Available via license: CC BY-NC-ND 4.0
Content may be subject to copyright.
Forensic Science International: Synergy 6 (2023) 100298
2589-871X/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Interpol review of the analysis and detection of explosives and
explosives residues
Douglas J. Klapec
a
,
*
, Greg Czarnopys
b
, Julie Pannuto
c
a
Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000
Ammendale Road, Ammendale, MD, 20705, USA
b
Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road,
Ammendale, MD, 20705, USA
c
United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD,
20705, USA
1. Introduction and coverage of the literature
The authors would rst recommend that readers review the previous
three review papers from 2013, 2016 and 2019 [22–24]. Those may
have some articles on technology that laboratory managers might nd
useful and adaptable to their current approaches to explosives analysis
and that may be of use in future real-world applications.
The international situation in 2022 is notably different from that in
2019 when the last iteration of this paper was published. There is
considerably less focus on in theater devices and explosives as Allied
Forces have mostly withdrawn from the Middle East and Afghanistan.
Unfortunately, however, because of this withdrawal and the resulting
dearth of human intelligence, people who engage in terrorist activities
are less restrained in securing improvised explosives and precursors.
Additionally, and dangerously, these terrorists now have access to war
material left behind by withdrawing forces, including military grade
explosives and munitions. A re-focused effort on traditional military
high explosive detection and analysis may be needed for laboratories
worldwide if these are deployed in both criminal and terrorist bombings.
Another crisis that may result in concerns for years to come for many
countries is the current war in Ukraine. All wars give rise to the long-
term problem of criminals and terrorists having access to excess muni-
tions and explosives well after the war has come to a close. This was
evident after the wars in Iraq and Afghanistan, but also after the wars
during the breakup of former Yugoslavia. Those munitions and explo-
sives bleed over into neighboring countries impacting the security of the
region.
Beginning in 2020 the United States experienced a substantial in-
crease in incidents of civil unrest. The criminal misuse of explosives and
ignitable liquids was widespread and was recorded from large urban
centers to smaller towns. While some explosives were deployed against
government entities from police ofcers to court houses, some oppor-
tunistic individuals used the cover of riots and protests to engage in
criminal bombings for monetary gain, especially by trying to breach
ATM’s. Almost all of the devices deployed were low explosive pyro-
technic devices and some were modied with shrapnel. Almost all of the
increases in backlogs at our laboratory were from such civil unrest.
As we wrote in the last (2019) paper, “One of the most important yet
difcult areas for the past ten to twenty years for the explosive analyst is
the ever-changing type of explosives employed by the criminal bomber
and terrorists. Restrictions on widely used commercial and military high
explosives are often circumvented by the illicit production of homemade
explosives. While there have been attempts to restrict chemical pre-
cursors and some oxidizers and fuels, criminal and terrorist bombings
are still frequently using homemade explosives. Some of these explosive
formulations are difcult to detect in chaotic and contaminated scenes,
with matrices that are additionally problematic. The two biggest reasons
for failure to identify a post-blast homemade explosive in some of these
cases are the failure to collect samples in a timely manner and the failure
to properly extract the analytes from difcult matrices. While training of
rst responders and others may help with the rst issue, the second issue
falls mostly on the explosives forensic community. There is not a lot of
research in this area, but a few referenced papers do address this second
issue” [24].
Introducing new techniques into the suite of analytical schemes or
standard approaches has become increasingly more laborious as most
laboratories are now accredited, many to ISO 17025. Accreditation
standards demand more data and study before a new technique can be
validated and brought online by a laboratory. This even extends to more
simple transitions like swapping out columns with slightly different
chemistries. Yet many laboratories do not have dedicated analytical
groups to do this kind of validation work. This may add to the hesitancy
of laboratory managers to adopt new techniques. If the new techniques
ll a crucial need or cover a gap in overall explosives coverage those
hesitancies should be put aside and efforts made to complete validations.
This review of the literature will hopefully demonstrate that there
* Corresponding author.
E-mail address: Doug.J.Klapec@usdoj.gov (D.J. Klapec).
Contents lists available at ScienceDirect
Forensic Science International: Synergy
journal homepage: www.sciencedirect.com/journal/forensic-science-international-synergy
https://doi.org/10.1016/j.fsisyn.2022.100298
Forensic Science International: Synergy 6 (2023) 100298
2
are many applications in the world of explosives analysis from many
elds that are of interest to the forensic laboratory manager. The authors
and chemists at the ATF National Laboratory Center have spent hun-
dreds of hours of reviewing and classifying abstracts, reading papers,
and selecting pertinent papers to highlight in this review. Additionally,
hundreds more citations are available in the bibliography. We have
drawn from explosives detection, environmental, academic, and case
study articles to try to cover the range of probable areas of interest.
There are still dozens of references in this area, ranging from theoretical
research to applied systems that are already in eld use.
There are 1004 references in this review. The bibliography portion of
the paper includes numerous references not specically highlighted in
the paper which may be of interest to the reader. It starts on page 23 and
follows the same category structure as the paper. Many of these refer-
ences could fall into two or even three categories. They will not be
presented in multiple places, so it would be advantageous for the reader
to peruse all of the sections. The organization of this paper follows the
same pattern as the previous reviews.
2. Review Articles
This three-year cycle includes several review publications. While
some are broad schemes of analysis, others are reviews of a specic class
of instrumentation or eld of study. Others are self-described as reviews.
Review papers are useful to give a broad overview of advances in
particular aspects or categories of forensic explosive analysis.
Evans-Nguyen, K. and Hutches, K. have a book on The Forensic
Analysis of Fire Debris and Explosives and is a very solid accounting of
the current state in the analysis of explosives [13].
There is a brief but interesting chapter by Wolfgang Greibel on what
end users on the scene of an explosion or bombing have at their disposal
instrument wise and additional techniques which may be used in the
future [15].
Cagan, A. and Oxley, J. have published a comprehensive Second
Edition of Counterterrorism Detection Techniques of Explosives which
covers “updated research ndings that will be used for the next gener-
ation of explosive detection technologies.” including the most currently
employed open-source detection technologies [10]. While many tech-
niques cannot be directly translated or used in a forensic laboratory
because detection has different standards than identication, it is well
worth the time reading.
Forbes, T., Krauss, S., and Gillen, G., have published a very thorough
and interesting review of the challenges of analyzing for trace home-
made fuel-oxidizer mixtures. It is a comprehensive front to back analysis
of the current state of analysis and detection for forensic laboratories
[14].
Crocombe, R.A., Leary, P.E., and Kammrath, B.W., published Volume
One of the technology and instruments used in portable spectroscopy.
This covers a general discussion of XRF, UV–Visible, near-infrared, mid-
infrared, and Raman. In addition to traditional portable spectroscopy
techniques this review also considers LIBS, NMR, and others [11].
In Volume two the above authors show how these instruments are
used in various elds. They also discuss the algorithms for detection,
library and method development, and the future of portable spectros-
copy [11].
Sisco, E., and Forbes, T.P., reviewed the application of DART-MS to a
variety of forensic samples including explosives. In addition to a thor-
ough review of the advances for the last ve years, the authors identied
areas where additional research is needed to continue to advance the
technique [39]. As we write below DART-MS is an increasingly useful
tool in forensic chemistry.
Herweyer, D., et al. reviewed the advancements made in new
“Green” primary energetic materials concentrating on potassium based
energetic salts, metal-free ionic energetic salts and metal-free covalent
energetic materials. The paper summarizes the “explosive performance,
initiability, safety and environmental impact” of several new materials
[18].
Nanoexplosives are another eld where new materials continue to be
developed. While this paper could be placed in novel explosives, nano-
explosive materials have been around long enough to be reviewed by
Yetter, R.A. This review covers how to “… understand how to manipu-
late and build energetic materials at the nanoscale …” [46].
3. Explosive Standards and References, Laboratory Quality
Control, Contamination Prevention
While this category is rather broad, it encompasses many references
that could be highly useful in a forensic laboratory setting. As instru-
mentation becomes more and more sensitive having a framework for
things ranging from engineering controls to standard approaches to
prevent contamination is imperative.
Gareth Collett has published a fantastic report focused primarily on
precursors for Homemade Explosives (HME) including recommenda-
tions for preventative actions that could limit access to the materials. It
also recommends a global repository for HME based IED’s and addi-
tionally links every non war zone HME IED attack with the conrmed or
suspected HME used since 1970 [52]. It should be required reading for
any analyst in the eld.
Schachel, T.D., et al. propose a “pan-European Forensic Substance
Database on Explosives” to include not just the base explosives but more
importantly for sourcing and or brand identication, the additives in
various products. They used a combination of HPLC-HRMS (high reso-
lution mass spectrometry), XRD, and XRF and identied 41 additives
with diagnostic potential [55].
Stein, J., did a thesis at Virginia Commonwealth University looking
at transfers of explosives used in render safe procedures to device
components of simulated IED’s. The author considered specically the
use of a Percussion Actuated Disrupter (PAN) and a water bottle shot
with detonating cord. Transfers were detected [56]. This research
highlights the necessity of communication between the eld and the
laboratory.
ASTM International has published ASTM E2520-21: Standard Practice
for Measuring and Scoring Performance of Trace Chemical Detectors and is a
good resource for assessing the performance of trace explosives de-
tectors that use swabs [49].
Also, ASTM International published ASTM E2677-20: Standard Test
Method for Estimating Limits of Detection in Trace Detectors for Explosives
and Drugs of Interest [50]. This standard may be of interest to labs
establishing limits of detection for new or existing methods.
4. Sampling and Concentration of Explosive Traces
Despite the volume of research done in this category over the past
several years there remain signicant gaps in the eld of sampling and
concentrating explosive samples in the post-blast debris and trace
detection realm. Ease of use and robustness of any given technique are
necessary as is universality. It is the latter, universality, that is hardest to
achieve because there are simply so many classes of explosives and their
post-blast reaction products.
Irlam, R.C., et al. researched seven different sorbents (solid phase
extraction) for recoveries of 14 types of explosives and matrices that ran
the gamut from dirt to cooking oil to wastewater to determine which was
the best for analyte recovery. They found that “With the exception of
river water, the matrix effects were lowest using dual sorbent SPE, with
little/no compromise in recovery.” They report that this approach
resulted in an approximate 10-fold limit of detection over the single
sorbent approach. Finally, they report that Oasis HLB and Isolute ENV +
yielded the best recoveries quantitative wise [68].
Additionally, Irlam, R.C., et al. have applied 3-D printed LEGO ®
inspired miniature blocks for SPE extractions of explosives in a variety of
matrices. It is believed that this is the rst reported use of 3-D printed
SPE blocks. Efciencies of the extractions look promising [67].
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
3
In the area of ion chromatography, Mauricio F.G.M., et al. evaluated
swabs and syringe lters and found that of six syringe lters only two
were free of interfering analytes (such as Na, K, Mg, Ca, Cl and SO4). All
“forensic” swabs had signicant amounts of these as well. They further
analyzed commercially available cotton swabs, cotton balls, and cotton
discs and found these to have similar interferents albeit on a, surpris-
ingly, lower level than the forensic ones. Finally, they report that all
sampling materials can be cleaned of these ions through three washes
[71]. The nature of post-blast analysis of inorganic explosives is such
that these types of ions are often all that remains to be detected.
Therefore, selection of a swabbing material that has minimal interfering
analytes is advantageous and contributes to a stronger conclusion
making this particularly relevant research.
While pertinent to an environmental application, Temple T., et al.
researched four different types of one step extraction processes (stirring,
shaking, sonication and accelerated solvent extraction (ASE)) on ve
different soil types and report that shaking is the most reproducible, but
less efcient than stirring and ASE was the least reproducible. Also, they
report that soils high in organic content (>2%) unsurprisingly affected
both extraction efciency and reproducibility [774].
Rodriquez J., and Almirall, J., demonstrated the efciency in volatile
vapor sampling using continuous capillary microextraction and reported
recoveries of 3.0–89%. By comparison they reported headspace and
simulated open air sampling resulted in less recoveries. The analytes
were 3-NT, 2,4-DNT, DPA, EC, DBP and 2-NDPA, all compounds that can
be found in smokeless powders [74].
Glackin, J.M.E., et al. published an article on coating swabs with a
uoropolymer which was then used to swab an explosive and thermally
desorbed, “… causing the quenching of light emission from a thin lm
luminescent sensor.” They rst tried it with 2,4-DNT and reported an
increase of three orders of magnitude in sensitivity over standard col-
ormetric tests. Then it was used on PETN, RDX, and TNT, and even on
post-blast samples [66].
Evans-Nguyen, K.M., at al reported on employing a solventless,
noncontact electrostatic sampling method for drugs and explosives.
They used a hand-held Van de Graaf generator and wire mesh held close
to the sampling substrate. The particles transferred to the mesh and were
analyzed by thermal desorption electrospray ionization and mass spec-
trometry [62].
Avissar, Y.Y., et al. described using hot water to extract post-blast
samples. Then they conducted a liquid-liquid extraction with a very
small amount of dichloromethane (DCM) before analyzing by GC-MS.
They extracted several different types of substrates (metal, sponge,
asphalt, gravel) and reported that this method leads to notably less
sensitivity loss in the GS-MS after 40 injections than a traditional solvent
extraction This extraction technique has been used successfully on real
life samples [59].
Novosselov, Igor V., et al. completed a study on the recovery of
certain high explosives in the swabbing of various surfaces found in
security (mass transit) settings. They desorbed the analytes in various
ways but found “… nylon had the lowest collection efciency (CE%) for
all cases (appx. 10%) and stainless-steel mesh had the lowest CE% for
the evaluated traps” [72].
5. Identication of explosives, explosive residues and explosive
properties
There are several articles describing the properties of explosives and
theoretical modeling of explosive behavior. Also of interest is the area of
novel explosives and proposed improvements to existing commercial
and military explosives. Some of these articles also describe analytical
techniques.
A. Commercial Explosives
Gao et al. reported on 3-D photopolymerization printing of a CL-20
based propellent with the goal of improve the energy content and
combustion performance of propellants made with additive
manufacturing techniques [106]. It is unknown if 3-D printing on a large
scale will be economically feasible for mass production or more suited
for quick synthesis of new combinations of materials.
Ali, F., et al. report on using waste lubricant oil as a partial substitute
for fuel oil in ANFO formulations. They found that the formulations
exhibited both effective explosive performance and were within the
permissible limit for toxic fumes and particulate formation [78].
Lennert, E., and Bridge, C., used statistical analysis to associate
smokeless powder residues from burned smokeless powder to the orig-
inal smokeless powder using Sorensen-Dice similarity coefcients. The
samples were run on GC/MS. They also explored the pyrolysis products
of the smokeless powder constituents. Their results were mixed, stating,
“The complexity of burning a mixture, such as SP, compared to burning
single components may contribute to the generally low similarity co-
efcients observed in the comparison” [118].
Krejcir, K., Adam, J., and Buldra, R. conducted a multi-temperature
study on the depletion of three common stabilizers used in smokeless
powder over time. The study aims to provide background information
for stability testing of smokeless powders [116].
Wang, Y., et al. explored the usage of different gases in the sensitizing
microballoons in emulsion explosives and reported that the use of
hydrogen gas (as opposed to helium, oxygen and nitrogen) can improve
the power and energy of the emulsion explosive. Oxygen and nitrogen
provide little improvement and helium is both difcult to incorporate
into the explosive system and had a negative inuence on performance
[147].
B. Homemade Explosives
The area of Homemade Explosives (HME) is of tremendous interest
to the forensic explosive’s community. As we stated in our 2019 paper,
“Sometimes called Improvised Explosives (as opposed to an Improvised
Explosive Device that may or may not use HME), these explosives can, in
general terms, be dened as non-factory manufactured explosives. It is
uncommon, but not unheard of, however, that makers of HME will
attempt to make a “commercial” type of explosive” [24].
We additionally wrote, “The actual usage of HME is constantly
changing and it is difcult for forensic laboratories to have adequate
protocols for every possibility” [24]. This axiom still holds true now.
There is no adequate way for a regular forensic laboratory to have every
possibility of HME usage covered in a post-blast situation. Intel and
scene examination can help steer analysis but having the protocols in
place for every eventuality, especially for a novel HME, is nearly
impossible. That said, it can help if analysts keep up with current trends
in HME usage worldwide.
Cory Christopher Pye reports a cautionary tale on the long-term
storage of a consumer bottle of 2-propanol wherein TATP formation
was noted after a dozen years past the expiration date of the product
[172]. Anecdotally, the ATF lab has elded calls where this has been
found to have occurred. Fortunately, these calls are infrequent, but it is a
valuable safety point for hazmat teams in particular to be aware of as
well as for laboratory personnel answering questions from those in the
eld.
Horvath, T., and Ember, I., discuss the use of Raman and FTIR
handheld instruments for on scene identication of HME and highlights
the value of using the technologies in parallel [168].
Stromberg, J. and Castillo Rolon, M. conducted a study on TATP
headspace using quadrapole LC/MS and found TATP was the only
measurable component in the headspace, and it was noted that “the
results of this study strongly suggest the proposal that diacetone alcohol
and acetone are intractable components of TATP’s ‘vapor signature’ is
incorrect” [174].
D’Uva, J., et al. synthesized urea nitrate from a variety of commer-
cially available urea sources and then analyzed the product by FTIR,
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
4
SEM/EDS, and most importantly by ICP-MS where trace elements could
be determined [166]. Although chemometrics and statistical analysis
were not undertaken, this proof-of-concept approach to possibly provide
investigative leads etc., is very promising.
C. Other Explosives including Novel or New Explosives:
Throughout the course of history there has been a desire to develop
new explosives or improve upon existing ones. The experimentation and
development have been towards cheaper, more stable, more energetic,
less energetic, more environmentally friendly, less susceptible to acci-
dental initiation, more simple manufacturing processes, and more t for
immediate purpose, to name some of the objectives. Thousands of ex-
plosives have been designed and tested for decades if not centuries, but
most were rejected as they did not improve upon existing explosives in
the areas listed above. In this section we will include both reported
improvements to existing military or commercial explosives and some
unique explosives.
While not exactly novel, Yang, M., Ma, H., and Shen, Z., proposed
and studied the effects of repurposing decommissioned RDX with
emulsion explosive formulation. They were able to reduce the critical
diameter of the original emulsion [307].
In a similar vein Cui, Q., et al. proposed a novel way of introducing
TNT into porous aluminum powders and were able to simplify the
method of controlling the amount of TNT through a temperature
gradient [191].
Liu, Y., et al. report on a new equation on the theoretical detonation
performance of aluminized RDX [251].
In the area of nanotechnology Van Riet, R., et al. report on lling
nanoporous carbon with an oxidizer. While oxidizer-carbon mixtures
are common, the nanostructure of the carbon is a novel report [282].
Similarly, Ma, X., et al. described improving structural control over
nanoenergetic materials in an overview paper [257]. Once costs are
brought down and scalability makes these products economically
feasible these products will most likely nd their way into the
marketplace.
Li, M., et al. described the production of “photocurable energetic
resin based propellants fabricated by 3D printing [242].
6. Instrumental Analysis of Explosives
A) LC/HPLC/UPLC
As was reported in 2019, “Liquid chromatography (LC), high per-
formance liquid chromatography (HPLC), and ultra-high performance
liquid chromatography (UHPLC) are all excellent separation techniques
and have the advantage of being less destructive to thermally sensitive
high explosives than gas chromatography techniques” [24].
Freye, C.E., et al. researched two types of liquid chromatography for
measuring the aging and degradation of the PBX 9501. First low mo-
lecular weight components of the explosive were measured with HPLC
while the high molecular weight compounds were measured using size
exclusion chromatography (SEC) [332]. The parameters for each can be
found in their paper. These tools may be useful for forensic applications
such as comparisons of PBX explosives.
Steiner, A. and Lurie, I. compiled an overview on using diode array
detectors (DAD) coupled with both HPLC and supercritical uid chro-
matography (SFC) for a variety of analytes including explosives [332].
Veresmortean, C., explored an LCMS method development for eight
selected organic high explosive compounds from wastewater. The
importance of being able to extract and analyze both the original com-
pounds (TNT, RDX, etc.) and their degradation products and optimize
for both was stressed [333].
Freye, C., Nguyen, T., and Tappan, B. used UHPLC-MS/MS to explore
the synthesis impurities due to the manufacturing process of ETN. They
found 12 such impurities and were able to analyze for them [328].
Kotrly, M. et al. reported on using derivatization of aliphatic and
aromatic amines with HPLC-uorescent detection and having
femtomole-level detection [331].
B) Ion Chromatography
The technique of ion chromatography (IC) is often used in forensic
explosives analysis for the analysis of inorganic and some organic ex-
plosives. Many detectors are used including mass spectrometry. Ion
chromatography has the advantage over other inorganic characteriza-
tion methods because a relative prole of many anions or cations in a
sample can be compared against known post-blast proles of certain
explosive types.
Hutchinson, J.P. et al. report on using two techniques for the forensic
analysis of explosives and their post-blast products. Mostly exploring
inorganic low explosives, they looked at using capillary electrophoresis
and ion chromatography as orthogonal techniques, each instrument
with its own pluses and minuses [338].
Gallidabino, M.D. et al. used ion chromatography coupled with high
resolution mass spectrometry (IC-HRMS) and an ethanol-based eluent. It
was interesting that their method did not detect chloride or nitrite. Their
ethanol eluent-based approach was reported to be an improvement over
methods using an aqueous eluent [335].
C) Gas Chromatography
Gas chromatography has been a workhorse for the qualitative ori-
ented forensic chemist for many decades now and remains pertinent to
the examination of many classes of explosives. It provides for quick
separations for a variety of compounds and the methods can be rela-
tively easily modied when required.
Qualley, A., Hughes, G.T., and Rubenstein, M.H. report on a method
of improving the data in eld-portable GS-MS by using the “pre-incor-
poration of isotopic analogues (of the target analytes) onto thermal
desorption tubes in advance of eld distribution …” [346].
Cruse, C. and Goodpaster, J. reported that they optimized various
parameters (inlet temperatures, ow rate, and detector gas pressure) for
a GC/VUV (gas chromatography-vacuum ultraviolet) system for the
examination of several organic high explosives using statistical analysis
called response surface methodology or RSM [343].
M. Li et al. published their work on developing a micro GC with a
micro-photoionization detector which reportedly with sub-picogram
detection limits on trace vapors for optimizing eld GC’s [345].
D) Capillary Electrophoresis
Capillary electrophoresis (CE) is a separation technique that utilizes
charged elds instead of pressure to examine many types of analytes
including explosives. It can be used orthogonally with Ion Chromatog-
raphy or, with a mass spectrometer, as a solo technique.
Krauss, S.T. et al. demonstrated the utility of a wipe based com-
mercial GreyScan ETD-100 capillary electrophoresis for the detection of
several inorganic oxidizers including nitrate, chlorate and perchlorate
and post combustion inorganic ions [351].
Rapid capillary electrophoresis screening and chemical classication
of reworks was reported by Bezemer, K. et al. The Dutch police pro-
vided samples and it should be noted the Dutch civilian use of reworks
is quite common. The detection was indirect UV-detection and the re-
sults showed that chemical classication between primarily homemade
and commercial pyrotechnics was determined by Ca2+and Mg2+cat-
ions [349].
Krauss, S.T., Forbes, T.P., and Jobes D. reported on using gradient
elution moving boundary electrophoresis (GEMBE) as a “robust elec-
trokinetic separation technique” for the separation and detection of
inorganic oxidizers frequently seen in explosives. They stated that ni-
trate, chlorate and perchlorate oxidizers were detected from low
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
5
explosives and that many possible inorganic and organic fuels did not
interfere, and even detected and separated nitrate in post-blast samples
[352].
E) General Spectroscopy: Fluorescence, Luminescence, Spectrophoto-
metric, UV, Chemiluminescence
There are hundreds of research papers and reports in this area. They
are varied in their practical application to forensic and/or security work.
Some could eventually be used in commercial, military, security and law
enforcement applications. Still others will prove to be too costly and are
too focused on one class of explosives or even a single explosive. There
are a few papers the authors wish to highlight.
F) Mass Spectrometry
Mass spectrometry continues to be the most popular technique for
forensic explosives analysis and detection. It could be called the “gold
standard” of post-blast explosives analysis. Even so, it remains heavily
researched for a variety of reasons including sampling optimization,
matrices issues because of the nature of criminal use of explosives, and
the similarity of lighter compounds, especially nitrate esters, that are
harder to positively identify without an orthogonal approach. Soft
ionization is rigorously being examined in many publications. One of the
most researched aspects in mass spectrometry in the last three years has
been in quick sampling and/or screening techniques such as Direct
Analysis in Real Time (DART) or similar sampling methods.
Because canines have shown a propensity to detect potassium chlo-
rate even though the vapor pressure of chlorates at ambient tempera-
tures is negligible and decomposition requires temperatures of 300◦
Celsius, Cajigas, Perez-Amodovar and De Greeff used on ber SPME
derivatization to detect the resultant chloro-2-propanol proving the
outgassing of chlorine [457].
Taudte, R.V., et al. described an automated online Solid Phase
Extraction (SPE) for a Triple Quadrapole direct introduction analysis for
the determination of ve compounds typically encountered in smokeless
powders. The analytes were introduced into soil and a simulated organic
GSR scenario and extracted by this automated SPE with good results.
The report 8 s analysis times [484].
ShuQi An et al. published a paper on DART-MS and varied the
discharge gases (helium, nitrogen and argon) and found that for TNT
and 2,4-DNT the results were that using nitrogen produced mass spectra
“dominated by the oxidation products” suggesting nitrogen provides for
a highly oxidative environment. They also tested some substrates with
thermal desorption DART-MS and reported better results than tradi-
tional DART for 14 explosive compounds [450].
Chelsea Black published a Master’s Thesis on exploring the appli-
cability of DART-MS to identify homemade explosive residues post-blast
[453]. And then also published with D’Souza, T., Smith, J., and Hearns,
N. a paper on using DART-MS for TATP, HMTD, and MEKP with actual
(not spiked) post-blast samples of those. The method worked well with
actual IED fragments, dry swabs or wet swabs, with dry swabbing pro-
ducing the least interferants [454]. The fact that this was done with
actual post-bast samples and not simulated or spiked ones is promising.
R. Boyea published a Master’s Thesis on using multivariate statistical
analysis using GC-MS to compare red cartridge cases with unburned
smokeless powder [456].
Gaiffe, G. et al. used DART-HRMS to examine 83 plastic explosives
and polymer constituents that may be encountered in PBX’s and post-
blast samples of some PBX’s. They conrmed a suite of polymeric
compounds in Semtex 10. They also were able to see what the changes
were post-blast noting “… the best way to describe post-blast polymer
samples is that they are less oxygenated and, above all, more unsatu-
rated than the original starting material” [466].
Using ICP-MS and principal component analysis (PCA) Joshua A.
D’Uva et al. categorized 48 intact sparkler compositions by looking at 50
elements and could categorize eight distinct groups using the elements
V, Co, Ni, Sr, Sn, Sb, and W [461]. It would be interesting to see if in
unknown post-blast samples, the patterns could apply as well.
Similar to DART, Fowble, K.L. and Musah, R.A. used laser ablation
direct analysis mass spectrometry to hyperfocus on ngerprint ridge
details for a variety of illicit substances including the explosive RDX
[464].
DART-MS is primarily a fast technique wherein it’s use as a sample
screening tool is theoretically very useful. Frazier, J., Beneeld, V., and
Zhang, M. test ve different types of DART-MS sample introduction
techniques for a suite of explosives and reported that a Dart gas stream
of 200 ◦C as well as the addition of an acetic acid dopant to wet swabs
produced the best results as other methods even including thermal
desorption “failed in one aspect or another to be high-throughput, sen-
sitive, and/or robust” [465].
Another sampling technique pre GC-MS/MS introduction is
described in a paper by Galmiche, M., et al. Explosives were sampled
from water using stir bar sorptive extraction (SBSE). They varied type of
stir bars, ionic strength, added organic solvent as well as varied times of
extraction and desorption. For those analysts seeking explosives sam-
pling from aqueous solutions, this paper is well worth reading [467].
Gonzalez-Mendez, R., and Mayhew, C.A. published an article on
using soft chemical ionization for quantitation of ve additives
commonly used in smokeless powders through thermal desorption and
qToF-MS but all for pre-blast (i.e. intact) smokeless. A follow up study on
detection post-blast with this technique might prove useful [469].
Bonnar, C., Popelka-Filcoff, R., and Kirkbride, K. used direct sample
analysis ion source integrated with a ToF MS for nitroglycerin and a host
of common additives found often in smokeless powders both in intact
and post combustion modes with limited results on an attempt at organic
gunshot residues on a shooter’s hands. There is a detailed discussion of
the ionization and fragmentation patterns well worth perusing [455].
Supajariyawat, P. and Gonzalez-Rodriguez J. validated explosive
samples taken using the Ionscan® swabs and run on an Ionscan® system
via atmospheric pressure chemical ionization (APCI) in negative ion
mode and an LC-qToF mass spectrometer [483].
Kober, S., Hollert, H., and Frohme, M. used a matrix-assisted laser
desorption/ionization time of ight mass spectrometry (MALDI-TOF
MS) for quick analysis of TNT in soils [475].
McCulloch, R.D. and Amo-Gonzalez, M. reported picogram limits of
detection for several explosives using eld-free atmospheric pressure
photoionization (APPI) combined with a thermal desorption introduc-
tion with differential mobility analysis (DMA) tandem mass spectrom-
etry (MS/MS) [478].
Pavlov, J. et al. showed that 1,4-Benzoquinone is an efcient dopant
for enhanced ionization and detection of nitramine explosives on a
single quadrupole mass spectrometer tted with a helium-plasma ioni-
zation source [481].
Field MS is always a bit tricky for the explosive analyst and mostly
requires suitable ambient ionization and often requires operation with
no power sources, gas supplies, and ow control or heating devices.
Pintabona, L. et al. studied the use of surface acoustic wave nebulization
(SAWN) with MS for ambient ionization suitable for led use and report
“excellent sensitivity of nitrate-based organic explosives was observed
for nitrate-based explosives when operating the MS in the negative
mode” [482].
Organic high explosives are frequently either light molecules with
high vapor pressures or heavier and nonvolatile. Bi, L et al. developed an
“ultrasonic cutter blade coupled barrier discharge ionization” method to
detect ultra trace levels of nonvolatile explosives among other nonvol-
atile compounds [452].
G) Isotope Ratio Mass Spectrometry, IRMS
Isotope ratioing is a technique that can be used to sort or cluster
products, in this case explosives, in order to possibly source the origin of
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
6
that product. For it to be successful large databases are generally
required. There have been successful uses of this technique in both in-
telligence applications and with agricultural products wherein certain
countries are under embargos. It may be useful in forensics especially as
an excluder of commonality of two items but, is of limited use in
denitive inclusions without the aforementioned database for that
product.
Comparison of the homemade explosive erythritol tetranitrate (ETN)
with its precursors was explored in a paper published by Bezemer, K
et al. Keying in on carbon and nitrogen they report that “… robust linear
relationships between precursor and the end product were observed for
these isotopes … that support the hypothesis that a given erythritol or
nitrate precursor was used to synthesis a specic ETN batch.” [488].
C. Hu et al. propose a recrystallization technique to purify ammo-
nium nitrate (AN) to achieve better results from real world AN com-
parisons. They found that without purication contributions from other
materials mixed in with the AN can skew an isotope ratio analysis [489].
Kim, N.Y., et al. studied the propellants from nine different shotshells
from several countries and clustered them by using IRMS. Adding
organic component analysis as well, they were able to discriminate all
nine [490]. Applying this in a post-blast or post-red scenario might
prove useful for sourcing to provide investigative leads although as al-
ways larger databases are needed.
H) FTIR
Fourier Transform Infrared Spectroscopy (FTIR) is a workhorse in-
strument in forensic explosives analysis. Some useful papers are
included in the bibliography.
I) Raman Spectroscopy
Raman spectroscopy continues to be applied for explosives analysis
in the lab as well as in the eld for hazard assessment. There are
numerous advantages to this technique, as we wrote in 2019, “it is fast,
discriminatory, non-destructive and vetted for legal proceedings” [24].
Additionally, it does not require sample prep and is capable of sampling
materials in situ, through containers, and at signicant distances
(stand-off).
Gulia, S. et al. reported on using spatially offset Raman spectroscopy
(SORS) as a method to overcome the limitations of conventional Raman
spectroscopy when applied to testing through colored glass, high density
polyethylene (HDPE), Teon etc. [512]. This will prove useful both in
security settings and for examination of materials in searches.
Colob-Gonzalez, F.M., et al. described a method for detecting TNT,
PETN, and RDX on a variety of hair types with non-invasive Raman
spectroscopy. They found, not surprisingly, that gray hair was the best
substrate for detection [505].
In a unique approach to extremely small samples Kotrly, M., and
Turkova, I., used a stepped approach with SEM/FIB (focused ion beam)
to get 3D reconstruction of the materials in post-blast samples, EDS/
WDS for surface elemental mapping, and high-resolution Raman spec-
troscopy. By using this compliment of techniques, they could easily
focus in on materials of interest and carry out complex analysis on
microscopic particles [518]. In one regard this can be seen as a sampling
technique. This combined instrument set-up could prove valuable for
post-blast analysis where minimal residue is available.
J) DSC, Thermal Analysis, TG
This category is applicable to the examination of explosives and
mixtures and can further characterize an unknown material. These
techniques have been around for decades and while they have limited
applications in the forensic lab setting, they are still useful, especially for
evaluating new explosives and explosive formulations.
7. Nanotechnology
Nanotechnology can be used for the miniaturization of instrumen-
tation which can be much more easily deployed for eld analytical use.
It also can signicantly enhance detection of very small amounts of
analytes. Also in this category is the production and manufacture of
nanoexplosives which are more efcient and theoretically at least
portend less environmental contamination due to the efciency of the
explosive.
Using Raman spectroscopy coupled with nanomotors Novotny, F.,
Plutnar, M., and Pumera, M., detected picric acid. Their synthesis of the
nanomotors was done using the seeded growth wet chemical method as
opposed to planar substrate methods, and they report that this method is
highly scalable [551].
Bhatt, P.V., et al. also wrote about using nanotechnology as a means
of tagging explosives as well as general advances in nanotechnology and
a summation of the current trends [538].
8. General detection
A) Canine Explosives Detection
Canine explosive detection is both very effective, given the right
training and reasoned deployment, and simultaneously the most frus-
trating for analysts who cannot replicate this efciency and selectivity
using man made instrumentation. Research in this area continues to try
and shed light on the complexities of how canines process and detect
target odors and the optimization of training aids and odor presentation.
There are many considerations for training and maintaining an effective
explosives detection canine team, some of which are discussed in the
papers in this section.
Sacharczuk, M. et al. published a fascinating study on canine per-
formance and selected canine olfactory receptor genes. They identied
the ten canines with the best performance and the ten with the worst out
of 91 drug detecting canines and 57 explosive detecting dogs. They then
examined several genes in order to predict, before training, which ca-
nines would be best suited for detection work [566].
One potentially signicant problem with canines is their receptive-
ness to handler cues. Lazarowski, L. et al. reported that responsiveness to
human cues decreased with age but the ability to locate the reward
increased and “Furthermore, a lack of susceptibility to deceptive social
cues was predictive of future success as a detection dog” [564].
DeGreeff, L. and Peranich, K. published an article on using a Mixed
Odor Delivery Device (MODD) to increase prociency in canines for the
detection of mixtures that contain a target odor. The paper nds that
canines exposed to mixtures in training had more success detecting odors
in a mixture than those that had not previously trained on mixtures. The
odorants were veried using SPME-GC/MS for quality control [559].
Gazit, I. et al. designed an experiment to test a canine’s ability to
correctly alert on individual odors when previously exposed to a mixture
of those odorants. They found dogs can indeed quickly recognize indi-
vidual components [563].
Simon, A.G., et al. described using DART-MS to monitor in real time
TATP released from a polydimethylsiloxane canine training aid and
compared it to other training aids for the same analyte. They report this
training aid style had similar odor output to a traditional style container
with holes in the lid. The authors also used DART to assess real time odor
availability from both styles of training aids in various search congu-
rations [568].
B) LIBS Detection
Romolo, F.S. and Palucci, A. have published a review chapter on the
advances with detection techniques for security purposes in the areas of
laser induced breakdown spectroscopy (Stand-off) or LIBS, Raman
(stand-off), surface enhanced Raman spectroscopy (SERS) and laser
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
7
photoacoustic spectroscopy They discuss the detection limits and the
drawbacks of these techniques and discuss how they can be used to
advance an investigation. One such example was helping to reduce the
number of samples sent to the lab [577].
C) Neutron
Seman, J., Giraldo, C.H.C., and Johnson, C.E. reported on a proposed
nuclear barcode to be used as a chemical detection agent. Part of the
coding employs a unique combination of taggant elements at different
concentration levels that could be used to provide specic information
about where and when the explosive was manufactured which could
provide valuable investigative leads in criminal or terrorist bombings.
The paper examines the stability of the ratios over time and found that
the technique could work if the concentration levels were separated at
least 100 ppb [583].
D) Terahertz
E) Nuclear Techniques
Yu, P., et al. monitored the droplet size distribution in ANFO emul-
sion explosives at different temperature and storage conditions to assess
any impact of the storage condition on the stability of the emulsion.
They used Nuclear Magnetic Resonance (NMR) Pulsed Field Gradient
(PFG) and found storage at 50◦Celsius for 12 weeks lead to a 60% in-
crease in mean droplet size. Adding 5% calcium nitrate to the aqueous
phase suppressed this thermal degradation [602].
F) X-Ray
G) Ion Mobility Spectrometry
While Ion Mobility Spectrometry is often used in security screening
settings because of its rapid sampling times and relative accuracy, it
often has not been used often in forensic laboratories because of its
limited ability to separate analytes, its propensity for being overloaded
quickly requiring a period of cleaning of the system, and its potential for
false positives. There have been advances made to allow for limited
separations and quicker recovery times improving the usefulness of this
technology.
Hauck B., Harden C., and McHugh V. evaluated ve possible cali-
brants for an ion mobility time of ight instrument. They reported that
di(propylene glycol) methyl ether (DPM) was the most useful and rec-
ommended against 2,4-pentanedione (PDO) and methyl salicylate
(MES) [610].
Thangadurai S. and Gurusamy K. advocated for use of IMS in post-
blast debris samples and reported that several explosives were detec-
ted in various matrices. They discuss sample preparation and screening
and highlight the advantages and limitations of the technique for the
detection of explosives [616].
Chilluwal, U. published a dissertation arguing for tandem IMS using
chlorine adducts of RDX, PETN and NG for the analysis. By using tandem
IMS there was a reported elimination of the false positives often
encountered with IMS results due to interferents [608].
In a similar fashion, Mullen, M., and Giordano, B. used the combined
technique of secondary electrospray and corona discharge ionization
(SECDI) to achieve more sensitivity for TNT and 2,6-DNT [612]. These
approaches that eliminate the problems inherent in IMS may prove
valuable as a very rapid analytical tool.
