112 Eastern
     
 
(Loamic, Protocalcic, Humic, Nechic).
      
         
(48°30’06’’N, 34°47’18’’E). The habitat type according
to EUNIS: G1.225 Sarmatic riverine [Quercus] forests.


      
         
     
to EUNIS: G1.225 Sarmatic riverine [Quercus] forests.

-

      

      
         



20

EUNIS: G1.225 Sarmatic riverine [Quercus] forests. The
      
    -
   
Mollic Gleysol (Loamic, Humic).
Measurement of environmental indicators
     
        -
   



      
       -
   
average error of the measurement results of the device

a cross-sectional size of 2 cm2. Within each sampling
  
single repetition.
An HI 76305 sensor (Hanna Instruments,
-
   

total electrical conductivity of the soil, i.e. the combined
         -
surement results of the device are presented in units of
soil salt concentration, i.e., g l–1. The comparison of HI

estimate the unit conversion factor as 1 dS m–1 = 155 mg
l–1 (and , 2002).
   
the method of dr y sieving according to Savinov (,
-

         
described by  (2005) in his mono-

The phytoindication assessment of environ-
-
         
a size of 3 by 3 meters. The projective cover of plants

100 % (, 1973). Edaphic and climatic factors
can be assessed using phytoindication scales (,
2011). The edaphic phytoindication scales include the

          
total salt regime (Sl), the carbonate content in the soil
(Ca) and nitrogen content in the soil (Nt). The climat-
ic scales include the parameters of the thermal climate
(thermal regime, Tm), humidity (Om), crioclimate (Cr)
         
(Lc) is an indicator of the microclimate. The phytoindica-

by the ideal indicator method (, 2017). Phytoindi-

information about the projective cover of the herbaceous
layer.
Statistical methods
     
evaluated using multiple correspondence analysis. The
         
component analysis. The mentioned statistical analyses
  
  Statistics. Data Analysis
Software System, 2014). The evaluation of alpha, beta,
and gamma diversity of soil macrofauna communities
      entropart (
and , 2015) for a language and environment for
statistical computing R (, 2020). A canoni-

macrofauna community using the package ade4 ( 
and, 2007). The partitioning of the community
     

package vegan ( et al., 2018). Indicator value

the help of the package indicspecies (, 2013).
Results
Soil morphology
The studies of morphological properties of soils in the
-
-
ols (Table 1). By granulometric composition, the soils
 
 -
   
   -
 
       
in a layer 0–10 cm deep from the mineral soil surface.
The calcic horizon is characterized by the presence of
secondar y calcium carbonate detected by the hydrochlo-
ric acid test. The Protosalic properties are related to soil
solution carbonates precipitated in the soil. Diagnosis
of Protocalcic proper ties is based on their persistence
and a fairly marked amount in the soil. Nechic denotes

-

Thaptohumic denote the presence of buried horizons of
appropriate color.
The multiple correspondence analysis indi-
cated the relationship of soil properties in the studied
soil types (Fig. 3). The soils marginal in their prop-
   


21
      
   
Loamic Arenic Humic Ochric Protocalcic Nechic Thaptoochric Thaptohumic
16 16 Fluvic Calcic       
Mollic Gleysol
Gleyic
        
Fluvisol
Gleyic
          
Fluvisol
Gleyic
         
Fluvisol
27
Gleyic
         
Fluvisol
Gleyic
         
Fluvisol
29
30 Fluvic Mollic        
Gleysol

    
25, 26, 27, 29; soil types – Fluvisol and Gleysol, Humus layer/Granulometric composition – Loamic/Humic, Arenic/Ochric;
Mineralogy – Protocalcic and Other.
22
-
pling sites 25 and 27. The soils of sampling sites 16 and
 

-
maining soils had the property Loamic. The diagram
     
         
  
      
      
-

Soil properties
    -
  
       
  -
scribed 79.9% of the variation in traits. The principal
-
ed a unidirectional change in the soil penetration resis-
-

-
   
    
46.3% 14.9% 11.3% 7.4%
Soil penetration resistance (on depth, cm)
0–5 0.54 0.48 –0.31 –0.54
5–10 0.53 0.43 –0.41 –0.49
10–15 0.60 0.34 –0.51 –0.22
15–20 0.56 –0.66
20–25 0.67 –0.58 0.30
25–30 0.71 –0.55 0.27
30–35 0.80 –0.45 0.20
35–40 0.85 –0.35
40–45 0.88 –0.11 –0.26
45–50 0.93 –0.11 –0.10
50–55 0.94 –0.10
55–60 0.93 –0.15
60–65 0.92 –0.17 0.22 –0.10
65–70 0.90 –0.17 0.28 –0.12
70–75 0.89 –0.17 0.30 –0.11
75–80 0.88 –0.19 0.33 –0.12
80–85 0.87 –0.17 0.37 –0.15
85–90 0.86 –0.18 0.39 –0.16
90–95 0.85 –0.17 0.39 –0.15
95–100 0.85 –0.17 0.39 –0.13
Other soil properties
Electrical conductivity, dSm/m 0.45 0.39
Litter depth (cm) –0.32
    
Soil bulk density (g cm–3) –0.27 –0.29 0.14 –0.56
Aggregate fraction (mm)
   
7–10 0.90 0.19
5–7 0.74 0.18 0.23
3–5 0.66 0.13 0.42
2–3 0.70 –0.37 0.15 0.44
1–2 –0.16 –0.84 –0.28 –
0.5–1 –0.55 –0.66 –0.25 –
0.25–0.5 –0.58 –0.53 –0.28 –0.38
<0.25 –0.41 – – –0.63

23
      
        
-
cated an increase in the proportion of aggregate fractions
of 2–5 mm and a decrease in the proportion of aggre-
gate fractions of <0.25–2 mm. The principal component
2 described 14.9% of the trait variability. The positive
scores of this principal component indicated an increase
in the soil penetration resistance at 0–15 cm depth and

at 40 cm depth and deeper. The principal component 2

moisture, and soil bulk density. The positive PC2 scores
indicated an increase in the proportion of aggregate frac-
tions larger than 5 mm and a decrease in the proportion of
aggregate fractions of 0.25–3 mm. The principal compo-
nent 3 described 11.3% of the trait variation and indicated
the opposite dynamics of the soil penetration resistance
variability at 0–50 cm depth (the negative principal com-
ponent scores) and 60 cm and deeper (the positive prin-

sensitive to the variability in electrical conductivity, soil
moisture, and soil bulk density. The positive PC3 scores
indicated an increase in the proportion of aggregate frac-
tions larger than 2 mm and a decrease in the proportion of
-
pal component 4 described 7.4% of the trait variation and
indicated the opposite dynamics of the soil penetration
resistance variability at depths of 0–15 cm and 60–100
cm (the negative principal component scores) and 20–35
cm (the positive principal component scores). The prin-

moisture and soil bulk density. The positive PC4 scores
indicated an increase in the proportion of aggregate frac-
tions of size 2–7 mm and a decrease in the proportion of
aggregate fractions of size <0.25–0.5 mm.
The vegetation cover and phytoindication of ecological
regimes

     
  

      
       -
       
of information about species composition of communities
        

 -

-
 
    
favorable for acarbonatophiles, and the nitrogen content

       
for sub-heliophytes (plants of light forests and shrubber-
    
the shade). The climatic scales assessed conditions for the
 

scales that are sensitive to soil properties.
Soil macrofauna
The abundance of the soil macrofauna community ranged
from 135.9 ± 21.1 to 332.0 ± 34.9 ind. m–2
-
-
inosa trapezoides (Duges, 1828) and Aporrectodea rosea
       

     -
   -
      

      
      
      


Alpha diversity of the soil macrofauna commu-

in 95% of cases (Fig. 4). Gamma community diversity


ranged from 8.1 to 8.9.
Soil macrofauna community ordination

          -
cies. According to the results of the preliminary detrend-


most adequate alternative as an ordination procedure. The
-

29.6% of the community variation (F = 11.2, p < 0.001).
      
