Article
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... After repeated washing and centrifugation to remove enzymes, the gastric glandular cells were suspended and seeded into Matrigel (R&D system, 3533-005-02, USA) and maintained in medium containing: 100 ng/mL of Wnt3A (Peprotech, 315 − 20, USA), 100 ng/mL of Noggin (R&D system, 1967-NG, USA), 500 ng/mL of R-Spondin-1 (Peprotech, 315 − 32, USA), Glutamax-I (1×) (Gibco, 35050061, USA), 1% of Penicillin/streptomycin (Gibco, 15070063, USA),100 ng/mL of FGF-10 (R&D system, 6224-FG, USA), 50 ng/mL of EGF (R&D system, 2028-EG, USA), 1×B27 (Gibco, 17504044, USA), 10 nM of Gastrin-1 (Tocris Bioscience, 3006, UK), 1 mM of N-Acetylcysteine (Tocris Bioscience, 5619, UK) during the whole cultivation and 10 µM of Y-27,632 (Tocris Bioscience, 1254, UK) for only the first 2 days. The medium was replaced three times a week [40,41]. ...
Article
Full-text available
Background Chronic infection by Helicobacter pylori strains expressing cytotoxin-associated gene A (CagA) are the strongest risk factor for gastric cancer. CagA can be classified into East Asian-type and Western-type (CagAE and CagAW), with CagAE being more closely associated with gastric cancer. This study aimed to investigate the impact of CagAE on intracellular signaling pathways to explain its high oncogenicity. Results Mutant H. pylori strains expressing either CagAE or CagAW were generated by transforming CagAE/W-expression plasmid into CagA-deleted G27 strain (G27ΔCagA). In human gastric epithelial cells (GES-1) infection, CagAE induced more severe cytopathic changes, including higher interleukin-8 (IL-8) secretion, reduced cell viability, more pronounced “hummingbird phenotype” alterations, and increased cell migration and invasion compared to CagAW. Transcriptome analysis revealed that CagAE had a stronger effect on the up-regulation of key intracellular processes, including tumor necrosis factor-ɑ (TNF-ɑ) signal pathway via nuclear factor kappa-B (NF-κB), inflammatory response, interferon-γ (IFN-γ) response, hypoxia, ultraviolet (UV) response, and Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) signaling. A significant upregulation of hypoxia-related genes was a notable feature of CagAE. GES-1 cells infected with CagAE exhibited more severe intracellular hypoxia and higher levels of reactive oxygen species (ROS) than those infected with CagAW. Inhibition of hypoxia-inducible factor-1α (HIF-1α), which blocks hypoxia signaling, mitigated CagAE-induced cell migration, emphasizing the role of hypoxia in mediating CagAE effects. Conclusions The study provides transcriptome evidence of CagA-associated intracellular regulation during H. pylori infection, demonstrating that CagAE exerts stronger effects on intracellular signaling than CagAW. These findings offer insights into the heightened carcinogenic potential of CagAE in H. pylori-induced gastric cancer.
Article
Interactions between the developing microbiome and maturing immune system in early life are critical for establishment of a homeostasis beneficial to both host and commensals. The lung harbors a diverse community of microbes associated with health and local or systemic disease. We discuss how early life colonization and community changes correlate with immune development and health and disease throughout infancy, childhood, and adult life. We highlight key advances in microbiology, immunology, and computational biology that allow investigation of the functional relevance of interactions between the respiratory microbiome and host immune system, which may unlock the potential for microbiome-based therapeutics.
Article
Full-text available
Immunosuppression in cancer has emerged as a major hurdle to immunotherapy efforts. Immunosuppression can arise from oncogene-induced signaling within the tumor as well as from tumor-associated immune cells. Understanding various mechanisms by which the tumor can undermine and evade therapy is critical in improving current cancer immunotherapies. While mouse models have allowed for the characterization of key immune cell types and their role in tumor development, extrapolating these mechanisms to patients has been challenging. There is need for better models to unravel the effects of genetic alterations inherent in tumor cells and immune cells isolated from tumors on tumor growth and to investigate the feasibility of immunotherapy. Three-dimensional (3D) organoid model systems have developed rapidly over the past few years and allow for incorporation of components of the tumor microenvironment such as immune cells and the stroma. This bears great promise for derivation of patient-specific models in a dish for understanding and determining the impact on personalized immunotherapy. In this review, we will highlight the significance of current experimental models employed in the study of tumor immunosuppression and evaluate current tumor organoid-immune cell co-culture systems and their potential impact in shedding light on cancer immunosuppression.
ResearchGate has not been able to resolve any references for this publication.