The drift tube design for IMS was enhanced in a paper published by
Smith, B. et al. They designed a exible drift tube and report “the DT
(drift tube) is constructed from a exible printed circuit board (PCB)
with a bespoke ‘dog-leg’ track design, that can be rolled up for ease of
assembly.” This design was reported to have a low cost and low footprint
with limits of detection in the low nanograms [615].
Fisher, D., et al. proposed applying machine learning to IMS for a
preliminary study using ve nitrate explosives, AN, ANFO, Urea Nitrate,
environmental pollution nitrates and blanks. Their supposition is that
machine learning can enhance selectivity for actual threats [609].
Bohnhorst, A., et al. wrote about their new approach to enhancing
separation by increasing the resolving power of the drift time IMS
without employing higher drift voltages. Instead, they employed a
moving eld IMS (MOF-IMS) to use the available voltage to a smaller
segmented drift region [607].
H) Novel Detection
Novel detection is a catchall category for detection that does not fall
neatly into another category. It could be completely novel or it could be
something based on other techniques but different enough to be
included in this section of the paper or bibliography.
Filipi, J., et al. described the use of honeybees as a tool that could be
used in humanitarian demining efforts. The bees can be used in passive
searches to detect the present of landmines in an area or active searches
of pinpointing locations. The system relies on the detection of explosives
residue on the body of honey bees that were foraging [638].
Simic, M. et al. described a similar use of honeybees. As a passive
system honeybees can “electrostatically collect particles from the air in
the ying and foraging areas, which in conjunction with organic-based
explosive vapor sensing lms, placed at the entrance of a beehive, can
be used as a passive explosive sensing mechanism.” Furthermore, hon-
eybees can be trained to react to certain explosives [685].
In a similar vein of using animals to detect explosives, Alsaleh, S.,
Barron, L., and Sturzenbaum, S. published a paper on the use of the
invertebrate nematode Caenorhabditis elegans (worm) for the detection
of ground soil perchlorate [620].
Liu, C. et al. integrated a smart phone with a urea-functionalized
polyionic liquid photonic spheres to construct a colorimetric sensor
array that can detect and identify ve nitroaromatic explosives [660].
Lefferts, M.J., et al. used “ANFO chemiresistive vapour sensors based
on polypyrrole (PPy) percolation networks to enhance” GC-MS results
and reported improved sensitivity over thin lm and detected “13–180
ppb of ammonia emitted by a variety of different ammonium nitrate …”
mixtures [656].
Blanco, S., et al. proposed wetting TATP as they form TATP-water
adducts which could then be detected by microwave spectroscopy
[625].
I) Stand Off
9. Environmental
As we wrote in 2019, Environmental scientists and chemists have
long sought to test and eventually remediate explosives in environ-
mental samples. Some of these methods can be directly borrowed from
this eld for use in forensic laboratories. Still other research, such as
degradation studies, may assist the analyst in background knowledge of
the explosive in certain matrices, especially soils [24].
Nawala, J. et al. used GC-MS/MS, LC-HRMS and NMR to examine
explosives excavated from the Baltic Sea. There are tons of unexploded
ordinance on the sea bed, so classifying it is important. They found that
most samples indicated that it was a TNT, RDX, aluminum mixture
known as “torpex” [770].
Rindelaub, J.D., et al. used XRF to measure particulate matter from
reworks usage in New Zealand to postulate source material (e.g. Cl
from perchlorate oxidizers) and compared air quality vis-`
a-vis standard
environmental exposure recommendations [776].
10. Other (safety, denitions, etc.)
While this article could be placed in the review category, we have
included it here. Richard Crocombe has done an extensive review of
portable spectroscopy including a discussion of the future of the
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
8
technology. He looked at the deployment numbers and usage of portable
IMS, XRF, FTIR and Raman instruments, most of which are deployed in
security operations or with re or police hazmat responders [823].
da Silva, L., et al. published an interesting paper on pipe bomb
fragmentation with varying case (wall) thickness. They used aluminized
ammonium nitrate detonated with a PETN based detonator and a 5-g
booter made of PETN and nitrocellulose and noted that the size and
velocity of the fragments correlated to the pipe size [825]. It would be
interesting, since the quality control on the pipes and test design was
well thought out, to do similar tests with a suite of low explosives and
not boosted or detonated.
Amaral, M., et al. studied transfer dynamics of ammonium nitrate
showing transfers “… even when contact occurs for a short duration
with a relatively low force” [796]. They report a variety of test condi-
tions which may be useful in understanding transfer in the context of
crime scenes or swabbing techniques. This reference could also be
placed in the sampling category.
Collett, G. et al. tackled the predictive threat assessment process for
Homemade Explosives (HME) precursors, specically the regional dis-
tribution of hydrogen peroxide, ammonium nitrate and potassium
chlorate [821].
Although there were many articles published on the Beirut Port
ammonium nitrate explosion, Yu, G. et al. published perhaps the most
comprehensive one. By looking at many post-blast factors, measure-
ments, and reports, they calculated the TNT equivalent of the AN ex-
plosion to be approximately 950.3 tons and the fatality radius to be 487
m from the center. They also included an evaluation other safety related
considerations relating to the accident and future ammonium nitrate
storage considerations [954].
Oluwoye, I., et al. used XRD and IR to examine rust on iron-based
containers to show oxygen decient Fe
2
O
3
clusters can serve as an
agent to reduce ignition temperatures with ammonium nitrate reactions.
They report “The dihydroxylation of hydrated iron (III) oxide, present
on the surfaces of rust, exposes the Fe sites that react exothermically
with AN, before the material assumes the ordered Fe
2
O
3
phase.” It may
be prudent to monitor AN storage conditions in steel storage containers,
especially older ones. AN is a strong oxidizer and does not require a high
percentage of fuel to react or even detonate [898].
Rettinger, R., et al. published an article on lab scale (2 g) and eld
scale (5 kg) testing for combinations of several oxidizers (potassium
nitrate, potassium chlorate, potassium permanganate, potassium iodate,
ammonium nitrate and ammonium perchlorate) mixed with sucrose and
aluminum to compare explosive potentials of each [910].
Tin, D., Margus, C., and Ciottone, G., did a comprehensive review of
all terrorist events for the last 50 years, including ones deploying ex-
plosives. They report 48.78% of these 168,003 events used explosives
since 1970 [934]. This paper is a tting note to end on, highlighting the
continued need for research and development to combat the threat of
explosives.
Final notes
We have tried to review as much literature as possible these last few
years and have written here about dozens of publications. There are
indeed hundreds more citations listed in the bibliography, many of
which may have some useful information for your forensic laboratory
and explosive analysts.
Acknowledgements
The authors would like to express our deepest gratitude to Ms. Logan
Tapscott, Librarian for the Bureau of Alcohol, Tobacco, Firearms and
Explosives Laboratory. Additionally, the tireless work of the staff of the
Arson and Explosives Sections at the ATF Forensic Science Laboratory,
Washington, especially Malinda Durand and Delonn Ng have been
invaluable.
References
Review Articles
[1] O. Adegoke, N. Nic Daeid, Colorimetric optical nanosensors for trace explosive
detection using metal nanoparticles: advances, pitfalls, and future perspective,
Emerg. Top. Life Sci. 5 (3) (2021) 367–379, https://doi.org/10.1042/
ETLS20200281.
[2] R.K.A. Amali, H.N. Lim, I. Ibrahim, N.M. Huang, Z. Zainal, S.A.A. Ahmad,
Signicance of nanomaterials in electrochemical sensors for nitrate detection: a
review, Trends Environ. Anal. Chem. 31 (2021), e00135, https://doi.org/10.1016/
j.teac.2021.e00135.
[3] R. Apak, S.D. Cekic, A. Uzer, E. CApanoglu, S.E. Celik, M. Bener, Z. Can,
S. Durmazel, Colorimetric sensors and nanoprobes for characterizing antioxidant
and energetic substances, Anal. Methods 12 (44) (2020) 5266–5321, https://doi.
org/10.1039/D0AY01521K.
[4] V. Babrauskas, D. Leggett, Thermal decomposition of ammonium nitrate, Fire
Mater. 44 (2) (2019) 250–268, https://doi.org/10.1002/fam.2797.
[5] N. Baig, & I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis
methods, properties, recent progress, and challenges, Mater. Adv. 2 (6) (2021)
1821–1871, https://doi.org/10.1039/D0MA00807A.
[6] S. Bell, Explosives and improvised explosive devices, in: Forensic Science: an
Introduction to Scientic and Investigative Techniques, fth ed., CRC Press, 2019,
pp. 197–211.
[7] A. Benhammada, D. Trache, Thermal decomposition of energetic materials using
TG-FTIR and TG-MS: a state-of-the-art review, Appl. Spectrosc. Rev. 55 (8) (2019)
724–777, https://doi.org/10.1080/05704928.2019.1679825.
[8] H. Brown, T. McDaniel, P. Fedick, C. Mulligan, The current role of mass
spectrometry in forensics and future prospects, Anal. Methods 12 (32) (2020)
3974–3997, https://doi.org/10.1039/D0AY01113D.
[9] A. Brzechwa-Chodzynska, W. Drozdz, J. Harroweld, A.R. Stefankiewicz,
Fluorescent sensors: a bright future for cages, Coord. Chem. Rev. (2021), 213820,
https://doi.org/10.1016/j.ccr.2021.213820.
[10] A. Cagan, J. Oxley (Eds.), Counter Terrorist Detection Techniques of Explosives,
second ed., Elsevier Science, 2021.
[11] R.A. Crocombe, P.E. Leary, B.W. Kammrath (Eds.), Portable Spectroscopy and
Spectrometry: Vol. 1: Technologies and Instrumentation, Wiley, 2021.
[12] R.A. Crocombe, P.E. Leary, B.W. Kammrath (Eds.), Portable Spectroscopy and
Spectrometry: Vol. 2: Applications, Wiley, 2021.
[13] K. Evans-Nguyen, K. Hutches (Eds.), Forensic Analysis of Fire Debris and
Explosives, Springer, 2019.
[14] T.P. Forbes, S.T. Krauss, G. Gillen, Trace detection and chemical analysis of
homemade fuel-oxidizer mixture explosives: emerging challenges and perspectives,
Trends Anal. Chem. 131 (2020), 116023, https://doi.org/10.1016/j.
trac.2020.116023.
[15] W. Greibl, End user commentary on advances in the analysis of explosives, in:
S. Francese (Ed.), Emerging Technologies for the Analysis of Forensic Traces,
Springer, 2019, pp. 241–243, https://doi.org/10.1007/978-3-030-20542-3_16.
[16] L. Gutowski, S. Cudzilo, Synthesis and properties of novel nitro-based thermally
stable energetic compounds, Defence Technol. 17 (3) (2021) 775–784, https://doi.
org/10.1016/j.dt.2020.05.008.
[17] D. Herrmannsdorfer, P. Gerber, T. Heintz, M.J. Herrmann, T.M. Klapotke,
Investigation of crystallization conditions to produce CL-20/HMX cocrystal for
polymer-bonded explosives, Propellants, Explos. Pyrotech. 44 (6) (2019) 668–678,
https://doi.org/10.1002/prep.201800332.
[18] D. Herweyer, J.L. Brusso, M. Murugesu, Modern trends in “green” primary
energetic materials, New J. Chem. 45 (23) (2021) 10150–10159, https://doi.org/
10.1039/D1NJ01227D.
[19] T. Horvath, J.Z. Szatai, A history of detection of explosive devices. 1 (700-1950),
Rev. Acad. Fortelor Terestre 25 (3) (2020) 189–200, https://doi.org/10.2478/raft-
2020-0023. Academic Complete.
[20] F. Jiang, W. Zhao, J. Zhang, Recent progress in the development of MoSe2 based
chemical senors and biosensors, Microelectron. Eng. 225 (2020), 111279, https://
doi.org/10.1016/j.mee.2020.111279.
[21] A. Kalsi, S. Celin, P. Bhanot, S. Sahi, J. Sharma, Microbial remediation approaches
for explosive contaminated soil: critical assessment of available technologies,
recent innovations and future prospects, Environ. Technol. Innovat. 18 (2020),
100721, https://doi.org/10.1016/j.eti.2020.100721.
[22] D.J. Klapec, G. Czarnopys, Analysis and detection of explosives and explosives
residues review: 2010 to 2013, in: 17
th
Interpol International Forensic Science
Managers Symposium, Lyon 8th-10th October 2013, 2013, pp. 280–435.
[23] D.J. Klapec, G. Czarnopys, Analysis and detection of explosives and explosives
residues review: 2013 to 2016, in: 18
th
Interpol International Forensic Science
Managers Symposium, Lyon 11
th
-13
th
October 2016, 2016, pp. 194–261.
[24] D.J. Klapec, G. Czarnopys, Analysis and detection of explosives and explosives
residues review: 2016 to 2019, in: 19
th
Interpol International Forensic Science
Managers Symposium, Lyon 8th-10th October 2019, 2019, pp. 194–283.
[25] E. Koch, Insensitive high explosives: IV. Nitroguanidine — initiation & detonation,
Defence Technol. 15 (4) (2019) 467–487, https://doi.org/10.1016/j.
dt.2019.05.010.
[26] K. Koyani, M. Tharmavaram, G. Pandey, D. Rawtani, C. Hussain, Sensors for the
detection of explosives and gunshots, in: D. Rawtani, C.M. Hussain (Eds.),
Technology in Forensic Science: Sampling, Analysis, Data and Regulations, 2020,
pp. 199–220, https://doi.org/10.1002/9783527827688.ch10.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
9
[27] P. Li, X. Li, W. Chen, Recent advances in electrochemical sensors for the detection
of 2, 4, 6-trinitrotoluene, Curr. Opin. Electrochem. 17 (2019) 16–22, https://doi.
org/10.1016/j.coelec.2019.04.013.
[28] R. Liu, Z. Li, Z. Huang, K. Li, L. Yi, Biosensors for explosives: state of art and future
trends, TrAC, Trends Anal. Chem. 118 (2019) 123–137, https://doi.org/10.1016/j.
trac.2019.05.034.
[29] L.M. Martelo, L.F. Marques, H.D. Burrows, M.N. Berberan-Santos, Explosives
detection: from sensing to response, in: B. Pedras (Ed.), Florescence in Industry,
Springer, 2019, pp. 293–320.
[30] M.P.V. Matos, G.P. Jackson, Isotope ratio mass spectrometry in forensic science
applications, Forensic Chem. 13 (2019), 100154, https://doi.org/10.1016/j.
forc.2019.100154.
[31] S. Moazzen, A. Zarei, K. Mardi, Green sample preparation based on directly
suspended droplet microextraction using deep eutectic solvent for ultra-trace
quantication of nitroaromatic explosives by high performance liquid
chromatography, J. Anal. Chem. 76 (11) (2021) 1296–1304, https://doi.org/
10.1134/S1061934821110083.
[32] G. Musile, Y. Agard, L. Wang, E.F. De Palo, B. McCord, F. Tagliaro, Paper-based
microuidic devices: on-site tools for crime scene investigation, TrAC, Trends Anal.
Chem. 143 (2021), 116406, https://doi.org/10.1016/j.trac.2021.116406.
[33] S. Patel, I. Lurie, The use of portable separation devices for forensic analysis: a
review of recent literature, Forensic Chem. 26 (2021), 100365, https://doi.org/
10.1016/j.forc.2021.100365.
[34] C.N. Pitman, W.R. LaCourse, Desorption atmospheric pressure chemical ionization:
a review, Anal. Chim. Acta 1130 (2020) 146–154, https://doi.org/10.1016/j.
aca.2020.05.073.
[35] S.V. Rao, S.A. Kalam, M.S.S. Bharathi, Photonics for explosives detection, in:
Encyclopedia of Applied Physics, 2019, https://doi.org/10.1002/3527600434.
eap826.
[36] T. Rasheed, F. Nabeel, K. Rizwan, M. Bilal, T. Hussain, S. Shehzad, Conjugated
supramolecular architectures as state-of-the-art materials in detection and
remedial measures of nitro based compounds: a review, TrAC, Trends Anal. Chem.
(2020), https://doi.org/10.1016/j.trac.2020.115958.
[37] W. Raza, D. Kukkar, H. Saulat, N. Raza, M. Azam, A. Mehmmod, K. Kim, Metal-
organic frameworks as an emerging tool for sensing various targets in aqueous and
biological media, TrAC, Trends Anal. Chem. 120 (2019), 115654, https://doi.org/
10.1016/j.trac.2019.115654.
[38] J. Sabatini, E. Johnson, A short review of nitric esters and their role in energetic
materials, ACS Omega 6 (18) (2021) 11813–11821, https://doi.org/10.1021/
acsomega.1c01115.
[39] E. Sisco, T.P. Forbes, Forensic applications of DART-MS: a review of recent
literature, Forensic Chem. 22 (2021), 100294, https://doi.org/10.1016/j.
forc.2020.100294.
[40] F. Tambo, D. Ablateye, A review on the role of emerging revolutionary
nanotechnology in forensic investigations, J. Appl. Nat. Sci. 12 (4) (2020)
582–591, https://doi.org/10.31018/jans.v12i4.2415.
[41] K.C. To, S. Ben-Jaber, I.P. Parkin, Recent developments in the eld of explosive
trace detection, ACS Nano 14 (9) (2020) 10804–10833, https://doi.org/10.1021/
acsnano.0c01579.
[42] Y. Tverjanovich, A. Tverjanovich, A. Averyanov, M. Panov, M. Ilyshin,
M. Balmakov, Interaction of laser radiation with explosives, application and
perspectives, in: K. Yamanouchi, S. Tunik, V. Makarov (Eds.), Progress in Photo
Science, Springer, 2019, pp. 493–511.
[43] T. Wasilewski, J. Gebicki, Emerging strategies for enhancing detection of
explosives by articial olfaction, Microchem. J. 164 (2021), 106025, https://doi.
org/10.1016/j.microc.2021.106025.
[44] T. Wasilewski, J. Gebicki, W. Kamysz, Bio-inspired approaches for explosives
detection, TrAC, Trends Anal. Chem. 142 (2021), 116330, https://doi.org/
10.1016/j.trac.2021.116330.
[45] B.P. Wheeler, L.J. Wilson, Experiment 24: explosive residue examination, in:
Practical Forensic Microscopy: a Laboratory Manual, second ed., Wiley, 2021,
pp. 337–345, https://doi.org/10.1002/9781119154525.ch24.
[46] R.A. Yetter, Progress towards nanoengineered energetic materials, Proc. Combust.
Inst. 38 (1) (2021) 57–81, https://doi.org/10.1016/j.proci.2020.09.008.
[47] Q. Yu, Z. Li, Q. Cao, S. Qu, Q. Ja, Advances in luminescent metal-organic
framework sensors based on post-synthetic modication, TrAC, Trends Anal.
Chem. 129 (2020), 115939, https://doi.org/10.1016/j.trac.2020.115939.
[48] F. Zapata, C. Garcia-Ruiz, Chemical classication of explosives, Crit. Rev. Anal.
Chem. 51 (7) (2020) 656–673, https://doi.org/10.1080/10408347.2020.1760783.
Explosive Standards and References, Laboratory Quality Control,
Contamination Prevention
[49] ASTM International, ASTM E2520-21: Standard Practice for Measuring and Scoring
Performance of Trace Explosive Chemical Detectors. Annual Book of ASTM
Standards, 15.08, ASTM International, 2021, https://doi.org/10.1520/E2520-21.
[50] ASTM International, ASTM E2677-20: Standard Test Method for Estimating Limits
of Detection in Trace Detectors for Explosives and Drugs of Interest. Annual Book
of ASTM, 15.08, ASTM International, 2021, https://doi.org/10.1520/E2677-20.
[51] A. Bose, Military Pyrotechnics, CRC Press, 2022.
[52] G. Collett, An Examination of the Precursor Chemicals used in the Manufacture of
Explosive Compositions Found within Improvised Explosive Devices (IEDs), Action
on Armed Violence, 2021. Online at, https://cd-geneve.delegfrance.org/AOAV-
Publication-of-two-reports-on-IEDs.
[53] T. Klapotke, Energetic Materials Encyclopedia, second ed., De Gruyter, 2021
https://doi.org/10.1515/9783110626810. Vols. 1-3.
[54] H. Letendre, K. Segiun, A. Grenier, V. Mousseau, L. Cadola, F. Crispino, First
lessons regarding the data analysis of physicochemical traces at activity level in
TTADB, J. Can. Soc. Forensic. Sci. 54 (3) (2021) 139–156, https://doi.org/
10.1080/00085030.2021.1899655.
[55] T.D. Schachel, A. Stork, R. Schulte-Ladbeck, T. Viehlaber, U. Karst, Identication
and differentiation of commercial and military explosives via high performance
liquid chromatography – high resolution mass spectrometry (HPLC-HRMS), X-ray
diffractometry (XRD) and X-ray uorescence spectroscopy (XRF): towards a
forensic substance database on explosives, Forensic Sci. Int. 308 (2020), 110180,
https://doi.org/10.1016/j.forsciint.2020.110180.
[56] J. Stein, Explosive Residue Transfer from Various Explosive Ordinance Disposal
(EOD) Render Safe, Master’s Thesis, Virginia Commonwealth University, 2019.
VCU Theses and Dissertations.
[57] M. Zarejousheghani, W. Lorenz, P. Vanninen, T. Alizadeh, M. Cammerer,
H. Borsdorf, Molecularly imprinted polymer materials as selective recognition
sorbents for explosives: a review, Polymers 11 (5) (2019) 888, https://doi.org/
10.3390/polym11050888.
Sampling and Concentration of Explosive Traces
[58] M.A. Amaral, S. Yasin, A.P. Gibson, R.M. Morgan, Sampling of explosive residues:
the use of a gelatine-based medium for the recovery of ammonium nitrate, Sci.
Justice 60 (6) (2020) 531–537, https://doi.org/10.1016/j.scijus.2020.07.007.
[59] Y. Avissar, A. Zelkowicz, A. Rossin, Y. Kirshenbaum, D. Tenne, A. Grat, An
efcient extraction method for post-blast traces of organic explosives, J. Forensic
Ident. 71 (1) (2021) 35–48.
[60] A. Benhammda, D. Trache, M. Kesraoui, A. Tarchoun, S. Chelouche, A. Mezroua,
Synthesis and characterization of
α
-Fe2O3 nanoparticles from different precursors
and their catalytic effect on the thermal decomposition of nitrocellulose,
Thermochim. Acta 686 (2020), 178570, https://doi.org/10.1016/j.
tca.2020.178570.
[61] R.M. Cardoso, S.V.F. Castro, M.N.T. Silva, A.P. Lima, M.H.P. Santana, E. Nossol, R.
A.B. Silva, E.M. Richter, T.R.L.C. Paixao, R.A.A. Munoz, 3D-printed exible device
combining sampling and detection of explosives, Sensor. Actuator. B Chem. 292
(2019) 308–313, https://doi.org/10.1016/j.snb.2019.04.126.
[62] K.M. Evans-Nguyen, A. Rivera, J. Fontanez-Adames, F. Li, B. Musselman, Solvent-
free noncontact electrostatic sampling for rapid analysis with mass spectrometry:
application to drugs and explosives, J. Am. Soc. Mass Spectrom. 31 (11) (2020)
2237–2242, https://doi.org/10.1021/jasms.0c00286.
[63] M. Galaburda, V. Bogatyrov, W. Tomaszewski, B. Charmas, O. Mischanchuk,
O. Orankska, V. Gun’ko, M. Zybert, Synthesis and structural properties of carbon/
alumina composites: practical application in solid phase extraction of explosives,
Microporous Mesoporus Mater. 300 (2020), 110159, https://doi.org/10.1016/j.
micromeso.2020.110159.
[64] A. Garzon-Serrano, C. Sierra, O. Rodriguez-Bejarano, D. Sinuco, Volatile organic
compounds, spectral characterization and morphology of ammonium nitrate fuel
oil (ANFO) samples, J. Forensic Sci. 65 (4) (2020) 1085–1093, https://doi.org/
10.1111/1556-4029.14312.
[65] B.C. Giordano, D.C. Ratchford, K.J. Johnson, P.E. Pehrsson, Silicon nanowire
arrays for the preconcentration and separation of trace explosives vapors,
J. Chromatogr. A 1597 (2019) 54–62, https://doi.org/10.1016/j.
chroma.2019.03.045.
[66] J.M.E. Glackin, R.N. Gillanders, F. Eriksson, M. Fjallgren, J. Engblom,
S. Mohammed, I.D.W. Samuel, G.A. Turnvull, Explosives detection by swabbing
improvised explosive detection, Analyst 145 (2020) 7956–7963, https://doi.org/
10.1039/D0AN01312A.
[67] R. Irlam, C. Hughes, M. Parkin, M. Beardah, M. O’Donnell, D. Brabazon, L. Barron,
Trace multi-class organic explosives analysis in complex matrices enabled using
LEGO®-inspired clickable 3D-printed solid phase extraction block arrays,
J. Chromatogr. A (2020), https://doi.org/10.1016/j.chroma.2020.461506.
[68] R.C. Irlam, M.C. Parkin, D.P. Brabazon, M.S. Beardah, M. O’Donnell, L.P. Barron,
Improved determination of femtogram-level organic explosives in multiple
matrices using dual-sorbent solid phase extraction and liquid chromatography-high
resolution accurate mass spectrometry, Talanta 203 (2019) 65–76, https://doi.org/
10.1016/j.talanta.2019.05.047.
[69] K. Kottapalli, I.V. Novosselov, Aerodynamic resuspension and contact removal of
energetic particles from smooth, rough, and brous surfaces, Talanta 231 (2021),
122356, https://doi.org/10.1016/j.talanta.2021.122356.
[70] H.P.H. Liddell, M.H. Merrill, In situ visualization of particle motions during wipe
sampling of explosives and other race particulate materials, ACS Appl. Mater.
Interfaces 11 (26) (2019) 23780–23788, https://doi.org/10.1021/
acsami.9b06761.
[71] F.G.M. Mauricio, V.R.M. Abritta, R. de Lacerda Aquino, J.C. Laboissiere, L.P.
L. Logrado, I.T. Weber, Evaluation of interferers in sampling materials used in
explosive residue analysis by ion chromatography, Forensic Sci. Int. 307 (2019),
109908, https://doi.org/10.1016/j.forsciint.2019.109908.
[72] I. Novosselov, C. Coultas-McKenney, L. Miroshnik, K. Kttapalli, B. Ockerman,
T. Manley, M. Gardner, R. Lareau, J. Brady, M. Sweat, A. Smith, M. Hargather,
S. Beaudoin, Trace explosives sampling for security applications (TESSA) study:
evaluation of procedures and methodology for contact sampling efciency, Talanta
234 (2021), 122633, https://doi.org/10.1016/j.talanta.2021.122633.
[73] L. Pacheco-Londono, J. Ruiz-Caballero, M. Ramirez-Cedeno, R. Infante-Castillo,
N. Galan-Freyle, S. Hernandez-Rivera, Surface persistence of trace level deposits of
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
10
highly energetic materials, Molecules 24 (19) (2019) 3494, https://doi.org/
10.3390/molecules24193494.
[74] J. Rodriguez, J. Almirall, Continuous vapor sampling of volatile organic
compounds associated with explosives using capillary microextraction of volatiles
(CMV) coupled to a portable GC-MS, Forensic Chem. 26 (2021), 100380, https://
doi.org/10.1016/j.forc.2021.100380.
[75] T. Temple, S. Cipullo, E. Galante, M. Ladyman, N. Mai, T. Parry, F. Coulon, The
effect of soil type on the extraction of insensitive high explosive constituents using
four conventional methods, Sci. Total Environ. 668 (2019) 184–192, https://doi.
org/10.1016/j.scitotenv.2019.02.359.
[76] X. Yan, X. Ma, D. Zhong, Y. Li, D. Wu, Bar adsorptive microextraction device coated
with polyimide microsphere assembled by nanosheets combined with thermal
desorption-gas chromatography for trace analysis of nitroaromatic explosives in
environmental waters, J. Chromatgraphy A 1624 (2020), 461193, https://doi.org/
10.1016/j.chroma.2020.461193.
[77] A.A. Zelkowicz, D. Tenne, Y. Kirshenbaum, A. Rossin, T. Mishraki-Berkowtiz,
A method for rapid separation of perchlorate and nitrate salts in pyrotechnics and
improvised explosive mixtures, J. Forensic Ident. 70 (2) (2020) 231–244.
Commercial Explosives:
[78] F. Ali, M. Roy, B. Pingua, R. Mukherjee, L. Agarwal, P. Singh, Utilization of waste
lubricant oil in fuel phase of ANFO explosives: its eld applications and
environmental impact, Propellants, Explos. Pyrotech. 46 (9) (2021) 1397–1404,
https://doi.org/10.1002/prep.202100011.
[79] E. Anderson, C. Chiquete, S. Jackson, R. Chicas, M. Short, The comparative effect of
HMX content on the detonation performance characterization of PBX 9012 and
PBX 9501 high explosives, Combust. Flame 230 (2021), 111415, https://doi.org/
10.1016/j.combustame.2021.111415.
[80] A. Artyukhov, K. Berladir, J. Krmela, Technological basis for the production of
ammonium nitrate with a nanoporous surface and near-surface structure in
combined ow motion devices [Paper presentation], in: 2020 IEEE 10
th
International Conference Nanomaterials: Applications & Properties (NAP), Sumy,
Ukraine, 2020, November 9-13, https://doi.org/10.1109/
NAP51477.2020.9309534.
[81] Z. Arumugachamy, P. Pandian, J. Kadarkaraithangam, Experimentation on
minimum ignition temperature for boron blended reworks ash powder dust
cloud at normal and inert environmental conditions, Fire Mater. 46 (2) (2022)
410–419, https://doi.org/10.1002/fam.2977.
[82] Bao, P., Li, J., Han, Z., Ma, H., & Wang, Comparing the impact safety between two
HMX-based PBX with different binders. FirePhysChem, 1(3), 139-145. https://doi.
org/10.1016/j.fpc.2021.08.002.
[83] W.P. Bassett, B.P. Johnson, D.D. Dlott, Hot spot chemistry in several polymer-
bound explosives under nanosecond and shock conditions, Propellants, Explos.
Pyrotech. 45 (2) (2020) 338–346, https://doi.org/10.1002/prep.201900249.
[84] L. Bauer, M. Benz, T. Klapotke, T. Lenz, J. Stierstorfer, Polyazido-methyl
derivatives of prominent oxadiazole and isoxazole scaffolds: synthesis, explosive
properties, J. Org. Chem. 86 (9) (2021) 6371–6380, https://doi.org/10.1021/acs.
joc.1c00216.
[85] S. Bekhouche, D. Trache, S. Chelouche, A. Abdelaziz, A. Tarchoun, W. Benchaa,
S. Benameur, A. Mezroua, Investigation of the thermal aging behavior of
pyrotechnic tracer composition by spectroscopic techniques coupled with principal
component analysis, Propellants, Explos. Pyrotech. 46 (7) (2021) 1155–1166,
https://doi.org/10.1002/prep.202100019.
[86] V.M. Bel’skiy, D.V. Milchenko, A.L. Mikhaylov, Dependence of the detonability of
high explosives on the defectiveness of the explosive ller crystals, Russ. J. Phys.
Chem. B 15 (2) (2021) 285–290, https://doi.org/10.1134/S1990793121020159.
[87] P. Bhanot, A. Kalsi, S. Celin, S. Sahai, R. Tanwar, Advances in the photo-oxidation
of nitro-organic explosives present in the aqueous phase, in: M. Shah (Ed.),
Removal of Refractory Pollutants from Wastewater Treatment Plants, 2021,
pp. 233–248, https://doi.org/10.1201/9781003204442.
[88] H. Bian, Z. Shao, J. Liu, X. Zhang, Preparation and characterization of RDX based
composite energetic materials with a cellulose matrix, J. Appl. Polym. Sci. 138 (18)
(2021), 50329, https://doi.org/10.1002/app.50329.
[89] R. Bouriche, S. Tazibet, Y. Boutillara, R. Melouki, F. Benaliouche, Y. Boucheffa,
Characterization of titanium (IV) oxide nanoparticles loaded onto activated carbon
for the adsorption of nitrogen oxides produced from the degradation of
nitrocellulose, Anal. Lett. 54 (12) (2021) 1929–1942, https://doi.org/10.1080/
00032719.2020.1829637.
[90] H. Cao, X. Li, K. Jin, Q. Duan, H. Chai, J. Sun, Experimental and theoretical study
of the effect of typical halides on thermal decomposition products and energy
release of ammonium nitrate based on microcalorimetry and FTIR, Chem. Eng. J.
410 (2021), 128405, https://doi.org/10.1016/j.cej.2021.128405.
[91] Z.M. Cao, W.J. Zong, C.L. He, J.H. Huang, W. Liu, Z.Y. Wei, Thermal safety model
of HMX-based explosives in diamond turning, Mater. Des. 205 (2021), 109698,
https://doi.org/10.1016/j.matdes.2021.109698.
[92] T. Chatterjee, Chemical Kinetic Investigation of the Thermal Decomposition of
Energetic Materials: Ammonia Borane, Ammonium Perchlorate & hmx-Tagzt,
Doctoral dissertation, Pennsylvania State University, 2020. Penn State Electronic
Theses and Dissertations for Graduate School, https://etda.libraries.psu.edu/cata
log/18893tkc5157.
[93] B. Chauhan, A. Thakur, P. Soni, M. Kumar, Recrystallization of CL-20 to
ε
-polymorphic form, IOP Conf. Ser. Mater. Sci. Eng. 1033 (2021), 012056. http
s://iopscience.iop.org/article/10.1088/1757-899X/1033/1/012056/pdf.
[94] J. Chen, W. Zhang, Y. Chen, Y. Chen, M. Xian, J. Wang, C. Song, J. Xu, C. Yu,
G. Yang, Safe preparation of CuN
3
for improved ignition performance of Ni-Cr
bridge wire electric initiating explosive devices, Chem. Eng. J. 424 (2021),
130352, https://doi.org/10.1016/j.cej.2021.130352.
[95] C. Chiquete, S. Jackson, Detonation performance of the CL-20-based explosive LX-
19, Proc. Combust. Inst. 38 (3) (2021) 3661–3669, https://doi.org/10.1016/j.
proci.2020.07.089.
[96] A.J. Claydon, Resonant Acoustic Mixing of Polymer Bonded Explosives, Doctoral
Dissertation, Craneld University, 2020. Craneld CERES, http://dspace.lib.cran
eld.ac.uk/handle/1826/16337.
[97] K.M. de Souze, M.J.S. de Lemos, Detailed numerical modeling and simulation of
Fe
2
O
3
−Al thermite reaction, Propellants, Explos. Pyrotech. 46 (5) (2021) 806–824,
https://doi.org/10.1002/prep.202000290.
[98] L. Du, S. Jin, Z. Liu, Z. Li, L. Li, M. Wang, P. Nie, J. Wang, Shock initiation
investigation of a pressed Trinitrotoluene explosive, Propellants, Explos. Pyrotech.
46 (11) (2021) 1717–1722, https://doi.org/10.1002/prep.202100071.
[99] S. Duan, F. Ding, H. Sun, C. Xiao, S. Li, Q. Zhu, Construction of CL-20 surface layer
with different wetting properties and its effect on slurry rheological behavior and
mechanical sensitivities, Propellants, Explos. Pyrotech. 46 (12) (2021) 1837–1843,
https://doi.org/10.1002/prep.202100129.
[100] E. Elbasuney, M. Yehia, A. Hamed, M. Mokhtar, M. Gobara, A. Saleh, E. Elsaka,
G. El-Sayyad, Synergistic catalytic effect of thermite nanoparticles on HMX
thermal decomposition, J. Inorg. Organomet. Polym. Mater. 31 (6) (2021)
2293–2305, https://doi.org/10.1007/s10904-021-01916-3.
[101] A.P. Ershov, I.A. Rubtsov, Detonation of low-density explosives, Combust. Explos.
Shock Waves 55 (1) (2019) 114–120, https://doi.org/10.1134/
S0010508219010131.
[102] A.P. Ershov, V.V. Andreev, A.O. Kashkarov, Y.L. Luk’yanov, D.A. Medvedev, E.
R. Pruuel, I.A. Rubtsov, N.P. Satonkina, S.A. Solov’ev, Detonation of ultrane
explosives, Combust. Explos. Shock Waves 57 (3) (2021) 356–363, https://doi.
org/10.1134/S0010508219010131.
[103] H. Fang, Y. Cheng, C. Tao, H. Su, Y. Gong, Y. Cheng, Z. Shen, Effects of content
and particle size of cenospheres on the detonation characteristics of emulsion
explosives, J. Energetic Mater. 39 (2) (2021) 197–214, https://doi.org/10.1080/
07370652.2020.1770896.
[104] Z.T. Fondren, N.S. Fondren, B.G. McKenna, B.L. Weeks, Crystallization kinetics of
pentaerythritol tetranitrate (PETN) thin lms on various materials, Appl. Surf.
Sci. 522 (2020), 146350, https://doi.org/10.1016/j.apsusc.2020.146350.
[105] H.G. Gallagher, J.N. Sherwood, R.M. Vrcelj, Microhardness indentation studies of
2-4-6 Trinitrotoluene, Propellants, Explos. Pyrotech. 46 (11) (2021) 1733–1739,
https://doi.org/10.1002/prep.202100132.
[106] Y. Gao, W. Yang, R. Hu, J. Zhou, Y. Zhang, Validation of CL-20-based propellant
formulation for photopolymerization 3D printing, Propellants, Explos. Pyrotech.
46 (12) (2021) 1844–1848, https://doi.org/10.1002/prep.202100196.
[107] A. Giam, W. Toh, V. Ben Chye Tan, Numerical review of Jones-Wilkins-Lee
parameters for trinitrotoluene explosive in free-air blast, J. Appl. Mech. 87 (5)
(2020), https://doi.org/10.1115/1.4046243, 051008.
[108] P.E. Hande, A.B. Samui, Determination of Diphenyl Amine (DPA) stabilizer in
propellants- a mini review, Propellants, Explos. Pyrotech. 46 (11) (2021)
1638–1644, https://doi.org/10.1002/prep.202100210.
[109] M. Herman, C. Woznick, S. Scott, J. Tisdale, J. Yeager, A. Duque, Composite
binder, processing, and particle size effects on mechanical properties of non-
hazardous high explosive surrogates, Powder Technol. 391 (2021) 442–449,
https://doi.org/10.1016/j.powtec.2021.06.009.
[110] M.L. Hobbs, M.J. Kaneshige, S. Coronel, Vented and sealed cookoff of powdered
and pressed
ε
-CL-20, J. Energetic Mater. 39 (4) (2021) 432–451, https://doi.org/
10.1080/07370652.2020.1814448.
[111] S. Hosseini, M. Nouri, M. Bahri, E. Bazrafshan, Investigation of the effective
parameters on the preparation of ammonium perchlorate particles using a cooling
crystallization process, Propellants, Explos. Pyrotech. 46 (7) (2021) 1060–1069,
https://doi.org/10.1002/prep.202000307.
[112] E. Iglesias, T. Rowe, K. Fernandez, S. Chocron, J. Wilkerson, Mechanical response
of carbon nanotube reinforced particulate composites with implications for
polymer bonded explosives, J. Compos. Mater. (2021), https://doi.org/10.1177/
0021998321990863.