 -
nity variation (F = 11.3, p-
     

1.9% of the community variation (F = 5.3, p < 0.001).
The soil physical properties described 23.7% of commu-
nity variation (F = 41.8, p-

      -
   
9.4% of community variation (F = 17.4, p < 0.001). The
-

F = 5.9, p < 0.001),

F = 1.8,
24
Ecological factor* 16 25 26 27 29
Hd 8.80 ± 0.06 7.29 ± 0.08 8.89 ± 0.06 8.50 ± 0.06 9.12 ± 0.08
fH 4.42 ± 0.04 4.11 ± 0.06 4.67 ± 0.06 4.71 ± 0.05 4.76 ± 0.06
     
Sl 6.13 ± 0.05 6.35 ± 0.04 6.36 ± 0.06 5.96 ± 0.05 6.55 ± 0.04
Ca 8.15 ± 0.06 8.28 ± 0.04 8.42 ± 0.06 7.86 ± 0.05 8.04 ± 0.04
Nt 8.38 ± 0.04 7.73 ± 0.04 8.65 ± 0.05 8.39 ± 0.05 8.37 ± 0.04
Ae 5.80 ± 0.02 5.90 ± 0.01 5.98 ± 0.02 6.05 ± 0.02 5.85 ± 0.02
Tm 9.76 ± 0.04 9.10 ± 0.06 9.66 ± 0.06 9.93 ± 0.04 9.80 ± 0.04
Om 12.21 ± 0.03 12.34 ± 0.03 12.15 ± 0.04 11.64 ± 0.03 12.01 ± 0.03
     
Cr 8.61 ± 0.06 8.58 ± 0.05 8.45 ± 0.07 8.65 ± 0.07 8.94 ± 0.06
Lc 7.51 ± 0.03 8.05 ± 0.03 7.48 ± 0.02 7.64 ± 0.03 7.49 ± 0.03
Table 3. Phytoindicator assessment of ecological factors for individual sampling sites: 16, 25, 26, 27, 29 (mean ± standard error)


Cr, cryoregime (average temperature of the coldest month); Lc, light regime.
Fig. 4. Alpha, beta, and gamma diversity of soil macrofauna communities.
25
Species CCA1,
Radj
2=10.2% CCA2,
Radj
2 = 7.1% CCA3, Radj
2 = 6.7% CCA4, Radj
2 = 2.1%
F = 73.2, p < 0.001 F = 50.8, p < 0.001 F = 47.8, p < 0.001 F = 15.4, p < 0.001
Agriotes lineatus 0.06 –1.04 0.79 –0.04
Agrotis segetum –0.77 0.12 0.08 –0.09
Agrypnus murinus 0.76 0.55 0.02 –0.55
Amara familiaris 0.49 –1.24 0.72 –0.08
Amara similata 0.44 1.25 0.85 0.14
Ampedus balteatus –0.31 –0.77 –2.67 0.27
Amphimallon solstitiale 0.36 1.18 0.55 –0.12
Aporrectodea rosea –1.23 0.28 0.13 0.18
Aporrectodea trapezoides 0.47 0.41 0.12 0.02
Asilidae sp.1 –0.81 –0.64 –0.21 –0.43
Athous haemorrhoidalis 0.39 –0.24 –0.20 –0.08
Cardiophorus rupes 0.36 –1.01 0.28 –0.09
Cepaea vindobonensis 0.32 –1.36 0.75 –0.14
Chrysolina fastuosa 0.23 –0.68 0.48 0.66
Cochlicopa lubrica –0.11 –0.03 –0.04 0.78
Dendrobaena octaedra 0.60 0.64 0.07 –0.53
Dendroxena quadrimaculata 0.80 1.06 –0.04 –0.97
Enchytraeus sp. 1 –1.42 0.27 –0.25 –0.22
Forcula auricularia 0.40 –0.95 0.65 –0.05
Geophilus proximus 0.22 0.28 0.33 0.57
Isomira murina 0.21 –0.80 –0.98 0.03
Lithobius aeruginosus 0.27 0.61 –0.31 –0.67
Lithobius curtipes 0.07 0.56 0.14 –0.54
Lumbricidae sp. 0.44 –1.18 0.65 –0.28
Megaphyllum rossicum –0.62 –0.56 0.52 –0.27
Megaphyllum sjaelandicum –1.02 –0.03 0.33 0.06
Melolontha melolontha 0.42 –0.23 0.05 0.16
Octodrilus transpadanus –0.22 –0.01 –1.65 –0.15
Othius angustus 1.10 0.95 0.00 –0.77
Otiorhynchus ligustici 0.13 –0.81 0.40 –0.19
Pachymerium ferrugineum –0.21 –0.94 0.51 –0.27
Pardosa lugubris –1.42 0.14 0.06 –0.55
Platydracus fulvipes –0.21 –0.94 0.62 –0.11
Polydesmus inconstans –1.33 0.31 0.35 0.30
Polyphylla fullo 0.48 –0.63 0.30 –0.24
Prosternon tessellatum 0.18 0.09 0.42 1.16
Pterostichus ovoideus 0.67 1.06 –0.16 –0.93
Rhagio scolopaceus –1.19 –0.65 0.46 –0.45
Rhipidia uniseriata –0.30 –0.30 –2.46 0.08
Serica brunnea 0.07 –0.80 –1.23 0.08
Tabanus bromius –0.10 –0.03 –0.87 –0.29
Thereva nobilitata –0.97 –0.35 –0.32 0.00
Tipula lunata 0.38 0.41 –0.57 0.51
Trachelipus rathkii 0.38 0.04 0.22 –0.04
Xerolycosa miniata 0.43 –0.78 0.50 0.37

