Hydrogen can be used in conjunction with aviation kerosene in aircraft engines. To this end, this study uses n-decane/hydrogen mixtures to investigate the explosion characteristics of aviation kerosene/hydrogen in a constant volume combustion chamber with different hydrogen addition ratios (0, 0.2, 0.4), wide effective equivalence ratios (0.7–1.7), an initial temperature of 470 K, and initial
... [Show full abstract] pressures of 1 and 2 bar. The results show that the explosion pressure and explosion time decrease linearly with increasing hydrogen addition ratio. The effect of initial pressure is also discussed. A comparison of the adiabatic explosion pressures indicates that the hydrogen addition effect varies at different initial pressures and effective equivalence ratios owing to heat loss. In addition, the maximum pressure rise rate and deflagration index increase with increasing hydrogen concentration, which is more obvious for rich mixtures and high hydrogen concentrations.