[113] E. Koch, Insensitive high explosives: V. Ballistic properties and vulnerability of
nitroguanidine based propellants, Propellants, Explos. Pyrotech. 46 (2) (2021)
174–206, https://doi.org/10.1002/prep.202000220.
[114] B. Koroglu, J. Crowhurst, E. Kahl, J. Moore, A. Racoveanu, H. Mason, D. Weisz,
J. Reynolds, A. Burnham, Experimental investigation of the thermal
decomposition pathways and kinetics of TATB by isotopic substitution,
Propellants, Explos. Pyrotech. 46 (9) (2021) 1352–1366, https://doi.org/
10.1002/prep.202100082.
[115] A. Korotkikh, I. Sorokin, Effect of Me/B-powder on the ignition of high-energy
materials, Propellants, Explos. Pyortech. 46 (11) (2021) 1709–1716, https://doi.
org/10.1002/prep.202100180.
[116] K. Krejcir, J. Adam, R. Buldra, Modeling of smokeless powders shelf life using
results of multi-temperature study on stabilizer consumption, in: [Conference
Presentation]. 2021 International Conference on Military Technologies (ICMT),
Brno, Czech Republic, 2021, https://doi.org/10.1109/
ICMT52455.2021.9502810.
[117] K. Lee, A. Hernandez, D. Stewart, S. Lee, Data-driven blended equations of state
for condensed-phase explosives, Combust. Theor. Model. 25 (3) (2021) 413–435,
https://doi.org/10.1080/13647830.2021.1887524.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
11
[118] E. Lennert, C. Bridge, Correlation and analysis of smokeless powder, smokeless
powder residues, and lab generated pyrolysis products via GC–MS, Forensic
Chem. 23 (2021), 100316, https://doi.org/10.1016/j.forc.2021.100316.
[119] M. Li, Y. Gao, R. Hu, Q. Wang, W. Yang, Thermal study of APNIMMO/CL-20
based propellants fabricated by 3D printing, Thermochim. Acta 706 (2021),
179072, https://doi.org/10.1016/j.tca.2021.179072.
[120] D. Liu, P. Zhao, S. Chan, H. Hng, L. Chen, Effects of nano-sized aluminum on
detonation characteristics and metal acceleration for RDX-based aluminized
explosive, Defence Technol. 17 (2) (2021) 327–337, https://doi.org/10.1016/j.
dt.2020.12.001.
[121] J. Liu, Y. Dong, X. An, P. Ye, Q. Sun, Q. Gao, Reaction degree of composition B
explosive with multi-layered compound structure protection subjected to
detonation loading, Defence Technol. 17 (2) (2020) 315–326, https://doi.org/
10.1016/j.dt.2020.02.004.
[122] E. Lobry, J. Berthe, J. Hubner, F. Achnell, D. Spitzer, Tuning the oxygen balance
of energetic composites: crystallization of AND/secondary explosives mixtures by
spray ash evaporation, Propellants, Explos. Pyrotech. 46 (3) (2021) 398–412,
https://doi.org/10.1002/prep.202000090.
[123] D. Luscher, M. Cawkwell, K. Ramos, R. Sandberg, C. Bolme, Interpreting
experimental results from shock impacts on single crystal PETN in the context of
continuum models, Propellants, Explos. Pyrotech. 45 (2) (2020) 284–294,
https://doi.org/10.1002/prep.201900228.
[124] X. Mao, Y. Zheng, F. Shen, Y. Wang, X. Wang, Y. Li, A method for calculating the
JWL equation of state parameters for the detonation products of CL-20-based
aluminized explosives, J. Energetic Mater. 40 (2) (2020) 182–205, https://doi.
org/10.1080/07370652.2020.1854370.
[125] F. Marrs, V. Manner, A. Burch, J. Yeager, G. Brown, L. Kay, R. Buckley,
C. Anderson-Cook, Cawkwell, Sources of variation in drop-weight impact
sensitivity testing of the explosive pentaerythritol tetranitrate, Ind. Eng. Chem.
Res. 60 (13) (2021) 5024–5033, https://doi.org/10.1021/acs.iecr.0c06294.
[126] J. Meng, Y. Luo, G. Niu, H. Wang, F. Yang, Effect of additives on the interface
binding strength of DNAN/HMX melt-cast explosives, J. Energetic Mater. 38 (4)
(2020) 467–482, https://doi.org/10.1080/07370652.2020.1734689.
[127] P. Mertuszka, K. Fulawka, M. Pytlik, M. Szastok, The inuence of temperature on
the detonation velocity of selected emulsion explosives, J. Energetic Mater. 38 (3)
(2020) 336–347, https://doi.org/10.1080/07370652.2019.1702739.
[128] C. Miller, E. Johnson, R. Sausa, J. Orlicki, J. Sabatini, A safer synthesis of the
explosive precursors 4-Aminofurazan-3-Carboxylic acid and its ethyl ester
derivative, Org. Process Res. Dev. 24 (4) (2020) 599–603, https://doi.org/
10.1021/acs.oprd.0c00068.
[129] N. Mohan, D. Luscher, M. Cawkwell, F. Addessio, K. Ramos, Modeling
microstructural effects on heterogeneous temperature elds within
polycrystalline explosives, Propellants, Explos. Pyrotech. 46 (5) (2021) 713–722,
https://doi.org/10.1002/prep.202000282.
[130] K. Morrison, E. Denis, M. Nims, A. Broderick, R. Fausey, H. Rose, P. Gongwer, R.
G. Ewing, Vapor pressures of RDX and HMX explosives measures at and near
room temperature: 1,3,5-Trinitro-1,3,5-triazinane and 1,3,5,7-Tetranitro-1,3,5,7-
tetrazocane, J. Phys. Chem. A 125 (5) (2021) 1279–1288, https://doi.org/
10.1021/acs.jpca.0c10409.
[131] E. Novitskaya, J.P. Kelly, S. Bhaduri, O.A. Graeve, A review of solution
combustion synthesis: an analysis of parameters controlling powder
characteristics, Int. Mater. Rev. 66 (3) (2021) 188–214, https://doi.org/10.1080/
09506608.2020.1765603.
[132] G.R. Parker, D.S. Eastwood, M. Storm, K. Vitharana, E.M. Heatwole, I. Lopez-
Pulliam, R.M. Broilo, P.M. Dickson, A. Martinez, C. Rau, N.K. Bourne, 4D micro-
scale, phase-contrast X-ray imaging and computed tomography of HMX-based
polymer-bonded explosives during thermal runaway, Combust. Flame 226 (2021)
478–489, https://doi.org/10.1016/j.combustame.2020.12.025.
[133] G. Plassart, D. Picart, M. Gratton, A. Frachon, M. Caliez, Quasistatic mechanical
behavior of HMX- and TATB-based plastic-bonded explosives, Mech. Mater. 150
(2020), 103561, https://doi.org/10.1016/j.mechmat.2020.103561.
[134] Q. Pontalier, J. Loiseau, S. Goroshin, F. Zhang, D.L. Frost, Blast enhancement from
metalized explosives, Shock Waves 31 (3) (2021) 203–230. https://link.springer.
com/article/10.1007/s00193-021-00994-z.
[135] J. Quaresma, L. Deimling, J. Campos, R. Mendes, Characterization of the
detonation pressure of a PETN based PBX with the optical active method,
Propellants, Explos. Pyrotech. 46 (6) (2021) 875–882, https://doi.org/10.1002/
prep.202000195.
[136] M. Samsonov, J. Rysavy, A. Ruzicka, R. Matyas, Investigation of intramolecular
interactions in the crystals of tetrazene explosive and its salts, Cryst. Growth Des.
21 (11) (2021) 6567–6575, https://doi.org/10.1021/acs.cgd.1c01044.
[137] D.Q. Sang, N.T. Anh, Several explosion behaviours of the emulsion explosives
sensitized by cenospheres, Vietnam J. Chem. 58 (3) (2020) 380–385, https://doi.
org/10.1002/vjch.202000003.
[138] S. Selvakumar, G. Sreenivasa, K.A. Reddy, Diffusion of labile chemical species in
HTPB and HTPB-XT solid propellants and its effect over solid rocket moto
properties on aging- a study, Propellants, Explos. Pyrotech. 46 (5) (2021)
782–790, https://doi.org/10.1002/prep.202000253.
[139] P.A. Shirbhate, M.D. Goel, A critical review of TNT equivalence factors of various
explosives, in: S.K. Saha, M. Mukherjee (Eds.), Recent Advances in Computational
Mechanics and Simulations, 2020, pp. 471–478, https://doi.org/10.1007/978-
981-15-8138-0_36.
[140] A. Singh, P. Singla, S. Sahoo, P. Soni, Compatibility and thermal decomposition
behavior of an epoxy resin with some energetic compounds, J. Energetic Mater.
38 (4) (2020) 432–444, https://doi.org/10.1080/07370652.2020.1727997.
[141] M. Suceska, C.H.Y. Serene, Z. Qingling, M. Dobrilovic, B. Stimac, Predication of
cylinder wall velocity proles for ANFO explosives combining thermochemical
calculation, gurney model, and hydro-code, Propellants, Explos. Pyrotech. 46 (2)
(2021) 253–261, https://doi.org/10.1002/prep.202000215.
[142] R. Togashi, M. Kohga, Preparation of ne ammonium perchlorate by employing
dual-sonic premixer: freeze-drying method, Propellants, Explos. Pyrotech. 46 (6)
(2021) 855–859, https://doi.org/10.1002/prep.202100033.
[143] D. Trache, A. Tarchoun, S. Chelouche, K. Khimeche, New insights on the
compatibility of nitrocellulose with Aniline-based compounds, Propellants,
Explos. Pyrotech. 44 (8) (2019) 970–979, https://doi.org/10.1002/
prep.201800269.
[144] J.W. Tringe, D.M. Stobbe, G.R. Parker, L. Smilowitz, B.F. Henson, M.R. De Have,
A.J. Ruch, B.W. White, J.E. Reaugh, K.S. Vandersall, Observation of asymmetric
explosive density evolution in the deagration-to-detonation transition for porous
explosives, J. Appl. Phys. 129 (3) (2021), https://doi.org/10.1063/5.0031340,
035901.
[145] E. Wainwright, S. Dean, S. Lakshman, T. Weihs, J. Gottfried, Evaluating
compositional effects on the laser-induced combustion and shock velocities of Al/
Zr-based composite fuels, Combust. Flame 213 (2020) 357–368, https://doi.org/
10.1016/j.combustame.2019.12.009.
[146] T. Wang, H. Gao, J. Shreeve, Functionalized tetrazole energetics: a route to
enhanced performance, Zeitschrift fur anorganische und allgemeine Chemie 647
(4) (2021) 157–191, https://doi.org/10.1002/zaac.202000361.
[147] Y. Wang, H. Ma, Z. Shen, J. Chen, L. Huang, Inuence of different gases on the
performance of gas-storage glass microballoons in emulsion explosives,
Propellants, Explos. Pyrotech. 45 (10) (2020) 1566–1572, https://doi.org/
10.1002/prep.202000105.
[148] F. Xiao, Z. Liu, T. Liang, R. Yang, J. Li, P. Luo, Establishing the interface layer on
the aluminum surface through the self-assembly of tannic acid (TA): improving
the ignition and combustion properties of aluminum, Chem. Eng. J. 420 (Part 3)
(2021), 130523, https://doi.org/10.1016/j.cej.2021.130523.
[149] Y. Xiao, L. Chen, K. Yang, D. Geng, J. Lu, J. Wu, Mechanism of the improvement
of the energy of host–guest explosives by incorporation of small guest molecules:
HNO
3
and H
2
O
2
promoted C–N bond cleavage of the ring of ICM-102, Sci. Rep. 11
(2021), 10559, https://doi.org/10.1038/s41598-021-89939-1.
[150] W. Xu, F. Guo, X. Liang, T. Yan, Y. Xu, J. Deng, Y. Li, J. Wang, Dynamic response
properties of polymer bonded explosives under different excitation by
deceleration, Mater. Des. 206 (2021), 109810, https://doi.org/10.1016/j.
matdes.2021.109810.
[151] W. Xu, C. Wang, J. Yuan, W. Goh, T. Li, Investigation on energy output structure
of explosives near-ground explosion, Defence Technol. 16 (2) (2020) 290–298,
https://doi.org/10.1016/j.dt.2019.08.004.
[152] W. Yang, R. Hu, M. Li, M. Xu, Z. Yang, L. Meng, Thermal decomposition of
photocurable energetic APNIMMO polymer, Propellants, Explos. Pyrotech. 46
(12) (2021) 1767–1771, https://doi.org/10.1002/prep.202100239.
[153] X. Yang, X. Tian, K. Zhao, J. Dong, Y. Huang, B. Feng, X. Wang, Study on the
explosion eld temperature and gas products of FOX-7/RDX based aluminized
explosives, J. Phys. Conf. 1721 (2021), https://doi.org/10.1088/1742-6596/
1721/1/012016, 012016.
[154] Y. Yang, Z. Duan, L. Zhang, Z. Zhang, Z. Ou, F. Huang, Measurements of reaction
zone and determination of the equation of state parameters of DNAN-based melt-
cast aluminized explosive, J. Energetic Mater. 38 (2) (2020) 240–251, https://
doi.org/10.1080/07370652.2019.1679280.
[155] Z. Yang, P. Zhu, Q. Zhang, J. Shi, K. Wang, R. Shen, Microcrystalline PETN
prepared using microuidic recrystallization platform and its performance
characterization, Propellants, Explos. Pyrotech. 46 (7) (2021) 1097–1106,
https://doi.org/10.1002/prep.202000298.
[156] C. Zeng, Z. Yang, Y. Wen, W. He, J. Zhang, J. Wang, C. Huang, F. Gong,
Performance optimization of core-shell HMX@(Al@GAP) aluminized explosives,
Chem. Eng. J. 407 (2021), 126360, https://doi.org/10.1016/j.cej.2020.126360.
[157] W. Zhang, H. Xia, R. Yu, J. Zhang, K. Wang, Q. Zhang, Synthesis and properties of
3,6-Dinitropyrazolo[4,3-c]-pyrazole (DNPP) Derivatives, Propellants, Explos.
Pyrotech. 45 (4) (2020) 546–553, https://doi.org/10.1002/prep.201900205.
[158] W. Zhang, H. Xia, R. Yu, J. Zhang, K. Wang, Q. Zhang, Synthesis and properties of
3,6-Dinitropyrazolo[4,3-c]-pyrazole (DNPP) Derivatives, Propellants, Explos.
Pyrotech. 45 (4) (2020) 546–553, https://doi.org/10.1002/prep.201900205.
[159] X. Zhao, Z. Wang, X. Qi, S. Song, S. Huang, K. Wang, Q. Zhang, Hunting for
energetic complexes as hypergolic promoters for green propellants using
hydrogen peroxide as oxidizer, Inorg. Chem. 60 (22) (2021) 17033–17039,
https://doi.org/10.1021/acs.inorgchem.1c02149.
[160] Y. Zhao, Z. Mei, F. Zhao, S. Xu, X. Ju, Atomic perspectives revealing the evolution
behavior of aluminum nanoparticles in energetic materials, Appl. Surf. Sci. 563
(2021), 150296, https://doi.org/10.1016/j.apsusc.2021.150296.
[161] X. Zhou, Y. Mao, D. Zheng, L. Zhong, R. Wang, B. Gao, D. Wang, 3D printing of
RDX-based aluminized high explosives with gradient structure, signicantly
altering the critical dimensions, J. Mater. Sci. 56 (15) (2021) 9171–9182, https://
doi.org/10.1007/s10853-021-05869-3.
[162] Z. Zhou, J. Chen, H. Yuan, J. Nie, Inuence of Al content and surrounding
medium on the energy output of cyclotrimethylenetrinitramine (RDX)/Al/wax
explosives, J. Appl. Phys. 129 (7) (2021), https://doi.org/10.1063/5.0032963,
074904.
[163] N. Zohari, S. Roosta, A. Shariati, The new descriptors effective on the detonation
performance of aluminized explosives, Zeitschrift fur anorganische und
allgemeine (2020), https://doi.org/10.1002/zaac.202000068.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
12
Homemade Explosives:
[164] J. Baldaino, D. Ommen, Saunders, J. Hietpas, J. Buscaglia, Characterization and
differentiation of aluminum powders used in improvised explosive devices. Part
1: proof of concept of the utility of particle micromorphometry, J. Forensic Sci. 66
(1) (2021) 83–95, https://doi.org/10.1111/1556-4029.14564.
[165] K. Bezemer, L. McLennan, L. van Duin, C. Kuijpers, M. Koeberg, J. van den
Elshout, A. van der Heijden, T. Busby, A. Yevdokimov, P. Schoenmakers, J. Smith,
J. Oxley, A. can Asten, Chemical attribution of the home-made explosive ETN –
Part I: liquid chromatography-mass spectrometry analysis of partially nitrated
erythritol impurities, Forensic Sci. Int. 307 (2020), 110102, https://doi.org/
10.1016/j.forsciint.2019.110102.
[166] J. D’Uva, D. DeTata, R. Fillingham, R. Dunsmore, S.W. Lewis, Synthesis and
characterisation of homemade urea nitrate explosive from commercial sources of
urea, Forensic Chem. 26 (2021), 100369, https://doi.org/10.1016/j.
forc.2021.100369.
[167] C. Freye, W. Kinman, C. Tiemann, D. McDonald, V. Manner, P. Bowden,
B. Tappan, M. Greeneld, Linking chemical precursors to the synthesis of
Erythritol Tetranitrate, Forensic Chem. (2020), https://doi.org/10.1016/j.
forc.2020.100246.
[168] T. Horvath, I. Ember, Characteristics of homemade explosive materials and their
possibilities of their identication, Rev. Acad. Fortelor Terestre 26 (2) (2021)
100–107, https://doi.org/10.2478/raft-2021-0015.
[169] L. Li, W. Gu, B. Laiwang, J. Jiang, J. Jiang, C. Shu, Effects of 1-butyl-3-metyli-
midazolium tetrauoroborate on the thermal hazard of triacetone triperoxide
(TATP), Process Saf. Environ. Protect. 149 (2021) 518–525, https://doi.org/
10.1016/j.psep.2020.11.008.
[170] R. Matyas, J. Chylkova, Study of TATP: impact of TATP sumblimation on the
content of residual acid in TATP crystals and on TATP’s properties, Propellants,
Explos. Pyrotech. 45 (5) (2020) 833–836, https://doi.org/10.1002/
prep.201900375.
[171] I. Oluwoye, M. Altarawneh, J. Gore, B.Z. Dlugogorski, Burning properties of redox
crystals of ammonium nitrate and saccharides, Combust. Flame 213 (2020)
132–139, https://doi.org/10.1016/j.combustame.2019.11.030.
[172] C.C. Pye, Chemical safety: TATP formation in 2-Propanol, ACS Chem. Health Saf.
27 (5) (2020), https://doi.org/10.1021/acs.chas.0c00061, 279-279.
[173] K. Stark, J. Bascooke, C. Gibson, C. Lenehan, C. Bonnar, M. Fitzgerald,
K. Kirkbridge, Xylitol pentanitrate—its characterization and analysis, Forensic
Sci. Int. (2020), https://doi.org/10.1016/j.forsciint.2020.110472.
[174] J. Stromberg, M. Castillo Rolon, TATP headspace study, Propellants, Explos.
Pyrotech. 47 (2) (2022), e202100255, https://doi.org/10.1002/prep.202100255.
[175] L. Tang, H. Li, Y. Tan, T. Liu, Z. Yang, Solution chemistry and phase solubility
diagrams of CL-20/MTNP energetic cocrystals, CrystEngComm 22 (12) (2020)
2173–2182, https://doi.org/10.1039/C9CE01724K.
[176] J. Zhou, L. Ding, F. Zhao, B. Wang, J. Zhang, Thermal studies of novel molecular
perovskite energetic material (C
6
H
14
N
2
)[NH
4
(ClO
4
)
3
], Chin. Chem. Lett. 31 (2)
(2020) 554–558, https://doi.org/10.1016/j.cclet.2019.05.008.
Other Explosives including Novel or New Explosives:
[177] B.M. Abraham, G. Waitheeswaran, From van der Waals interactions to structures
and properties of 3,-dinitro-5,-bis-1,2,4-triazole-1,-diolate based energetic
materials, Mater. Chem. Phys. 240 (2020), 122175, https://doi.org/10.1016/j.
matchemphys.2019.122175.
[178] B.M. Abraham, N. Yedukondalu, G. Vaitheeswaran, High-pressure structural and
electronic properties of potassium-based green primary explosives, J. Electron.
Mater. 50 (4) (2021) 1581–1590, https://doi.org/10.1007/s11664-020-08262-z.
[179] J. Agrawal, V. Dodke, Some novel high energy materials for improved
performance, Zeitschrift fur anorganische und allgemeine Chemie 647 (19)
(2021) 1856–1882, https://doi.org/10.1002/zaac.202100144.
[180] E. Anderson, C. Chiquete, S. Jackson, Experimental measurement of energy
release from an initiating layer in an insensitive explosive, Proc. Combust. Inst. 38
(3) (2021) 3733–3740, https://doi.org/10.1016/j.proci.2020.07.150.
[181] M. Anniyappan, K. Varma, R. Amit, J. Nair, 1-methyl-2,4,5-trinitroimidazole
(MTNI), a melt-cast explosive: synthesis and studies on thermal behavior in
presence of explosive ingredients, J. Energetic Mater. (2019), https://doi.org/
10.1080/07370652.2019.1669735.
[182] J. Bai, E. Yao, L. Xiao, J. Zhou, Y. Ren, F. Zhao, W. Shen, Synthesis, thermal
behavior and energy performance of nitroguanidyl-functionalized energetic
materials, Propellants, Explos. Pyrotech. 46 (8) (2021) 1276–1285, https://doi.
org/10.1002/prep.202000338.
[183] Z. Bai, Z. Duan, L. Wen, Z. Zhang, Z. Ou, F. Huang, Embedded manganin gauge
measurements and modeling of shock initiation in HMX-based PBX explosives
with different particle sizes and porosities, Propellants, Explos. Pyrotech. 45 (6)
(2020) 9089–9920, https://doi.org/10.1002/prep.201900376.
[184] L. Bao, P. Lv, T. Fei, Y. Liu, C. Sun, S. Pang, Crystal structure and explosive
performance of a new CL-20/benzaldehyde cocrystal, J. Mol. Struct. 1215 (2020),
128267, https://doi.org/10.1016/j.molstruc.2020.128267.
[185] H. Bian, J. Wei, Y. Zhou, J. Liu, Z. Shao, B. Wang, Z. Li, Preparation and
characterization of cellulose/RDX composite aerogel spheres, Propellants, Explos.
Pyrotech. 44 (12) (2019) 1613–1620, https://doi.org/10.1002/prep.201900108.
[186] S. Bondarchuk, Modeling of explosives: 1,4,2,3,5,6-dioxatetrazinane as a new
green energetic material with enhanced performance, J. Phys. Chem. Solid. 142
(2020), 109458, https://doi.org/10.1016/j.jpcs.2020.109458.
[187] W. Cao, Q. Song, D. Gao, Y. Han, S. Xu, X. Lu, X. Guo, Detonation characteristics
of an aluminized explosive added with boron and magnesium hydride,
Propellants, Explos. Pyrotech. 44 (11) (2019) 1393–1399, https://doi.org/
10.1002/prep.201900164.
[188] L. Chen, X. Cao, Y. Chen, Q. Li, Y. Wang, X. Wang, Y. Qin, X. Cao, J. Liu, Z. Shao,
W. He, Biomimetric-inspired one-step strategy for improvement of interfacial
interactions in cellulose nanobers by modication of the surface of nitramine
explosives, Langmuir 37 (28) (2021) 8486–8497, https://doi.org/10.1021/acs.
langmuir.1c00874.
[189] L. Chen, X. Cao, J. Gao, W. He, J. Liu, Y. Wang, X. Zhou, J. Shen, B. Wang, Y. He,
D. Tan, Nitrated bacterial cellulose-based energetic nanocomposites as
propellants and explosives for military applications, ACS Appl. Nano Mater. 4 (2)
(2021) 1906–1915, https://doi.org/10.1021/acsanm.0c03263.
[190] Y. Cheng, X. Chen, N. Yang, Y. Zhang, H. Ma, Z. Guo, Sandwich-like low-sensitive
nitroamine explosives stabilized by hydrogen bonds and
π
–
π
stacking interactions,
CrystEngComm 23 (9) (2021) 1953–1960, https://doi.org/10.1039/
D0CE01882A.
[191] Q. Cui, J. Liu, H. Ren, X. Jiang, Preparation of explosive/porous aluminum and its
detonation property, Ferroelectrics 549 (1) (2019) 296–303, https://doi.org/
10.1080/00150193.2019.1592512.
[192] X. Deng, B. Wang, Peridynamic modeling of dynamic damage of polymer bonded
explosive, Comput. Mater. Sci. 173 (2020), 109405, https://doi.org/10.1016/j.
commatsci.2019.109405.
[193] A.M. Djerdjev, P. Priyananda, J. Gore, J.K. Beattie, C. Neto, B.S. Hawkett, Safer
emulsion explosives resulting from NO
x
inhibition, Chem. Eng. J. 403 (2020),
125713, https://doi.org/10.1016/j.cej.2020.125713.
[194] Y. Du, Z. Qu, H. Wang, H. Cui, X. Wang, Review on the synthesis and performance
for 1,3,4-Oxadiazole-based energetic materials, Propellants, Explos. Pyrotech. 46
(6) (2021) 860–874, https://doi.org/10.1002/prep.202000318.
[195] S. Duan, D. Wang, Q. Jiang, C. Xiao, H. Liu, Y. Guo, S. Li, Q. Zhu, Oxidant-
accelerated polydopamine modication process for the fast fabrication of PDA on
HMX with improved mechanical stability, Propellants, Explos. Pyrotech. 46 (5)
(2021) 751–757, https://doi.org/10.1002/prep.202000095.
[196] W. Dunju, G. Changping, W. Ruihao, Z. Baojui, G. Bing, N. Fude, Additive
manufacturing and combustion performance of CL-20 composites, J. Mater. Sci.
55 (7) (2020) 2836–2845, https://doi.org/10.1007/s10853-019-04209-w.
[197] S. Elbasuney, A.M.A. Elghafour, M. Radwan, A. Fahd, H. Mostafa, R. Sadek,
A. Motaz, Novel aspects for thermal stability studies and shelf life assessment of
modied double-base propellants, Defence Technol. 15 (3) (2019) 300–305,
https://doi.org/10.1016/j.dt.2018.09.005.
[198] S. Elbasuney, A. Hamed, S. Ismael, M. Mokhtar, M. Gobara, Novel high energy
density material based on metastable intermolecular nanocomposite, J. Inorg.
Organomet. Polym. Mater. 30 (10) (2020) 3980–3988, https://doi.org/10.1007/
s10904-020-01539-0.
[199] S. Elbasuney, M. Yehia, A. Hamed, M. Mokhtar, M. Gobara, A. Saleh, E. Elsaka,
G. El-Sayyad, Synergistic catalytic effect of thermite nanoparticles on HMX
thermal decomposition, J. Inorg. Organomet. Polym. Mater. 31 (6) (2021)
2293–2305, https://doi.org/10.1007/s10904-021-01916-3.
[200] A. Elbeih, A.K. Hussein, T. Elshenawy, S. Zeman, S.M. Hammad, A. Baraka, M.
A. Elsayed, M. Gobara, H. Tantawy, Enhancing the explosive characteristics of a
Semtex explosive by involving admixtures of BCHMX and HMX, Defence Technol.
16 (2) (2019) 487–492, https://doi.org/10.1016/j.dt.2019.05.012.
[201] M.A. Englert-Erickson, M.D. Holmes, G.R. Parker, C.C. Schmidt, B.A. Meyer, Gas
transport in the insensitive high explosives PBX 9502, Propellants, Explos.
Pyrotech. 45 (6) (2020) 942–949, https://doi.org/10.1002/prep.201900337.
[202] H. Fang, Y. Cheng, C. Tao, Y. Yao, H. Ma, T. Han, Z. Shen, Y. Chen, Synthesis and
characterization of pressure agent with double-layer core/shell hollow-structure
for emulsion explosive, Propellants, Explos. Pyrotech. 45 (5) (2020) 798–806,
https://doi.org/10.1002/prep.201900288.
[203] N.S. Fondren, Z.T. Fondren, D.K. Unruh, A. Maiti, A. Cozzolino, Y.J. Lee, L. Hope-
Weeks, B.L. Weeks, Study of physicochemical and explosive properties of a 2,4,6-
Trinitrotoluene/Aniline Cocrystal Solvate, Cryst. Growth Des. 20 (1) (2020)
116–129, https://doi.org/10.1021/acs.cgd.9b00779.
[204] E. Forrest, R. Knepper, M. Brumbach, M. Rodrigeuz, K. Archuleta, M. Marquez,
A. Tappan, Engineering the microstructure and morphology of explosive lms via
control of interfacial energy, ACS Appl. Mater. Interfaces 13 (1) (2021)
1670–1681, https://doi.org/10.1021/acsami.0c10193.
[205] J. Fronabgarger, J. Pattison, M. Williams, Alternatives to existing primary
explosives, Int. J. Energ. Mater. Chem. Propuls. 20 (3) (2021) 65–79, https://doi.
org/10.1615/intjenergeticmaterialschemprop.2021038576.
[206] E.B.F. Galante, N. Mai, M.K. Ladyman, P.P. Gill, T.J. Temple, F. Coulon,
Evaluation of small-scale combustion of an insensitive high explosive formulation
containing 3-nitro-1,2,4-triazol-5-one (NTO), 2,4-dinitroanisole (DNAN), and
1,3,5-trinitroperhydro-1,3,5-triazine (RDX), J. Energetic Mater. 39 (1) (2020)
85–99, https://doi.org/10.1080/07370652.2020.1762798.
[207] G. George, S. Jones, J. Buchanan, M. Cuddy, E. Alberts, R. Crouch, T. Thornell,
L. Moores, Physicochemical parameters of insensitive munition constituent
MethyInitroguanidine (MeNQ) of importance to environmental fate and
transport, Propellants, Explos. Pyrotech. 46 (8) (2021) 1180–1187, https://doi.
org/10.1002/prep.202100053.
[208] M. Gettings, M. Zeller, E. Byrd, D. Piercey, Synthesis and characterization of salts
of the 3,6-Dinitro-[1,2,4]triazolo[4,3-b][1,2,4]triazolate Anion: insensitive
energetic materials available from economical precursors, Zeitschrift fur
anorganische und allgemein Chemie 645 (20) (2019) 1197–1204, https://doi.
org/10.1002/zaac.201900164.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
13
[209] A. Gezerman, B. Corbacioglu, Development of a new ammonium nitrate
composition: an attempt to prevent misuse of explosives for antisocial activities,
J. Chin. Inst. Eng. 43 (1) (2020) 101–110, https://doi.org/10.1080/
02533839.2019.1676650.
[210] I.D. Giles, G.H. Imler, J.R. Deschamps, Structure and properties of 1,4-bis
(Trinitromethyl)Benzene, Propellants, Explos. Pyrotech. 45 (9) (2020)
1487–1489, https://doi.org/10.1002/prep.201900394.
[211] J.L. Gottfried, Higher Time Resolution LASEM, Part Iii: Inuence of Laser-Induced
Plasma Chemistry on the Laser-Induced Shock Waves of Aluminized Explosives (ARL-
TR-9205), Army Research Laboratory, 2020. https://apps.dtic.mil/sti/citations/
AD1108551.
[212] M. Gratzke, S. Cudzlio, Energetic derivatives of nitroguanidine- synthesis and
properties, Propellants, Explos. Pyrotech. 46 (10) (2021) 1509–1525, https://doi.
org/10.1002/prep.202100092.
[213] H. Gu, G. Cheng, H. Yang, Tricyclic nitrogen-rich explosives with a planar
backbone: bis(1,2,4-triazolyl)-1,2,3-triazoles as potential stable green gas
generants, New J. Chem. 45 (17) (2021) 7758–7765, https://doi.org/10.1039/
D1NJ00076D.
[214] P. Guerieri, B. Fuchs, W. Churaman, Feasibility of detonation in porous Silicon
nanoenergetics, Propellants, Explos. Pyrotech. 46 (8) (2021) 1260–1275, https://
doi.org/10.1002/prep.202000311.
[215] H. Guo, S. Xu, H. Gao, X. Geng, C. An, C. Xu, J. Wang, CL-20 based ultraviolet
curing explosive composite with high performance, Propellants, Explos. Pyrotech.
44 (8) (2019) 935–940, https://doi.org/10.1002/prep.201900133.
[216] L. Gutowswki, T. Golot, W. Trzcinski, M. Szala, Synthesis and energetic
properties of 1,3,7,9-Tetranitrobenzo[c]Cinnoline-5-Oxide (TNBCO), Propellants,
Explos. Pyrotech. 44 (12) (2019) 1509–1514, https://doi.org/10.1002/
prep.201900183.
[217] B.W. Hamilton, Krooblawd, M.M. Islan, A. Strachan, Sensitivity of the shock
initiation threshold of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) to nuclear
quantum effects, J. Phys. Chem. C 123 (36) (2019) 21969–21981, https://doi.
org/10.1021/acs.jpcc.9b05409.
[218] G. Hao, H. Li, C. Mao, Y. Hu, L. Xiao, G. Zhang, J. Liu, W. Jiang, Preparation of
Nano-Cu-Fe composite metal oxides a mechanical grinding method and its
catalytic performance for the thermal decomposition of ammonium perchlorate,
Combust. Sci. Technol. 193 (6) (2021) 987–1004, https://doi.org/10.1080/
00102202.2019.1679125.
[219] S. He, K. Tan, Q. Song, G. He, W. Cao, Thermally stable and low-sensitive
aluminized explosives with improved detonation performance, Propellants,
Explos. Pyrotech. 46 (9) (2021) 1428–1435, https://doi.org/10.1002/
prep.202100047.
[220] Z. He, T. Meng, Y. Wang, Z. Guo, G. Liu, Z. Liu, Effect of 2,4,6-Triamino-3,5-
Dinitropyridine-1-Oxide on the properties of 1,3,5-Trinitro-1,3,5-Triazinane-
based PBX explosives, Propellants, Explos. Pyrotech. 46 (4) (2021) 530–536,
https://doi.org/10.1002/prep.202000278.
[221] M. Hermann, U. Forter-Barth, Thermal behavior and micro structure of TKX-50,
Propellants, Explos. Pyrotech. 46 (2) (2021) 262–266, https://doi.org/10.1002/
prep.202000257.
[222] A. Hu, H. Zou, W. Shi, A. Pang, S. Cai, Preparation, microstructure and thermal
property of ZrAl3/Al composite fuels, Propellants, Explos. Pyrotech. 44 (11)
(2019) 1454–1465, https://doi.org/10.1002/prep.201900012.
[223] Y. Hu, S. Yuan, X. Li, M. Liu, F. Sun, G. Hao, W. Jiang, Preparation and
Characterization of Nano-CL-20/TNT cocrystal explosives by mechanical ball-
milling method, ACS Omega 5 (28) (2020) 17761–17766, https://doi.org/
10.1021/acsomega.0c02426.
[224] A. Hussein, S. Zeman, A. Elbeih, Cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]
Imidazole (BCHMX) as a part of low sensitive compositions based on DATB or
HNAB, Propellants, Explos. Pyrotech. 46 (2) (2021) 322–328, https://doi.org/
10.1002/prep.202000160.
[225] S.I. Jackson, A pressure- or velocity-dependent acceleration rate law for the
shock-to-detonation transition process in PBX 9502 high explosive, Combust.
Flame 213 (2013) 98–106, https://doi.org/10.1016/j.
combustame.2019.11.036.
[226] S.K. Jangid, S. Radhakrishnan, V.J. Solanki, M.K. Singh, G. Pandit,
R. Vijayalakshmi, R.K. Sinha, Evaluation studies on partial replacement of RDX by
spherical NTO in HTPB-based insensitive sheet explosive formulation,
J. Energetic Mater. 37 (3) (2019) 320–330, https://doi.org/10.1080/
07370652.2019.1613457.
[227] S. Jing, Z. Jiang, Q. Jiao, Z. Li, Y. Liu, L. Yang, 3,5-diuoro-2,4,6-trinitroanisole:
promising melt-cast insensitive explosives instead of TNT, J. Energetic Mater.
(2021), https://doi.org/10.1080/07370652.2020.1859645.
[228] M.H. Keshavarz, L. Makvandi, S. Damiri, Assessment of thermal stability and
detonation performance of 4-Amino-1,2,4-triazolium Nitrate compared to 2,4,6-
Trinitrotoluene for Melt-cast explosives, Zeitschrift fur anorganische und
allgemine Chemie 646 (6) (2020) 323–327, https://doi.org/10.1002/
zaac.202000072.
[229] N. Kim, B. Lee, H.J. Shin, J.H. Park, K. Kwon, S. Kim, Y.G. Kim, Bis(4-azido-3,5-
dinitro-1H-pyrazol-1-yl)methane as a new green primary explosive, Bull. Kor.
Chem. Soc. 41 (9) (2020) 913–917, https://doi.org/10.1002/bkcs.12087.
[230] T. Klapotke, TKX-50: a highly promising secondary explosive, in: D. Trache,
F. Benaliouche, A. Mekki (Eds.), Materials Research and Applications: Selected
Papers from JCH8-2019, Springer, Singapore, 2021, pp. 1–91. https://link.
springer.com/chapter/10.1007/978-981-15-9223-2_1.
[231] E. Koch, M. Suceska, Analysis of explosive properties of tetrasulafur tetranitrde,
S
4
N
4
, Z. Anorg. Allg. Chem. 647 (4) (2021) 192–199, https://doi.org/10.1002/
zaac.202000406.
[232] M. Kohga, S. Togo, Catalytic effect of added Fe2O3 amount on thermal
decomposition behaviors and burning characteristics of ammonium nitrate/
ammonium perchlorate propellants, Combust. Sci. Technol. 192 (9) (2019)
1668–1681, https://doi.org/10.1080/00102202.2019.1620736.
[233] N. Kumar, A. Dixit, Nanotechnology-driven explosives and propellants, in:
Nanotechnology for Defence Applications, Springer, 2019, pp. 81–115. https://
link.springer.com/chapter/10.1007/978-3-030-29880-7_3.
[234] G. Lan, S. Jin, M. Chen, J. Li, L. Du, J. Wang, J. Chen, L. Li, Preparation and
thermal properties study of HNIW/FOX-7 based high energy polymer bonded
explosive (PBX) with low vulnerability to thermal stimulations, J. Energetic
Mater. 38 (1) (2020) 83–97, https://doi.org/10.1080/07370652.2019.1665146.
[235] G. Lan, S. Jin, B. Jing, Y. Chen, D. Wang, J. Li, M. Chen, Investigation into the
temperature adaptability of HNIW-based PBXs, Propellants, Explos. Pyrotech. 44
(3) (2019) 327–336, https://doi.org/10.1002/prep.201800261.
[236] P.R. Lee, A theoretical method to compare relative bulk thermal sensitivities of
several common high explosives, Propellants, Explos. Pyrotech. 45 (8) (2020)
1300–1305, https://doi.org/10.1002/prep.202000048.
