Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein which results in its abnormal aggregation in the nervous system. Huntingtin aggregates are linked to toxicity and neuronal dysfunction, but a comprehensive understanding of the aggregation mechanism in vivo remains elusive. Here, we examine the morphology of polyQ aggregates in Caenorhabditis elegans mechanosensory neurons as a function of age using confocal and fluorescence lifetime imaging microscopy. We find that aggregates in young worms are mostly spherical with homogenous intensity, but as the worm ages aggregates become substantially more heterogeneous. Most prominently, in older worms we observe an apparent core/shell morphology of polyQ assemblies with decreased intensity in the center. The fluorescence lifetime of polyQ is uniform across the aggregate indicating that the dimmed intensity in the assembly center is most likely not due to quenching or changes in local environment, but rather to displacement of fluorescent polyQ from the central region. This apparent core/shell architecture of polyQ aggregates in aging C. elegans neurons contributes to the diverse landscape of polyQ aggregation states implicated in Huntington's disease.
Extended space travel is a goal of government space agencies and private companies. However, spaceflight poses risks to human health and the effects on the nervous system have to be better characterized. Here, we exploited the unique experimental advantages of the nematode Caenorhabditis elegans to explore how spaceflight affects adult neurons in vivo. We found that animals that lived 5 days of adulthood on the International Space Station exhibited hyperbranching in PVD and touch receptor neurons. We also found that, in the presence of a neuronal proteotoxic stress, spaceflight promotes a remarkable accumulation of neuronal-derived waste in the surrounding tissues, suggesting an impaired transcellular degradation of debris released from neurons. Our data reveal that spaceflight can significantly affect adult neuronal morphology and clearance of neuronal trash, highlighting the need to carefully assess the risks of long-duration spaceflight on the nervous system and to develop adequate countermeasures for safe space exploration.
ResearchGate has not been able to resolve any references for this publication.