26
p      
morphological and physical property variability.
-
nities of sampling site (sampling plot) 26 from all others
-
          
of sampling site 26. High aeration, high carbonate and


these species preferred the living conditions observed
in sampling site 26. Such species include Pardosa lugu-
bris, Polydesmus inconstans, Enchytraeus sp., Rhagio
scolopaceus (larvae), Aporrectodea rosea, Megaphyllum
sjaelandicum and Thereva nobilitata (la r vae).
-
rofauna communities of sampling site 25 (positive scores)
and sampling site 29 (negative scores). The positive scores
-
moclimate values and soil nitrogen content. The negative

values and a higher level of soil solution salinity. Such
species as Pterostichus ovoideus, Dendroxena quadrimac-
ulata, Othius angustus, Dendrobaena octaedra, Lithobius
aeruginosus, and L. curtipes occurred more frequently

species such as Cardiophorus rupes (larvae), Amphimal-
lon solstitiale (larvae), Agriotes lineatus (larvae), Amara
similata (larvae), A. familiaris (lar vae) and Cepaea vindo-
bonensis.
         

and Gleysols. Fluvisols had the Arenic property more fre-
quently, and Gleysols had the Loamic property more fre-
quently. Fluvisols had a more alkaline soil solution reac-
tion, and Gleysols had a more acidic soil solution reaction.
The community of sampling site 25 can be dif-
      
3. The negative values of principal components 1 and 2,
    -
    -
ized by the presence of Protocalcic and Loamic properties.
  Ampe-
dus balteatus (larvae), Rhipidia uniseriate (larvae), Serica
brunnea (larvae), Octodrilus transpadanus, Isomira muri-
na (larvae) and Tabanus bromius (l arva e).
 -
fauna community of sampling site 27 from all others. This
    

salinity of soil solution and carbonate content in the soil.
Species such as Prosternon tessellatum (larvae), Cochlico-
pa lubrica, Geophilus proximus, Chrysolina fastuosa (lar-
vae), Tipula lunata (larvae), and Polydesmus inconstans

Indicator value analysis of soil macrofauna species

-
ical soil properties and soil macrofauna species (Table 5).
Only one species (Cochlicopa lubrica) 
sampling site type. Species such as Agrypnus murinus
(larvae), Dendrobaena octaedra, Dendroxena quadrimac-
ulat a, Lithob ius aeru gin osu s, Othius angu stu s, an d Pteros-
tichus ovoideus
  -
cies as Ampedus balteatus (larvae), Octodrilus transpada-
nus, Rhipidia uniseriate (larvae). The unique indicators of

Enchytraeus sp., Pardosa lugubris. No unique indicators
 
of this sampling site are also indicators of sampling sites
   -
pling sites. The unique indicator species of sampling site 26
Agriotes lineatus (larvae), Amara familiaris (larva e),
Amara similata (larvae), Amphimallon solstitiale ( la r vae) ,
Cardiophorus rupes (larvae), Cepaea vindobonensis,
Forcula auricularia, Otiorhynchus ligustici (larvae) and
Polyphylla fullo (larva e).
-
fauna communities of sampling site 25 (positive scores) and
sampling site 29 (negative scores). The positive scores of the
         -
mate values and soil nitrogen content. The negative scores of

higher level of soil solution salinity. Such species as Pteros-
tichus ovoideus, Dendroxena quadrimaculata, Othius an-
gustus, Dendrobaena octaedra, Lithobius aeruginosus, and
L. curtipes    
Car-
diophorus rupes (larvae), Amphimallon solstitiale ( la r vae),
Agriotes lineatus (lar vae), Amara similata (larvae), A. famil-
iaris (larvae) and Cepaea vindobonensis.
         

and Gleysols. Fluvisols had the Arenic property more fre-
quently, and Gleysols had the Loamic property more fre-
quently. Fluvisols had a more alkaline soil solution reac-
tion, and Gleysols had a more acidic soil solution reaction.
The community of sampling site 25 can be dif-
      
3. The negative values of principal components 1 and 2,
    -
    -
ized by the presence of Protocalcic and Loamic properties.
  Ampe-
dus balteatus (larvae), Rhipidia uniseriate (larvae), Serica
brunnea (larvae), Octodrilus transpadanus, Isomira muri-
na (larvae) and Tabanus bromius (l arva e).
 -
fauna community of sampling site 27 from all others. This
    

salinity of soil solution and carbonate content in the soil.
Species such as Prosternon tessellatum (larvae), Cochlico-
pa lubrica, Geophilus proximus, Chrysolina fastuosa (lar-
vae), Tipula lunata (larvae), and Polydesmus inconstans

27
   
-
    
 
regime; Ca – carbonate content in soil; Nt – nitrogen content in soil; Ae – soil aeration; Tm – ther mal climate; Om – climate
-

28
Indicator value analysis of soil macrofauna species
         
 
categorical soil properties and soil macrofauna species
(Table 5). Only one species (Cochlicopa lubrica-
Agr ypnus
murinus (larvae), Dendrobaena octaedra, Dendroxena
quadrimaculata, Lithobius aeruginosus, Othius angus-
tus, and Pterostichus ovoideus
sampling site 16. The unique indicators of sampling site
Ampedus balteatus (larvae), Oc-
todrilus transpadanus, Rhipidia uniseriate (larvae). The

Asilidae sp. (larvae), Enchytraeus sp., Pardosa lugubris.
    
The indicator species of this sampling site are also indi-
cators of sampling sites 26 or 29, less frequently in com-
   
Agriotes lineatus (l arva e),
Amara familiaris (larvae), Amara similata (larvae), Amphi-
mallon solstitiale (larvae), Cardiophorus rupes ( la r vae) ,
Cepaea vindobonensis, Forcula auricularia, Otiorhyn-
chus ligustici (larvae) and Polyphylla fullo (l arva e).

the total number of species in the analysis). The Fluvisol
-



(48.9%) and the Loamic/Humic properties indicators
     
-


Discussion
    -
         
soils. These are morphological characteristics of soils,
physical properties of soils, and phytoindication assess-
ments of environmental factors. Each of these groups of

chosen set of predictors of the soil macrofauna commu-
 
dynamics of ecological conditions. The intrinsic time of
variability of the physical properties of the soil has a dura-
tion of days, months, years. The intrinsic time of variabil-
ity of phytoindication assessments of environmental fac-
tors has duration of some years or decades. The intrinsic
time of variability of morphological properties of soil has
duration of some years,dozens of years, centuries.
The soil types and soil morphological properties
can also be indicated by soil macrofauna species. The ba-

so their role as indicators is of particular interest. Our re-

A. rosea, and the indicators of Gleysols are
A. trapezoides and the epigean
D. octaedra        
ecologically diverse. Species that have a similar ecologi-
cal optimum are combined into ecological groups (-
   
  -
ferent ecological niches, so the ecological niche is charac-
terized not only by an optimum, but also by an ecological
    
  
best indicators. Fluvisol indicators include both epigeic
species (Agrotis segetum (larvae), Pardosa lugubris,
Polydesmus inconstans, Rhipidia uniseriate (larvae),
Thereva nobilitata (larvae), Megaphyllum sjaelandicum)
and endogeic species (Ampedus balteatus (larvae), Pros-
ternon tessellatum (larvae), Rhagio scolopaceus (larvae),
Serica brunnea (larvae), Enchytraeus sp.). The same is

species (Amara familiaris, Dendroxena quadrimaculata,
L. aeruginosus, Lithobius curtipes, Othius angustus (lar-
vae), Pterostichus ovoideus, Tipula lunata (larvae), Tra -
chelipus rathkii) and endogeic species (larval stages of
Agrypnus murinus, Athous haemorrhoidalis, Melolontha
melolontha, Polyphylla fullo).
The ecological groups of soil animal species

consequence of the activity of elementary soil processes
          
species that are indicators of the granulometric composi-

-

the ground beetle Amara familiaris prefers sandy soils
(, 1977). The beetle Amara similata prefers damp
   , 2014).
This species is part of the group that indicates pioneer
sandbars ( et al., 2005). A. lineatus
   