[237] W.H. Lee, K. Kwon, Safe synthesis of TKX-50 using an insensitive intermediate,
Propellants, Explos. Pyrotech. 44 (11) (2019) 1478–1481, https://doi.org/
10.1002/prep.201900171.
[238] C. Lei, H. Yang, H. Xiong, G. Cheng, The unique synthesis of green metal-free
primary explosive: 3,3′-azo-5,5′-diazido-1,2,4-triazole, Propellants, Explos.
Pyrotech. 45 (3) (2020) 416–421, https://doi.org/10.1002/prep.201900283.
[239] R. Lewczuk, J. Recko, S. Wojtulewski, Crystal structure and properties of an
energetic perchlorate complex compound with copper and cytosine, Propellants,
Explos. Pyrotech. 46 (5) (2021) 737–741, https://doi.org/10.1002/
prep.202000304.
[240] J. Li, F. Chen, H. Yang, K. Lu, Optimization of the process parameters for the
synthesis of high purity 4,6-Dinitrobenzofuroxan (4,6-DNBF), Propellants, Explos.
Pyrotech. 45 (7) (2020) 1102–1111, https://doi.org/10.1002/prep.201900413.
[241] J. Li, F. Chen, H. Yang, K. Lu, Study on synthesis and characterization of primary
explosive KDNBG with different morphologies, Propellants, Explos. Pyrotech. 45
(8) (2020) 1313–1325, https://doi.org/10.1002/prep.202000052.
[242] M. Li, W. Yang, M. Xu, R. Hu, L. Zheng, Study of photcurable energetic resin based
propellants fabricated by 3D printing, Mater. Des. 207 (2021), 109891, https://
doi.org/10.1016/j.matdes.2021.109891.
[243] Q. Li, C. An, J. Peng, C. Xu, H. Guo, S. Wang, B. Ye, J. Wang, Formulation of CL-
20k-based explosive ink and its detonating transfer performance in micro-size
charge, Propellants, Explos. Pyrotech. 44 (11) (2019) 1432–1439, https://doi.
org/10.1002/prep.201900015.
[244] S. Li, C. Chang, K. Lu, Optimization of the synthesis parameters and analysis of the
impact sensitivity for tretrazene explosive, Cent. Eur. J. Energ. Mater. 17 (1)
(2020) 5–19, https://doi.org/10.22211/cejem/118512.
[245] Y. Li, J. Wu, L. Yang, D. Geng, M. Sultan, L. Chen, Polymerization effects on the
decomposition of a Pyrazolo-Triazine at high temperatures and pressures,
ChemistryOpen 9 (4) (2020) 470–479, https://doi.org/10.1002/
open.202000006.
[246] P. Lian, C. Kang, Y. Zhang, S. Chen, W. Lai, Theoretical study on new high
energetic density compounds with high power and specic impulse,
FirePhysChem 1 (2) (2021) 103–108, https://doi.org/10.1016/j.
fpc.2021.04.006.
[247] D. Liu, D. Geng, K. Yang, J. Lu, S.H.Y. Chan, C. Chen, H.H. Hng, L. Chen,
Decomposition and energy-enhancement mechanism of the energetic binder
glycidyl azide polymer at explosive detonation temperatures, J. Phys. Chem. 124
(27) (2020) 5542–5554, https://doi.org/10.1021/acs.jpca.0c02950.
[248] W. Liu, Z. Xu, R. Wang, C. Zhang, Q. Yan, Z. Meng, Synthesis, hydrolysis,
reducting on and nitrolysis of lycoluril-derived precursors: another attempt
toward the synthesis of nitramine explosives, ChemistrySelect 4 (12) (2019)
3474–3478, https://doi.org/10.1002/slct.201900204.
[249] W. Liu, C. Yang-Fan, H. Fang, Y. Yao, C. Tao, Y. Chen, Z. She, Fabrication and
characterization of PMMA/TiH2 energetic microcapsules with a hollow structure,
J. Energetic Mater. 38 (4) (2020) 406–417, https://doi.org/10.1080/
07370652.2020.1726527.
[250] Y. Liu, P. Lv, C. Sun, S. Pang, Syntheses, crystal structures, and properties of two
novel CL-20-based cocrystals, Z. Anorg. Allg. Chem. 645 (8) (2019) 656–662,
https://doi.org/10.1002/zaac.201900017.
[251] Y. Liu, H. Wang, F. Bai, F. Huang, T. Hussain, A new equation of state for
detonation products of RDX-based aluminized explosives, Propellants, Explos.
Pyrotech. 44 (10) (2019) 1293–1301, https://doi.org/10.1002/prep.201800126.
[252] Z. Liu, W. Zhu, Theoretical studies on surface-induced energetic, electronic, and
vibrational properties of Triamino-trinitrobenzene nanoparticles, J. Cluster Sci.
32 (4) (2021) 887–897, https://doi.org/10.1007/s10876-020-01850-3.
[253] B. Long, H. Wang, S. Gao, Study on the fracture properties of HTPM propellant at
low temperature, Propellants, Explos. Pyrotech. 45 (1) (2020) 136–140, https://
doi.org/10.1002/prep.201900277.
[254] J. Ma, Y. Tang, G. Cheng, G. Imler, D. Parrish, J. Shreeve, Energetic derivatives of
8-Nitropyrazolo[1,5-a] [1,3,5]triazine-2,4,7-triamine: achieving balanced
explosives by fusing Pyrazole with Triazine, Org. Lett. 22 (4) (2020) 1231–1235,
https://doi.org/10.1021/acs.orglett.9b04642.
[255] Q. Ma, G. Zhang, J. Li, Z. Zhang, H. Lu, L. Liao, G. Fan, F. Nie, Pyrazol-triazole
energetic hybrid with high thermal stability and decreased sensitivity: facile
synthesis, characterization and promising performance, Chem. Eng. J. 379
(2020), 122331, https://doi.org/10.1016/j.cej.2019.122331.
[256] Q. Ma, Z. Zhang, W. Yang, W. Li, J. Ju, G. Fan, Strategies for constructing melt-
castable energetic materials: a critical review, Energ. Mater. Front. 2 (1) (2021)
69–85, https://doi.org/10.1016/j.enmf.2021.01.006.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
14
[257] X. Ma, Y. Li, I. Husuuain, R. Shen, G. Yang, K. Zhang, Core-shell structured
nanoenergetic materials: preparation and fundamental properties, Adv. Mater. 32
(30) (2020), 20001291, https://doi.org/10.1002/adma.202001291.
[258] S. Manzoor, Q. Tariq, J. Zhang, Nitro-tetrazole based high performing explosives:
recent overview of synthesis and energetic properties, Defence Technol. 17 (6)
(2021) 1995–2010, https://doi.org/10.1016/j.dt.2021.02.002.
[259] M.C. Marshall, A. Fernandez-Panella, T.W. Myers, J.H. Eggert, D.J. Erskine,
S. Bastea, L.E. Fried, L.D. Leininger, Shock Hugoniot measurements of single-
crystal 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) compressed to 83 GPa,
J. Appl. Phys. 127 (18) (2020), 185901, https://doi.org/10.1063/5.0005818.
[260] S. Nair, S. Matthew, C.P. Reghunadhan Nair, High energy materials as thermal
decomposition modiers of Ammonium perchlorate, Mater. Today Proc. 25 (2)
(2020) 144–147, https://doi.org/10.1016/j.matpr.2019.12.203.
[261] M. Negri, M. Wilhelm, H.K. Ciezki, Thermal ignition of AND-based propellants,
Propellants, Explos. Pyrotech. 44 (9) (2019) 1096–1106, https://doi.org/
10.1002/prep.201900154.
[262] T.D. Ngugen, J.M. Veauthier, G.F. Angeles-Tamayo, D.E. Chavez, E. Lapsheva, T.
W. Myers, T.R. Nelson, E.J. Scheleter, Correlating mechanical sensitivity with
spin transition in the explosive spin crossover complex [Fe(Htrz)3]n[ClO4]2n,
J. Am. Chem. Soc. 142 (10) (2020) 4842–4851, https://doi.org/10.1021/
jacs.9b13835.
[263] X. Nie, C. Lei, H. Xiong, G. Cheng, H. Yang, Methylation of a triazole-fused
framework to create novel insensitive energetic materials, Energ. Mater. Front. 1
(3–4) (2020) 165–171, https://doi.org/10.1016/j.enmf.2020.11.004.
[264] K. Okada, Y. Saito, M. Akiyoshi, T. Endo, T. Matsunaga, Preparation and
characterization of nitrocellulose nanober, Propellants, Explos. Pyrotech. 46 (6)
(2021) 962–968, https://doi.org/10.1002/prep.202000240.
[265] H.R. Pouretedal, S. Damiri, Z. Bighamian, The non-isothermal gravimetric
method for study the thermal decomposition kinetic of HNBB and HNS explosives,
Defence Technol. 16 (1) (2019) 251–256, https://doi.org/10.1016/j.
dt.2019.06.006.
[266] R. Rajan, T.R. Ravindran, R.R. Madhavan, R. Asuvathraman, S. Chandra,
V. Venkatesan, A.A. Vargeese, Thermal expansion of energetic material TEX
obtained from x-ray diffraction and rst principles calculations, J. Mol. Struct.
1195 (2019) 859–862, https://doi.org/10.1016/j.molstruc.2019.06.054.
[267] M. Reichel, D. Dosch, Klapotke, K. Karaghiosoff, Correlation between structure
and energetic properties of three nitroaromatic compounds: bis(2,4-
dinitrophenyl) ether, bis(2,4,6-trinitrophenyl) ether, and bis(2,4,6-trinitrophenyl)
thioether, J. Am. Chem. Soc. 141 (50) (2019) 19911–19916, https://doi.org/
10.1021/jacs.9rb11086.
[268] J. Ren, W. Zhang, T. Zhang, Y. Yin, L. Wang, Z. Li, Q. Zeng, T. Zhang, 3-
Nitramino-6-hydroxy-1,2,4,5-tetrazine and its alkaline earth metal salts: an
effective strategy to balance energy density and safety of energetic compounds,
J. Energetic Mater. 39 (1) (2020) 48–59, https://doi.org/10.1080/
07370652.2020.1754968.
[269] M. Reynaud, R. Sorin, V. Dubois, N. Desbiens, WGT: a mesoscale-informed
reactive burn model, J. Appl. Phys. 127 (6) (2020), 065901, https://doi.org/
10.1063/1.5135362.
[270] R. Roohzadeh, M. Mahdavi, Prediction of explosive properties of newly
synthesized amino nitroguanidine-based energetic complexes via density
functional theory, J. Mol. Model. 26 (5) (2020) 104, https://doi.org/10.1007/
s00894-020-04377-6.
[271] C. Sang, S. Jim, G. Li, Y. Luo, Preparation of copper ferrite by sol–gel method and
the synergistic catalytic for the thermal decomposition of ammonium perchlorate,
J. Sol-Gel and Technol. 98 (3) (2021) 559–567, https://doi.org/10.1007/s10971-
021-05509-x.
[272] U. Schaller, T. Keicher, V. Weiser, J. Hurttlen, 4-Amino-1-Butyl-1,2,4-Triazolium
nitrate – synthesis and characterization, Propellants, Explos. Pyrotech. 44 (9)
(2019) 1119–1128, https://doi.org/10.1002/prep.201900233.
[273] V. Sinditskii, V. Serushking, V. Kolesov, On the question of the energetic
performance of TKX-50, Propellants, Explos. Pyrotech. 46 (10) (2021)
1504–1508, https://doi.org/10.1002/prep.202100173.
[274] C.J. Snyder, G.H. Imler, D.E. Chavez, D.A. Parrish, Synergetic explosive
performance through cocrystallization, Cryst. Growth Des. 21 (3) (2021)
1401–1405, https://doi.org/10.1021/acs.cgd.0c01267.
[275] R. Soldaini de Oliverira, I. Borges, Correlation between molecular charge
densities and sensitivity of nitrogen-rich heterocyclic nitroazole derivative
explosives, J. Mol. Model. 25 (10) (2019) 314, https://doi.org/10.1007/s00894-
019-4195-0.
[276] X. Song, Q. Huang, B. Jin, R. Peng, Fabrication and characterization of CL-20/
PEI/GO composites with enhanced thermal stability and desensitization via
electrostatic self-assembly, Appl. Surf. Sci. (2021), 149933, https://doi.org/
10.1016/j.apsusc.2021.149933.
[277] E.N. Stepurko, A.V. Blokhin, S.V. Kohut, G.J. Kabo, Thermodynamic properties of
1-Methyl-4-nitro-1,2,3-triazole, Thermochim. Acta 686 (2020), 178534, https://
doi.org/10.1016/j.tca.2020.178534.
[278] Synthesis and properties of lead-free primary explosives: potassium 5-(2,2-
Diamino-1-nitrovinyl)tetrazolate. Propellants, Explos. Pyrotech., 46(7), 1150-
1154. https://doi.org/10.1002/prep.202100079.
[279] D. Tan, X. Wei, D. Zhang, F. Chen, W. He, Z. Wang, Process optimization of
supercritical CO
2
foamed SF-3 double-base propellant, Propellants, Explos.
Pyrotech. 45 (1) (2020) 20–25, https://doi.org/10.1002/prep.201900216.
[280] C. Tao, Y. Cheng, H. Fang, Y. Yao, Y. Wang, H. Ma, Z. Shen, Y. Chen, Fabrication
and characterization of a novel underground mining emulsion explosive
containing thickening microcapsules, Propellants, Explos. Pyrotech. 45 (6) (2020)
932–941, https://doi.org/10.1002/prep.201900351.
[281] J. Tao, X.F. Wang, K. Zhang, X. Feng, Theoretical calculation and experimental
study on the interaction mechanism between TKX-50 and AP, Defence Technol.
16 (4) (2019) 825–833, https://doi.org/10.1016/j.dt.2019.10.007.
[282] R. Van Riet, E. Amayuelas, P. Lodewyckx, M. Lefebvre, C. Ania, Novel
opportunities for nanoporous carbons as energetic materials, Carbon 164 (2020)
129–132, https://doi.org/10.1016/j.carbon.2020.03.061.
[283] J.V. Viswanath, B. Shanigaram, P. Vijayadarshan, T.V. Chowadar, A. Gupta,
K. Bhanuprakash, S.R. Niranjana, A. Venkataraman, Studies of theoretical
optimization of CL-20: RDX cocrystal, Propellants, Explos. Pyrotech. 44 (12)
(2019) 1570–1582, https://doi.org/10.1002/prep.201900126.
[284] O. Vodochodsky, M. Kunzel, R. Matyas, J. Kucera, J. Pachman, Tetraammine
copper Perchlorate (TACP): explosive properties, Propellants, Explos. Pyrotech.
46 (2) (2021) 280–285, https://doi.org/10.1002/prep.202000131.
[285] G. Wang, Z. Fu, H. Yin, F. Chen, Synthesis and properties [1,2,4]Triazolo[4,3-b]
[1,2,4,5]Tetrazine N-oxide explosives, Propellants, Explos. Pyrotech. 44 (8)
(2019) 1010–1014, https://doi.org/10.1002/prep.201900014.
[286] J. Wang, Cao, J. Cao, Y. Yang, L. Chen, D. Cao, Synthesis, characterization and
decomposition of 4-Diazo-2,6-dinitrophenol, Propellants, Explos. Pyrotech. 46 (9)
(2021) 1388–1396, https://doi.org/10.1002/prep.202100005.
[287] J. Wang, W. Cao, X. Guo, B. Cheng, L. Zhao, R. Liu, X. Chen, Effect of
microstructure on short pulse duration shock initiation of TATB and initial
response mechanism, Defence Technol. 16 (2) (2020) 374–380, https://doi.org/
10.1016/j.dt.2019.06.001.
[288] J. Wang, S. Chen, S. Jin, Q. Shu, X. Zhang, R. Shi, Thermal behavior,
compatibility study and safety assessment of diammonium 5,5′-bistetrazole-1,1′-
diolate (ABTOX), J. Therm. Anal. Calorim. 139 (3) (2020) 1771–1777, https://
doi.org/10.1007/s10973-019-08605-x.
[289] Q. Wang, L. Zhang, W. He, L. Yang, C. Zhang, Z. Wang, R. Zhang, J. Chen,
S. Wang, S. Zang, T.C.W. Mak, High-performance primary explosives derived
from copper thiolate cluster-assembled materials for micro-initiating device,
Chem. Eng. J. 389 (2020), 124455, https://doi.org/10.1016/j.cej.2020.124455.
[290] S. Wang, L. Yang, J. Han, Z. Yan, MOF as the rigid shell to improve the
mechanical sensitivity of nitramine explosives, Mater. Lett. 306 (2022), 130940,
https://doi.org/10.1016/j.matlet.2021.130940.
[291] T. Wang, X. Wang, Z. Yi, W. Cao, W. Dong, Y. Bi, S. Zhu, J. Zhang, Competitive
coordination of azide groups: synthesis of solvent-free and chlorine-free primary
explosives based on 3-Amino-1-nitroguanidine, Cryst. Growth Des. 21 (12) (2021)
7002–7007, https://doi.org/10.1021/acs.cgd.1c00926.
[292] T. Wang, J. Zhou, Q. Zhang, L. Zhang, S. Zhu, Y. Li, Novel 3D cesium(i)-based
EMOFs of nitrogen-rich triazole derivatives as “green” orange-light pyrotechnics,
New J. Chem. 44 (4) (2020) 1278–1284, https://doi.org/10.1039/C9NJ03577J.
[293] W. Wang, H. Li, Q. Liu, F. Liu, Z. Liu, High-pressure characterization of the cage-
structured explosive TEX by dispersion-corrected DRF calculations, Phys. Status
Solidi(B) 258 (2) (2020), 2000329, https://doi.org/10.1002/pssb.202000329.
[294] Y. Wang, J. Ye, N. Yang, H. Ma, Y. Zhang, Z. Guo, Strong intermolecular
interaction induced methylene-bridged asymmetric heterocyclic explosives,
CrystEngComm 23 (43) (2021) 7635–7642, https://doi.org/10.1039/
D1CE01083B.
[295] L.A. Wingard, R.C. Sausa, P.E. Guzman, R. Pesce-Rodrigeuz, J. Sabatini, G.
W. Drake, Synthesis of bis-Isoxazole-bis-Ethylene Dinitrate and bis-Isoxazole-
tetra-Ethylene Tetranitrate: potential energetic plasticizer, Propellants, Explos.
Pyrotech. 44 (5) (2019) 617–622, https://doi.org/10.1002/prep.201800315.
[296] H. Woods, A. Boddorff, E. Ewaldz, Z. Adams, M. Ketcham, D.J. Jang, E. Sinner,
N. Thadhani, B. Brettmann, Rheological considerations for binder development in
direct ink writing of energetic materials, Propellants, Explos. Pyrotech. 45 (1)
(2020) 26–35, https://doi.org/10.1002/prep.201900159.
[297] D.R. Wozniak, B. Salfter, M. Zeller, E.F.C. Byrd, D.G. Piercey, Sensitive energetics
from the N -amination of 4-nitro-1,2,3-triazole, ChemistryOpen 9 (8) (2020)
806–811, https://doi.org/10.1002/open.202000053.
[298] W. Wu, W. Feng, Q. Lin, S. Wang, Z. Guo, L. Chen, W. Chen, Synthesis and thermal
decomposition of TNPG, Thermochim. Acta 683 (2020), 178396, https://doi.org/
10.1016/j.tca.2019.178396.
[299] F. Xiao, M. Stone, C. Stennett, Pulsed laser irradiation of a nanoparticles
sensitised RDX crystal, Combust. Flame 214 (2020) 387–393, https://doi.org/
10.1016/j.combustame.2020.01.009.
[300] R. Xu, Z. Li, Y. Chen, J. Pei, J. Zhang, Enthalpy of formation of p(BAMO)-b-GAP
and energetic characteristics of solid propellants based on the copolymer,
Propellants, Explos. Pyrotech. 46 (6) (2021) 969–974, https://doi.org/10.1002/
prep.202000244.
[301] Y. Xue, H. Xiong, J. Tang, G. Cheng, H. Yang, Exploring application of 1,2,4-
Triazole energetic salts: gas generating agent, propellant and explosive
compositions, Propellants, Explos. Pyrotech. 46 (7) (2021) 1070–1078, https://
doi.org/10.1002/prep.202000316.
[302] Z. Xue, B. Huang, H. Li, Q. Yan, Nitramine-Based energetic cocrystals with
improved stability and controlled reactivity, Cryst. Growth Des. 20 (12) (2020)
8124–8147, https://doi.org/10.1021/acs.cgd.0c01122.
[303] F. Yan, P. Zhu, S. Zhao, J. Shi, Y. Mu, H. Xia, R. Shen, Microuidic strategy for
coating and modication of polymer-bonded nano-HNS explosives, Chem. Eng. J.
428 (2022), 131096, https://doi.org/10.1016/j.cej.2021.131096.
[304] T. Yan, J. Ma, H. Yang, G. Cheng, Introduction of energetic bis-1,2,4-triazoles
bridges: a strategy towards advanced heat resistant explosives, Chem. Eng. J. 429
(2022), 132416, https://doi.org/10.1016/j.cej.2021.132416.
[305] Z. Yan, L. Yang, J. Han, H. Li, Molding fabrication of copper azide/porous
graphene with high electrostatic safety by self-assembly of graphene oxide,
Nanotechnology 32 (38) (2021), 385704, https://doi.org/10.1088/1361-6528/
abc7d5.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
15
[306] L. Yang, M. Yan, S. Huang, J. Xu, J. He, X. He, X. Cao, Y. Liu, Porous structure and
reduced sensitivity of 2,2’,4,4’,6,6’-hexanitrostilbene (HNS) prepared by different
solvation and desolvation methods, J. Energetic Mater. 38 (1) (2020) 35–47,
https://doi.org/10.1080/07370652.2019.1658825.
[307] M. Yang, H. Ma, Z. Shen, Effect of RDX powders on detonation characteristics of
emulsion explosives, J. Energetic Mater. 37 (4) (2019) 459–474, https://doi.org/
10.1080/07370652.2019.1637480.
[308] R. Yang, Z. Dong, Z. Ye, Tetrazolium nitrate anion based salts as potential melt-
castable explosives, ChemistrySelect 4 (48) (2019) 14208–14213, https://doi.
org/10.1002/slct.201903408.
[309] X. Yang, K. Zhao, X. Tian, Z. Chen, X. Fang, Q. Xiao, X. Li, J. Dong, Y. Hang,
X. Wang, An efcient energy characteristics and explosion heat improving
method of FOX-7-based aluminized explosives, FirePhysChem 1 (1) (2021) 1–7,
https://doi.org/10.1016/j.fpc.2021.02.003.
[310] Y. Yao, Y. Cheng, R. Liu, F. Hu, Q. Zhang, Xia, Y. Chen, Effects of micro-
encapsulation treatment on the thermal safety of high energy emulsion explosives
with boron powders, Propellants, Explos. Pyrotech. 46 (3) (2021) 389–397,
https://doi.org/10.1002/prep.202000130.
[311] C. Young, S. Volaric, Synthesis, iodometric analysis, and IR spectroscopy of the
peroxide double salt [Zn(NH
3
)
4
][Mo(O
2
)
4
], J. Chem. Educ. 97 (4) (2020)
1120–1122, https://doi.org/10.1021/acs.jchemed.9b01113.
[312] S. Yuan, Z. Li, Q. Luo, X. Duan, C. Pei, Preparation and thermal decomposition
properties of nitrated graphene oxide (NGO)/RDX nano-energetic composites,
J. Therm. Anal. Calorimetery 139 (3) (2020) 1671–1679, https://doi.org/
10.1007/s10973-019-08613-x.
[313] M.G. Zaky, A. Elbeih, T. Elshenawy, Review of nano-thermites: a pathway to
enhanced energetic materials, Cent. Eur. Energ. Mater. 18 (1) (2021) 63–86,
https://doi.org/10.22211/cejem/134953.
[314] J. Zhang, B. Jin, X. Li, W. Hao, T. Huang, B. Lei, Z. Guo, J. Shen, R. Peng, Study of
H2AzTO-based energetic metal-organic frameworks for catalyzing the thermal
decomposition of ammonium perchlorate, Chem. Eng. J. 404 (2021), 126287,
https://doi.org/10.1016/j.cej.2020.126287.
[315] M. Zhang, Y. Tan, X. Zhao, J. Zhang, S. Huang, Z. Zhai, Y. Liu, Z. Yang, Seeking a
novel energetic co-crystal strategy through the interfacial self-assembly of CL-20
and HMX nanocrystals, CrystEngComm 22 (1) (2020) 61–67, https://doi.org/
10.1039/C9CE01447K.
[316] T. Zhang, Y. Li, D. Cao, Y. Liu, J. He, C. Zou, Experimental study and
thermodynamic modeling of a novel heat-resistant explosive in different mono
solvents, J. Mol. Liq. 311 (2020), 113056, https://doi.org/10.1016/j.
molliq.2020.113056.
[317] C. Zhao, Y. Chi, Q. Peng, F. Yang, J. Zhou, X. Wang, J. Sun, A study on the
comprehension of differences in specic kinetic energy of TKX-50 and HMX from
the perspective of gas products, Phys. Chem. Chem. Phys. 21 (12) (2019)
6600–6605, https://doi.org/10.1039/C8CP07487A.
[318] C. Zhao, Z. Zhang, Q. Yu, F. Yang, G. Fan, K. Yu, Comparative study of the
decomposition mechanism and kinetics of biimidazole-based energetic explosives,
J. Phys. Chem. A 124 (18) (2020) 3672–3678, https://doi.org/10.1021/acs.
jpca.0c01820.
[319] G. Zhao, P. Yin, Staples, J. Shreeve, One-step synthesis to an insensitive explosive:
N,N′-bis((1H-tetrazol-5-yl)methyl)nitramide (BTMNA), Chem. Eng. J. 412
(2021), 128697, https://doi.org/10.1016/j.cej.2021.128697.
[320] N. Zhao, H. Ma, E. Yao, Z. Yu, T. An, F. Zhao, X. Yu, Inuence of tailored CuO and
Al/CuO nanothermites on the thermocatalytic degradation of nitrocellulose and
combustion performance of AP/HTPB composite propellant, Cellulose 28 (13)
(2021) 8671–8691, https://doi.org/10.1007/s10570-021-04060-w.
[321] P. Zhao, L. Chen, K. Yang, D. Geng, J. Lu, J. Wu, Effect of temperature on shock
initiation of RDX-based aluminized explosives, Propellants, Explos. Pyrotech. 44
(12) (2019) 1562–1569, https://doi.org/10.1002/prep.201900092.
[322] K. Zhong, L. Hiu, G. Li, C. Zhang, Crack mechanism of Al@Al
2
O
3
nanoparticles in
hot energetic materials, J. Phys. Chem. C 125 (4) (2021) 2770–2778, https://doi.
org/10.1021/acs.jpcc.0c10479.
[323] D. Zhu, L. Zhou, X. Zhang, Rheological behavior of DNAN/HMX melt-cast
explosives, Propellants, Explos. Pyrotech. 44 (12) (2019) 1583–1589, https://doi.
org/10.1002/prep.201900117.
[324] W. Zhu, M.I. Papadaki, S. Horsch, M. Krause, C.V. Mashuga, Calorimetric studies
on the thermal stability of 2-Nitrotoluene explosives with incompatible
substances, Ind. Eng. Chem. Res. 58 (29) (2019) 13366–13375, https://doi.org/
10.1021/acs.iecr.9b01823.
[325] S. Zlotin, A. Churakov, M. Egorov, L. Feshtat, M. Klenov, I. Kuchurov,
N. Makhova, G. Smirnow, Y. Tomilov, V. Tartakovsky, Advanced energetic
materials: novel strategies and versatile applications, Mendeleev Commun. 31 (6)
(2021) 731–749, https://doi.org/10.1016/j.mencom.2021.11.001.
Instrumental Analysis of ExplosivesLC/HPLC/UPLC
[326] J. Chen, H. Ding, J. Li, Y. Chen, Y. Liu, X. Zhao, Development and validation of
HPLC method for DAAF and its application in quality control and environmental
monitoring, Propellants, Explos. Pyrotech. 45 (10) (2020) 1580–1589, https://
doi.org/10.1002/prep.202000018.
[327] H. Ding, H. Zhao, J. Chen, Z. Zhang, Y. Liu, Development and validation of a
HPLC-UV method for DATNBI and its’ application in quality control, J. Liq.
Chromatogr. Relat. Technol. 44 (3–4) (2021) 220–228, https://doi.org/10.1080/
10826076.2021.1884569.
[328] C. Freye, T. Nguyen, B. Tappan, Investigation of the impurities in erythritol
tetranitrate (ETN) using UHPLC-QTOF, Propellants, Explos. Pyrotech. 46 (10)
(2021) 1555–1560, https://doi.org/10.1002/prep.202100193.
[329] C.E. Freye, N. Lease, G.W. Brown, B.C. Tappan, D.G. Thompson, C.J. Rosales, S.
A. Larson, Identication of blue discoloration in PBX 9404 using ultrahigh
pressure liquid chromatography with quadrupole time-of-ight mass
spectrometry, Propellants, Explos. Pyrotech. 46 (3) (2021) 355–359, https://doi.
org/10.1002/prep.202000230.
[330] C.E. Freye, C.J. Rosales, D.G. Thompson, G.W. Brown, S.A. Larson, Development
of comprehensive two-dimensional liquid chromatography for investigating aging
of plastic bonded explosives, J. Chromatogr. A 1611 (2019), 460580, https://doi.
org/10.1016/j.chroma.2019.460580.
[331] M. Kotrly, A. Eisner, I. Beroun, I. Turkova, New data for analyze improvised
explosives in forensic practice, in: Proceedings SPIE Detection and Sensing of
Mines, Explosive Objects, and Obscured Targets XXVI, 11750, 2021, https://doi.
org/10.1117/12.2587987, 1175008.
[332] A. Steiner, I. Lurie, Applicability of liquid and supercritical uid chromatographic
separation techniques with diode array ultraviolet detection for forensic analysis,
Forensic Chem. 26 (2021), 100359, https://doi.org/10.1016/j.forc.2021.100359.
[333] C. Veresmortean, Development of an LCMS Analytical Method with Applicability
to Determination of Trace Level Explosives in Environmental Waters, PhD, City
University of New York, 2021, https://academicworks.cuny.edu/gc_etds/4574/.
Ion Chromatography
[334] S. Beal, S. Taylor, R. Crouch, A. Bednar, Environmental Analysis of Aqueous 3-nitro-
1,2,4-Triazol-5-One (NTO) by Ion Chromatography with Conductivity Detection
(ERDC TR-20-13), U.S. Army Corps of Engineers, 2020, https://doi.org/
10.21079/11681/37415.
[335] M.D. Gallidabino, R.C. Irlam, M.C. Salt, M. O’Donnell, M.S. Beardah, L.P. Barron,
Targeted and non-targeted forensic proling of black powder substitutes and
gunshot residue using gradient ion chromatography – high resolution mass
spectrometry (IC-HRMS), Anal. Chim. Acta 1072 (2019) 1–14, https://doi.org/
10.1016/j.aca.2019.04.048.
[336] M.A.C. Hartel, T.M. Klapotke, J. Stierstorfer, L. Zehetner, Vapor pressure of linear
nitrate esters determined by transpiration method in combination with VO-GC/
MS, Propellants, Explos. Pyrotech. 44 (4) (2019) 484–492, https://doi.org/
10.1002/prep.201800133.
[337] A. Harvey, Detection and Identication of Chemical Warfare Agents and
Explosives in Complex Matrices, Doctoral Dissertation, University of York, 2019.
[338] J.P. Hutchinson, C. Johns, G.W. Dicinoski, L. Jones, M.C. Breadmore, P.
R. Haddad, Identication of improvised inorganic explosives devices by analysis
of postblast residues using ion chromatography and capillary electrophoresis, in:
Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation,
Wiley, 2020, https://doi.org/10.1002/9780470027318.a9031.pub2.
[339] H.R. Pouretedal, S. Damiri, A.R. Shari, Statistical optimization for determination
of trace amounts of RDX in matrix of HMX using GC-ECD, SN Appl. Sci. 1 (457)
(2019) 1–9, https://doi.org/10.1007/s42452-019-0477-5.
[340] P. Suppajariyawat, M. Elie, M. Baron, J. Gonzalez-Rodriguez, Classication of
ANFO samples based on their fuel composition by GC–MS and FTIR combined
with chemometrics, Forensic Sci. Int. 301 (2019) 415–425, https://doi.org/
10.1016/j.forsciint.2019.06.001.
Gas Chromatography
[341] C. Cruse, J. Goodpaster, Optimization of gas chromatography/vacuum ultraviolet
(GC/VUV) spectroscopy for explosive compounds and application to post-blast
debris, Forensic Chem. 26 (2021), 100362, https://doi.org/10.1016/j.
forc.2021.100362.
[342] C. Cruse, J. Pu, J. Goodpaster, Identifying thermal decomposition products of
nitrate ester explosives using gas chromatography-vacuum ultraviolet
spectroscopy: an experimental and computation study, Appl. Spectrosc. (2020),
https://doi.org/10.1177/0003702820915506.
[343] C.A. Cruse, J.V. Goodpaster, Thermal and spectroscopic analysis of nitrated
compounds and their breakdown products using gas chromatography/vacuum UV
spectroscopy (GC/VUV), Anal. Chim. Acta 1143 (2021) 117–123, https://doi.
org/10.1016/j.aca.2020.11.041.
[344] I. Lara-Ibeas, A. Cuevas, S. Le Calve, Recent developments and trends in
miniaturized gas preconcentrators for portable gas chromatography systems: a
review, Sensor. Actuator. B Chem. 346 (2021), 130449, https://doi.org/10.1016/
j.snb.2021.130449.
[345] M. Li, A. Ghosh, A. Venkatasubramanin, R. Sharma, X. Huang, X. Fan, High-
sensitivity micro-gas chromatograph-photoionization detector for trace vapor
detection, ACS Sens. 6 (6) (2021) 2348–2355, https://doi.org/10.1021/
acssensors.1c00482.
[346] A. Qualley, G.T. Hughes, M.H. Rubenstein, Data quality improvement for eld-
portable gas chromatography-mass spectrometry through the use of isotopic
analogues for in-situ calibration, Environ. Chem. 17 (1) (2020) 28–38, https://
doi.org/10.1071/EN19134.
[347] R. Reiss, B. Gruber, S. Klingbeil, T. Groger, S. Ehlert, R. Zimmermann, Evaluation
and application of gas chromatography - vacuum ultraviolet spectroscopy for
drug- and explosive precursors and examination of non-negative matrix
factorization for deconvolution, Spectrochim. Acta Mol. Biomol. Spectrosc. 219
(2019) 129–134, https://doi.org/10.1016/j.saa.2019.04.032.
[348] C. Wang, L. Heraty, H. Li, M. Fuller, P. Hatzinger, N. Sturchio, Method for
derivatization and isotopic analysis of the insensitive munition compound 3-nitro-
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
16
1,2,4-triazol-5-one (NTO), J. Hazard. Mater. Lett. 2 (2021), 1000044, https://doi.
org/10.1016/j.hazl.2021.100044.
Capillary Electrophoresis
[349] K. Bezemer, L. van Duin, C. Martin-Alberca, G. Somsen, P. Schoenmakers,
R. Haselberg, A. van Asten, Rapid forensic chemical classication of conscated
ash banger reworks using capillary electrophoresis, Forensic Chem. 16 (2019),
100187, https://doi.org/10.1016/j.forc.2019.100187.
[350] K.D.B. Bezemer, T.P. Forbes, A.W.C. Hulsbergen, J. Verkouteren, S.T. Krauss,
M. Kobeberg, P.J. Schoenmakers, G. Gillen, A.C. van Asten, Emerging techniques
for the detection of pyrotechnic residues from seized postal packages containing
reworks, Forensic Sci. Int. 308 (2020), 110160, https://doi.org/10.1016/j.
forsciint.2020.110160.
[351] S.T. Krauss, T.P. Forbes, D. Jobes, Inorganic oxidizer detection from propellants,
pyrotechnics, and homemade explosive powders using gradient elution moving
boundary electrophoresis, Electrophoresis 42 (3) (2020) 279–288, https://doi.
org/10.1002/elps.202000279.
[352] S.T. Krauss, T.P. Forbes, J.A. Lawrence, G. Gillen, J.R. Verkouteren, Detection of
fuel-oxidizer explosives utilizing portable capillary electrophoresis with wipe-
based sampling, Electrophoresis 41 (16–17) (2020) 1482–1490, https://doi.org/
10.1002/elps.202000094.
General Spectroscopy: Fluorescence, Luminescence, Spectrophotometric, UV,
Chemiluminescence
[353] O. Abuzalat, D. Wong, S. Park, S. Kim, Highly selective and sensitive uorescent
zeolitic imidazole frameworks sensor for nitroaromatic explosive detection,
Nanoscale 12 (25) (2020) 13523–13530, https://doi.org/10.1039/D0NR01653E.
[354] A.J. Agranat, Y. Kabessa, B. Shemer, E. Shpigel, O. Schwartsglass, L. Atammneh,
Y. Uziel, M. Ejzenberg, Y. Mizrachi, Y. Garcia, G. Perepelitsa, S. Belkin, An
autonomous bioluminescent bacterial biosensor module for outdoor sensor
networks, and its application for the detection of buried explosives, Biosens.
Bioelectron. 185 (2021), 113253, https://doi.org/10.1016/j.bios.2021.113253.
[355] M.N. Ahamad, M. Shahid, M. Ahmad, F. Sama, Cu(II) MOFs based on Bipyridyls:
topology, magnetism, and exploring sensing ability toward multiple
nitroaromatic explosives, ACS Omega 4 (4) (2019) 7738–7749, https://doi.org/
10.1021/acsomega.9b00715.
[356] S. Anju, R. Anjana, N. Vijila, A. Aswathy, J. Jayakrishna, B. Anjitha, S. Adhya,
S. George, Tb-doped BSA–gold nanoclusters as a bimodal probe for the selective
detection of TNT, Anal. Bioanal. Chem. 412 (17) (2020) 4165–4172, https://doi.
org/10.1007/s00216-020-02654-0.
[357] D.G. Babar, S.S. Garje, Nitrogen and phosphorus co-doped carbon dots for
selective detection of nitro explosives, ACS Omega 5 (6) (2020) 2710–2717,
https://doi.org/10.1021/acsomega.9b03234.
[358] A. Butler, D. Amondson, H. Krier, N. Glumac, Spectral emission signatures from
cased high-explosive charge, Appl. Spectrosc. 75 (11) (2021) 1410–1418, https://
doi.org/10.1177/00037028211042646.
[359] S. Chaudhary, P. Sonkusre, A. Chopra, K.K. Bahsin, C.R. Suri, UV-FIA: UV-induced
uoro-immunochemical assay for ultra-trace detection of PETN, RDX, and TNT,
Anal. Chim. Acta 1077 (2019) 266–272, https://doi.org/10.1016/j.
aca.2019.05.048.
[360] Q. Chen, L. Yang, K. Guo, J. Yang, J. Han, Expedite uorescent sensor prototype
for hydrogen peroxide detection with long-life test substrates, ACS Omega 6 (17)
(2021) 11447–11457, https://doi.org/10.1021/acsomega.1c00471.
[361] C. Cheng, M. Nawaz, C. Liu, S. Shahzad, H. Zhou, C. Yu, X. Jin, Phenothiazine and
BN-doped AIE probes integrated uorescence sensor array for detection and
discrimination of nitro explosives, Chin. J. Anal. Chem. 48 (7) (2020), https://
doi.org/10.1016/S1872-2040(20)60034-2 e370075-e20080.
[362] J. Delente, D. Umadevi, K. Byrne, W. Schmitt, G. Watson, T. Gunnlaugsson,
S. Shanmugaraju, Hyper-crosslinked 4-amino-1,8-naphthalimide Tr¨
oger’s base
containing pyridinium covalent organic polymer (COP) for discriminative
uorescent sensing of chemical explosives, Supramol. Chem. 32 (9) (2020)
508–517, https://doi.org/10.1080/10610278.2020.1825715.
[363] S. Devi, S. Shaswat, V. Kumar, A. Sachdev, P. Gopinath, S. Tyagi, Nitrogen-doped
carbon quantum dots conjugated isoreticular metal-organic framework-3 particles
based luminescent probe for selective sensing of trinitrotoluene explosive,
Microchim. Acta 187 (9) (2020) 536, https://doi.org/10.1007/s00604-020-
04496-0.
[364] L. Diaz, M. Munoz, Paredes-Gil, N. Snejko, B. Gomez-Lor, E. Gutierrez-Puebla,
A. Monge, The effect of auxiliary nitrogenated linkers on the design of new
cadmium based coordination polymers as sensors for detection of explosives
materials, Chem.–Eur. J. (2021), https://doi.org/10.1002/chem.202005166.
[365] S. Elbasuney, A. Baraka, Y. El-Sharkawy, G. El-Sayyad, Superior spectral
uorescence signature of novel illuminated melamine resin for industrial
explosive detection, Opt Laser. Technol. 140 (2021), 107066, https://doi.org/
10.1016/j.optlastec.2021.107066.
[366] S. Elbasuney, A. Baraka, M. Gobara, Y.H. El-Sharkawy, 3D spectral uorescence
signature of cerium(III)-melamine coordination polymer: a novel sensing material
for explosive detection, Spectrochim. Acta Mol. Biomol. Spectrosc. 245 (2021),
119841, https://doi.org/10.1016/j.saa.2020.118941.
[367] M. Faheem, S. Aziz, X. Jing, T. Ma, J. Du, F. Sun, Y. Tian, G. Zhu, Dual
luminescent covalent organic frameworks for nitro-explosive detection, J. Mater.
Chem. (2019), https://doi.org/10.1039/C9TA09497K.
[368] J. Fan, Z. Meng, X. Dong, M. Xue, L. Qiu, X. Liu, F. Zhong, X. He, Colorimetric
screening of nitramine explosives by molecularly imprinted photonic crystal
array, Microchem. J. 158 (2020), 105143, https://doi.org/10.1016/j.
microc.2020.105143.
[369] F. Feng, Y. Peng, L. Zhang, W. Huang, Imine organic cages derived from
tetraphenylethylene dialdehydes exhibiting aggregation-induced emission and
explosives detection, Dyes Pigments 194 (2021), 109657, https://doi.org/
10.1016/j.dyepig.2021.109657.
[370] E. Gao, D. Liu, J. Xing, Y. Feng, J. Su, J. Liu, H. Zhao, N. Wang, Z. Jia, X. Zhang, V.
P. Fedin, M. Zhu, A recyclable bi-functional luminescent zinc (II) metal-organic
framework as highly selective and sensitive sensing probe for nitraromatic
explosives and Fe3+ions, Appl. Organomet. Chem. 33 (9) (2019), e5109, https://
doi.org/10.1002/aoc.5109.
[371] George, G., Edwards, C.S., Hayes, J.I., Yu, L., Ede, S.R., Wen, J.G., Luo, & Z.P. A
novel reversible uorescent probe for the highly sensitive detection of nitro and
peroxide organic explosives using electrospun BaWO4 nanobers. J. Mater.
Chem. C, 7(47), Pages 14949-14961. https://doi.org/10.1039/C9TC05068J.
[372] K. Gholivand, S. Tizhoush, A. Kozakiewicz, Two new micro-isostructural
metal–organic polymers based on mixed-ligand copper(I): structures and selective
sensing of nitro explosives in water, Appl. Organomet. Chem. 34 (8) (2020),
e5701, https://doi.org/10.1002/aoc.5701.
[373] R. Gillanders, J. Glackin, J. Filipi, N. Kezi, I. Samuel, G. Turnbull, June 23-27).
Fluorescence-based sensors and preconcentration techniques for buried
explosives detection [Conference session], in: European Conference on Lasers and
Electro-Optics, Munich, Germany, 2019. https://www.osapublishing.org/abstract
.cfm?uri=CLEO_Europe-2019-ch_9_5.
[374] P. Guo, S. Zheng, Y. Wang, Q. Zhuang, Y. Ni, Synthesis of uorescent tremalle-like
carbon nanosheets and their application for sensing of 2,4,6-trinitrophenol, Anal.
Lett. 53 (1) (2020) 72–83, https://doi.org/10.1080/00032719.2019.1636809.
[375] H. Hao, H. Luo, A. Yi, C. Liu, B. Xu, G. Shi, Z. Chi, A multifunctional luminescent
network lm electrochemically deposited from a new AIEE emitter for OLEDs and
explosive detection, Org. Electron. 69 (2019) 281–288, https://doi.org/10.1016/
j.orgel.2019.03.029.
[376] J. Harwell, J. Glackin, N. Davis, R. Gillanders, D. Credgington, G. Turnbull,
I. Samuel, Sensing of explosive vapor by hybrid perovskites: effect of
dimensionality, Apl. Mater. 8 (7) (2020), 071106, https://doi.org/10.1063/
5.0011229.
[377] Y. Henshke, B. Shemer, S. Belkin, The Escherichia coli azoR gene promoter: a new
sensing element for microbial biodetection of trace explosives, Curr. Res.
Biotechnol. 3 (2021) 21–28, https://doi.org/10.1016/j.crbiot.2021.01.003.
[378] E. Hussain, Y. Li, C. Cheng, H. Zhuo, S. Shahzad, S. Ali, M. Ismail, H. Qi, C. Yu,
Benzo[ghi]perylene and coronene as ratiometric uorescence probes for the
selective sensing of nitroaromatic explosives, Talanta 207 (2020), 120316,
https://doi.org/10.1016/j.talanta.2019.120316.
[379] M. Jurcic, W.J. Peveler, C.N. Savory, D. Bucar, A.J. Kenyon, D.O. Scanlon, I.
P. Parking, Sensing and discrimination of explosives at variable concentrations
with a large-pore MOF as part of a luminescent array, ACS Appl. Mater. Interfaces
11 (12) (2019) 11618–11626, https://doi.org/10.1021/acsami.8b22385.
[380] N. Kalva, C.H. Tran, M.W. Lee, R. Augstine, S.J. Lee, I. Kim, Aggregation-induced
emission-active hyperbranched polymers conjugated with tetraphenylethylene
for nitroaromatic explosive detection, Dyes Pigments 194 (2021), 109617,
https://doi.org/10.1016/j.dyepig.2021.109617.
[381] S. Kanwal, S. Jahan, F. Mansoor, An ultrasonic-assisted synthesis of leather-
derived luminescent graphene quantum dots: catalytic reduction and switch
on–off probe for nitro-explosives, RSC Adv. 10 (39) (2020) 22959–22965,
https://doi.org/10.1039/D0RA03715J.
[382] Z. Kayhomayun, K. Ghani, K. Zargoosh, Template-directed synthesis of Sm
2
Ti
2
O
7
nanoparticles: a FRET-based uorescent chemosensor for the fast and selective
determination of picric acid, New J. Chem. 44 (38) (2020) 16442–16451, https://
doi.org/10.1039/D0NJ04219F.
[383] Z. Kayhomayun, K. Ghani, K. Zatgoosh, Surfactant-assisted synthesis of
uorescent SmCrO3 nanopowder and its application for fast detection of
nitroaromatic and nitramine explosives in solution, Mater. Chem. Phys. 247
(2020), 122899, https://doi.org/10.1016/j.matchemphys.2020.122899.
[384] S. Khan, A. Hazra, B. Dutta, Akhtaruzzaman, M. Raihan, J. Raihan, P. Banerjee,
M. Mir, Strategic design of anthracene-decorated highly luminescent coordination
polymers for selectives and rapid detection of TNP: an explosive nitro derivative
and mutagenic pollutant, Cryst. Growth Des. 21 (6) (2021) 3344–3354, https://
doi.org/10.1021/acs.cgd.1c00145.
[385] M. Kose, H. Kirpik, A. Kose, Fluorimetric detections of nitroaromatic explosives
by polyaromatic imine conjugates, J. Mol. Struct. 1185 (2019) 369–378, https://
doi.org/10.1016/j.molstruc.2019.03.003.
[386] I.S. Kovalev, L.K. Sadieva, O.S. Taniya, V.M. Yurk, A.S. Minin, S. Santra, G.
V. Zyryanov, V.N. Charushin, O.N. Chupakhin, M.V. Tsurkan, Computer vision vs.
spectrouorometer-assisted detection of common nitro-explosive components
with bola-type PAH-based chemosensors, RSC Adv. 11 (42) (2021) 25850–25857,
https://doi.org/10.1039/D1RA03108B.
[387] P.A. Kulharni, V. Nandre, N. Kumbhar, R. Khade, T. Urmode, K.M. Kodam, M.
A. More, NTO sensing by uorescence quenching of a pyoverdine siderophore—a
mechanistic approach, ACS Omega 5 (17) (2020) 9668–9673, https://doi.org/
10.1021/acsomega.9b03844.
[388] A. Kumar, C. Lu, W. Tseng, Two in one: poly(ethyleneimine)-modied MnO
2
nanosheets for ultrasensitive detection and catalytic reduction of 2,4,6-Trinitro-
toluene and other nitro aromatics, ACS Sustain. Chem. Eng. 9 (3) (2021)
1142–1151, https://doi.org/10.1021/acssuschemeng.0c06224.
[389] Kumar, V., Choudhury, N., Kumar, A., De, P., & Satapathi, S. Poly-tryptophan/
carbazole based FRET-system for sensitive detection of nitroaromatic explosives.
Opt. Mater., 100, 109710. https://doi.org/10.1016/j.optmat.2020.109710.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
17
[390] V. Kumar, S.K. Saini, N. Choudhury, A. Kumar, A. Kumar, B. Maiti, P. De,
M. Kumar, S. Sataphathi, Highly sensitive detection of nitro compounds using a
uorescent copolymer-based FRET system, ACS Appl. Polym. Mater. 3 (8) (2021)
4017–4026, https://doi.org/10.1021/acsapm.1c00540.
[391] J.Y. Lee, H.D. Root, R.A.W. An, V.M. Lynch, S. Bahring, I.S. Kim, J.L. Sessler, J.
S. Park, Ratiometric turn-on uorophore displacement ensembles for
nitroaromatic explosives detection, J. Am. Chem. Soc. 142 (46) (2020)
19579–19587, https://doi.org/10.1021/jacs.0c08106.
[392] M. Li, H. Chen, S. Li, G. Wang, Wei, X. Guo, H. Tu, Active self-assembled
monolayer sensors for trace explosive detection, Langmuir 36 (6) (2020)
1462–1466, https://doi.org/10.1021/acs.langmuir.9b03742.
[393] X. Li, C. Wang, W. Song, C. Meng, C. Zuo, Y. Xue, W. Lai, W. Huang, Electron-rich
π
-extended Diindolotriazatruxene-based chemosensors with highly selective and
rapid responses to nitroaromatic explosives, ChemPlusChem 84 (10) (2019)
1623–1629, https://doi.org/10.1002/cplu.201900347.
[394] Y. Li, Y. Zhang, Y. Zhanag, Z. Wang, H. Yang, H. Yao, T. Wei, Q. Lin, Tripodal
naphthalimide assembled novel AIE supramolecular uorescent sensor for rapid
and selective detection of picric acid, Dyes Pigments 181 (2020), 108563, https://
doi.org/10.1016/j.dyepig.2020.108563.
[395] X. Liang, L. Wen, Y. Mi, J. Guo, B. Yu, M. Tao, Z. Cao, Z. Zhao, Highly cross-linked
polymeric nanoparticles with aggregation-induced emission for sensitive and
recyclable explosive detection, Dyes Pigments 191 (2021), 109369, https://doi.
org/10.1016/j.dyepig.2021.109369.
[396] K. Liu, Z. Wang, C. Shang, X. Li, H. Peng, R. Miao, L. Ding, J. Liu, T. Liu, Y. Fang,
Unambiguous discrimination and detection of controlled chemical vapors by a
lm-based uorescent sensor array, Adv. Mater. Technol. 4 (7) (2019), 1800644,
https://doi.org/10.1002/admt.201800644.
[397] W. Liu, H. Ai, Z. Meng, L. Isaacs, Z. Xu, M. Xue, Q. Yang, Interactions between
acyclic CB[n]-type receptors and nitrated explosive materials, Chem. Commun.
55 (71) (2019) 10635–10638, https://doi.org/10.1039/C9CC05117A.
[398] A. Loch, D. Stoltzfus, P. Burn, P. Shaw, High-sensitivity Poly(dendrimer)-based
sensors for the detection of explosives and taggant vapors, Macromolcules 53 (5)
(2020) 1652–1664, https://doi.org/10.1021/acs.macromol.0c00060.
[399] S. Lu, W. Fan, H. Liu, L. Gong, Z. Xiang, H. Wang, C. Yang, Four imidazole
derivative AIEE luminophores: sensitive detection of NAC explosives, New J.
Chem. 45 (15) (2021) 6889–6894, https://doi.org/10.1039/D0NJ06007K.
[400] Y. Ma, X. Yang, M. Niu, W. Hao, D. Shi, D. Schipper, High-nuclearity CD(II)-Nd
(III) nanowheel with NIR emission sensing of metal cations and nitro-based
explosives, Cryst. Growth Des. 21 (5) (2021) 2821–2827, https://doi.org/
10.1021/acs.cgd.0c01742.
[401] F. Mauricio, J. Silva, M. Talhavini, S. Alves Jr., I. Weber, Luminescent sensors for
nitroaromatic compound detection: investigation of mechanism and evaluation of
suitability of using in screening test in forensics, Microchem. J. 150 (2019),
104037, https://doi.org/10.1016/j.microc.2019.104037.
[402] F. Mitri, A. De Iacovo, De Santis, C. Giansante, G. Sotgiu, L. Colace,
Chemiresistive device for the detection of nitroaromatic explosives based on
colloidal PbS quantum dots, ACS Appl. Electron. Mater. 3 (7) (2021) 3234–3239,
https://doi.org/10.1021/acsaelm.1c00401.
[403] D. Modafferi, V. Zazubovich, L. Kalman, Bound detergent molecules in bacterial
reaction centers facilitate detection of tetryl explosive, Phtosynthesis Res. 145 (2)
(2020) 145–157, https://doi.org/10.1007/s11120-020-00770-7.
[404] F. Nabeel, T. Rasheed, M.F. Mahmood, S.U. Khan, Hyperbranched copolymer
based photoluminescent vesicular probe conjugated with tetraphenylethene:
synthesis, aggregation-induced emission and explosive detection, J. Mol. Liq. 308
(2020), 113034, https://doi.org/10.1016/j.molliq.2020.113034.
[405] O. Nanda, N. Gupta, R. Grover, A.M. Biradar, K. Saxena, Detection of 2, 4, 6-
Trinitrotoluene traces in water using uorescent conjugated polymer based on
Photoluminescence and Raman Spectroscopy, in: K. Singh, A.K. Gupta, S. Khare,
N. Dixit, Kamal Pant (Eds.), ICOL-2019: Proceedings of the International
Conference on Optics and Eletro-Optics, Springer, Dehradun, India, 2021,
pp. 829–832. https://link.springer.com/chapter/10.1007/978-981-15-9259-1_19
1.
[406] M. Nawaz, L. Meng, H. Zhou, J. Ren, S. Shahzad, A. Hayat, C. Yu,
Tetraphenylethene probe based uorescent silica nanoparticles for the selective
detection of nitroaromatic explosives, Anal. Methods 13 (6) (2021) 825–831,
https://doi.org/10.1039/D0AY01945C.
[407] M. Niu, X. Yang, Y. Ma, X. Leng, W. Hao, Y. Chen, Z. Chen, D. Schipper,
Construction of a nanoscale Yb(III) Schiff base complex with NIR luminescence
response to anions and nitro explosives, J. Lumin. 231 (2021), 117807, https://
doi.org/10.1016/j.jlumin.2020.117807.
[408] M. Niu, X. Yang, Y. Ma, D. Shi, D. Schipper, Triangular Cd(II)-Sm(III) base
complex with dual visible and near-infrared luminescent responses to nitro
explosives, J. Phys. Chem. A 125 (1) (2020) 251–257, https://doi.org/10.1021/
acs.jpca.0c09758.
[409] E. Ozcan, S.O. Tumay, G. Kesan, S. Yesilot, B. Cosut, The novel anthracene
decorated dendrimeric cyclophosphazenes for highly selective sensing of 2,4,6-
trinitrotoluene (TNT), Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 220
(2019), 117115, https://doi.org/10.1016/j.saa.2019.05.020.
[410] M. Panchal, A. Kongor, M. Athar, K. Modi, C. Patel, S. Dey, M. Vora, K. Bhadresha,
R. Rawal, P. Jha, V. Jain, Structural motifs of oxacalix[4]arene for molecular
recognition of nitroaromatic explosives: experimental and computational
investigations of host-guest complexes, J. Mol. Liq. 306 (2020), 112809, https://
doi.org/10.1016/j.molliq.2020.112809.
[411] B. Prusti, M. Chakravarty, An electron-rich small AIEgen as a solid platform for
the selective and ultrasensitive on-site visual detection of TNT in the solid,
solution and vapor states, Analyst 145 (5) (2020) 1687–1694, https://doi.org/
10.1039/C9AN02334H.
[412] T. Qiao, S. Kim, W. Lee, H. Lee, An enhanced uorescence detection of a
nitroaromatic compound using bacteria embedded in porous poly lactic-co-
glycolic acid microbeads, Analyst 146 (14) (2021) 4615–4621, https://doi.org/
10.1039/D1AN00510C.
[413] Z. Qiu, S. Fan, C. Xing, M. Zong, M. Song, Z. Nie, L. Xu, X. Zhang, L. Wang,
S. Zhang, B. Li, Facile fabrication of an AIE-active metal-organic framework for
sensitive detection of explosives in liquid and solid phases, ACS Appl. Mater.
Interfaces 12 (49) (2020) 55299–55307, https://doi.org/10.1021/
acsami.0c17165.
[414] A. Saravanan, M. Maruthapandi, P. Das, S. Gaguly, S. Margel, J. Luong,
A. Gedanken, Applications of n-doped carbon dots as antimicrobial agents,
antibiotic carriers, and selective uorescent probes for nitro explosives, ACS Appl.
Bio Mater. 3 (11) (2020) 8023–8031, https://doi.org/10.1021/acsabm.0c01104.
[415] S. Saravanan, R. Ahmad, S. Kasthuri, K. Pal, S. Ravietja, P. Nagaraaj,
R. Hoogenboom, V. Nutalapati, S. Maji, Pyrazoloanthrone-functionalized
uorescent copolymer for the detection and rapid analysis of nitroaromatic,
Mater. Chem. Front. 5 (1) (2021) 238–243, https://doi.org/10.1039/
D0QM00563K.
[416] E. Scorsone, R. Manai, K. Cali, M. Ricatti, S. Farno, K. Persaud, C. Mucignat,
Biosensor array based on ligand binding proteins for narcotics and explosives
detection, Sensor. Actuator. B Chem. 334 (2021), 129587, https://doi.org/
10.1016/j.snb.2021.129587.
[417] D. Sengottuvelu, V. Kachwal, P. Raichure, T. Raghav, I. Laskar, Aggregation-
induced enhanced emission (AIEE)-active conjugated mesoporous oligomers
(CMOs) with improved quantum yield and low-cost detection of a trace amount of
nitroaromatic explosives, ACS Appl. Mater. Interfaces 12 (88) (2020)
31875–81886, https://doi.org/10.1021/acsami.0c05273.
[418] G. Shan, W. Li, Z. Zhijia, L. Rui, W. Qiang, W. Guojun, W. Hao, O. Xiao,
Ultrasensitive and portable uorescence polyurethane indicator paper for real-
time, visual and selective detection of 2,4,6-trinitrophenol, Chem. Eng. J. Adv. 5
(2021), 100069, https://doi.org/10.1016/j.ceja.2020.100069.
[419] M. Sharazadeh, J. Mokhtari, H. Saeidian, Z. Mirjafary, Urea metal-organic
frameworks as a highly selective uorescent sensor for the explosive
nitroaromatics and carbonyl compounds, J. Porous Mater. 27 (2020) 603–609,
https://doi.org/10.1007/s10934-019-00842-7.
[420] B. Shemer, E. Shpigel, C. Hazan, Y. Kabessa, A. Agranat, S. Belkin, Detection of
buried explosives with immobilized bacterial bioreporters, Microb. Biotechnol. 14
(1) (2021) 251–261, https://doi.org/10.1111/1751-7915.13683.
[421] B. Shin, H. Sohn, Heavy atom effect of metallole nanoaggregates and their
explosive sensing applications, J. Nanosci. Nanotechnol. 20 (9) (2020)
5599–5603, https://doi.org/10.1166/jnn.2020.17638.
[422] E. Shpigel, B. Shemer, T. Elad, A. Glozman, S. Belkin, Bacterial bioreporters for
the detection of trace explosives: performance enhancement by DNA shufing and
random mutagenesis, Appl. Microbiol. Biotechnol. 105 (10) (2021) 4329–4337,
https://doi.org/10.1007/s00253-021-11290-2.
[423] R. Siegel, S. Glazier, TNT sensor: Stern-Volmer analysis of luminescence
quenching of ruthenium bipyridine, J. Chem. Educ. 98 (8) (2021) 2643–2648,
https://doi.org/10.1021/acs.jchemed.0c01221.
[424] R. Singhaal, L. Tashi, Z. ul Nisa, N.A. Ashashi, C. Sen, S. Devi, H.N. Sheikh, PEI
functionalized NaCeF
4
:Tb
3+
/Eu
3+
for photoluminescence sensing of heavy metal
ions and explosive aromatic nitro compounds, RSC Adv. 11 (32) (2021)
19333–19350, https://doi.org/10.1039/D1RA02910J.
[425] S.M. Tawk, A.A. Elaal, Y. Lee, Selective dual detection of Hg2+and TATP based
on amphiphilic conjugated polythiophene-quantum dot hybrid materials, Analyst
146 (9) (2021) 2894–2901, https://doi.org/10.1039/D1AN00166C.
[426] A.C. Tella, V.T. Olayemi, F.A. Adekola, A.C. Oladipo, V.O. Adimula, J.O. Ogar, E.
C. Hosten, A.S. Ogunlaja, S.P. Argent, R. Mokaya, Synthesis, characterization and
density functional theory of copper(II) complex and cobalt(II) coordination
polymer for detection of nitroaromatic explosives, Inorg. Chim. Acta. 515 (2021),
120048, https://doi.org/10.1016/j.ica.2020.120048.
[427] R. Tian, P. Ji, L. Wang, H. Zhang, J. Sun, TNT sensor based on accumulation layer
and effective distance of FRET mechanism with ultra-high sensitivity, Microchem.
J. 160 (Part B) (2021), 105706, https://doi.org/10.1016/j.microc.2020.105706.
[428] A.P. Vargas, J. Almeida, F. Gamez, J. Roales, C. Queiros, M. Rangel, T. Lopes-
Costa, A.M.G. Silva, J.M. Pedrosa, Synthesis of a highly emissive carboxylated
pyrrolidine-fused chlorin for optic sensing of TATP vapours, Dyes Pigments 195
(2021), 109721, https://doi.org/10.1016/j.dyepig.2021.109721.
[429] E. Verbitskiy, G. Rusinov, O. Chupakhin, V. Charushin, Design of uorescent
sensors based on azaheterocyclic push-pull systems towards nitroaromatic
explosives and related compounds: a review, Dyes Pigments 180 (2020), 108414,
https://doi.org/10.1016/j.dyepig.2020.108414.
[430] N.S. Vijila, M. Athira, S.M. Anju, A.O. Aswathy, J. Jayakrishna, M. Sreekumar, J.
S.A. Devi, B. Anjitha, S. George, Folic acid as a bimodal optical probe for the
detection of TNT, J. Fluoresc. 31 (4) (2021) 933–940, https://doi.org/10.1007/
s10895-021-02713-4.
[431] D. Wang, S. Lou, Y. Ying, Z. Guo, L. Wang, Assembly of two isostructural metal-
organic frameworks based on Hetero-N,O donor ligand for detecting nitro
explosives, Chem. Res. Chin. Univ. 35 (5) (2019) 762–766, https://doi.org/
10.1007/s10895-021-02713-4.
[432] K. Wang, E. Ma, Z. Hu, H. Wang, Rapid synthesis of self-propelled tubular
micromotors for “ON-OF”” uorescent detection of explosives, Chem. Commun.
57 (81) (2021) 10528–10531, https://doi.org/10.1039/D1CC03899K.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
18
[433] K. Wang, W. Wang, S. Pan, Y. Fu, B. Dong, H. Wang, Fluorescent self-propelled
covalent organic framework as a microsensor for nitro explosive detection, Appl.
Mater. Today 19 (2020), 100550, https://doi.org/10.1016/j.apmt.2019.100550.
[434] Y. Wang, H. Niu, Q. Lu, W. Zhang, X. Qiao, H. Niu, Y. Zhang, W. Wang, From
aerospace to screen: multifunctional poly(benzoxazine)s based on different
triarylamines for electrochromic, explosive detection and resistance memory
devices, Spectrochim. Part A: Mol. Biomol. Spectrosc. 225 (2020), 117254,
https://doi.org/10.1016/j.saa.2019.117524.
[435] Y. Xiao, Q. Guan, Y. Wang, Z. You, K. Zhang, Y. Xing, F. Bai, L. Sun, A novel
supramolecular silver coordination complex based on a triazole carboxylate
ligand: synthesis and uorescence sensing of colchicine and a series of nitro
explosives, ChemistrySelect 4 (45) (2019) 13327–13332, https://doi.org/
10.1002/slct.201904284.
[436] G. Xie, B. Liu, Fingerprinting of nitroaromatic explosives realized by aphen-
functionalized titanium dioxide, Sensors 19 (10) (2019) 2407, https://doi.org/
10.3390/s19102407.
[437] Y. Xu, X. Song, C. Hao, LCOFs: role of the excited state hydrogen bonding in the
detection for nitro-explosives, J. Lumin. 215 (2019), 116733, https://doi.org/
10.1016/j.jlumin.2019.116733.
[438] C. Yan, W. Qin, Z. Li, Y. Zhou, Y. Cui, G. Liang, Quantitative and rapid detection
of explosives using an efcient luminogen with aggregation-induced emission
characteristics, Sensor. Actuator. B Chem. 302 (2020), 127201, https://doi.org/
10.1016/j.snb.2019.127201.
[439] J. Yang, R. Shen, P. Yan, Y. Liu, X. Li, P. Zhang, W. Chen, Fluorescence sensor for
volatile trace explosives based on a hollow core photonic crystal ber, Sensor.
Actuator. B Chem. 306 (2020), 127585, https://doi.org/10.1016/j.
snb.2019.127585.
[440] L. Yang, Y. Liu, C. Liu, F. Ye, A built-in self-calibrating luminescence sensor based
on RhB@Zr-MOF for detection of cations, nitro explosives and pesticides, RSC
Adv. 10 (33) (2020) 19149–19156, https://doi.org/10.1039/D0RA02843F.
[441] X. Yang, D. Hu, Q. Chen, L. Li, P. Li, S. Ren, M. Bertuzzo, K. Chen, D. Han,
X. Zhou, X. Xia, A pyrene-cored conjugated microporous polycarbazole for
sensitive and selective detection of hazardous explosives, Inorg. Chem. Commun.
107 (2019), 107453, https://doi.org/10.1016/j.inoche.2019.107453.
[442] B. Yardimci, O. Koc, A. Uzer, J. Hizal, R. Apak, Ethylenediamine-bound magnetite
nanoparticles as dual function colorimetric sensor having charge transfer and
nanozyme activity for TNT and tetryl detection, Microchim. Acta 188 (7) (2021)
228, https://doi.org/10.1007/s00604-021-04877-z.
[443] C. Zhang, X. Pan, S. Cheng, A. Xie, W. Dong, Pyrene Derived aggregation-induced
emission sensor for highly selective detection of explosive CL-20, J. Lumin. 233
(2021), 117871, https://doi.org/10.1016/j.jlumin.2020.117871.
[444] L. Zhang, J. Hu, J. Li, J. Zhang, A thermal and pH stable uorescent coordination
polymer for sensing nitro explosives or metal ions with high selectivity and
sensitivity in aqueous solution, J. Lumin. 234 (2021), 117958, https://doi.org/
10.1016/j.jlumin.2021.117958.
[445] W. Zhang, B. Gao, X. Guo, W. Song, Polyuorene based uorescent sensor for
sensitive and selective detection of picric acid, Mater. Lett. 306 (2022), 130860,
https://doi.org/10.1016/j.matlet.2021.130860.
[446] X. Zhang, Y. Yan, F. Chen, G. Bai, H. Xu, S. Xu, A uorescent titanium-based
metal-organic framework sensor for nitro-aromatics detection, Zeitschrift fur
anorganische und allgemeine Chemie 647 (7) (2021) 759–763, https://doi.org/
10.1002/zaac.202000459.
[447] Y. Zhang, Y. Feng, Z. Zhang, M. Zhang, Highly efcient uorescent lm probe of
hydrogen peroxide vapor, Microchem. J. (2020), https://doi.org/10.1016/j.
microc.2020.105290.
[448] P. Zheng, A. Abdurahman, Z. Zhang, Y. Feng, Y. Zhang, X. Zi, F. Li, M. Zhang,
A simple organic multi-analyte uorescent prober: one molecule realizes the
detection to DNT, TATP and Sarin substitute gas, J. Hazard Mater. (2020),
https://doi.org/10.1016/j.jhazmat.2020.124500.
[449] Y. Zheng, S. Wang, R. Li, L. Pan, L. Li, Z. Qi, C. Li, Highly selective detection of
nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots,
Res. Chem. Intermed. 47 (6) (2021) 2421–2431, https://doi.org/10.1007/
s11164-021-04410-0.
Mass Spectrometry
[450] S. An, S. Liu, J. Cao, S. Lu, Nitrogen-activated oxidation in nitrogen direct analysis
in real time mass spectrometry (DART-MS0 and rapid detection of explosives
using thermal desorption DART-MS, J. Am. Soc. Mass Spectrom. 30 (10) (2019)
2092–2100, https://doi.org/10.1007/s13361-019-02279-3.
[451] A.C.A. Assis, J. Caetano, M.H. Florencio, C. Cordeiro, Triacetone triperoxide
characterization by FT-ICR mass spectrometry: uncovering multiple forensic
evidence, Forensic Sci. Int. 301 (2019) 37–45, https://doi.org/10.1016/j.
forsciint.2019.04.020.
[452] L. Bi, A. Habib, La Chen, T. Xu, L. Wen, Ultra-trace level detection of nonvolatile
compounds studied ultrasonic cutter blade coupled dielectric barrier discharge
ionization-mass spectrometry, Talanta 222 (2021), 121673, https://doi.org/
10.1016/j.talanta.2020.121673.
[453] C. Black, Exploring Applicability of Direct Analysis in Real Time with Mass
Spectrometry (DART-MS) to Identify Homemade Explosive Residues Post-blast,
Master’s thesis, Carleton University Research Virtual Environment, 2019, https://
doi.org/10.22215/etd/2019-13644.
[454] C. Black, T. D’Souza, J. Smith, N. Hearns, Identication of post-blast explosive
residues using direct-analysis-in-real-time and mass spectrometry (DART-MS),
Forensic Chem. 16 (2019), 100185, https://doi.org/10.1016/j.forc.2019.100185.
[455] C. Bonnar, R. Popelka-Filcoff, K. Kirkbride, Armed with the facts: a method for the
analysis of smokeless powders by ambient mass spectrometry, J. Am. Soc. Mass
Spectrom. 31 (9) (2020) 1943–1956, https://doi.org/10.1021/jasms.0c00193.
[456] R. Boyea, Association of Fire Cartridge Residues to Unburned Smokeless Powders
Using GC-MS and Multivariate Statistical Procedures (Publication No. 27744171),
Master’s thesis, Michigan State University, 2020.
[457] J.M.C. Cajigas, L. Perez-Almodovar, L.E. DeGreeff, Headspace analysis of
potassium chlorate using on-ber SPME derivatization coupled with GC/MS,
Talanta 205 (2019), 120127, https://doi.org/10.1016/j.talanta.2019.120127.
[458] D. Carmany, C.B. Nguyen, T. Glaros, N. Manicke, E. Dhummkupt, Pressure-
sensitive adhesive combined with paper spray mass spectrometry for trace surface
detection of illicit drugs and explosives, in: Proceedings SPIE Chemical,
Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXII, vol.
11749, 2021, https://doi.org/10.1117/12.2585936, 1174909.
[459] C. Costa, E.M. van Es, P. Sears, J. Bunch, V. Palitsin, H. Cooper, M.J. Bailey,
Exploring a route a selective and sensitive portable system for explosive
detection-swab spray coupled to of high-eld assisted waveform ion mobility
spectrometry (FAIMS), Forensic Sci. Int.: Synergy 1 (2019) 214–220, https://doi.
org/10.1016/j.fsisyn.2019.07.009.
[460] C. Costa, E.M. van Es, P. Sears, J. Bunch, V. Palitsin, K. Mosegaard, M.J. Baliey,
Exploring rapid, sensitive and reliable detection of trace explosives using paper
spray mass spectrometry (PS-MS), Propellants, Explos. Pyrotech. 44 (8) (2019)
1021–1027, https://doi.org/10.1002/prep.201800320.
[461] J. D’Uva, D. DeTate, C. May, S. Lewis, Investigations into the source attribution of
part sparklers using trace elemental analysis and chemometrics, Anal. Methods 12
(41) (2020) 4939–4948, https://doi.org/10.1039/D0AY01319F.
[462] K. Evans-Nguyen, A. Stelmark, P. Clowser, J. Holtz, C. Mulligan, Fieldable mass
spectrometry for forensic science, homeland security, and defense applications,
Mass Spectrom. Rev. (2021) 628–646, https://doi.org/10.1002/mas.21646.
[463] T. Forbes, J. Lawrence, C. Hao, G. Gillen, Open port sampling interface mass
spectrometry of wipe-based explosives, oxidizers, and narcotics for trace
contraband detection, Anal. Methods 13 (17) (2021) 3453–3460, https://doi.org/
10.1039/D1AY01038G.
[464] K.L. Fowble, R.A. Musah, Simultaneous imaging of latent ngermarks and
detection of analytes of forensic relevance by laser ablation direct analysis in real
time imaging-mass spectrometry (LADI-MS), Forensic Chem. 15 (2019), 100173,
https://doi.org/10.1016/j.forc.2019.100173.
[465] J. Frazier, V. Beneeld, M. Zhang, Practical investigation of direct analysis in real
time mass spectrometry for fast screening of explosives, Forensic Chem. 18
(2020), 100233, https://doi.org/10.1016/j.forc.2020.100233.
[466] G. Gaiffe, R.B. Cole, A. Sonnette, N. Floch, M.C. Bridoux, Identication of
postblast residues by DART-high resolution mass spectrometry combined with
multivariate statistical analysis of the Kendrick mass defect, Anal. Chem. 91 (13)
(2019) 8093–8100, https://doi.org/10.1021/acs.analchem.9b00137.
[467] M. Galmiche, A. Colin, M. Clavos, C. Pallez, C. Rosin, X. Dauchy, Determination of
nitroaromatic explosive residues in water by stir bar sorptive extraction-gas
chromatography-tandem mass spectrometry, Anal. Bioanal. Chem. 413 (1) (2021)
159–169, https://doi.org/10.1007/s00216-020-02985-y.
[468] M.D. Gonsalves, A. Yevdokimov, A. Brown-Nash, J.L. Smith, J.C. Oxley, Paper
spray ionization-high-resolution mass spectrometry (PSI-HRMS) of peroxide
explosives in biological matrices, Anal. Bioanal. Chem. 413 (11) (2021)
3069–3079, https://doi.org/10.1007/s00216-021-03244-4.
[469] R. Gonzalez-Mendez, C.A. Mayhew, Applications of direct injection soft chemical
ionization-mass spectrometry for the detection of pre-blast smokeless powder
organic additives, J. Am. Soc. Mass Spectrom. 30 (4) (2019) 615–624, https://
doi.org/10.1007/s13361-018-02130-1.
[470] A. Habib, L. Bi, L. Wen, Simultaneous detection and quantication of explosives
by a modied hollow cathode discharge ion source, Talanta 233 (2021), 122596,
https://doi.org/10.1016/j.talanta.2021.122596.
[471] A. Habib, B. Lei, H. Hong, L. Wen, Challenges and strategies of chemical analysis
of drugs of abuse and explosives by mass spectrometry, Front. Chem. 8 (2021),
598487, https://doi.org/10.3389/fchem.2020.598487.
[472] H. Hong, A. Habib, L. Bi, L. Wen, Gas phase ion-molecule reactions of
nitroaromatic explosive compounds studied by hollow cathode discharge
ionization-mass spectrometry, Talanta 236 (2022), 122834, https://doi.org/
10.1016/j.talanta.2021.122834.
[473] M. Huang, J. Zhu, J. Wu, Simulation of explosive detection based on APT-TOF for
verifying nuclear warhead dismantlement, Appl. Radiat. Isot. 171 (2021),
109648, https://doi.org/10.1016/j.apradiso.2021.109648.
[474] N. Jurado-Campos, U. Chiluwal, G.A. Eiceman, Improved selectivity for the
determination of trinitrotoluene through reactive stage tandem ion mobility
spectrometry and a quantitative measure of source-based suppression of
ionization, Talanta 226 (2021), 121944, https://doi.org/10.1016/j.
talanta.2020.121944.
[475] S. Kober, H. Hollert, M. Frohme, Quantication of nitroaromatic explosives in
contaminated soil using MALDI-TOF mass spectrometry, Anal. Bioanal. Chem.
411 (23) (2019) 5993–6003, https://doi.org/10.1007/s00216-019-01976-y.
[476] J. Lee, M.S. Kim, H.S. Kim, Y. Choe, S.G. Cho, E.M. Goh, J. Kim, Characterization
of RDX and HMX explosive adduct ions using ESI FT-ICR MS, J. Mass Spectrom.
56 (4) (2020), e4632, https://doi.org/10.1002/jms.4632.