(-
ic matter ( et al., 2018). This species prefers
 et al., 2012). In our

density than loam soils. The larvae of Amphimallon sol-
stitiale 1952).
Also inhabitants of sandy soils are the larvae of Cardio-
phorus rupes (, 1978). The mollusk C. vindobon-
ensis         
( et al., 2004), but in river valleys it is usually
-
posits ( , 2009).
The larvae of Melolontha melolontha prefer
loamy soils (Octodri-
lus transpadanus 
of soil galleries ( and , 2010;  and



     
29
Species Sampling site Soil Granulometry Mineralogy
16 25 26 27 29 Fluvisol Gleysol Arenic Loamic Non Protoc. Protocalcic
Agriotes lineatus 0 0 0 0 1 – – 1 0 1 0
Agrotis segetum 1 0 1 1 0 1 0 1 0 1 0
Agrypnus murinus 1 0 0 0 0 0 1 – – –
Amara familiaris 0 0 0 0 1 0 1 1 0 1 0
Amara similata 0 0 0 0 1 – – 1 0 1 0
Ampedus balteatus 0 1 0 0 0 1 0 – 0 1
Amphimallon solstitiale 0 0 0 0 1 – – 1 0 1 0
Aporrectodea rosea 0 0 1 1 0 1 0 – – –
Aporrectodea trapezoides 1 0 0 1 1 0 1 – –
Asilidae sp. 0 0 1 0 0 – – 1 0 –
Athous haemorrhoidalis 1 1 0 0 1 0 1 0 1 –
Cardiophorus rupes 0 0 0 0 1 – – 1 0 1 0
Cepaea vindobonensis 0 0 0 0 1 – – 1 0 1 0
Chrysolina fastuosa 0 0 0 1 1 – – – –
Cochlicopa lubrica – – – – –
Dendrobaena octaedra 1 0 0 0 0 0 1 0 1 1 0
Dendroxena quadrimaculata 1 0 0 0 0 0 1 0 1 1 0
Enchytraeus sp. 0 0 1 0 0 1 0 1 0 –
Forcula auricularia 0 0 0 0 1 – – 1 0 1 0
Geophilus proximus 1 0 0 1 1 – – – – 1 0
Isomira murina 0 1 0 0 1 – – – – 0 1
Lithobius aeruginosus 1 0 0 0 0 0 1 0 1 1 0
Lithobius curtipes 1 0 1 0 0 0 1 – 1 0
Lumbricidae sp. 0 0 0 0 1 0 1 1 0 1 0
Megaphyllum rossicum 0 0 1 0 1 – – 1 0 1 0
Megaphyllum sjaelandicum 0 0 1 1 0 1 0 1 0 1 0
Melolontha melolontha 1 0 0 1 1 0 1 0 1 1 0
Octodrilus transpadanus 0 1 0 0 0 – – 0 1 0 1
Othius angustus 1 0 0 0 0 0 1 0 1 1 0
Otiorhynchus ligustici 0 0 0 0 1 – – 1 0 1 0
Pachymerium ferrugineum 0 0 1 0 1 – – 1 0 1 0
Pardosa lugubris 0 0 1 0 0 1 0 1 0 1 0
Platydracus fulvipes 0 0 1 0 1 – – 1 0 1 0
Polydesmus inconstans 0 0 1 1 0 1 0 1 0 –
Polyphylla fullo 0 0 0 0 1 0 1 1 0 1 0
Prosternon tessellatum 0 0 0 1 1 1 0 – –
Pterostichus ovoideus 1 0 0 0 0 0 1 0 1 1 0
Rhagio scolopaceus 0 0 1 0 1 1 0 1 0 1 0
Rhipidia uniseriata 0 1 0 0 0 1 0 0 1 0 1
Serica brunnea 0 1 0 0 1 1 0 – – 0 1
Tabanus bromius 1 1 1 0 1 – – – 0 1
Thereva nobilitata 0 1 1 0 0 1 0 1 0 –
Tipula lunata 1 1 0 1 0 0 1 0 1 0 1
Trachelipus rathkii 1 0 0 1 1 0 1 – 1 0
Xerolycosa miniata 0 0 0 1 1 – – – – 1 0
Protoc., Protocalcic.
        
p < 0.05)
30
anecic species (, 1977;  et al., 1976).
         
stream dynamics, resulting in erosion and sedimentation
processes. Sandy soils usually have a thin humus horizon,
 -
zon ( et al., 2007;  et al., 2011).
The list of species that are indicators of sandy soils

carbonate horizon. This is consistent, since the carbon-

number of the indicator species of carbonate horizon is very
  Ampedus balteatus
or forest litter (, 1978), therefore, the indicator role of
the carbonate horizon may be as a consequence of the pecu-

cover. These larvae prefer sandy soils ( and -
-
systems. Our results indicate that this species is an indicator
 
Octodrilus transpadanus is also an in-
dicator of Protocalcic horizon. Increased calcium content in
the soil is a factor in soil structure ( and 
, 2007). In turn, soil structure is necessary to main-
       et al., 2017),
and calcium is necessary for the normal digestive process of
 et al., 2015;  et al., 2003).
   
the duration of the process of their genesis is measured in
centuries ( et al., 2014;  et al., 2020). The





every spring ( 1950). Due to construction of a
     -
gime of the river has changed dramatically ( et
-
   -
       

      

     et al., 2009). The de-


      


supply of organic matter to the surface horizons and grad-
ually leads to soil depletion ( et al., 2016).

  
  -

       
-

the result of the interaction of the main soil-forming fac-
tors: relief, soil-forming material, climate, communities of
living organisms and time (c, 1883; ,
2012; , 1941;  et al., 2006).
The physical properties of soil depend on the fac-
tors of soil formation (-
 
variability of soil physical properties is represented by tem-
      
       
       



content in alluvial soils at the ecosystem scale is deter-

     
by other soil factors such as soil str ucture, microrelief,

rock content ( et al., 2016).
Plant communities are subject to successional
dynamics. The duration of successional changes of plant
community is centuries (, 1936; , 1974).
        -
-
et al., 2011;  et al., 2002). Nevertheless, the
nature of interrelation of plants and ecological processes
    
(et al., 2021;  et al., 2019). Ob-
viously, such an approach is sensitive to the ecological
          -
namics of the plant community. The species composition
of plant phytocenoses and changes in the quantitative
    
studying and monitoring environmental changes. Simi-
      
methods of estimating nitrogen content in soil. For oth-
er ecological properties, direct and phytoindication esti-

researchers to prefer the direct measurements of environ-
mental properties ( et al., 2021). Obviously,
  -
ent aspects of the dynamics of environmental properties.
        