[477] C. Longo, R. Musah, MALDI-mass spectrometry imaging for touch chemistry
biometric analysis: establishment of exposure to nitroaromatic explosives through
chemical imaging of latent ngermarks, Forensic Chem. 20 (2020), 100269,
https://doi.org/10.1016/j.forc.2020.100269.
[478] R.D. McCulloch, M. Amo-Gonzalez, Rapid detection of explosive vapors by
thermal desorption-atmospheric pressure photoionization-differential mobility
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
19
analysis-tandem mass spectrometry, RCM (Rapid Commun. Mass Spectrom.) 33
(18) (2019) 1455–1463, https://doi.org/10.1002/rcm.8492.
[479] K. Moquin, A. Higgins, P. Leary, B. Kammrath, Optimized explosives analysis
using portable gas chromatography-mass spectrometry for battleeld forensics,
LC GC: Mass Spectrom. 18 (2) (2020) 277–290.
[480] W. Niessen, Tandem mass spectrometry of organic nitro and halogen compounds:
competition between losses of molecules and of radicals, Int. J. Mass Spectrom.
460 (2021), 116496, https://doi.org/10.1016/j.ijms.2020.116496.
[481] J. Pavlov, D. Douce, S. Bajic, A. Attygalle, 1,4-Benzoquinone as a highly efcient
dopant for enhanced ionization and detection of nitramine explosives on a single-
quadrupole mass spectrometer tted with a helium-plasma ionization (HePI)
source, J. Am. Soc. Mass Spectrom. 30 (12) (2019), https://doi.org/10.1007/
s13361-019-02339-8, 2704-1710.
[482] L. Pintabona, A. Astefanei, G. Corthals, A. van Asten, Utilizing surface acoustic
wave nebulization (SAWN) for the rapid and sensitive ambient ionization mass
spectrometric analysis of organic explosives, J. Am. Soc. Mass Spectrom. 30 (12)
(2019) 2655–2669, https://doi.org/10.1007/s13361-019-02335-y.
[483] P. Supajariyawat, J. Gonzalez-Rodriguez, Application of LC−QTOF/MS for the
validation and determination of organic explosive residues on Ionscan® swabs,
Sci. Justice 61 (6) (2021) 697–703, https://doi.org/10.1016/j.
scijus.2021.09.001.
[484] R.V. Taudte, C. Roux, D.P. Bishop, C. Fouracre, A. Beavis, High-throughput
screening for target compounds in smokeless powders using online-SPE tandem
mass spectrometry, Aust. J. Forensic Sci. 53 (1) (2019) 16–26, https://doi.org/
10.1080/00450618.2019.1629019.
[485] W. Wang, F. Xu, L. Jin, C. Ding, Rapid identication of illegal drugs and
explosives using resonance excitation in miniaturized photoionization ion trap
mass spectrometry, Int. J. Mass Spectrom. 467 (2021), 116625, https://doi.org/
10.1016/j.ijms.2021.116625.
[486] J. Xue, Y. Bai, H. Liu, Recent advances in ambient mass spectrometry imaging,
TrAC, Trends Anal. Chem. 120 (2019), 115659, https://doi.org/10.1016/j.
trac.2019.115659.
[487] Q. Zhang, X. Zou, Q. Liang, H. Wang, C. Huang, C. Shen, Y. Chu, Ammonia-
assisted proton transfer reaction mass spectrometry for detecting triacetone
triperoxide (TATP) explosive, J. Am. Soc. Mass Spectrom. 30 (3) (2019) 501–508,
https://doi.org/10.1007/s13361-018-2108-6.
Isotope Ratio Mass Spectroscopy (IRMS)
[488] K. Bezemer, L. McLennan, R. Hessels, J. Schoorl, J. van den Elshout, A. van der
Heijden, A. Hulsbergen, M. Koeberg, T. Busby, A. Yevdokimov, E. de Rijke,
P. Schoenmakers, J. Smith, J. Oxley, A. van Asten, Chemical attribution of
homemade explosive ETN- part II: isotope ratio mass spectrometry analysis of
ETN and its precursors, Forensic Sci. Int. 313 (2020), 110334, https://doi.org/
10.1016/j.forsciint.2020.110344.
[489] C. Hu, H. Mei, H. Guo, Z. Yu, J. Zhu, Purication of ammonium nitrate via
recrystallization for isotopic proling using isotope ratio mass spectrometry,
Forensic Sci. Int. 328 (2021), 111009, https://doi.org/10.1016/j.
forsciint.2021.111009.
[490] N.Y. Kim, B. Song, D. Kim, M. Jung, Preliminary stable isotope analyses for
propellant discrimination in shotshells, Rapid Commun. Mass Spectrom. 35 (9)
(2021), e9072, https://doi.org/10.1002/rcm.9072.
FTIR
[491] A. Banas, K. Banas, S. Lim, J. Loke, M. Breese, Broad range FTIR spectroscopy and
multivariate statistics for high energetic materials discrimination, Anal. Chem. 92
(7) (2020) 4788–4797, https://doi.org/10.1021/acs.analchem.9b03676.
[492] A. Banas, K. Banas, M. Fung Lo, M. Kansiz, S. Kalaiselvi, S. Lim, J. Loke,
M. Breese, Detection of high-explosive materials within ngerprints by means of
optical-photothermal infrared spectromicroscopy, Anal. Chem. (2020), https://
doi.org/10.1021/acs.analchem.0c00938.
[493] A.M. Colon-Mercado, K.M. Vazquez-Velez, E. Caballero-Agosto, V. Vallanueva-
Lopez, R. Infante-Casstillo, S.P. Hernandez-Rivera, Detection of high explosives
samples deposited on reective and matte substrates using mid-infrared laser
spectroscopy at the grazing angle of incidence assisted by multivariate analysis,
Opt. Eng. 59 (9) (2020), 092011, https://doi.org/10.1117/1.OE.59.9.092011.
[494] N. He, Y. Ni, J. Teng, H. Li, L. Yao, P. Zhao, Identication of inorganic oxidizing
salts in homemade explosives using Fourier transform infrared spectroscopy,
Spectrochim. Acta Mol. Biomol. Spectrosc. 221 (2019), 117164, https://doi.org/
10.1016/j.saa.2019.117164.
[495] H. Itozaki, Near Infrared Inspection Technology of Bottled Explosive Liquid in
Airports, NIR news, 2019, https://doi.org/10.1177/0960336019889283.
[496] M. Mayeld, FLIR markets upgraded explosives detector, Natl. Defense 105 (794)
(2020) 11 (EBSCO: Military & Government).
[497] P. Su, W. Liang, G. Zhang, X. Wen, H. Chang, Z. Meng, M. Xue, L. Qiu,
Quantitative detection of components in polymer-bonded explosives through
near-infrared spectroscopy with partial least square regression, ACS Omega 6 (36)
(2021) 23163–23169, https://doi.org/10.1021/acsomega.1c02745.
[498] T. Tao, X. Sui, S. Li, N. Wang, A study on consumption and characterization of
stabilizer content of NEPE propellant via FTIR, Propellants, Explos. Pyrotech. 44
(7) (2019) 889–895, https://doi.org/10.1002/prep.201800340.
[499] J. Wojtas, M. Szala, Thermally enhanced FTIR spectroscopy applied to study of
explosives stability, Measurement 184 (2021), 110000, https://doi.org/10.1016/
j.measurement.2021.110000.
Raman Spectroscopy
[500] W. Ahmed, O. Demirtas, M. Ozturk, A. Bek, Monolayer assembly of multispiked
gold nanoparticles for surface-enhanced Raman spectroscopy-based trace
detection of dyes and explosives, ACS Appl. Nano Mater. 3 (7) (2020) 6766–6773,
https://doi.org/10.1021/acsanm.0c01177.
[501] M. Amin, P. Wen, W.D. Herzog, R.R. Kunz, Optimization of ultraviolet Raman
spectroscopy for trace explosive checkpoint screening, Anal. Bioanal. Chem. 412
(2020) 4495–4504, https://doi.org/10.1007/s00216-020-02725-2.
[502] S. Bykov, R. Roppel, M. Mao, S. Asher, 228-nm quadrupled quasi-three-level Nd:
GdVO4 laser for ultraviolet resonance Raman spectroscopy of explosives and
biological molecules, J. Raman Spectrosc. 51 (12) (2020) 2478–2488, https://doi.
org/10.1002/jrs.5999.
[503] Z. Chen, M. Qin, C. Xiao, Preliminary study on double enhanced Raman scattering
detection of gas phase trace explosives, IEEE Access 8 (2020) 194925–194932,
https://doi.org/10.1109/ACCESS.2020.3032836.
[504] W.K. Chio, W.J. Peveler, K.I. Assaf, S. Moorthy, W.M. Nau, I.P. Parkin, T. Lee,
Selective detection of nitroexplosives using molecular recognition within self-
assembled plasmonic nanojunctions, J. Phys. Chem. C 123 (25) (2019)
15769–15776, https://doi.org/10.1021/acs.jpcc.9b02363.
[505] F.M. Colon-Gonzalez, L.A. Perez-Almodovar, M. Barreto-Perez, G.L. Vargas-Alers,
J.M. Santos-Rolon, S.P. Hernandez-Rivera, Raman scattering detection of high
explosives on human hair, Opt. Eng. 59 (10) (2020), 107103, https://doi.org/
10.1117/1.OE.59.10.107103.
[506] D. Diaz, D. Hahn, Raman spectroscopy for detection of ammonium nitrate as an
explosive precursor used in improvised explosive devices, Spectrochim. Acta Mol.
Biomol. Spectrosc. 233 (2020), 118204, https://doi.org/10.1016/j.
saa.2020.118204.
[507] Y. Dwivedi, Concept and applications of standoff Raman spectroscopy techniques,
in: V. Gupta, Y. Ozaki (Eds.), Molecular and Laser Spectroscopy: Advances and
Applications, vol. 2, Elsevier, 2020, pp. 483–520, https://doi.org/10.1016/B978-
0-12-818870-5.00014-9.
[508] E.C.A. Gallo, L.M.L. Cantu, F. Duschek, RDX remote Raman detection of NATO
SET-237 samples, Eur. Phys. J. Plus 136 (4) (2021) 401, https://doi.org/10.1140/
epjp/s13360-021-01336-9.
[509] R. Gao, H. Qian, C. Weng, X. Wang, C. Xie, K. Guo, S. Zhang, S. Xuan, Z. Guo,
L. Luo, A SERS stamp: multiscale coupling effect of silver nanoparticles and highly
ordered nano-micro hierarchical substrates for ultrasensitive explosive detection,
Sensor. Actuator. B Chem. 321 (2020), 128543, https://doi.org/10.1016/j.
snb.2020.128543.
[510] R. Gao, X. Song, C. Zhan, C. Weng, S. Cheng, K. Guo, N. Ma, H. Chang, Z. Cuo,
L. Luo, L. Yu, Light trapping induced exible wrinkled nanocone SERS substrate
for highly sensitive explosive detection, Sensor. Actuator. B Chem. 314 (2020),
128081, https://doi.org/10.1016/j.snb.2020.128081.
[511] P. Garg, Bharti, R.K. Soni, R. Raman, Graphene oxide-silver nanocomposite SERS
substrate for sensitive detection of nitro explosives, J. Mater. Sci. Mater. Electron.
31 (2) (2020) 1094–1104, https://doi.org/10.1007/s10854-019-02621-1.
[512] S. Gulia, K. Gultai, V. Gambhir, R. Sharma, Detection of explosive materials and
their precursors through translucent commercial bottles using spatially offset
Raman spectroscopy using excitation wavelength in visible range, Opt. Eng. 58
(12) (2019), 127102, https://doi.org/10.1117/1.OE.58.12.127102.
[513] X. He, Y. Liu, S. Cui, W. Liu, Z. Li, Controllable fabrication of Ag-NP-decorated
porous ZnO nanosheet arrays with superhydrophobic properties for high
performance SERS detection of explosives, CrystEngComm 22 (4) (2020)
776–785, https://doi.org/10.1039/C9CE01430F.
[514] V. Heleg-Shabtai, A. Zaltsman, M. Sharon, H. Harabi, I. Nir, D. Marder, G. Cohen,
I. Ron, A. Pevzner, Explosive vapour/particles detection using SERS substrates
and a hand-held Raman detector, RSC Adv. 11 (42) (2021) 26029–26036, https://
doi.org/10.1039/D1RA04637C.
[515] J. Hubner, T. Deckert-Gaudig, J. Glorian, V. Deckert, D. Spitzer, Surface
characterization of nanoscale co-crystals enabled through tip enhanced Raman
spectroscopy, Nanoscale 2020 (12) (2020) 10306–10319, https://doi.org/
10.1039/D0NR00397B.
[516] V. Kahhkaie, M. Youse, S. Darbani, A. Mobashery, Enhanced Raman intensity of
pollutants and explosives by using 2-mercaptoethanol controlled pyramid
Ag–iron nanostructure embedded graphene oxide platform, Photon. Nanostruct.
Fund. Appl. 41 (2020), 100801, https://doi.org/10.1016/j.
photonics.2020.100801.
[517] G.A. Khan, O. Demirtas, A.K. Demir, O. Aytekin, A. Bek, A.S. Bhatti, W. Ahmed,
Fabrication of exible, cost-effective, and scalable silver substrates for efcient
surface enhanced Raman spectroscopy based trace detection, Colloids Surf. A
Physicochem. Eng. Asp. 619 (2021), 126542, https://doi.org/10.1016/j.
colsurfa.2021.126542.
[518] M. Kotrly, I. Turkova, New possibilities of complex analysis of explosives and post
blast residues in forensic practice, Microsc. Microanal. 26 (S2) (2020) 816–817,
https://doi.org/10.1017/S1431927620015949.
[519] D. Lin, R. Dong, P. Li, S. Li, M. Ge, Y. Zhang, L. Yang, W. Xe, A novel SERS
selective detection sensor for trace trinitrotoluene based on meisenheimer
complex of monoethanolamine molecule, Talanta 218 (2020), 121157, https://
doi.org/10.1016/j.talanta.2020.121157.
[520] K. Milligan, N.C. Shand, D. Graham, K. Faulds, Detection of multiple
nitroaromatic explosives via formation of a Janowsky complex and SERS, Anal.
Chem. 92 (4) (2020) 3253–3261, https://doi.org/10.1021/acs.
analchem.9b05062.
[521] S.S.B. Moram, A.K. Shaik, C. Byram, S. Hamad, V.R. Soma, Instantaneous trace
detection of nitro-explosives and mixtures with nanotextured silicon decorated
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
20
with Ag–Au alloy nanoparticles using the SERS technique, Anal. Chim. Acta 1101
(2019) 157–168, https://doi.org/10.1016/j.aca.2019.12.026.
[522] S. Mosca, C. Conti, N. Stone, P. Matousek, Spatially offset Raman spectroscopy,
Nat. Rev. Methods Prim. 1 (2021) 21, https://doi.org/10.1038/s43586-021-
00019-0.
[523] T.K. Naqvi, M.S.S. Bharati, A.K. Srivastava, M.M. Kulkarni, A.M. Siddiqui, S.S.
V. Rao, P.K. Dwibedi, Hierarchical laser-patterned silver/graphene oxide hybrid
SERS sensor for explosive detection, ACS Omega 4 (18) (2019) 17691–17701,
https://doi.org/10.1021/acsomega.9b01975.
[524] J. Ottaway, A. Allen, A. Waldron, P. Paul, S. Angel, J. Carter, Spatial Heterodyne
Raman Spectrometer (SHRS) for in situ chemical sensing using sapphire and silica
optical ber Raman probes, Appl. Spectrosc. 73 (10) (2019) 1160–1171. http
s://opg.optica.org/as/abstract.cfm?URI=as-73-10-1160.
[525] K. Ramachandran, Kumari, J. Acharyya, A. Chaudhary, Study of photo induced
charge transfer mechanism of PEDOT with nitro groups of RDX, HMX and TNT
explosives using anti-Stokes and Stokes Raman lines ratios, Spectrochim. Acta
Part A: Mol. Biomol. Spectrom. 251 (2021), 119360, https://doi.org/10.1016/j.
saa.2020.119360.
[526] M. Sen Bishwas, M. Malik, P. Poddar, Raman spectroscopy-based sensitive, fast
and reversible vapour phase detection of explosives adsorbed on metal–organic
frameworks UiO-67, New J. Chem. 45 (16) (2021) 7145–7153, https://doi.org/
10.1039/D0NJ04915H.
[527] K. Squire, K. Sivashanmugan, B. Zhang, J. Kraai, G. Rorrer, A. Wang, Multiscale
photonic crystal enhanced core-shell plasmonic nanomaterial for rapid vapor-
phase detection of explosives, ACS Appl. Nano Mater. 3 (2) (2020), https://doi.
org/10.1021/acsanm.9b02399, 165 6-1665.
[528] J. Wu, Y. Feng, L. Zhang, W. Wu, Nanocellulose-based surface-enhanced Raman
spectroscopy sensor for highly sensitive detection of TNT, Carbohydr. Polym. 248
(2020), 116766, https://doi.org/10.1016/j.carbpol.2020.116766.
[529] J. Wu, L. Zhang, F. Huang, X. Ji, H. Dai, W. Wu, Surface enhanced Raman
scattering substrate for the detection of explosives: construction strategy and
dimensional effect, J. Hazard. (2019), https://doi.org/10.1016/j.
jhazmat.2019.121714.
DSC, Thermal Analysis, TG
[530] N. Galan-Fryle, L. Pacheco-Londono, A. Figueroa Navedo, W. Ortiz-Rivera,
J. Castro-Suarez, S. Hernandez-Rivera, Modulated-laser source induction system
for remote detection of infrared emissions of high explosives using laser-induced
thermal emission, Opt. Eng. 59 (9) (2020), 092008, https://doi.org/10.1117/1.
OE.59.9.092008.
[531] L. Luo, P. Guo, B. Jin, Y. Xiao, Q. Zhang, S. Chu, R. Peng, An isothermal
decomposition dynamics research instrument and its application in HMX/TNT/Al
composite explosive, J. Therm. Anal. Calorim. 139 (3) (2020) 2265–2272,
https://doi.org/10.1007/s10973-019-08554-5.
[532] Parker, G.R., Heatwole, E.M., Holmes, M.D., Asay, B.W., Dickson, P.M., &
McAfee, J.M. Deagration-to-detonation transition in hot HMX and HMX-based
polymer-bonded explosives. Combust. Flame, 215, 295-308. https://doi.org/10
.1016/j.combustame.2020.01.040.
[533] L. Patidar, M. Khichar, S.T. Thynell, A comprehensive mechanism for liquid-phase
decomposition of 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): thermolysis
experiments and detailed kinetic modeling, Combust. Flame 212 (2020) 67–78,
https://doi.org/10.1016/j.combustame.2019.10.025.
[534] Z. Wang, D. Cao, Z. Xu, J. Wang, L. Chen, Thermal safety study on the synthesis of
HMX by nitrourea method, Process Saf. Environ. Protect. 137 (2020) 282–288,
https://doi.org/10.1016/j.psep.2020.02.013.
[535] Zhang, J., Wang, S., Ma, Y., Chen, L., & Chen, W. Investigation of the
decomposition kinetics and thermal hazards of 2,4-Dinitrotoluene on simulation
approach. Thermochim. Acta. https://doi.org/10.1016/j.tca.2019.178350.
Nanotechnology
[536] K. Ahmad, S. Mobin, Advanced function nanomaterials for explosive sensors, in:
O. Kharissova, L. Martinez, B. Kharisov (Eds.), Handbook of Nanomaterials
Nanocomposites for Energy and Environmental Applications, 2020, pp. 1–22.
https://link.springer.com/referenceworkentry/10.1007%2F978-3-030-111
55-7_90-1.
[537] M.S.S. Bharati, B. Chandu, S.V. Rao, Explosives sensing using Ag–Cu alloy
nanoparticles synthesized by femtosecond laser ablation and irradiation, RSC
Adv. 9 (3) (2019) 1517–1525, https://doi.org/10.1039/c8ra08462a.
[538] P.V. Bhatt, G. Pandey, Tharmavaram, D. Tawtani, C.M. Hussain, Nanotechnology
and taggant technology in forensic science, in: D. Rawtani, C.M. Hussain (Eds.),
Technology in Forensic Science: Sampling, Analysis, Data and Regulations, 2020,
pp. 281–301. https://onlinelibrary.wiley.com/doi/book/10.1002/9783
527827688.
[539] R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Explosive vapor detection
using novel graphdiyne nanoribbons—a rst-principles investigation, Struct.
Chem. 31 (2) (2019) 709–717, https://doi.org/10.1007/s11224-019-01456-0.
[540] J. Cruz, E. Moraes, P. Pantoja, T. Pereira, G. Mota, M. Antonio, Sensors using the
molecular dynamics of explosives in carbon nanotubes under external uniform
electric elds, J. Nanosci. Nanotechnol. 19 (9) (2019) 5687–5691, https://doi.
org/10.1166/jnn.2019.16510.
[541] C. Day, N. Rowe, T. Hutter, Nanoporous silica preconcentrator for vapor-phase
DMNB, a detection taggant for explosives, ACS Omega 5 (29) (2020)
18073–18079, https://doi.org/10.1021/acsomega.0c01615.
[542] L. Esrali, M. Gharib, A. Morsali, P. Retailleau, Rational morphology control of
nano-scale Amide decorated metal-organic frameworks by ultrasonic method:
capability to selective and sensitive detection of nitro explosives, Ultrason.
Sonochem. 66 (2020), 105110, https://doi.org/10.1016/j.ultsonch.2020.105110.
[543] C. Huang, Z. Yang, Y. Li, B. Zheng, Q. Yan, L. Guan, G. Luo, S. Li, F. Nie,
Incorporation of high explosives into nano-aluminum based microspheres to
improve reactivity, Chem. Eng. J. 383 (2020), 123110, https://doi.org/10.1016/
j.cej.2019.123110.
[544] L. Hubbard, R. Sumner, M. Liezers, T. Cell, C. Reed, N. Uhnak, C. Allen, B. Berry,
H. Currah, E. Fuller, E. Kinney, N. Smith, M. Foxe, A. Carman, Rugged
nanoparticle tracers for mass tracking in explosive events, MRS Commun. 10 (4)
(2020) 594–599, https://doi.org/10.1557/mrc.2020.70.
[545] A. Jabbar, A. Alwan, Efcient detecting of TNT molecules using palladium
nanoparticles/cross shape pores like structure porous silicon, Vib. Spectrosc. 103
(2019), 102933, https://doi.org/10.1016/j.vibspec.2019.102933.
[546] B. Keskin, A. Uzer, R. Apak, Colorimetric sensing of ammonium perchlorate using
methylene Blue - modied gold nanoparticles, Talanta 206 (2020), 120240,
https://doi.org/10.1016/j.talanta.2019.120240.
[547] B. Khezri, S. Mousavi, Z. Sofer, M. Pumera, Recyclable nanographene-based
micromachines for the on-the-y capture of nitroaromatic explosives, Nanoscale
11 (18) (2019) 8825–8834, https://doi.org/10.1039/C9NR02211B.
[548] J. Liu, T. Si, Z. Zhang, Mussel-inspired immobilization of silver nanoparticles
toward sponge for rapid swabbing extraction and SERS detection of trace
inorganic explosives, Talanta 204 (2019) 189–197, https://doi.org/10.1016/j.
talanta.2019.05.110.
[549] V. Monte-Garcia, M. Squillaci, M. Diez-Castellnou, Q. Ong, F. Stellacci, P. Samori,
Chemical sensing with Au and Ag nanoparticles, Chem. Soc. Rev. 50 (2) (2021)
1269–1304, https://doi.org/10.1039/D0CS01112F.
[550] N. Musayeva, T. Orujov, R. Hasanov, C. Sultanov, C. Ferrari, C. Frigeri, G. Trevisi,
S. Beretta, M. Bosi, R. Verucchi, L. Aversa, F. Sansone, F. Rispoli, L. Baldini,
Growth and functionalization of carbon nanotubes for nitroaromatic explosive
detection, in: Today: Proceedings, 2019, https://doi.org/10.1016/j.
matpr.2019.08.218.
[551] F. Novotny, J. Plutnar, M. Pumera, Plasmonic self-propelled nanometers for
explosives detection via solution-based surface enhanced Raman scattering, Adv.
Funct. Mater. 29 (33) (2019), 1903041, https://doi.org/10.1002/
adfm.201903041.
[552] A. Panigrahi, B.P. Sahu, S. Mandani, D. Nayak, S. Giri, T.K. Sarma, AIE active
uorescent organic nanoaggregates for selective detection of phenolic-
nitroaromatic explosives and cell imaging, J. Photochem. Photobiol. Chem. 364
(2019) 194–205, https://doi.org/10.1016/j.jphotochem.2019.01.029.
[553] M. Wang, C. Wang, R. Ma, Explosive detection and identication using X-ray
uorescence and thermal ngerprint of silica encapsulated nanoparticles,
Colloids Surf. A Physicochem. Eng. Asp. 601 (2020), 125027, https://doi.org/
10.1016/j.colsurfa.2020.125027.
[554] B. Willis, Integration of Biomolecular Recognition Elements with Solid-State
Nano-Devices for Chemical Sensors with Specicity, Univ. of Connecticut Storrs
United States, 2019 (N00014-16-1-2279), https://apps.dtic.mil/dtic/tr/fulltext
/u2/1080221.pdf.
[555] F. Yi, G. Gillen, J. Lawrence, T.P. Forbes, M. Staymates, D.A. LaVan,
Nanocalorimetry of explosives prepared by inkjet printing, Thermochim. Acta
685 (2020), 178510, https://doi.org/10.1016/j.tca.2020.178510.
[556] J. Zhang, E.P. Fahrenthold, Graphene-based sensing of gas-phase explosives, ACS
Nano Mater. 2 (3) (2019) 1445–1456, https://doi.org/10.1021/acsanm.8b02330.
[557] Q. Zhu, W. Xiong, L. Cui, C. Qiu, R. Duan, J. Zhao, Y. Che, Kinetically stable
nanoribbons with improved excitation migration length for detecting explosive,
ACS Appl. Nano Mater. 3 (5) (2020) 4880–4885, https://doi.org/10.1021/
acsanm.0c01068.
DetectionCanine Explosives Detection
[558] M. DeChant, Training and Experience Factors Impacting Detection Dog
Performance, PhD, Texas Tech University, 2021, https://ttu-ir.tdl.org/handle/2
346/87982.
[559] L. DeGreeff, K. Peranich, Canine olfactory detection of trained explosive and
narcotic odors in mixtures using a mixed odor delivery device, Forensic Sci. Int.
329 (2021), 111059, https://doi.org/10.1016/j.forsciint.2021.111059.
[560] L. DeGreeff, C.J. Katilie, R.F. Johnson, S. Vaughan, Quantitative vapor delivery
for improved canine threshold testing, Anal. Bioanal. Chem. 413 (3) (2021)
955–966, https://doi.org/10.1007/s00216-020-03052-2.
[561] L.E. DeGreeff, A.G. Simon, K. Peranich, H.K. Holness, K. Frank, K.G. Furton,
Generalization and discrimination of molecularly similar odorants in detection
canines and the inuence of training, Behav. Process. 177 (2020), 104148,
https://doi.org/10.1016/j.beproc.2020.104148.
[562] S. Gallegos, E. Aviles-Rosa, N. Hall, P. Prada-Tiedemann, Headspace sampling of
smokeless powder odor in a dynamic airow context, Forensic Chem. 27 (2022),
100402, https://doi.org/10.1016/j.forc.2022.100402.
[563] I. Gazit, A. Goldblatt, D. Grinstein, J. Terkel, Dogs can detect the individual odors
in a mixture of explosives, Appl. Anim. Behav. Sci. 235 (2021), 105212, https://
doi.org/10.1016/j.applanim.2020.105212.
[564] L. Lazarowski, B. Rogers, L.P. Waggoner, J.S. Katz, When the nose knows:
ontogenetic changes in detection dogs’ (Canis familiaris) responsiveness to social
and olfactory cues, Anim. Behav. 153 (2019) 61–68, https://doi.org/10.1016/j.
anbehav.2019.05.002.
[565] W. MacCrehan, M. Young, M. Schantz, T.C. Angle, P. Waggoner, T. Fischer, Two-
temperature preparation method for PDMS-based canine training aids for
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
21
explosives, Forensic Chem. 21 (2020), 100290, https://doi.org/10.1016/j.
forc.2020.100290.
[566] M. Sacharczuk, M. Walczak, E. Adamkiewicz, A. Walasek, J. Ensminger,
M. Presch, T. Jezierski, Polymorphism of olfactory and neurotransmitters receptor
genes in drug and explosives detection dogs can be associated with differences in
detection performance, Appl. Anim. Behav. Sci. 215 (2019) 52–60, https://doi.
org/10.1016/j.applanim.2019.04.006.
[567] M. Sanford, Canine Threshold to Double Base Smokeless powder, Master of
Science. Texas Tech University, 2021. https://ttu-ir.tdl.org/handle/2346/87992.
[568] A.G. Simon, L.E. DeGreeff, Variation in the headspace of bulk hexamethylene
triperoxide diamine (HMTD): Part II. Analysis of non-detonable canine training
aids, Forensic Chem. 13 (2019), 100155, https://doi.org/10.1016/j.
forc.2019.100155.
[569] A.G. Simon, K. Van Arsdale, J. Barrow, J. Wagner, Real-time monitoring of TATP
released from PDMS-based canine training aids versus bulk TATP using DART-
MS, Forensic Chem. 23 (2021), 100315, https://doi.org/10.1016/j.
forc.2021.100315.
[570] K. Tiira, A. Tikkanen, O. Vainio, Inhibitory control – important trait for explosive
detection performance in police dogs? Appl. Anim. Behav. Sci. 224 (2020),
104942 https://doi.org/10.1016/j.applanim.2020.104942.
[571] I. Wilhelm, G. Bikelyte, M. Vittek, M. Hartel, D. Roseling, T. Klapotke,
Phlegmatization of TATP and HMTD with activated charcoal as training aid for
explosive detection dogs, Propellans, Explos. Pyrotechn. 4792 (2022),
e202100057, https://doi.org/10.1002/prep.202100057.
LIBS Detection
[572] D.F. Andrade, E.R. Pereira-Filho, D. Amarasiriwardena, Current trends in laser-
induced breakdown spectroscopy: a tutorial review, Appl. Spectrosc. Rev. 56 (2)
(2021) 98–114, https://doi.org/10.1080/05704928.2020.1739063.
[573] C. Byram, S.S.B. Moram, V.R. Soma, Wavelength Effect on Gold Nanoparticles
Fabrication in Picosecond Laser Ablation and Evaluation of SERA Performance in
Explosive Detection, 2021, pp. 499–502, https://doi.org/10.1007/978-981-15-
9259-1_114.
[574] S. Carter, R. Clough, A. Fisher, B. Gibson, B. Russell, J. Waack, Atomic
spectrometry update: review of advances in the analysis of metals, chemicals and
materials, J. Anal. Atomic Spectrom. 34 (11) (2019) 2159–2216, https://doi.org/
10.1039/C9JA90058F.
[575] R. Junjuri, A.P. Gummadi, M.K. Gundawar, Single-shot compact spectrometer
based standoff LIBS conguration for explosive detection using articial neural
networks, Optik 204 (2020), 163946, https://doi.org/10.1016/j.
ijleo.2019.163946.
[576] R. Junjuri, A.P. Gummadi, M.K. Gundawar, Identication of the Explosive
Mixtures Using Laser Induced Breakdown Spectroscopy (LIBS), 2021,
pp. 391–394, https://doi.org/10.1007/978-981-15-9259-1_89.
[577] F.S. Romolo, A. Palucci, Advances in the analysis of explosives, in: S. Francese
(Ed.), Emerging Technologies for the Analysis of Forensic Traces, Springer, 2019,
pp. 207–240, https://doi.org/10.1007/978-3-030-20542-3_15.
Neutron
[578] S. Bishnoi, Patel, R. Thomas, R. Jilju, P. Sarkar, B. Hayak, Study of tagged neutron
method with laboratory D-T neutron generator for explosive detection, Eur. Phys.
J. Plus 135 (6) (2020) 428, https://doi.org/10.1140/epjp/s13360-020-00402-y.
[579] M. Han, S. Jing, Y. Gao, Simulation and data analysis of a portable tagged neutron
system for detection of explosives hidden in packages, Radiat. Phys. Chem. 182
(2021), 109361, https://doi.org/10.1016/j.radphyschem.2021.109361.
[580] M. Han, S. Jing, Y. Gao, Y. Guo, Experiment and MCNP simulation of a portable
tagged neutron inspection system for detection of explosives in a concrete wall,
Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip.
929 (2019) 156–161, https://doi.org/10.1016/j.nima.2019.03.069.
[581] K. Hossny, A.H. Hossny, s. Magdi, A.Y. Soliman, M. Hossny, Detecting shielded
explosives y coupling prompt gamma neutron activation analysis and deep neural
networks, Sci. Rep. 10 (1) (2020), 13467, https://doi.org/10.1038/s41598-020-
70537-6.
[582] A. Sardet, B. Peror, C. Carasco, G. Sannie, S. Moretto, Fontana C. Nebbia, F. Pino,
Performances of C-BORD’s tagged neutron inspection system for explosives and
illicit drugs detection in cargo containers, IEEE Trans. Nucl. Sci. 68 (3) (2021)
346–353, https://doi.org/10.1109/TNS.2021.3050002.
[583] J. Seman, C.H.C. Giraldo, C.E. Johnson, Effects of delaying measurements of
concentration using neutron activation analysis on explosive taggants, Appl.
Radiat. Isot. 156 (2020), 109007, https://doi.org/10.1016/j.
apradiso.2019.109007.
[584] D. Sudac, M. Pavlovic, J. Obhodas, K. Nad, Z. Orlic, M. Korolija, D. Rendic,
I. Meric, H.E.S. Pettersen, V. Valkovic, Detection of Chemical Warfare (CW) agents
and the other hazardous substances by using fast MeV neutrons, Nucl. Instrum.
Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 971 (2020),
164066, https://doi.org/10.1016/j.nima.2020.164066.
Terahertz
[585] D. Ganesh, E. Rao, M. Venatesh, K. Nagarijuna, G. Vaitheesawaran, A. Sahoo,
A. Chaudhary, Time-domain terahertz spectroscopy and density functional theory
studies of nitro/nitrogen-rich aryl-tetrazole derivatives, ACS Omega 5 (6) (2020)
2541–2551, https://doi.org/10.1021/acsomega.8b03383.
[586] N. Khan, A. Vickers, N. Abas, A.R. Kalair, Design of an optical terahertz generator,
J. Laser Sci. Fund. Theory Anal. Methods 1 (3/4) (2019) 225–252. https://www.
oldcitypublishing.com/wp-content/uploads/2019/06/IJLSv1n3-4p225-252Khan.
pdf.
[587] A. Kidavu, N. Nagaraju, G. Damarala, A. Chaudhary, Scattering analysis of
explosive materials mixed in Teon matrix in THz regime, in: Workshop on
Recent Advances in Photonics, Guwahati, India, 2019, https://doi.org/10.1109/
WRAP47485.2019.9013700.
[588] P.N. Kumar, D. Ganesh, M. Nagaraju, A.K. Chaudhary, Detection of explosives and
non-explosive materials from a soil matrix using 0.5 and 1.5. THz radiation, 2021,
pp. 889–893, https://doi.org/10.1007/978-981-15-9259-1_204.
[589] Q. Liu, X. Li, H. Deng, J. Sun, D. Guan, L. Luo, Y. Zhang, L. Shang, Determination
of moisture content in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine using
terahertz time-domain spectroscopy, Opt. Eng. 59 (8) (2020), 084102, https://
doi.org/10.1117/1.OE.59.8.084102.
[590] M. Pereira, A. Apostolakis, Terahertz (THz), Mid Infrared (MIR) and Near Infrared
(NIR) Technologies for Protection of Critical Infrastructures against Explosives
and CBRN, Springer, 2021.
[591] L. Quancheng, Z. Qi, L. Guilin, G. Zhicheng, H. Xiangyang, X. Chai, D. Hu,
S. Liping, Terahertz spectral investigation of temperature induced polymorphic
transformation of 2,2dinitroethylene-1,1-diamine, RSC Adv. 11 (11) (2021)
6247–6253, https://doi.org/10.1039/D0RA10754A.
[592] M. Seo, H.R. Park, Terahertz biochemical molecule-specic sensors, Adv. Opt.
Mater. 8 (3) (2020), 1900662, https://doi.org/10.1002/adom.201900662.
[593] W. Shi, C. Dong, L. Hou, Z. Xing, Q. Sun, L. Zhang, Investigation of aging
characteristics in explosive using terahertz time-domain spectroscopy, Int. J.
Mod. Phys. B 33 (24) (2019), 1950272, https://doi.org/10.1142/
S0217979219502722.
[594] G. Singh, I. Malhotra, Terahertz Antenna Technology for Imaging and Sensing
Applications, Springer, 2021.
[595] Z. Tang, J. Miao, Q. Liu, W. Qu, L. Luo, L. Shang, H. Deng, Ammonium
perchlorate moisture quantitative detection using terahertz spectroscopy
combined with chemometrics, Microchem. J. 169 (2021), 106635, https://doi.
org/10.1016/j.microc.2021.106635.
[596] V. Vaks, E. Domracheva, M. Chernyaeva, S. Pripolzin, V. Anfertev, A. Yablokov,
I. Lukyanenk, Y. Sheikov, High-resolution terahertz spectroscopy for investigation
of energetic materials during their thermal decomposition, IEEE Trans. Terahertz
Sci. Technol. 11 (4) (2021) 443–453, https://doi.org/10.1109/
TTHZ.2021.3074030.
Nuclear Techniques
[597] C. Chen, Nuclear Quadruple Resonance and Low-Field Nuclear Magnetic
Resonance for Materials Authentication, Doctoral dissertation, Case Western
Reserve University, 2020, https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESS
ION_NUM:case1567518073598426.
[598] V. Joubert, V. Silvestre, V. Ladroue, F. Besacier, P. Blondel, S. Akoka, E. Baguet,
G. Remaud, Forensic application of position-specic isotopic analysis of
trinitrotoluene (TNT) by NMR to determine
13
C and
15
N intramolecular isotopic
proles, Talanta 213 (2020), 120819, https://doi.org/10.1016/j.
talanta.2020.120819.
[599] P. Munjal, B. Sharma, J.R. Sethi, A. Dalal, S.L. Gholap, Identication and analysis
of organic explosives from post-blast debris by nuclear magnetic resonance,
J. Hazard Mater. 403 (2021), 124003, https://doi.org/10.1016/j.
jhazmat.2020.124003.
[600] A. Nevzorov, A. Orlov, D. Stankevich, Machine learning in NQR TNT express
detection system, J. Magn. Reson. 308 (2019), 106596, https://doi.org/10.1016/
j.jmr.2019.106596.
[601] E.G. Sorte, Mobile Cross-Polarized NQR: Buried Explosive Detection from a Safe
Distance (SANDIA20213047), Sandia National Laboratories, 2020, https://doi.
org/10.2172/1673816.
[602] P. Yu, N.N.A. Ling, E.O. Fridjonsson, M.L. John, The effect of inert salts on
explosive emulsion thermal degradation, Propellants, Explos. Pyrotech. 46 (3)
(2021) 360–367, https://doi.org/10.1002/prep.202000258.
X-Ray
[603] A. Manerikar, F. Li, A. Kak, DEBISim: a simulation pipeline for dual energy CT-
based baggage inspection systems, J. X Ray Sci. Technol. 29 (2) (2021) 259–285,
https://doi.org/10.3233/XST-200808.
[604] E.A. Miller, L.W. Campbell, N. Deshmukh, A.J. Gilbert, P. Ivanusa, R.E. Jacob, D.
M. Kasparek, J.D. McCall, E. Munoz, S.L. Owsley Jr., K.L. Silvers, T.A. White, R.
S. Wittman, M.A. Zalvadia, Gratings-based phase contract x-ray imaging: progress
towards a prototype system for explosives detection, Proc. SPIE: Anomaly Detect.
Imag. X-rays (ADIX) VI 11738 (2021), 1173802, https://doi.org/10.1117/
12.2589938.
Ion Mobility Spectroscopy
[605] M. Amo-Gonzalez, S. Perez, R. Delgado, G. Arranz, I. Carnicero, Tandem ion
mobility spectrometry for the detection of traces of explosives in cargo at
concentrations of parts per quadrillion, Anal. Chem. 91 (21) (2019)
14009–14018, https://doi.org/10.1021/acs.analchem.9b03589.
[606] O. Anttalainen, J. Puton, A. Kontunen, M. Karjalanen, P. Kumpulainen, N. Oksala,
Possible strategy to use differential mobility spectrometry in real time
applications, Int. J. Ion Mobil. Spectrom. 23 (2019) 1–8, https://doi.org/
10.1007/s12127-019-00251-1.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
22
[607] A. Bohnhorst, M. Hitzemann, M. Lippman, A.T. Kirk, S. Zimmermann, Enhanced
resolving power by moving eld ion mobility spectrometry, Anal. Chem. 92 (19)
(2020) 12967–12974, https://doi.org/10.1021/acs.analchem.0c01653.
[608] U. Chilluwal, Reactive Tandem Ion Mobility Spectrometry for Selective Detection of
Explosives in Mixtures (Publication No. 28157920), PhD, New Mexico State
University, 2020.
[609] D. Fisher, S.R. Lukow, G. Berezutskiy, I. Gil, T. Levy, Y. Zeiri, Machine learning
improves trace explosive selectivity: application to nitrate-based explosives,
J. Phys. Chem. A 124 (46) (2020) 9656–9664, https://doi.org/10.1021/acs.
jpca.0c05909.
[610] B. Hauck, C. Harden, V. McHugh, Accurate evaluation of potential calibration
standards for ion mobility spectrometry, Anal. Chem. 92 (8) (2020) 6158–6165,
https://doi.org/10.1021/acs.analchem.0c00859.
[611] A. McKenzie-Coe, F. Fernandez-Lima, Inuence of gas modiers on the TIMS
analysis of familiar explosives, Int. J. Ion Mobil. Spectrom. 22 (2) (2019) 71–76,
https://doi.org/10.1007/s12127-019-00246-y.
[612] M. Mullen, B. Giordano, Combined secondary electrospray and corona discharge
ionization (SECDI) for improved detection of explosive vapors using drift tube ion
mobility spectrometry, Talanta 209 (2020), 120544, https://doi.org/10.1016/j.
talanta.2019.120544.
[613] A. Pevzner, G. Feldheim, A. Zaltsman, S. Elisha, V. Heleg-Shabtai, I. Ron, Sonic-
spray introduction of liquid samples to hand-held Ion mobility spectrometry
analyzers, Analyst (2021), https://doi.org/10.1039/D0AN02401E.
[614] R. Schrader, B. Marsh, R. Cooks, Fourier transform-ion mobility linear ion trap
mass spectrometer using frequency encoding for recognition of related
compounds in a single acquisition, Anal. Chem. 92 (7) (2020) 5107–5115,
https://doi.org/10.1021/acs.analchem.9b05507.
[615] B. Smith, C. Boisdon, I. Young, T. Praneenarat, T. Vilaivan, S. Maher, Flexible drift
tube for high resolution ion mobility spectrometry (Flex-DT-IMS), Anal. Chem. 92
(13) (2020) 9104–9112, https://doi.org/10.1021/acs.analchem.0c01357.
[616] S. Thangadurai, K. Gurusamy, Ion mobility spectrometry: a tool in the forensic
science for the post detonation residue analysis, J. Forensic Sci. Criminol. 7 (2)
(2019) 201–214.
Novel Detection
[617] A. Agrawal, C. Hussain, Smartphone-based detection of explosives, in: C. Hussain
(Ed.), Smartphone-based Detection Devices: Emerging Trends in Analytical
Techniques, Elsevier, 2021, pp. 399–416, https://doi.org/10.1016/B978-0-12-
823696-3.00013-1.
[618] L. Algharagholy, H. Sadeghi, A. Al-Backri, Selective sensing of 2,4,6-trinitrotol-
uene and triacetone triperoxide using carbon/boron nitride heteronanotubes,
Mater. Today Commun. 28 (2021), 102739, https://doi.org/10.1016/j.
mtcomm.2021.102739.
[619] A. Al-Mousawi, Magnetic Explosives Detection System (MEDS) based on wireless
sensor network and machine learning, Measurement 151 (2020), 107112,
https://doi.org/10.1016/j.measurement.2019.107112.
[620] S. Alsaleh, L. Barron, S. Sturzenbaum, Perchlorate detection via an invertebrate
biosensor, Anal. Methods 13 (3) (2021) 327–336, https://doi.org/10.1039/
D0AY01732A.
[621] M.R. Andrews, C. Collet, A. Wolff, C. Hollands, Resonant acoustic mixing:
processing and safety, Propellants, Explos. Pyrotech. 45 (1) (2020) 77–86,
https://doi.org/10.1002/prep.201900280.
[622] A. Arm, S. Saglam, A. Uzer, R. Apak, Direct electrochemical determination of
peroxide-type explosives using well-dispersed multi-walled carbon nanotubes/
polyethyleneimine-modied glassy carbon electrodes, Anal. Chem. 93 (33)
(2021) 11451–11460, https://doi.org/10.1021/acs.analchem.1c01397.
[623] E. Aznar-Gadea, P. Rodriguez-Canto, J. Martinez-Pastor, A. Lopatynskyi,
V. Chegel, R. Abargues, Molecularly imprinted silver nanocomposites for
explosive taggant sensing, ACS Appl. Polym. Mater. 3 (6) (2021) 2960–2970,
https://doi.org/10.1021/acsapm.1c00116.
[624] H. Beardsley, CRESS elded to IBCTs: chemical reconnaissance and explosives
screening sets bring detecting precursors of HMEs to the force, Infantry 109 (1)
(2020) 4. https://www.benning.army.mil/infantry/magazine/issues/2020/Sprin
g/pdf/3_News2_CRESS.pdf.
[625] June 22-26 S. Blanco, A. Macario, J. Garcia-Calvo, A. Revilla-Cuesta, T. Torroba,
J.C. Lopez, Wetting Triacetone Triperoxide allows its detection by microwave
spectroscopy [Conference presentation], in: 2020 International Symposium on
Molecular Spectroscopy, Champaign-Urbana, IL, United States, 2020, https://doi.
org/10.15278/isms.2021.RD07.
[626] S. Blanco, A. Macario, J. Garcia-Calvo, A. Revilla-Cuesta, T. Torroba, J.C. Lopez,
Microwave detection of wet Triacetone Triperoxide (TATP): non-covalent forces
and water dynamics, Chem. Eur J. 27 (5) (2020) 1680–1687, https://doi.org/
10.1002/chem.202003499.
[627] Z. Cao, L. Chen, S. Li, M. Yu, Z. Li, K. Zhou, C. Liu, F. Jiang, M. Hong, A exible
two-fold interpenetrated indium MOF exhibition dynamic response to gas
adsorption and high-sensitivity detection of nitroaromatic explosives, Chem.
Asian J. 14 (20) (2019) 3597–3602, https://doi.org/10.1002/asia.201900458.
[628] R.M. Cardoso, D.P. Rocha, R.G. Rocha, J.S. Stegano, R.A.B. Silva, E.M. Richter, R.
A.A. Munoz, 3D-printing pen versus desktop 3D-printers: fabrication of carbon
black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene,
Anal. Chim. Acta 1132 (2020) 10–19, https://doi.org/10.1016/j.
aca.2020.07.034.
[629] V. Chegel, A. Lopatynskyi, V. Lytvyn, P. Demydov, J. Martinez-Poaster,
R. Abargues, E. Gadea, S. Piletsky, Localized surface plasmon resonance
nanochips with molecularly imprinted polymer coating for explosives sensing,
Semicond. Phys. Quantum Electron. Optoelectron. 23 (4) (2020) 431–436,
https://doi.org/10.15407/spqeo23.04.431.
[630] C. Chen, J. Jin, Surface acoustic wave vapor sensor with graphene interdigital
transducer for TNT detection, Sens. Imag. 21 (1) (2020) 24, https://doi.org/
10.1007/s11220-020-00287-2.
[631] S. Colreavy-Donnelly, F. Carafni, S. Kuhn, M. Gongora, J. Florez-Lozano,
C. Parra, Shallow buried improvised explosive device detection via convolutional
neural networks, Integrated Comput. Aided Eng. 27 (4) (2020) 403–416, https://
doi.org/10.3233/ICA-200638.
[632] A. Dettlaf, P. Jakobczyk, M. Ficek, B. Wilk, M. Szala, J. Wojtas, T. Ossowski,
R. Bogdanowicz, Electrochemical determination of nitroaromatic explosives at
boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and
2,4,6-trinitroanisole in liquid efuents, J. Hazard Mater. (2019), https://doi.org/
10.1016/j.jhazmat.2019.121672.
[633] J. Dickinson, Vapor Detection of Hydrogen and Organic Peroxide, Master’s
Degree, Oklahoma State University, 2021, https://shareok.org/handle/11244/
330907.
[634] M. Doshi, E. Fahrenthold, Functionalized metallic carbon nanotube arrays for gas
phase explosives detection, Comput. Theor. Chem. 1205 (2021), 113460, https://
doi.org/10.1016/j.comptc.2021.113460.
[635] L. Eisner, I. Wilhelm, G. Flachenecker, J. Hurttlen, W. Schade, Molecularly
imprinted sol-gel for TNT detection with optical micro-ring resonator sensor
chips, Sensors 19 (18) (2019) 3909, https://doi.org/10.3390/s19183909.
[636] S. Elbasuney, Y.H. El-Sharkawy, G.S. El-Sayyad, M. Gobara, Surface modied
colloidal silica nanoparticles: novel aspect for complete identication of explosive
materials, Talanta 211 (2020), 120695, https://doi.org/10.1016/j.
talanta.2019.120695.
[637] J. Fan, Z. Meng, X. Dong, M. Xue, L. Qiu, X. Liu, F. Zhong, X. He, Colorimetric
screening of nitramine explosives by molecularly imprinted photonic crystal
array, Microchem. J. 158 (2020), 105143, https://doi.org/10.1016/j.
microc.2020.105143.
[638] J. Filipi, V. Stojnic, M. Mustra, R. Fillanders, V. Jovanovic, S. Gajic, G. Turnbull,
Z. Babic, N. Kezic, V. Risojevic, Honeybee-based biohybrid system for landmine
detection, Sci. Total Environ. 803 (2022), 150041, https://doi.org/10.1016/j.
scitotenv.2021.150041.
[639] J.E. Friedel, T.H. Holzer, S. Sarkani, Development, optimization, and validation of
unintended radiation emissions processing system for threat identication, IEEE
Trans. Syst. Man Cybern. Syst. 50 (6) (2020) 2208–2219, https://doi.org/
10.1109/TSMC.2018.2810305.
[640] F. Ghasemi, M. Hormozi-Hezhad, Determination and identication of
nitroaromatic explosives by a double-emitter sensor array, Talanta 201 (2019)
230–236, https://doi.org/10.1016/j.talanta.2019.04.012.
[641] B. Gokdere, A. Uzer, S. Durmazel, E. Ercag, R. Apak, Titanium dioxide
nanoparticles–based colorimetric sensors for determination of hydrogen peroxide
and triacetone triperoxide (TATP), Talanta 202 (2019) 402–410, https://doi.org/
10.1016/j.talanta.2019.04.071.
[642] K. Gong, S. Xiao, S. Jing, Y. Zheng, Back propagation neural network analysis for
the detection of explosives based on tagged neutron, J. Radioanal. Nucl. Chem.
326 (2020) 329–336, https://doi.org/10.1007/s10967-020-07321-3.
[643] S. Gutierrez, F. Vega, F. Gonzalez, C. Baer, J. Sachs, Application of polarimetric
features and support vector machines for classication of improvised explosive
devices, IEEE Antenn. Wireless Propag. Lett. 18 (11) (2019) 2282–2286, https://
doi.org/10.1109/LAWP.2019.2934691.
[644] M. Harries, T. Bruno, Field demonstration of portable vapor sampling in a
simulated cargo container, Forensic Chem. 16 (2019), 100182, https://doi.org/
10.1016/j.forc.2019.100182.
[645] C. Hay, J. Lee, D. Silvester, A methodology to detect explosive residues using a
gelled ionic liquid based eld-deployable electrochemical device, J. Electroanal.
Chem. 872 (2020), 114046, https://doi.org/10.1016/j.jelechem.2020.114046.
[646] C. Hay, J. Lee, D. Silvester, An electroanalytical methodology to detect explosive
residues using a gelled ionic liquid based eld-deployable device, J. Electroanal.
Chem. 872 (2020), 114046, https://doi.org/10.1016/j.jelechem.2020.114046.
[647] N. Holubowitch, C. Crabtree, Z. Budimir, Electroanalysis and
spectroelectrochemistry of nonaromatic explosives in acetonitrile containing
dissolved oxygen, Anal. Chem. 92 (17) (2020) 11617–11626, https://doi.org/
10.1021/acs.analchem.0c01174.
[648] K. Hossny, S. Madgi, A.Y. Soliman, A.H. Hossny, Detecting explosives by PGNAA
using KNN Regressors and decision tree classier: a proof of concept, Prog. Nucl.
Energy 124 (2020), 103332, https://doi.org/10.1016/j.pnucene.2020.103332.
[649] S. Jangi, M. Akhond, G. Absalan, A eld-applicable colorimetric assay for
notorious explosive triacetone triperoxide through nanozyme-catalyzed
irreversible oxidation of 3, 3′-diaminobenzidine, Microchim. Acta 187 (8) (2020)
431, https://doi.org/10.1007/s00604-020-04409-1.
[650] L. Jiang, J. Wu, K. Chen, Y. Zheng, G. Deng, X. Zhang, Z. Li, K.S. Chiang, Polymer
waveguide Mach-Zehnder interferometer coated with dipolar polycarbonate for
on-chip nitroaromatics detection, Sensor. Actuator. B Chem. 305 (2020), 127406,
https://doi.org/10.1016/j.snb.2019.127406.
[651] V. Krivitsky, B. Filanovsky, T. Bourenko, E. Granot, A. Praiz, F. Patolsky, Vapor
trace collection and direct ultrasensitive detection of nitro-explosives by 3D
microstructured electrodes, Anal. Chem. 91 (22) (2019) 14375–14382, https://
doi.org/10.1021/acs.analchem.9b02849.
[652] V. Krivitsky, B. Filanovsky, V. Naddaka, F. Patolsky, Direct and selective
electrochemical vapor trace detection of organic peroxide explosives via surface
decoration, Anal. Chem. 91 (8) (2019) 5323–5330, https://doi.org/10.1021/acs.
analchem.9b00257.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
23
[653] K. Lee, Y. Yoo, M. Chae, K. Hwang, J. Lee, H. Kim, D. Hur, J. Lee, Highly selective
reduced graphene oxide (rGO) sensor based on a peptide aptamer receptor for
detecting explosives, Sci. Rep. 9 (2019), 10297, https://doi.org/10.1038/s41598-
019-45936-z.
[654] S. Lee, S. Kwak, K. Wang, W. Han, Substituent effect on Diuoroboron
β-diketonate complexes: synthesis, photophysical and electrochemical properties,
and application as nitro-explosive chemosensors, ECS J. Solid State Sci. Technol.
10 (8) (2021), https://doi.org/10.1149/2162-8777/ac1d60, 086007.
[655] M. Lefferts, M. Castell, Inuence of soil type on chemiresistive detection of buried
ANFO, Forensic Chem. 27 (2022), 100401, https://doi.org/10.1016/j.
forc.2022.100401.
[656] M.J. Lefferts, L.H. Humphreys, N. Mai, K. Murugappan, B.I. Armitage, J. Pons, M.
R. Castell, ANFO vapour detection with conducting polymer percolation sensors
and GC/MS, Analyst 146 (7) (2021) 2168–2193, https://doi.org/10.1039/
D0AN02403A.
[657] N. Leibl, L. Duma, C. Gonzato, K. Haupt, Polydopamine-based molecularly
imprinted thin lms for electro-chemical sensing of nitro-explosives in aqueous
solutions, Bioelectrochemistry 135 (2020), 107541, https://doi.org/10.1016/j.
bioelechem.2020.107541.
[658] M. Li, K. Xie, G. Wang, J. Zheng, Y. Cao, X. Cheng, Z. Li, F. Wei, H. Tu, J. Tang, An
AIE-active ultrathin polymeric self-assembled monolayer sensor for trace volatile
explosive detection, Macromol. Rapid Commun. 42 (23) (2021), 2100551,
https://doi.org/10.1002/marc.202100551.
[659] Y. Li, W. Zhou, B. Zu, X. Dou, Qualitative detection toward military and
improvised explosive vapors by a facile TiO2 nanosheet-based chemiresistive
sensor array, Front. Chem. 8 (2020) 29, https://doi.org/10.3389/
fchem.2020.00029.
[660] C. Liu, W. Zhang, Y. Zhao, C. Lin, K. Zhou, Y. Li, Li, Urea-functionalized poly(ionic
liquid) photonic sphere for visual identication of explosives with a smartphone,
ACS Appl. Mater. Interfaces 11 (23) (2019) 21078–21085, https://doi.org/
10.1021/acsami.9b04568.
[661] X. Liu, Y. Hu, Y. Zhou, P. Zhang, L. Gao, B. Liu, Z. Wu, L. Zhang, PPV nanotube
sensor arrays for explosives identication by excitation wavelength regulation,
Macromol. Mater. Eng. 306 (10) (2021), 2100276, https://doi.org/10.1002/
mame.202100276.
[662] Y. Liu, J. Li, G. Wang, B. Zu, X. Dou, One-step instantaneous detection of multiple
military and improvised explosives facilitated by colorimetric reagent design,
Anal. Chem. 92 (20) (2020) 13980–13988, https://doi.org/10.1021/acs.
analchem.0c02893.
[663] K.J. Major, T.C. Hutchens, C.R. Wilson, M.K. Poutous, I.D. Aggarwal, J.
S. Sanghera, K.J. Ewing, Discrimination between explosive materials and Isomers
using a human color vision-inspired sensing method, Appl. Spectrosc. 73 (5)
(2019) 520–528, https://doi.org/10.1177/0003702819828411.
[664] K.J. Major, L.B. Shaw, L. Busse, R. Gattass, D. Arnone, E. Lopez, M. Pushkarsky,
J. Kane, R.J. Clewes, L. Lee, C.R. Howle, J.S. Sanghera, K.J. Ewing, Fiber optic
coupled quantum cascade infrared laser system for detection of explosive
materials on surfaces, Opt Laser. Technol. 119 (2019), 105635, https://doi.org/
10.1016/j.optlastec.2019.105635.
[665] G. Namboodiri, M. Joseph, M. Kumar, M. Nallaperumal, K. Moideenkutty,
M. Arumugam, L. Kumar, J. Jayaprakash, X-ray computed tomography and
thermal neutron radiography for detection of low dense compounds inside pyro
elements used in space applications, Eur. Phys. J. Plus 136 (9) (2021) 945,
https://doi.org/10.1140/epjp/s13360-021-01910-1.
[666] S.K. Nandi, S.R. Chowdhury, D. Podder, P.K. Ghorai, D. Haldar, A robust
tripeptide for in-eld selective naked eye ultratrace detection of 2,4,6-
Trinitrophenol, Cryst. Growth Des. 20 (3) (2020) 1884–1890, https://doi.org/
10.1021/acs.cgd.9b01591.
[667] F. Niu, Z. Shao, L. Tao, Y. Ding, Si-doped graphene nanosheets as a metal-free
catalyst for electrochemical detection of nitroaromatic explosives, J. Colloid
Interface Sci. 594 (2021) 848–856, https://doi.org/10.1016/j.jcis.2021.03.091.
[668] F. Novtny, V. Urbanova, J. Putnar, M. Pumera, Preserving ne structure details
and dramatically enhancing electron transfer rates in graphene 3D-printed
electrodes via thermal annealing: toward nitroaromatic explosives sensing, ACS
Appl. Mater. Interfaces 11 (38) (2019) 35371–35375, https://doi.org/10.1021/
acsami.9b06683.
[669] J. Ognard, D. Bourhis, R. Cadieu, M. Grenier, C. Saccardy, Z. Alavi, S.D. Ben,
Feasibility of use of medical dual energy scanner for forensic detection and
characterization of explosives, a phantom study, Int. J. Leg. Med. 134 (2020)
1915–1925, https://doi.org/10.1007/s00414-020-02315-y.
[670] V. Palaparthy, S. Doddapujar, G. Gupta, P. Das, S. Chandorkar, S. Mukherji,
M. Baghini, V. Rao, E-nose: multichannel analog signal conditioning circuit with
pattern recognition for explosive sensing, IEEE Sensor. J. 20 (3) (2020)
1373–1382, https://doi.org/10.1109/JSEN.2019.2946253.
[671] V. Palaparthy, S. Doddapujar, S. Surya, S. Chandorkar, S. Mukherji, M. Baghini,
V. Rao, Hybrid pattern recognition for rapid explosive sensing with
comprehensive analysis, IEEE Sensor. J. 21 (6) (2021) 8011–8019, https://doi.
org/10.1109/JSEN.2020.3047271.
[672] L. Pan, Z. Liu, M. Tian, B.C. Schroeder, A.E. Aliev, C.F.J. Faul, Luminescent and
swellable conjugated microporous polymers for detecting nitroaromatic
explosives and removing harmful organic vapors, ACS Appl. Mater. Interfaces 11
(51) (2019) 48352–48362, https://doi.org/10.1021/acsami.9b16767.
[673] S. Pollock, D.R. Crick, L.J. Winter, M.C. Kemp, Multi-sensor threat detection for
screening people and their carried bags, in: Proceedings SPIE Chemical,
Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXII, 11749,
2021, https://doi.org/10.1117/12.2585744, 1174908.
[674] T. Puttasakul, C. Pintavirooj, C. Sangma, W. Sukjee, Hydrogel based-
electrochemical gas sensor for explosive material detection, IEEE Sensor. J. 19
(19) (2019) 8556–8562, https://doi.org/10.1109/JSEN.2019.2922170.
[675] T. Puttasakul, W. Sukjee, C. Pintavirooj, C. Sangma, IDE gas sensor based dengue
virus co-imprinting for detection of 2,4,6-Trinitrotoluene, in: A. Roeksabutr (Ed.),
Proceedings of the 2021 9
th
International Electrical Engineering Congress (iEECON
2021), Institute of Electrical and Electronics Engineers, 2021, pp. 555–559,
https://doi.org/10.1109/iEECON51072.2021.9440379.
[676] T. Puttasakul, C. Tancharoen, W. Sukjee, C. Pintavirooj, C. Sangma, Detection of
2,4,6-Trinitrotoluene by MIP-composite based electrochemical sensor [Paper
presentation], in: 9th International Electrical Engineering Congress (iEECON
2021), 2021, https://doi.org/10.1109/iEECON51072.2021.9440315.
[677] K. Rejeti, G. Murali, B.S. Kumar, An accurate methodology to identify the
explosives using wireless sensor networks [Paper presentation], in: International
Conference on Sustainable Computing in Science, Technology and Management
(SUSCOM), Amity University, Rajastan, Jaipur, India, 2019, February, https://
doi.org/10.2139/ssrn.3362178.
[678] N. Rohaizad, Z. Sofer, M. Pumera, Boron and nitrogen dopants in graphene have
opposite effects on the electrochemical detection of explosive nitroaromatic
compounds, Electrochem. Commun. 112 (2020), 106660, https://doi.org/
10.1016/j.elecom.2020.106660.
[679] M. Sadeghi, M. Tajdini, E. Wig, C. Rappaport, Single frequency fast dielectric
characterization of concealed body-worn explosive threats, IEE Trans. Antenn.
Propag. (2020), https://doi.org/10.1109/TAP.2020.3000866.
[680] D. Saha, D. Mehta, E. Altan, R. Chandak, R. Lo, P. Gupta, S. Singamaneni,
S. Chakrabarty, B. Raman, Explosive sensing with insect-based biorobots, Biosens.
Bioelectron. X6 (2020), 100050, https://doi.org/10.1016/j.biosx.2020.100050.
[681] E. Schultz-Fellenz, E. Swanson, A. Sussman, R. Coppersmith, R. Kelley, E. Miller,
B. Crawford, A. Lavadie-Bulnes, J. Cooley, S. Vigil, M. Townsend, J. Larotonda,
High-resolution surface topographic change analyses to characterize a series of
underground explosions, Rem. Sens. Environ. 246 (2020), 111871, https://doi.
org/10.1016/j.rse.2020.111871.
[682] B. Shemer, E. Shpigel, A. Glozman, S. Yagur-Kroll, Y. Kabessa, A. Agranat,
S. Belkin, Genome-wide gene-deletion screening identies mutations that
signicantly enhance explosives vapor detection by a microbial sensor,
N. Biotech. 59 (2020) 65–73, https://doi.org/10.1016/j.nbt.2020.06.002.
[683] M.D. Shree, A. Sangeetha, P. Krishnan, Design and analysis of FBG sensor for
explosive detection application, Plasmonics 15 (3) (2020) 813–819. https://doi.
org/10.1007/s11468-019-01100-x.
[684] N. Siangdee, N. Youngvises, Smart sensor using cellulose-based material for TNT
detection, Key Eng. Mater. 803 (2019) 124–128. https://doi.org/10.4028/www.
scientic.net/KEM.803.124.
[685] M. Simic, R. Gillanders, A. Avramovic, S. Sajic, V. Jovanovic, V. Stojnic,
V. Risojevic, J. Glackin, G. Turnbull, J. Filipi, N. Kezic, M. Mustra, Z. Babic,
Honeybee activity monitoring in a biohybrid system for explosives detection, in:
A. Badnjevic, R. Skrbic, L.G. Pokvic (Eds.), Proceedings of the International
Conference on Medical and Biological Engineering, 16-18 May 2019, Banja Luka,
Bosnia and Herzegovina, 2019, pp. 185–192, https://doi.org/10.1007/978-3-
030-17971-7_29.
[686] M. Simonovic, S. Ostojic, D. Mici, M. Bisercic-Savic, T. Mix, M. Glumac, B. Pejin,
A novel and effective natural product-based immunodetection tool for TNT-like
compounds, Nat. Prod. Res. (2020), https://doi.org/10.1080/
14786419.2020.1806269.
[687] B. Stromer, Bednar, M. Janjic, S. Becker, T. Kylloe, J. Allen, T. Trapani,
J. Hargrove, J. Hargrove, Traces explosives Detection by Cavity Ring-Down
Spectroscopy (CRDS) (Report No. ERDC/EL TR-21-5), US Army Corps of Engineers
Engineer Research and Development Center, 2021. https://erdc-library.erdc.dren
.mil/jspui/handle/11681/41520.
[688] S. Sun, F. Wang, Y. Sun, X. Guo, R. Ma, M. Zhang, T. Hu, Construction of a dual-
function metal-organic framework: detection of Fe3+, Cu2+, nitroaromatic
explosives, and a high second-harmonic generation response, Ind. Eng. Chem.
Res. 58 (38) (2019) 17784–17791, https://doi.org/10.1021/acs.iecr.9b02949.
[689] Sundaram, G. & Udayan, A.P.M. (2021). Method to make scalable ultrathin
hexagonally faceted metal-organic framework (MOF) and method of using same
for detecting explosives and other nitro-aromatic compounds (U.S. Patent No.
2021/0101914 A1). U.S. Patent and Trademark Ofce. https://patents.google.
com/patent/US20210101914A1/en.
[690] C. Tancharoen, W. Sukjee, P. Yenchitsomanus, A. Panya, P. Lieberzeit, C. Sangma,
Selectivity enhancement of MIP-composite sensor for explosive detection using
DNT-dengue virus template: a co-imprinting approach, Mater. Lett. 285 (2021),
129201, https://doi.org/10.1016/j.matlet.2020.129201.
[691] V. Taranto, M. Ueland, S.L. Forbes, L. Blanes, The analysis of nitrate explosive
vapour samples using Lab-on-a-chip instrumentation, J. Chromatogr. A 1602
(2019) 467–473, https://doi.org/10.1016/j.chroma.2019.06.003.
[692] J. Torres-Tello, A.V. Guaman, S. Ko, Improving the detection of explosives in a
MOX chemical sensors array with LSTM network, IEEE Sensor. J. 20 (23) (2020)
14302–14309, https://doi.org/10.1109/JSEN.2020.3007431.
[693] M. Trachioti, D. Hemzal, J. Hrbac, M. Prodromidis, Generation of graphite
nanomaterials from pencil leads with the aid of a 3D positioning sparking device:
application to the voltammetric determination of nitroaromatic explosives, Sens.
Actuators, B 310 (2020), 127871, https://doi.org/10.1016/j.snb.2020.127871.
[694] Trammell, S.A., Myers-Ward, R.L., Hangarter, S.C., Zabetakis, D., Stenger, D.A.,
Gaskill, D.K., & Walton, S.G. (2021). Plasma modied epitaxial fabricated
graphene on SiC for electrochemical trace detection of explosives (U.S. Patent and
Trademark Ofce No. 10,928,351 B2). https://patents.google.com/patent
/US10928351B2/en..
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
24
[695] D.W.J.M. van de Wouw, F.B. teer Haar, G. Dubbelman, P.H.N. de With,
Development and analysis of a real-time system for automated detection of
improvised explosive device indicators from ground vehicles, J. Electron. Imag.
28 (4) (2019) 1–16, https://doi.org/10.1117/1.JEI.28.4.043009.
[696] V. Villanueva-Lopez, A.M. Colon-Mercado, K.M. Vazquez-Velez, J.R. Castro-
Suarez, L.C. Pacheco-Londono Rivera, S.P. Hernandez-Rivera, Trace detection of
C-4 on aluminum using mid-infrared reection-absorption quantum cascade laser
spectroscopy, in: A. Rocha, C. Hernan Fajardo-Toro, J.M.R. Rodriguez (Eds.),
Developments and Advances in Defense and Security: Proceedings of MICRADS
2021, Springer, 2022, pp. 227–239, https://doi.org/10.1007/978-981-16-4884-
7_18.
[697] G. Wang, Z. Cai, X. Dou, Colorimetric logic design for rapid and precise
discrimination of nitrate-based improvised explosives, Cell Rep. Phys. Sci. 2 (2)
(2021), 100317, https://doi.org/10.1016/j.xcrp.2020.100317.
[698] G. Wang, Y. Li, Z. Cai, X. Dou, A colorimetric articial olfactory system for
airborne improvised explosive identication, Adv. Mater. 32 (14) (2020),
1907043, https://doi.org/10.1002/adma.201907043.
[699] J. Wang, M. Tanaka, M. Okochi, Quartz crystal microbalance sensor based on
peptide anchored single-walled carbon nanotubes for highly selective TNT
explosive detection [conference session], in: 2020 IEE Sensors, Rotterdam,
Netherlands, 2020, https://doi.org/10.1109/SENSORS47125.2020.9278670.
[700] X. Wang, T. Qin, Y. Qin, A.H. Abdelrahamn, R.S. Witte, H. Xin, Microwave-
induced thermoacoustic imaging for embedded explosives detection in high-water
content medium, IEEE Trans. Antenn. Propag. 67 (7) (2019) 4803–4810, https://
doi.org/10.1109/TAP.2019.2908267.
[701] G. Wen, W. Wu, F. Wang, X. Wang, J. Rong, Y. Wang, An excellent thermostable
dual-functionalized 3D fsx-type Cd(ii) MOF for the highly selective detection of
Fe3+ions and ten nitroaromatic explosives, CrystEngComm 23 (35) (2021)
6171–6179, https://doi.org/10.1039/D1CE00939G.
[702] J. Wojtas, R. Bogdanowicz, A.K. Duda, B. Pietrzyk, M. Sobaszek, P. Prasula,
A. Dettlaff, K. Achtenberg, Fast-response optoelectronic detection of explosives’
residues from the nitroaromatic compounds detonation: eld studies approach,
Measurement 162 (2020), 107925, https://doi.org/10.1016/j.
measurement.2020.107925.
[703] J. Wu, M. Fan, G. Deng, C. Gong, K. Chen, J. Luo, K.S. Chiang, Y. Rao, Y. Gong,
Optouidic laser explosive sensor with ultralow detection limit and large dynamic
range using donor-acceptor-donor organic dye, Sensor. Actuator. B Chem. 298
(2019), 126830, https://doi.org/10.1016/j.snb.2019.126830.
[704] S. Yang, W. Fan, H. Cheng, Z. Gong, D. Wang, M. Fan, B. Huang, A dual functional
cotton swab sensor for rapid on-site naked-eye sensing of nitro explosives on
surfaces, Microchem. J. 159 (2020), 105398, https://doi.org/10.1016/j.
microc.2020.105398.
[705] A.N. Yumang, A.C. Paglinawan, J.S. Andres, R.J. De Lon, J.C. Dela Cruz, C.
K. Floresta, February 14-16). Electronic nose of Acetone as a potential precursor
in Triacetone Triperoxide (TATP)-based improvised explosive devices (IEDs), in:
M. Kavakli (Ed.), Proceedings of 2020 12
th
International Conference on Computer and
Automation Engineering, Association for Computing Machinery, 2020, pp. 52–55,
https://doi.org/10.1145/3384613.3384625 (Chair).
[706] G. Zhang, X. Zou, H. Li, Y. He, Visual colorimetric detection of triacetone
triperoxide based on a Fe(ii)-promoted thermal decomposition process, Analyst
146 (20) (2021) 6187–6192, https://doi.org/10.1039/D1AN01480C.
[707] J. Zhang, E. Fahrenthold, Graphene nanoribbons as exible docks for
chemiresistive sensing of gas phase explosives, Nanoscale 12 (19) (2020)
10730–10736, https://doi.org/10.1039/D0NR01237H.
[708] S. Zhang, Y. Sun, Y. Sun, H. Wang, Y. Shen, Semiquantitative
immunochromatographic colorimetric biosensor for the detection of
dexamethasone based on up-conversion uorescent nanoparticles, Microchim.
Acta 187 (8) (2020) 447, https://doi.org/10.1007/s00604-020-04418-0.
[709] W. Zhang, Z. Wu, J. Hu, Y. Cao, J. Guo, M. Long, H. Duan, D. Jia, Flexible
chemiresistive sensor of polyaniline coated lter paper prepared by spraying for
fast and non-contact detection of nitroaromatic explosives, Sensor. Actuator. B
Chem. (2019), https://doi.org/10.1016/j.snb.2019.127233.
[710] W. Zhang, Z. Wu, J. Hu, Y. Cao, J. Guo, M. Long, H. Duan, D. Ji, Flexible
chemiresistive sensor of polyaniline coated lter paper prepared by spraying for
fast and non-contact detection of nitroaromatic explosives, Sensor. Actuator. B
Chem. 304 (2020), 127233, https://doi.org/10.1016/j.snb.2019.127233.
[711] Y. Zhang, Y. Ma, L. Wang, Simple copper nanoparticle/polyfurfural lm modied
electrode for the determination of 2, 4, 6-Trinitrotoluene (TNT), Anal. Lett. 53
(16) (2020) 2671–2684, https://doi.org/10.1080/00032719.2020.1751182.
[712] Q. Zhu, G. Zhang, W. Yuan, S. Wang, L. He, F. Yong, G. Tao, Handy uorescent
paper device based on a curcumin derivative for ultrafast detection of peroxide-
based explosives, Chem. Commun. 55 (91) (2019) 13661–13664, https://doi.org/
10.1039/C9CC06737J.
Stand Off
[713] H. Ayoub, A. El-Sherif, A. Elbeih, Hyperspectral imaging and remote trace
detection of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX)
compared with traditional explosives using laser induced uorescence, Defence
Technol. 17 (5) (2021) 1609–1616, https://doi.org/10.1016/j.dt.2020.09.008.
[714] C.J. Breshike, C.A. Kendziora, R. Furstenberg, T.J. Huffman, V.K. Nguyen,
N. Budack, Y. Yoon, R.A. McGill, Hyperspectral imaging using active infrared
backscatter spectroscopy for detection of trace explosives, Opt. Eng. 59 (9)
(2020), 092009, https://doi.org/10.1117/1.OE.59.9.092009.
[715] P.G. Datskos, M. Morales-Rodriguez, L.R. Senesac, Standoff imaging of trace RDX
using quantum cascade lasers, IEEE Sensor. J. 20 (1) (2020) 149–154, https://doi.
org/10.1109/JSEN.2019.2940883.
[716] E. Gallo, L. Cantu, F. Duschek, Remote Raman spectroscopy of explosive
precursors, Opt. Eng. 60 (8) (2021), 084108, https://doi.org/10.1117/1.
OE.60.8.084108.
[717] C. Gasser, M. Goschl, J. Ofner, B. Lendl, Stand-off hyperspectral Raman imaging
and random decision forest classication: a potent duo for the fast remote
identication of explosives, Anal. Chem. 91 (12) (2019) 7712–7718, https://doi.
org/10.1021/acs.analchem.9b00890.
[718] R. Gillanders, J. Glackin, Z. Babic, M. Mustra, M. Simic, N. Kezi, G. Turnbull,
J. Filipi, Biomonitoring for wide area surveying in landmine detection using
honeybees and optical sensing, Chemosphere 273 (2021), 129646, https://doi.
org/10.1016/j.chemosphere.2021.129646.
[719] A. Goyal, D. Wood, V. Lee, J. Rollag, P. Schwarz, L. Zhu, G. Santora, Laser-based
long-wave-infrared hyperspectral imaging system for the standoff detection of
trace surface chemicals, Opt. Eng. 59 (9) (2020), https://doi.org/10.1117/1.
OE.59.9.092003, 092003.
[720] K.K. Gulati, S. Gulia, N. Kumar, A. Kumar, S. Kumari, V. Gambhir, M.N. Reddy,
Real-time stand-off detection of improvised explosive materials using time-gated
UV–Raman spectroscopy, Pramana - J. Phys. 92 (2) (2019) 1–5, https://doi.org/
10.1007/s12043-018-1688-9.
[721] Gunes, H., Bicakci, S., Citak, H., Coramik, M., & Ege, Y. Buried magnetic material
detection system: an SVM algorithm application. IEEE Trans. Magn., 57(7),
6500509. https://doi.org/10.1109/TMAG.2021.3077864.