at the moment of measuring the property. The phytoin-
dication assessment characterizes the regime of environ-
    

dynamics of the plant community.
About 1/3 of the variability of the soil macrofauna

        -
ly random, due to the action of unmeasured factors in the
study, the action of measured factors at the ecosystem level,
or be the result of causes of a neutral nature. Among the
sets of measured environmental factors considered, the soil
physical properties are the most important driver of changes
in the soil macrofauna community. The soil morphological
        
some proportion of the community variation, but the larg-
31

physical properties. The result obtained can be interpreted

      



       
     -

the dimensionality of the feature space and solve the prob-
   
      

the intra-ecosystem variability of soil physical properties is

inter-ecosystem level. Thus, it can be assumed that some
 
-
el. Moran’s Eigenvector Maps and related methods for the
spatial multiscale analysis of ecological data can be used

factors (et al., 2008;   et al., 2006).
       
physical properties of the soil and environmental factors
-
            
soil macrofauna community is the aeration regime and the



presence of calcium in the soil. A soil str ucture, represent-
ed by aggregates and intra-aggregate and inter-aggregate
pore space (, 2017;  and ,
2021), is considered the main indicator of soil physical con-
      -
tions (, 2004;  et al., 1994; , 2009;
 et al., 2022). In turn, the soil aggregate structure
is able to provide an optimal respiratory regime for soil bi-
ota (
soil penetration resistance characterize the availability of
soil space for plant roots and soil animals to penetrate. For
many plants, a soil penetration resistance value of 3 MPa
is the limiting value that roots can overcome. If the value
 


are 0.13 MPa and 0.195 MPa, respectively ( and ,
2018). The construction of soil galleries by animals is a very
energy-consuming process. The opposite feature should
also be noted: the constructed galleries should have some
   -
-

-

by both density and soil penetration resistance. Therefore,
these indicators are information-valuable predictors of soil
macrofauna community structure.
The results indicate that moisture and aeration of
   
 
and the higher the soil moisture, the less air available for

breathing conditions for soil animals. Also importantly, the
moisture regime marks the most impor tant gradient of soil

important gradient (CCA2) marks the trophicity factor. The
CCA3 is also noted to be marked by a phytoindicative in-
        

ideas of O. L. Belgard (, 1971, 1950) on the typol-
  
      
intensity are considered as the main structuring gradients.
Our results indicate that these structuring factors also act at
the level of soil macrofauna.
Conclusion
    -
          

-
       
The indicators of soil types and morphological properties
      
   A. rosea is indicator of
A. trapezoides and
the epigean D. octaedra are indicators of Gleaysols. Mor-
phological characteristics of soils, physical properties of
soils, and phytoindication estimates of environmental fac-
       

physical properties of soils are the most important driver of
variation in the soil macrofauna community. The morpho-
logical features of soils and phytoindication scales are also

-
ical properties.
Acknowledgements
          -
       -
     
-
ers for helping us to improve earlier versions of this paper.
References

 2015. Temporal variation in soil physical
      
a conventionally-tilled soil. Geoderma, 243–244: 18–28.
32
ht tps://d oi.org /10.1016/j.geode r ma .2014.12.00 6
   
        
     , 2009. Fluvial
    Géomor-
phologie : Relief, Processus, Environment, 15: 109–128.
https://doi.org/10.4000/geomorphologie.7554
 2021. Soil macrofauna abundance,
biomass and selected soil properties in the home

Genet, Ethiopia. Environmental and Sustainability
Indicators, 12: 100153. htt ps://doi.o rg/10.1016/j.i ndic.2021.
100153
 , 2010. Soil macrofauna functional groups and
their eects on soil structure, as related to agricultural
management practices across agroecological zones of
Sub-Saharan Africa. Thesis. Wageningen, NL: Wageningen
University, 202 p.
, 2007. Soil biota, ecosystem services and land
productivity. Ecological Economics, 64: 269–285.
https://doi.org/10.1016/j.ecolecon.2007.03.004
  1950. Lesnaya rastitel’nost’ yugo-vostoka
USSR [Forest vegetation of the south-eastern part

, 1971. Stepnoe lesovedenie [Steppe forestr y].
Moskva: Lesnaya promyshlennost. 336 p.
       
   , 2012. Understanding the relation-

      
abiotic variables. Applied Soil Ecology, 53: 39–48.
ht tps://d oi.org /10.1016/j.aps oi l. 2011.11.0 04

N. F.      
      Journal of
Environmental Management, 92: 3058–3070. https://doi.
org/10.1016/ j.j envma n.2011.07.017
 
     Ecology, 89: 2623–
2632 . h ttps: //doi.org /10.1890/07- 0986.1
     
   2022. Temporal dynamics

eutrophication on ecological guilds struct ure. Ichthyological
Research 

J.W. , 2009. Spatial variability of hydraulic properties and
sediment characteristics in a deep alluvial unsaturated zone.
Va d o s e Zo n e Jo u r n a l , 8: 276–289. https://doi.org/10.2136/
vzj2008.0087

strategies]. In  (ed s). Soil organisms
as components of ecosystems. Ecology Bulletin. Stockholm,
  
122–132.


       
      
  Journal of Environmental
Management, 264: 110516. https://doi.org/10.1016/
j.jenvman.2020.110516

J.-M.,      
biological parameters on soil str ucture formation in
alluvial soils. European Journal of Soil Biology, 43: 57–
70. https://doi.org/10.1016/j.ejsobi.2006.05.003
    
Bulletin of
Pharmacy, 2: 31–37.
, 2013. How to use the indicspecies package
(ver. 1.7.1).
    2007. Diversity and dynamics of
riparian vegetation. In (eds). Principles
for riparian lands management. Canberra, Australia:
Land and Water Australia, p. 174.

– ground beetles (Coleoptera: Carabidae) in Fthiotida,
Central Greece. Biodiversity Data Journal, 2: e1082. https://
doi.org/10.3897/BDJ.2.e1082
The
Journal of Ecolog y, 24: 252. https://doi.org/10.2307/
2256278
, 2004. Soil physical quality: Par t I. Theor y,
     
Geoderma, 120: 201–214. https://
doi.o rg /10.1016/j.geo der ma. 20 03.09.004
 2011. The ecological scales for the species of
Ukrainian ora and their use in synphytoindication.



geobotanical research. Ukrainian Botanical Journal, 72:
415–430. https://doi.org/10.15407/ukrbotj72.05.415
       

D., 
       
 Science of The Total Env ironment, 788: 147497.
ht tps://d oi.org /10.1016/j.scito te nv.20 21.147497
    18 83. Russian Chernozem
Imperial Free Economic Society. Tipogr. Declerona i
Evdokimova, St. Petersburg.
 1978. Identication key of larvae of click
beetles fauna of the USSR. 
    2007. The ade4 package:
implementing the duality diagram for ecologists.
Journal of Statistical Software, 22: 1–20. https://doi.
org/10.18637/jss.v022.i04
      2006. Spatial
     
coordinate analysis of neighbour matrices (PCNM).
Ecological Modelling, 196: 483–493. https://doi.org/
10.1016/j.e colmo de l. 20 06.02.015

P.A ., 
of the pioneer vegetation of Ukraine. 2. Helichr yso-
  
33
Corynephoretea canescentis classes. Biosystems Diversity,
28: 298–319. https://doi.org/10.15421/012039

 

            
models. Soil, 2: 565–582. https://doi.org/10.5194/soil-2-
565-2016
 2012. The Dokuchaev hypothesis as a basis
for predictive digital soil mapping (on the 125th
an niver sa ry of its publication). Eurasian Soil Science,
45: 445–451. https://doi.org/10.1134/S1064229312040047
      1996.
Soil aeration in relation to soil physical properties, nitrogen
      
 Plant and Soil, 178: 37–48. https://doi.org/
10.1007/ BF 00011161
       
 2016. Spatial analysis of riparian
forest soil macrofauna and its relation to abiotic soil
properties. Pedobiologia, 59 (1): 27–36. https://doi.org/
10.1016/j.pedobi.2015.12 .0 03
   
habitat continuity on the plant species composition of
  Journal of Vegetation Science, 20:
       

       2020.
Preliminar y assessment of river oodplain condition in
Europe.    

  2020. Clas-

Dnieper river valleys in the north-eastern part of
Ukraine. Biologia, 75: 53–70. https://doi.org/10.2478/
s11756-019-00361-5
 2010. Partitioning of habitable
Jour na l of Nem at ol og y,
42: 68–72.
 2004. Elementary processes
   
   Earth Surface Processes and
Landforms, 29: 1077–1091. ht tps://d oi.org /10.1002/e sp.1103
      1995. Ec onomic
values of Danube f loodplains. Journal of Environmental
Management, 45: 333–345. https://doi.org/10.1006/
jema .1995.00 80
       
 2019. The catena aspect of the landscape
        Journal
of Geology, Geography and Geoecology, 28: 417–431.
ht t ps: //do i.o r g /10.15 421/1119 39

        
2019. Albedo of the soil cover as a factor of the temporal
dynamics of readily available soil moisture in the technosols
of the Nikopol manganese ore basin. Agrology, 2: 161–
169. https://doi.org/10.32819/019024
 2021.
Using direct and indirect methods to assess changes in
r iparian habit ats. Forests, 12: 504. htt ps://doi.org/10.3390/
f12040504
        
    
   2015. Biomineralisation by earth

of amorphous calcium carbonate. Geochemical Transactions,
16: 4. https://doi.org/10.1186/s12932-015-0019-z
       2022.
      
     
Geomorphology, 398: 108038. https://doi.org/10.1016/j.
geomorph.2021.108038
 1974. The ecology of secondary succession.
Annual Review of Ecolog y and Systematics, 5: 25–37.
ht tps://d oi.org /10.1146/a n nu rev.e s.05.110174.000325
    2003. The earth-
 
microorganisms. Applied and Environmental Micro-
biology, 69: 1662–1669. https://doi.org/10.1128/AEM.
69. 3.16 62 -16 69. 2003
     199 4.
Soil physical properties related to soil structure. Soil and
Tillage Research, 30: 187–216. https://doi.org/10.1016/
0167-1987(94)900 05 -1

  2018. Short-term dynamics of
         
cillage in a silt soam soil. Vadose Zone Journal, 17:
180115. htt p s://doi.org/10.2136/vzj2018.06.0115
 2007. Contributions of spatial point
process modelling to biodiversity theory. Journal de la
Societe Francaise de Statistique, 148: 9–29.
       
 2005. Spatial variability analysis of soil
physical properties of alluvial soils. Soil Science Society
of America Journal, 69: 1338–1350. https://doi.org/
10.2136/ss sa j200 4. 0154
        2018.
         
and A. sputator click beetles caught using pheromone
traps in Poland. Plant Protection Science, 54: 118–127.
https://doi.org/10.17221/39/2016-PPS
  1941. Factors of soil formation: a system of
quantitative pedology    
281 p.
 
M., 2006. Linking ecosystem engineers to soil processes:
       
Eu r op e an J ou r na l o f So il B i ol og y, 42: S39-S53. https://doi.
org/10.1016/ j.ejsobi. 200 6.07.017
           
pore characteristics of minerals measured by mercur y
Clays
and Clay Minerals, 57: 586–601. https://doi.org/10.1346/
CCMN.2009.0570507
 2005. Ekologicheskoe pochvovedenie
[Ecological soil science]. Moskva: GEOS 335 p.
34
       
 2017. Physical parameters of Fluvisols on
    International
Agrophysic s, 31: 73–82. https://doi.org/10.1515/intag-
2016 - 0 0 26
 2015.

    Natural Hazards, 76:
955–977. h ttps: //doi. or g/10.10 07/s11069 - 014-1529 -1

  2 016.

River basin management. London: InTechOpen,
p. 271–294. https://doi.org/10.5772/63713
       
 
      

    2019. Mechanisms of soil macro-
fauna community sustainability in temperate rice-
Scientic Reports, 9: 10197. https://doi.
org/10.1038/s 41598- 019 - 46733 -4
 1994. Pochvennaja fauna v ekologic heskom
kontrole [Soil fauna in ecological control]. Moskva:
Nauka. 240 p

Y.O . , 2021. An ecomorphic approach to assessing the
biodiversity of soil macrofauna communities in urban
parks. Agrology   
021015
 2003. Soil macrofauna.
In  (eds). Trees, crops and
soil fertility: concepts and research methods. Wallingford:
CAB International, 2003, p. 303–323.
     
2009. Partitioning beta diversity in a subtropical
broad-leaved forest of China. Ecolog y, 90: 663–674.
ht t ps: //d oi .o rg/10.189 0/ 07-1880.1
, 2011. Three principles of soil change and pedogenesis
in time and space. Soil Science Society of America Journal,
75: 2049–2070. https://doi.org/10.2136/sssaj2011.0130
  2012. Sand pits as habitats for

com posit ion? Biodiversity and Conservation, 21: 853–
874. ht tps://d oi.org /10.1007/s10531- 012 - 02 25 -2
       
        2015.
  
age on the geological time scale. Journal of Vegetation
Science, 26: 1080–1089. https://doi.org/10.1111/jvs.12308
      
S.N.H., 2019. Morphological characteristics and
      
    IOP Conference Series:
Earth and Environmental Science, 393: 012083. https://
doi.org/10.1088/1755-1315/393/1/012083

measure and par tition diversity. Journal of Statistical
Software, 67. https://doi.org/10.18637/jss.v067.i08

   2004. A multi-scale study of soil
macrofauna biodiversity in Amazonian pastures. Biology
and Fer tilit y of Soils, 40: 300–305. https://doi.org/10.1007/
s00374-004 -0777-8
 1952. Larvae of scarabaeid beetles of the
fauna of the USSR     

  2009. Cepaea vindobonensis (Férussac, 1821)
(Gastropoda: Pulmonata: Helicidae) in Central, North-
     Folia Malacologica, 17:
185–198. ht t ps://doi.o rg/10.2478 /v10125-0 09- 0 015-y
 2009. Species invasion history

model. PLoS ONE, 4: e6731. https://doi.org/10.1371/
jour nal.pone.0006731
20 05. Riparia:
ecology, conservation and management of streamside
communities. Amsterdam, The Netherlands: Elsevier
Academic Press. 448 p.
       

     2018. Community
ecology package. R package version 2.5-2.
 2016 .
       
    
Archives of Agronomy and Soil Science, 62: 1602–1613.
ht tps://d oi.org /10.1080/0 3650340.2 016.115570 0
       
2010. Fine-scale spatial and temporal variation in

  Pedobiologia, 53: 127–139. https://
doi.org/10.1016/j.pedobi.2009.08.001
         
medium EC. GMPro, 22: 46–48.

S.,
terrest rial model ecosystem approach. Philosophical
Transactions of the Royal Society B: Biological Sciences,
374: 20180251. h ttps: //doi.or g/10.10 98/r st b. 2018.0251
1976.
   
Pedobiology, 16: 258 285.
       
In   (ed .). Red data book of Ukraine.

    1996. The problem of scale in bio-
indication of soil contamination. In 
(ed s). Bioindicator systems for soil
pollution      
 
 1997. Problems
of estimating and maintaining biodiversity of soil biota
in natural and agroecosystems: a case study of chernozem
soil. Agriculture, Ecosystems & Environment, 62: 127–
133. http s://do i.org/10.1016/S0167-8 80 9(96)01139 -5
      2004.
Cepaea vindobonensis (Férussac,1821) in the Pieniny Mts.
35
Folia Malacologica, 12: 153–156. https://doi.org/10.12657/
folmal.012.013


 2021. Diversity and functional structure
of soil animal communities suggest soil animal food
    
Oecologia, 196: 195–209. https://doi.org/10.1007/s00442-
021- 0 4910 -1
     a language and environment for
statistical computing


 2002. Geomorphic
        
potential modelling strategy. Freshwater Biology, 47:


J. M.,
the regional scale: A multidisciplinary approach crossing
multiple variables. River Research and Applications,
1–15. https://doi.org/10.1002/rra.3865

      2015. Macrofauna

Uso do Solo no Planalto Catarinense [Soil macrofauna
and physical and chemical properties under soil man
agement systems in the Santa Catarina Highlands, Brazil].
Revista Brasileira de Ciência do Solo, 39: 1544 –1553.
ht tps://d oi.org /10.1590 /010 006 83rbcs201500 33
 2004. Morfologiya pochv [Soil morphology].
Moskva: Akademicheskiy proekt. 432 p
    2018. Biomechanical limits to soil
     
hydroskeletal pressures and peristaltic motions. Journal
of The Royal Society Interface, 15: 20180127. https://doi.
org/10.1098/rsif.2018.0127
      
    
concentrations in alluvial soils along hydrological
 Wa ter,

      


soi l parameters. Pedobiologia, 54. htt ps://doi.org/10.1016/
j.p edobi.2011.09.012
 1936. Fizika pochv
Sielchozgiz Press..
          




         
    2013. Floodplain management
in temperate regions: is multifunctionality enhancing
biodiversity? Environmental Evidence, 2: 10. https://doi.
org /10.1186/2047-2382-2-10


      

    2016. Multifunctional
     
     
Biodiversit y and Conservation, 25: 1349–1382. https://
doi.o rg /10.1007/s10531-016-1129-3

       
       
    

      

Germany. Frontiers in Environmental Science, 9: 778568
https://doi.org/10.3389/fenvs.2021.778568
          

Current Science, 113: 1064. https://doi.org/10.18520/cs/
v113/i06/1064 -1071
 1912. Ecological succession. The Biological
Bulletin, 23: 331–370. https://doi.org/10.2307/1536007
       

2014. Flood pulses control soil nitrogen
Geoderma, 228–
2 29: 14–2 4. h tt ps: //doi .or g/10 .1016/j. geo de rm a.2 013.0 9.018
         2019. Shifting
  Ambiente e
Agua - An Interdisciplinary Journal of Applied Science,
14: 1. https://doi.org/10.4136/ambi-agua.2242
2004. A history
    
biota, and soil organic matter dynamics. Soil and Tillage
Research, 79: 7–31. https://doi.org/10.1016/j.still.2004.03.008
2020. Soil macrofauna:
a key factor for increasing soil fertility and promoting
sustainable soil use in fruit orchard agrosystems. Agronomy,
10: 456. ht t ps://doi.o rg /10.3390 /agr on om y100 40456
      2005. The
shifting habitat mosaic of river ecosystems. SIL
Proceedings, 1922-2010, 29: 123–136. https://doi.org/10.
1080/03680770.2 005.11901979
Statistics. Data Analysis Soft ware System 2014.



in Austrian agricultural land. Journal of Pest Science,
86: 33–39. http s://do i.org/10.10 07/s1034 0 -011-0393 -y
      2014.
Geoderma, 216: 48–61. https://
doi.o rg /10.1016/j.geo der ma. 2013.10.0 07
          
       
2018.
      
Biogeochemistry, 141: 439–461. https://doi.org/10.1007/
36
s10533 - 018- 0 449-7
  1996. The role
of history in community dynamics: a modelling approach.
Ecology, 77: 108–117. https://doi.org/10.2307/2265660
  2009. Scutigera coleoptrata (Linnaeus,
1758). In  (ed.) . Red data book of Ukraine.


in the environment: reactions to abiotic factors and their
     Carabid beetles in
their environments. Berlin, Heidelberg: Springer, p. 172–

  2003. Floodplain–river ecosystems: lateral
connections and the implications of human interference.
Geomorphology, 56: 335–349. https://doi.org/10.1016/
 
    2000. Microbial biomass, biovolume and respiration

Soil Biology and Biochemistry, 32: 265–275. https://doi.
org/10.1016/ S0 038- 0717(99)0 0165 -0
    1999. Microbial respiration,
 
of Lumbricus terrest ris L. (Lumbricidae). Soil Biology
and Biochemistry, 31: 2039–2048. htt ps://doi.org/10.1016/
S0038- 0717(99)0 0127-3
       
  2010. Flood plains: critically
threatened ecosystems. In   (ed.) . Aquatic
ecosystems. Cambridge: Cambridge University Press, p.
45 62. https: //do i.o rg/10 .1017/CB O 978 0511751790 .006
      2022. The soil
aggregate str ucture as a marker of the ecological niche
Journal of Water
and Land Development, 52: 66–74. https://doi.org/10.24425/
 
     
 2005. Ground beetle habitat templets and
riverbank integrity. Ri ver Res earch and Ap pl ic ati ons, 21:
1133–1146. https://doi.org/10.1002/rra.872


   2022. Disentangling
     
and relevant ecosystem condition characteristics. Ambio,
51: 1855 –1870. ht tps://d oi.org /10.1007/s13280 - 02 2- 01708 - 0
    1982. Chemical and
      
drainage-toposequence. Soil Science Society of America
Journal, 46: 359–363. https://doi.org/10.2136/sssaj1982.

 1973. Geobotany

 2020. Limited carbon contents of centuries
old soils forming in legacy sediment. Geomorphology,
354: 10 7018. ht t ps://doi.o rg /10.1016/j.g eo mo r ph .2019.
107018
  2002. Soil macrofauna and litter
nutrients in three tropical tree plantations on a disturbed
     Forest Ecolog y and Management,
170: 161–171. htt ps://doi .org /10.1016/S0378-1127(01)00770 -8
      
update 2015: international soil classication system for
naming soils and creating legends for soil maps. World

      
organic matter and calcium on soil structural stability.
European Journal of Soil Science, 58: 722–727. https://
   
      2019. Spatial distribution


Sustainability, 11: 7142. https://doi.org/10.3390/su11247142
 
distribution in forest soils on colluvium. In Soil science
working for a living. Cham: Springer International Publishing,

    2021. Zoogenic struct ure
aggregation in steppe and forest soils. In 
  (e d s). Soils under stress. Cham: Springer
Internation al Publishing, p. 111–127. https://doi.org/10.1007/
 
      2019.
Spatial heterogeneity of the physical proper ties of the
        Agrology, 2:

    2018.

(Muller, 1774) ecological niche in Technosols (Nikopol
manganese ore basin, Ukraine). Ecologica Montenegrina,
17: 29 45.

       2014. The spatial
distribution characteristics of soil salinity in coastal zone
Environmental Earth Sciences,
72: 589 –59 9. h ttps: //doi.or g/10.10 07/s126 65 - 013-2980 -0
  
M.P.
 
       Ecologica
Montenegrina, 22: 177–203.
       
 2019. Analysis of the spatial dist ribution
of the ecological niche of the land snail Brephulopsis
cylindrica (Stylommatophora, Enidae) in technosols.
Biosystems Diversity, 27: 62–68. https://doi.org/10.15421/
011910
         


on broad- and meso-scale levels in an Eastern European
        
Folia Oecologica, 46: 101–114. https://doi.org/10.2478/
foecol-2019 - 0013
   
 2018. The role of edaphic, vegetational and spatial
factors in st ruct uring soil animal communities in a
  Folia Oecologica,
45: 8–23. https://doi.org/10.2478/foecol-2018-0002
37
           
  2021. Temporal aspect of the terrestrial
invertebrate response to moisture dynamic in technosols
formed after reclamation at a post-mining site in
Ukrainian steppe d rylands. Ekológia (Bratislava), 40:
178–188. https://doi.org/10.2478/eko-2021-0020
     
  2022. Soil macrofauna abundance and
    
agriculture in a aemi-arid environment of South Africa.
Agronomy, 12: 722. https://doi.org/10.3390/agronomy
12030722
Received July 8, 2022
Accepted October 29, 2022
Properties 16 25 26 27 29
Soil penetration resistance, MPa (on depth, cm)
0–5 0.76 ± 0.02 0.65 ± 0.01 0.97 ± 0.03 1.83 ± 0.01 1.29 ± 0.02
5–10 0.81 ± 0.02 0.87 ± 0.01 1.17 ± 0.03 2.10 ± 0.05 1.50 ± 0.04
10–15 0.81 ± 0.02 0.95 ± 0.01 1.54 ± 0.05 1.96 ± 0.05 1.46 ± 0.03
15–20 0.86 ± 0.02 1.37 ± 0.02 2.04 ± 0.06 1.86 ± 0.04 1.45 ± 0.02
20–25 0.81 ± 0.03 1.25 ± 0.02 2.54 ± 0.06 1.97 ± 0.04 1.51 ± 0.03
25–30 0.79 ± 0.02 1.40 ± 0.02 3.03 ± 0.07 2.29 ± 0.05 1.85 ± 0.04
30–35 0.75 ± 0.02 1.52 ± 0.03 3.47 ± 0.10 2.55 ± 0.07 2.44 ± 0.05
35–40 0.81 ± 0.02 1.48 ± 0.03 3.74 ± 0.12 2.96 ± 0.09 3.07 ± 0.08
40– 45 1.04 ± 0.03 1.72 ± 0.04 4.33 ± 0.13 3.34 ± 0.10 3.83 ± 0.10
45–50 1.32 ± 0.03 1.78 ± 0.04 4.84 ± 0.13 3.77 ± 0.08 5.02 ± 0.11
50–55 1.79 ± 0.05 1.83 ± 0.03 5.36 ± 0.14 4.17 ± 0.07 6.18 ± 0.13
55–60 2.21 ± 0.05 2.04 ± 0.03 5.91 ± 0.14 4.30 ± 0.07 7.36 ± 0.13
60– 65 2.52 ± 0.05 2.29 ± 0.05 6.24 ± 0.16 4.38 ± 0.07 8.10 ± 0.11
65–70 2.86 ± 0.08 2.46 ± 0.05 6.56 ± 0.14 4.61 ± 0.05 8.70 ± 0.10
70–75 3.03 ± 0.09 2.59 ± 0.04 6.73 ± 0.16 4.76 ± 0.04 9.05 ± 0.09
75–80 3.18 ± 0.07 2.91 ± 0.05 6.71 ± 0.16 4.81 ± 0.04 9.40 ± 0.06
80–85 3.44 ± 0.09 2.88 ± 0.06 6.54 ± 0.16 4.89 ± 0.03 9.64 ± 0.03
85–90 3.50 ± 0.09 2.95 ± 0.07 6.59 ± 0.16 4.93 ± 0.02 9.88 ± 0.02
90–95 3.58 ± 0.08 3.01 ± 0.06 6.53 ± 0.18 4.95 ± 0.02 9.94 ± 0.01
95–100 3.69 ± 0.09 3.08 ± 0.05 6.70 ± 0.19 4.96 ± 0.01 9.96 ± 0.01
Other soil properties
Electrical conductivity (dSm m–2) 0.54 ± 0.06 0.14 ± 0.01 0.13 ± 0.01 0.25 ± 0.02 0.22 ± 0.01
Litter depth (cm) 2.40 ± 0.07 3.14 ± 0.05 2.04 ± 0.14 2.10 ± 0.03 2.43 ± 0.04
     
Bulk density (g cm–3) 1.07 ± 0.01 1.13 ± 0.01 0.91 ± 0.01 1.02 ± 0.01 1.12 ± 0.00
Aggregate fraction, mm (in %)
     
7–10 10.39 ± 0.20 4.10 ± 0.14 7.94 ± 0.20 10.75 ± 0.21 7.77 ± 0.11
5–7 11.93 ± 0.22 8.77 ± 0.18 10.34 ± 0.21 12.08 ± 0.17 9.97 ± 0.08
3–5 18.12 ± 0.26 14.17 ± 0.27 23.60 ± 0.40 19.19 ± 0.28 21.60 ± 0.18
2–3 14.36 ± 0.21 15.85 ± 0.20 28.04 ± 0.48 14.61 ± 0.23 23.47 ± 0.26
1–2 8.40 ± 0.23 19.53 ± 0.31 13.55 ± 0.49 8.44 ± 0.22 11.94 ± 0.17