[722] V. Gupta, Y. Ozaki, Molecular and Laser Spectroscopy: Advances and Applications,
vol. 2, Elsevier, 2020, https://doi.org/10.1016/C2018-0-04226-7.
[723] L.A. Horsfall, Modication of N-type and P-type Semiconducting Metal Oxide Gas
Sensors for the Purpose of Explosive Detection [Doctoral Dissertation, University
College London], UCL Discovery, 2020. https://discovery.ucl.ac.uk/id/eprint/
10107642/.
[724] K.T. Hufziger, The Development of Photonic Crystal Optics and Wide-eld Raman
Imaging Spectrometers for Trace Explosive Detection [Unpublished Doctoral
Dissertation], University of Pittsburgh, 2019.
[725] M. Jindal, S. Veeraburhiran, Mainuddin, A. Razdan, Integrated path DIAL for
standoff detection of acetone vapors under topographic target condition, Opt
Laser. Technol. 143 (2021), 107299, https://doi.org/10.1016/j.
optlastec.2021.107299.
[726] J. Johny, S. Karnik, R. Prabhu, Investigations of Hollow-Core Photonic Crystal Fibres
(HC-PCF) for Trace Explosive Vapour Detection [Poster Presentation], SPIE
SECURITY & DEFENSE, United Kingdom, 2020, https://doi.org/10.1117/
12.2574356. Online Only.
[727] A. Koz, Ground-based hyperspectral image surveillance systems for explosive
detection: part I—state of the art and challenges, IEEE J. Sel. Top. Appl. Earth
Obs. Rem. Sens. 12 (12) (2019) 4746–4753, https://doi.org/10.1109/
JSTARS.2019.2957484.
[728] V. Lazi, A. Palucci, L. De Dominicis, M. Nuvoli, M. Pistilli, I. Menicucci, F. Colao,
S. Almviva, Integrated laser sensor (ILS) for remote surface analysis: application
for detecting explosives in ngerprints, Sensors 19 (19) (2019) 4269, https://doi.
org/10.3390/s19194269.
[729] M. Mann, A.S. Rao, R.C. Sharma, Remote mid IR Photoacoustic Spectroscopy for
the detection of explosive materials, Chem. Phys. Lett. 765 (2021), 138231,
https://doi.org/10.1016/j.cplett.2020.138231.
[730] A.K. Misra, T.E. Acosta-Maeda, J.N. Porter, M.J. Egan, M.W. Sandford, T. Oyama,
J. Zhou, Remote Raman detection of chemicals from 1752m during afternoon
daylight, Appl. Spectrosc. 74 (2) (2020) 233–240, https://doi.org/10.1177/
0003702819875437.
[731] Otagaki, Y., Miyato, Y., Barras, J., Sato-Akaba, H., & Kosmas, P. Development of a
low-cost, portable NQR spectrometer for RDX explosives detection. IEEE Sensor.
J., 21(5), 6922-6929. https://doi.org/10.1109/JSEN.2020.3038158.
[732] P.P. Ricci, O.J. Gregory, Continuous monitoring of TATP using ultrasensitive,
low-power sensors, IEEE J. 20 (23) (2020) 14058–14064, https://doi.org/
10.1109/JSEN.2020.3008254.
[733] A. Shaik, V. Soma, Standoff discrimination and trace detection of explosive
molecules using femtosecond lament induced breakdown spectroscopy
combined with silver nanoparticles, OSA Continuum 2 (3) (2019) 554–562,
https://doi.org/10.1364/OSAC.2.000554.
[734] A.K. Shaik, V.R. Soma, Femtosecond laments for standoff detection of
explosives, Defense Sci. J. 70 (4) (2020) 359–365, https://doi.org/10.14429/
dsj.70.14962.
[735] R.C. Sharma, S. Kumar, S. Kumar, M. Mann, M.M. Sharma, Photoacoustic remote
sensing of suspicious objects for defence and forensic applications, Spectrochim.
Acta Mol. Biomol. Spectrosc. 224 (2020), 117445, https://doi.org/10.1016/j.
saa.2019.117445.
[736] R.C. Sharma, S. Kumar, A. Parmar, M. Mann, S. Prakash, S.N. Thakur, Standoff
pump-probe photothermal detection of hazardous chemicals, Sci. Rep. 10 (2020),
15053, https://doi.org/10.1038/s41598-020-71937-4.
[737] S.K. Sharma, B.M. Howe, A.K. Misra, M.R. Rognstad, J.N. Porter, T.E. Acosta-
Maeda, M.J. Egan, Underwater time-gated standoff Raman sensor for in situ
chemical sensing, Appl. Spectrosc. 75 (6) (2021) 739–746, https://doi.org/
10.1177/00037028211001923.
[738] N. Simin, Y. Park, D. Lee, T. Thundat, S. Kim, Enhanced nanoplasmonic heating in
standoff sensing of explosive residues with infrared reection-absorption
spectroscopy, Opt Lett. 45 (8) (2020) 2144–2147, https://doi.org/10.1364/
OL.387653.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
25
[739] S. Thongrom, P. Kalasuwan, P. van Dommelen, C. Daengngam, Development of a
cost-effective remote explosives detection system based on Raman spectroscopy,
J. Phys. Conf. 1719 (2021), 012080, https://doi.org/10.1088/1742-6596/1719/
1/012080.
[740] D. Wild, C. Theiß, G. Holl, Contact-free and fast detection of energetic materials in
containments, Eur. Phys. J. Plus 136 (4) (2021) 437, https://doi.org/10.1140/
epjp/s13360-021-01406-y.
[741] G. Xie, X. Lv, P. Zhang, B. Liu, L. Gao, J. Duan, B. Ma, Z. Wu, Uncontactless
detection of improvised explosives TATP realized by Au NCs tailored PPV exible
photoelectric Schottky sensor, NanoSelect 1 (4) (2020) 419–431, https://doi.org/
10.1002/nano.202000044.
[742] C. Yang, F. Jin, S. Trivedi, U. Hommerich, L. Nemes, A. Samuels, A novel standoff
simultaneous UVN +LWIR laser induced breakdown spectroscopy (LIBS)
detection system for rapid in-situ chemical analysis, in: Proc. SPIE: Detection and
Sensing of Mines, Explosive Objects, and Obscured Targets XXV, vol. 11418,
2020, https://doi.org/10.1117/12.2565159, 114180I.
Environmental
[743] T. Ariyarathna, M. Ballentine, P. Vlahos, R. Smith, C. Cooper, J. Bojlke,
T. Groshens, C. Tobias, Degradation of RDX (Hexahydro-1,3,5-trinitro-1,3,5-
triazine) in contrasting coastal marine habitats: subtidal non-vegetated (sand),
subtidal vegetated (silt/eel grass), and intertidal marsh, Sci. Total Environ.
(2020), https://doi.org/10.1016/j.scitotenv.2020.140800.
[744] H. Avellaneda, Z. Arbeli, W. Teran, F. Roldan, Transformation of TNT, 2,4-DNT,
and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and
exploration of the associated enzymes, World J. Microbiol. Biotechnol. 36 (12)
(2020) 190, https://doi.org/10.1007/s11274-020-02962-8.
[745] R. Behera, T. Biswal, R. Panda, in: S. Acharya, D. Mishra (Eds.), Current Advances
in Mechanical Engineering: Select Proceedings of ICRAMERA 2020, Springer,
2021, pp. 305–315, https://doi.org/10.1007/978-981-33-4795-3_29.
[746] T.J. Boyd, R.H. Cuenca, Y. Hagimoto, M.M. Michalsen, C. Tobias, J. Popovic,
Stable Carbon Isotopes for Trace in Situ RDX Remediation (NRL/6180/
MR—2021/1), U.S. Naval Research Laboratory, 2021, https://apps.dtic.mil/sti/ci
tations/AD1122062.
[747] T. Cary, E. Rylott, L. Zhang, R. Routsong, A. Palazzo, S. Strand, N. Bruce, Field
trial demonstrating phytoremediation of the military explosive RDX by XplA/
XplB-expressing switchgrass, Nat. Biotechnol. 39 (2021) 1216–1219, https://doi.
org/10.1038/s41587-021-00909-4.
[748] J. Chandra, R. Xalxo, N. Pandey, S. Keshavkant, Biodegradation of explosives by
transgenic plants, in: M. Hasanuzzaman, M.N. Vara Prasad (Eds.), Handbook of
Bioremediation: Physiological, Molecular, and Biotechnological Interventions,
Academic Press, 2021, pp. 657–675, https://doi.org/10.1016/B978-0-12-
819382-2.00042-9.
[749] S. Cho, C. Park, J. Lee, B. Lyu, I. Moon, Finding the best operating condition in a
novel process for explosive waste incineration using uidized bed reactors,
Comput. Chem. Eng. 142 (2020), 107054, https://doi.org/10.1016/j.
compchemeng.2020.107054.
[750] M. D’Alexxio, J. Lichwa, C. Ray, Transport of explosive chemicals in re-affected
Hawaiian topsoil, J. Hazard. Toxic, Radioact. Waste 25 (1) (2021), https://doi.
org/10.1061/(ASCE)HZ.2153-5515.0000567.
[751] N. Estoppey, J. Mathieu, E. Diez, E. Sapin, O. Delemont, P. Esseiva, L. Felippe de
Alencastro, S. Coudret, P. Folly, Monitoring of explosive residues in lake-bottom
water using Polar Organic Chemical Integrative Sampler (POCIS) and
chemcatcher: determination of transfer kinetics through Polyethersulfone (PES)
membrane is crucial, Environ. Pollut. 252 (A) (2019) 767–776, https://doi.org/
10.1016/j.envpol.2019.04.087.
[752] W. Fawcett-Hirst, T.J. Temple, M.K. Ladyman, F. Coulon, A review of treatment
methods for insensitive high explosive contaminated wastewater, Heliyon 7 (7)
(2021), e07438, https://doi.org/10.1016/j.heliyon.2021.e07438.
[753] G. Jenness, S. Giles, M. Shukla, Thermodynamic adsorption states of TNT and
DNAN on corundum and hematite, J. Phys. Chem. C 124 (25) (2020)
13837–13844, https://doi.org/10.1021/acs.jpcc.0c04512.
[754] A. Kalsi, S. Celin, J. Sharma, Aerobic biodegradation of high explosives
hexahydro-1,3,5- trinitro-1,3,5-triazine by Janibacter cremeus isolated from
contaminated soil, Biotechnol. Lett. (2020), https://doi.org/10.1007/s10529-
020-02946-6.
[755] A. Kalsi, S. Celin, P. Bhanot, S. Sahai, J. Sharma, A novel egg shell-based bio
formulation for remediation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)
contaminated soil, J. Hazard Mater. 401 (2021), 123346, https://doi.org/
10.1016/j.jhazmat.2020.123346.
[756] M. Khan, S. Yadav, R. Sharma, M. Dalela, S. Celin, A. Sharma, S. Sharma,
Augmentation of stimulated Pelomonas aquatica dispersible granules enhances
remediation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soil,
Environ. Technol. Innovat. 17 (2020), 100594, https://doi.org/10.1016/j.
eti.2019.100594.
[757] B. Khezri, K. Villa, F. Novotny, Z. Sofer, M. Pumera, Smart dust 3D-printed
graphene-based Al/Ga robots for photocatalytic degradation of explosives, Small
16 (33) (2020), 2002111, https://doi.org/10.1002/smll.202002111.
[758] T. Klapotke, R. Scharf, J. Stierstorfer, C.C. Unger, Toxicity assessment of energetic
materials by using the luminescent bacteria inhibition test, Propellants, Explos.
Pyrotech. 46 (1) (2021) 114–123, https://doi.org/10.1002/prep.202000044.
[759] D. Koske, K. Straumer, N.I. Goldenstrin, R. Hanel, T. Lang, U. Kammann, First
evidence of explosives and their degradation products in dab (Limanda limanda
L.) from a munition dumpsite in the Baltic Sea, Mar. Pollut. Bull. 155 (2020),
111131, https://doi.org/10.1016/j.marpolbul.2020.111131.
[760] K. Lata, A. Kushwaha, G. Ramanathan, Bacterial enzymatic degradation and
remediation of 2,4,6-trinitrotoluene, in: S. Das, H. Ranjan (Eds.), Microbial and
Natural Macromolecules: Synthesis and Applications, 2021, pp. 623–659, https://
doi.org/10.1016/B978-0-12-820084-1.00024-7.
[761] J. Lauf, W. Rusow, R. Zimmermann, Nitrogen Based Propellants as Substitute for
Carbon Containing Fuels, NATO Energy Security Centra of Excellence, 2021. https
://enseccoe.org/data/public/uploads/2021/04/nato-ensec-coe-nitrogen-based-
propellants-as-substitute-for-carbon-containing-fuels-jutta-lauf-wsewolod-rus
ow-reiner-zimmermann.pdf.
[762] J. Li, Q. Zhou, M. Li, Y. Liu, Q. Song, Monodisperse amino-modied nanosized
zero-valent iron for selective and recyclable removal of TNT: synthesis,
characterization, and removal mechanism, J. Environ. Sci. 103 (2021) 69–79,
https://doi.org/10.1016/j.jes.2020.10.009.
[763] X. Li, F. Zhang, C. Zeng, C. Li, Z. Zhang, H. Zheng, Y. Yang, An instant reused
luminescent mixed matrix membrane sensor for convenient phenolic nitro-
explosives detection, J. Photochem. Photobiol. Chem. 370 (2019) 51–57, https://
doi.org/10.1016/j.jphotochem.2018.10.029.
[764] X. Liu, Y. Deng, C. Zhang, X. Bai, J. Li, Optimizing degradation conditions of
treatment of TATB explosive wastewater by γ-Fe2O3 nanoparticles and UV
synergistic degradation, Can. J. Chem. 99 (4) (2021) 362–367, https://doi.org/
10.1139/cjc-2020-0278.
[765] G.R. Lotufo, K.A. Gust, M.L. Ballentine, L.C. Moores, A.J. Kennedy, N.D. Barker,
Q. Ji, P. Chappenll, Comparative toxicology evaluation of uv-degraded versus
parent-insensitive munition compound 1-Methyl-3-Nitroguanidine in fathead
minnow, Environ. Toxicol. Chem. 39 (3) (2020) 612–622, https://doi.org/
10.1002/etc.4647.
[766] C. Madeira, W. Kadoya, G. Li, S. Wong, R. Sierra-Alvarez, J. Field, Reductive
biotransformation as a pretreatment to enhance in situ chemical oxidation of
nitroaromatic and nitroheterocyclic explosives, Chemosphere 222 (2019)
1025–1032, https://doi.org/10.1016/j.chemosphere.2019.01.178.
[767] L. Madeira, A. Alemeida, M. Teixeira, A. Prazeres, H. Chaves, F. Carvalho,
Immediate one-step lime precipitation and atmospheric carbonation as pre-
treatment for low biodegradable and high nitrogen wastewaters: a case study of
explosives industry, J. Environ. Chem. Eng. 8 (3) (2020), 103808, https://doi.
org/10.1016/j.jece.2020.103808.
[768] L. Madeira, F. Carbalho, M.R. Teixeira, C. Ribeiro, A. Almeida, Vertical ow
constructed wetland as a green solution for low biodegradable and high nitrogen
wastewater: a case study of explosives industry, Chemosphere 272 (2021),
129871, https://doi.org/10.1016/j.chemosphere.2021.129871.
[769] S. Nagar, S. Anand, S. Chatterjee, C.D. Rawat, J. Lamba, P.K. Rai, A review of
toxicity and biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
(HMX) in the environment, Environ. Technol. Innovat. 23 (2021), 101750,
https://doi.org/10.1016/j.eti.2021.101750.
[770] J. Nawala, M. Szala, D. Dziedzic, D. Gordon, B. Dawidziuk, J. Fabisiak, S. Popiel,
Analysis of samples of explosives excavated from the Baltic Sea oor, Sci. Total
Environ. 708 (2020), 135198, https://doi.org/10.1016/j.scitotenv.2019.135198.
[771] B. Nhi, Research on regeneration activated carbon in 2,4,6-Trinitrotoluene (TNT)
explosives manufacturing industry by microwave radiation and ionized nitrogen,
Propellants, Explos. Pyrotech. 46 (1) (2021) 7–12, https://doi.org/10.1002/
prep.202000166.
[772] J. Niedzwiecka, K. McGee, K. Finneran, Combined biotic-abiotic 2,4-dinitroani-
sole (DNAN) degradation in the presence of hexahydro-1,3,5-trinitro-1,3,5-
triazine (RDX), Environ. Sci. Technol. 54 (17) (2020) 10638–10645, https://doi.
org/10.1021/acs.est.0c02363.
[773] C.M. Oral, M. Ussia, M. Pumera, Self-propelled activated carbon micromotors for
“one-the-y” capture of nitroaromatic explosives, J. Phys. Chem. C 125 (32)
(2021) 18040–18045, https://doi.org/10.1021/acs.jpcc.1c05136.
[774] A.A. Otaiku, A.I. Alhaji, Characterization of microbial species in the
biodegradation of explosives, military shooting range, Kaduna, Nigeria, J. Appl.
Biotechnol. Bioeng. 7 (3) (2020) 128–147, https://doi.org/10.15406/
jabb.2020.07.00226.
[775] J. Qin, Y. Huang, M. Shi, H. Wang, M. Han, x. Yang, F. Li, L. Ma, Aqueous-phase
detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-
MOF directed by an ionic liquid, RSC Adv. 10 (3) (2020) 1439–1446, https://doi.
org/10.1039/C9RA08733H.
[776] J.D. Rindelaub, P.K. Davy, N. Talbot, W. Pattinson, G.M. Miskelly, The
contribution of commercial reworks to both local and person air quality in
Auckland, New Zealand, Environ. Sci. Pollut. Control Ser. 28 (17) (2021)
21650–21660, https://doi.org/10.1007/s11356-020-11889-4.
[777] L. Shi, N. Li, D. Wang, M. Fan, S. Zhang, Z. Gong, Environmental pollution
analysis based on the luminescent metal organic frameworks: a review, Trac.
Trends Anal. Chem. 134 (2021), 116131, https://doi.org/10.1016/j.
trac.2020.116131.
[778] Y. Shim, S. Ha, E. Yoo, H. Jang, A. Kim, S. Ramakrishnan, D. Yoo, Recovery of
ammonium perchlorate from obsolete ammunition and its application in synthesis
of lithium perchlorate, Propellants, Explos. Pyrotech. 46 (4) (2021) 612–617,
https://doi.org/10.1002/prep.202000235.
[779] J.S. Strehse, M. Brenner, M. Kisiela, E. Maser, The explosive trinitrotoluene (TNT)
induces gene expression of carbonyl reductase in the blue mussel (Mytilus spp.): a
new promising biomarker for sea dumped war relicts, Arch. Toxicol. 94 (12)
(2020) 4043–4054, https://doi.org/10.1007/s00204-020-02931-y.
[780] J.S. Strehse, M. Brenner, M. Kisiela, E. Maser, Correction to: the explosive
trinitrotoluene (TNT) induces gene expression of carbonyl reductase in the blue
mussel (Mytilus spp.): a new promising biomarker for sea dumped war relicts?
Archiv. Toxciol. 95 (8) (2021) 2893, https://doi.org/10.1007/s00204-021-
03088-y.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
26
[781] H.M. Tauqeer, A. Karczewska, K. Lewinska, M. Fatima, S.A. Khan, M. Farhad,
V. Turan, P.M.A. Ramzani, M. Iqbal, Environmental concerns associated with
explosives (HMX, TNT, and RDX), heavy metals and metalloids from shooting
range soils: prevailing issues, leading management practices, and future
perspectives, in: M. Hasanuzzaman, M.N. Var Prasad (Eds.), Handbook of
Bioremediation: Physiological, Molecular, and Biotechnological Interventions,
Academic Press, 2021, pp. 569–590, https://doi.org/10.1016/B978-0-12-
819382-2.00036-3.
[782] S. Via, Phytoremediation of explosives, in: B. Shmaefsky (Ed.), Phytoremediation:
In-Situ Applications, Springer, 2020, pp. 261–284, https://doi.org/10.1007/978-
3-030-00099-8_8.
[783] J. Warner, Enschede cries—restoring ontological security after a reworks
disaster, Int. J. Disaster Risk Reduc. 59 (2021), 102171, https://doi.org/10.1016/
j.ijdrr.2021.102171.
[784] J. Yan, B. Jin, P. Zhao, R. Peng, Facile fabrication of BiOCl nanoplates with high
exposure {001} facets for efcient photocatalytic degradation of nitro explosives,
Inorg. Chem. Front. 8 (3) (2021) 777–786, https://doi.org/10.1039/
D0QI01218A.
[785] X. Yang, J. Lai, Y. Zhang, X. Luo, M. Han, S. Zhao, Microbial community structure
and metabolome proling characteristics of soil contaminated by TNT, RDX, and
HMX, Environ. Pollut. 285 (2021), 117478, https://doi.org/10.1016/j.
envpol.2021.117478.
[786] Y. Ying, J. Plutnar, M. Pumera, Six-Degree-of-Freedom Steerable Visible-Light-
Driven microsubmarines using water as a fuel: application for explosives
decontamination, Small 17 (23) (2021), 2100294, https://doi.org/10.1002/
smll.202100294.
[787] Y. Ying, A. Pourrahimi, C. Manzanares-Palenzuela, F. Novtny, Z. Sofer,
M. Pumera, Light-driven ZnO brush-shaped self-propelled micromachines for
nitroaromatic explosives decomposition, Small 16 (27) (2020), 1902944, https://
doi.org/10.1002/smll.201902944.
[788] A.M. Zainullin, Increasing the environmental safety of the initiating explosives
production, IOP Conf. Ser. Earth Environ. Sci. 815 (2021), 012005, https://doi.
org/10.1088/1755-1315/815/1/012005.
[789] J. Zhao, B. Jin, R. Peng, New core-shell hybrid material IR-MOF3@COF-LZU1 for
highly efcient visible-light photocatalyst degrading nitroaromatic explosives,
Langmuir 36 (20) (2020) 5665–5670, https://doi.org/10.1021/acs.
langmuir.9b03786.
Other (Safety, Denitions, Etc):
[790] M.H. Abraham, W.E. Acree, X. Liu, Descriptors for high-energy nitro compounds:
estimation of thermodynamic, physicochemical and environmental properties,
Propellants, Explos. Pyrotech. 46 (2) (2021) 267–279, https://doi.org/10.1002/
prep.202000117.
[791] B. Aduev, D. Nurmukhametov, I. Liskov, A. Zvekov, RDX-Al and PETN-Al
composites’ glow spectral kinetics at the explosion initiated with laser pulse,
Combust. Flame 223 (2021) 376–381, https://doi.org/10.1016/j.
combustame.2020.10.016.
[792] B.P. Aduev, D.R. Nurmukhametov, I.Y. Liskov, A.V. Tupitsyn, G.M. Belokurov,
Laser pulse initiation of RDX-al and PETN-Al composites explosion, Combust.
Flame 216 (2020) 468–471, https://doi.org/10.1016/j.
combustame.2019.10.037.
[793] M.V. Ageev, Y.N. Vedernikov, G.G. Zegrya, A.S. Mazur, U.M. Poberezhnaya, V.
K. Popov, G.G. Savenkov, Properties of two and three-component explosive
compositions based on porous silicon, Russ. J. Phys. Chem. B 15 (2) (2021)
259–265, https://doi.org/10.1134/S1990793121020020.
[794] S. Al-Hajj, H.R. Dhaini, S. Mondello, H. Kaafarani, F. Kobeissy, R.G. DePalma,
Beirut ammonium nitrate blast: analysis, review, and recommendations, Front.
Public Health 9 (2021), 657996, https://doi.org/10.3389/fpubh.2021.657996.
[795] F. Ali, B. Pingua, A. Dey, A. Roy, P. Singh, Surface functionalized ammonium
nitrate prills with enhanced water resistance property: characterizations and its
application as commercial explosives, Propellants, Explos. Pyrotech. 46 (1)
(2021) 78–83, https://doi.org/10.1002/prep.202000158.
[796] M. Amaral, E. Hatten, A. Gibson, R. Morgan, The impact of force, time, and
rotation on the transfer of ammonium nitrate: a reductionist approach to
understanding evidence dynamics, Sci. Justice 62 (2) (2022) 129–136, https://
doi.org/10.1016/j.scijus.2021.12.006.
[797] A. Annson, N. Al-Dayel, Landmines and improvised explosives devices: the
lingering terror of the Islamic state, Stud. Conict Terrorism (2020), https://doi.
org/10.1080/1057610X.2020.1751998.
[798] Vytenis Babrauskas, Fire safety is the key to ammonium nitrate explosion safety,
Process Saf. Prog. 39 (2020), https://doi.org/10.1002/prs.12200.
[799] Z. Bai, Z. Duan, X. Wang, F. Huang, A statistical hot spot reaction rate model for
shock initiation of polymer-bonded explosives, Propellants, Explos. Pyrotech. 46
(11) (2021) 1723–1732, https://doi.org/10.1002/prep.202100106.
[800] Bai, Z., Duan, Z., Wen, L., Zhang, Z., Ou, Z., & Huang, F. (2019). Comparative
analysis of detonation growth characteristics between HMX- and TATB-based
PBXs. Propellants, Explos. Pyrotech.¸44(7) , 858-869. https://doi.org/10.
1002/prep.201800390.
[801] Bai, Z., Duan, Z., Wen, L., Zhang, Z., Ou, Z., & Huang, F. Shock initiation of multi-
component insensitive PBX explosives: experiments and MC-DZK mesoscopic
reaction rate model. J. Hazard Mater., 369, 62-69. https://doi.org/10.1016/j.jh
azmat.2019.02.028.
[802] I.A. Balagansky, A.A. Bataev, I.A. Bataev, Explosion Systems with Inert High-
Modulus Components: Increasing the Efciency of Blast Technologies and Their
Applications, Wiley, 2019.
[803] G. Baldino, C. Stassi, C. Mondello, A. Bottari, S. Vanin, E.V. Spagnolo, Forensic
investigative issues in a reworks production factory explosion, Int. J. Leg. Med.
135 (4) (2021) 1647–1654, https://doi.org/10.1007/s00414-021-02564-5.
[804] R. Bari, A.A. Denton, Z.T. Fondren, G.B. McKenna, S.L. Simon, Acceleration of
decomposition of CL-20 explosive under nanoconnement, J. Therm. Anal.
Calorim. 140 (6) (2020) 2649–2655, https://doi.org/10.1007/s10973-019-
09027-5.
[805] B. Barnes, K. Leiter, J. Larentzos, J. Brennan, Forging of hierarchical multiscale
capabilities for simulation of energetic materials, Propellants, Explos. Pyrotech.
45 (2) (2020) 177–195, https://doi.org/10.1002/prep.201900187.
[806] O. Bedair, Review of blast analysis and design for industrial/residential buildings
and ammunition storage facilities, Multidiscip. Model. Mater. Struct. 17 (2)
(2021) 437–450, https://doi.org/10.1108/MMMS-03-2020-0052.
[807] Y. Borisov, A. Makarenkov, S. Kiselev, E. Kononova, A. Ponomaryov, M. Budnik,
V. Ol’shevkaya, Prediction of energetic properties of carboranyl tetrazoles based
on DFT study, Mater. Chem. Phys. 240 (2020), 122209, https://doi.org/10.1016/
j.matchemphys.2019.122209.
[808] M.K. Boulkadid, M.H. Lefebvre, L. Leunieau, A. Dejeaifve, Burning rate of
articially aged solid double-base gun propellants, J. Energetic Mater. 38 (1)
(2020) 1–19, https://doi.org/10.1080/07370652.2019.1657204.
[809] R. Bouma, T. Grifths, I. Tuukkanen, The development of a future chemical
compatibility standard for energetic materials, Thermochim. Acta 676 (2019)
13–19, https://doi.org/10.1016/j.tca.2019.03.012.
[810] C. Cao, W. Chen, W. Jhang, Y. Chung, L. Wei-Cheng, Thermal decomposition and
evaluation thermokinetic parameters for explosive type, J. Therm. Anal. Calorim.
144 (2) (2021) 443–454, https://doi.org/10.1007/s10973-020-10475-7.
[811] W. Cao, W. Guo, T. Ding, Y. Han, M. Li, D. Gao, X. Guo, Laser ablation of
aluminized RDX with added ammonium perchloreate or ammonium perchlorate/
boron/magnesium hydride, Combust. Flame 221 (2020) 194–200, https://doi.
org/10.1016/j.combustame.2020.07.045.
[812] M.J. Cawkwell, V.W. Manner, Ranking the drop-weight impact sensitivity of
common explosives using Arrhenius chemical rates computed from quantum
molecular dynamics simulations, J. Phys. Chem. A 124 (1) (2020) 74–81, https://
doi.org/10.1021/acs.jpca.9b10808.
[813] S. Cazares, J.A. Snyder, J. Cartier, F. Sallis-Peterson, J. Fregeau, A Monte Carlo
tradeoff analysis to guide resource investment in threat detection systems: from
forensic to prospective investigations, J. Defense Model. Simulat. Appl. Methodol.
Technol. 16 (3) (2019) 297–320, https://doi.org/10.1177/1548512917694966.
[814] A. Chan, J. Bottaro, K. Rosenkoetter, The evaluation of secondary amine
protecting group of nitration, Propellants, Explos. Pyrotech. 44 (10) (2019)
1226–1232, https://doi.org/10.1002/prep.201900115.
[815] N. Chandrasekaran, C. Oommen, V. Kumar, A. Lukin, V. Abrokov, D. Anufrieva,
Prediction of detonation velocity of N-O composition of high energy C-H-N-O
explosives by means of articial neural networks, Propellants, Explos. Pyrotech.
44 (5) (2019) 579–587, https://doi.org/10.1002/prep.201800325.
[816] J. Chen, D. Feng, G. Wang, F. Gao, C. Peng, Numerical simulation of detonation
and Brisance performance of aluminized HMX using density-adaptive SPH,
Propellants, Explos. Pyrotech. 46 (12) (2021) 1800–1814, https://doi.org/
10.1002/prep.202100214.
[817] J. Chen, T. Yan, C. Wang, R. Gao, S. Xu, G. Fan, W. Zhao, Y. Liu, The
photostability and degradation pathways of TKX-50 as a representative of
nitrogen-rich energetic salts in aqueous solution, J. Photochem. Photobiol. Chem.
411 (2021), 113178, https://doi.org/10.1016/j.jphotochem.2021.113178.
[818] X. Chen, Z. Wang, Y. Liu, A whole explosive dispersion process prediction model
for fuel clouds, Propellants, Explos. Pyrotech. 45 (6) (2020) 950–965, https://doi.
org/10.1002/prep.201900318.
[819] M. Chiquito, R. Castedo, L. Lopez, A. Santos, J. Mancilla, J. Yenes, Blast wave
characteristics and TNT equivalent of improvised explosive device at small-scaled
distances, Defence Sci. J. 69 (4) (2019) 328–335. https://www.doi/org/10.
14429/dsj.69.13637.
[820] M. Chouai, M. Mustefa, M. Mimi, CH-Net: deep adversarial autoencoders for
semantic segmentation in X-ray images of cabin baggage screening at airports,
J. Transport. Secur. 13 (1) (2020) 71–89. https://www.doi/org/10.1007/s12
198-020-00211-5.
[821] G. Collett, M. Ladyman, R. Hazael, T. Temple, The use of a predictive threat
analysis to propose revisions to exist risk assessments for precursor chemicals
used in the manufacture of home-made explosives (HME), Heliyon 7 (12) (2021),
e08343, https://doi.org/10.1016/j.heliyon.2021.e08343.
[822] S.A. Coronel, M.J. Kaneshige, Response of PETN detonators to elevated
temperatures, Proc. Combust. Inst. 38 (3) (2021) 4271–4279, https://doi.org/
10.1016/j.proci.2020.06.265.
[823] R. Crocombe, The future of portable spectroscopy, Spectroscopy 35 (7) (2020,
July) 12–14. https://www.spectroscopyonline.com/view/future-portable-spectro
scopy.
[824] A. Cuesta, O. Abreu, A. Balboa, D. Alvear, A new approach to protect soft-targets
from terrorist attacks, Saf. Sci. 120 (2019) 877–885, https://doi.org/10.1016/j.
ssci.2019.08.019.
[825] L. da Saliva, S. Johnson, R. Critchley, J. Clements, K. Norris, C. Stennett,
Experimental fragmentation of pipe bombs with varying case thickness, Forensic
Sci. Int. (2019), https://doi.org/10.1016/j.forsciint.2019.110034.
[826] A. Dandekar, Z. Roberts, S. Paulson, W. Chen, S. Son, M. Koslowski, The effect of
the particle surface and binder properties on the response of polymer bonded
explosives at low impact velocities, Comput. Mater. Sci. 166 (2019) 170–178,
https://doi.org/10.1016/j.commatsci.2019.04.033.
[827] H. Deng, L. Wang, D. Tang, Y. Zhang, Y. Zhang, L. Zhang, Review on the laser-
induced performance of photothermal materials for ignition application, Energ.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
27
Mater. Front. 2 (3) (2021) 201–217, https://doi.org/10.1016/j.
enmf.2021.08.001.
[828] E. Denis, K. Morrison, S. Wharton, S. Phillips, S. Myers, M. Foxe, R. Ewing, Trace
explosive residue detection of HMX and RDX in post-detonation dust from an
open-air environment, Talanta 227 (2021), 122124, https://doi.org/10.1016/j.
talanta.2021.122124.
[829] J.M. Dewey, Studies of the TNT equivalence of propane, propane/oxygen, and
ANFO, Shock Waves 30 (5) (2020) 483–489, https://doi.org/10.1007/s00193-
020-00949-w.
[830] J.M. Dewey, The TNT and ANFO equivalences of the Beirut explosion, Shock
Waves 31 (1) (2021) 95–99, https://doi.org/10.1007/s00193-021-00992-1.
[831] I. Edri, H. Grisaro, D. Yankelevsky, TNT equivalency in an internal explosion
event, J. Hazard Mater. 374 (2019) 248–257, https://doi.org/10.1016/j.
jhazmat.2019.04.043.
[832] M. El Sayed, Beirut ammonium nitrate explosion: a man-made disaster in times of
COVID-19 Pandemic, Disaster Med. Public Health Prep. (2020), https://doi.org/
10.1017/dmp.2020.451.
[833] J. Essel, A. Nelson, L. Smilowitz, B. Henson, L. Merriman, D. Turnbaugh,
K. Shermer, Investigating the effect of chemical ingredient modications on the
slow cook-off violence of ammonium perchlorate solid propellants on the
laboratory scale, J. Energetic Mater. (2019), https://doi.org/10.1080/
07370652.2019.1672831.
[834] K. Evans-Nguyen, Forensic Chem. Am. Chem. Soc. (2021), https://doi.org/
10.1021/acsinfocus.7e5009.
[835] X. Fan, L. Zhang, X. Wang, Study on theoretical calculation of quasi-static
pressure for aluminized explosive in conned space, J. Phys. Conf. 1721 (2021),
012023, https://doi.org/10.1088/1742-6596/1721/1/012023.
[836] Z. Fan, L. Fan, R. Ma, Forensic ngerprint intelligence analysis: technology status
and prospect, Forensic Sci. Technol. 45 (5) (2020) 441–447, https://doi.org/
10.16467/j.1008-3650.2020.05.001.
[837] L. Figuli, Z. Kubikova, M. Ivanco, Safety assessment and blast protection of select
soft target, Interdiscip. Descr. Complex Syst. 17 (1-A) (2019) 58–66, https://doi.
org/10.7906/indecs.17.1.8.
[838] J. Foltynski, N. Al-Shebah, L. Moy, Slow heating testing of high density
polyethylene foam dunnage for 40-mm M431A1 grenade packaging (Technical
Report ARESI-TR-19002). U.S. Army Combat Capabilities Development
Command Armaments Center. https://apps.dtic.mil/sti/pdfs/AD1127907.pdf,
2021.
[839] T. Forbes, G. Gillen, DART-MS spectral similarity of infrared thermally desorbed
solid particulate and solution cast propellant samples, J. Am. Soc. Mass Spectrom.
32 (4) (2021) 1033–1040, https://doi.org/10.1021/jasms.1c00015.
[840] D. Frem, Estimating the Metal Acceleration Ability of High Explosives, Defence
Technology, 2019, https://doi.org/10.1016/j.dt.2019.07.002.
[841] D. Freudenmann, H. Ciezki, ADN and HAN-based monopropellants – a mini
review on compatibility and chemical stability in aqueous media, Propellants,
Explos. Pyrotech. 44 (9) (2019) 1084–1089, https://doi.org/10.1002/
prep.201900127.
[842] D. Frost, J. Clemenson, S. Goroshin, F. Zhang, M. Soo, Thermocuple temperature
measurements in metalized explosive reballs, Propellants, Explos. Pyrotech. 46
(6) (2021) 899–911, https://doi.org/10.1002/prep.202000328.
[843] H. Gao, F. Chen, R. Cai, S. Ye, F. Tan, W. Xiong, Y. Yi, W. Hu, The diffusion of
components from propellant and linear at the interfaces of EPDM insulation,
Propellants, Explos. Pyrotech. 46 (3) (2021) 460–467, https://doi.org/10.1002/
prep.202000270.
[844] B.C. Giordano, L.E. DeGreeff, M. Malito, M. Hammond, C. Katiillie, M. Mullen, G.
E. Collins, S.L. Rose-Pehrsson, Trace vapor generator for explosives and narcotics
(TV-Gen), Rev. Sci. Instrum. 91 (8) (2020), 085112, https://doi.org/10.1063/
1.5142385.
[845] M. Gonsalves, Making Energetic Materials Safe (Publication No. 28255637), PhD.
University of Rhode Island, 2020.
[846] M. Gonsalves, J. Smith, J. OxLey, Characterization of encapsulated energetic
materials for trace explosives aids for scent (TEAS), J. Energetic Mater. (2021),
https://doi.org/10.1080/07370652.2020.1867937.
[847] M.S. Gruhne, M. Lonnel, M.H.H. Wurzenberger, N. Szimhardt, T.M. Klapotke,
J. Stierstorfer, OZM ball drop impact tester (BIT-132) vs. BAM standard method-a
comparative investigation, Propellants, Explos. Pyrotech. 45 (1) (2020) 147–153,
https://doi.org/10.1002/prep.201900286.
[848] I. Gunduz, Microscopic imaging and optical pressure measurements of
detonations, Propellants, Explos. Pyrotech. 46 (9) (2021) 1378–1387, https://doi.
org/10.1002/prep.202000337.
[849] B.W. Hamilton, B.A. Steele, M.N. Sakano, M.P. Kroonblawd, I.W. Kuo,
A. Strachan, Predicted reaction mechanisms, product speciation, kinetics, and
detonation properties of the insensitive explosive2,6-Diamino-3,5-
dinitropyrazine-1-oxide (LLM-105), J. Phys. Chem. A 125 (8) (2021) 1766–1777,
https://doi.org/10.1021/acs.jpca.0c10946.
[850] M. Hariri, K. Ghani, S. Damiri, Purication of 2,4,6-trinitrotoluene by digestion
with sodium sulte and determination of its impurities by gas
chromatography–electron capture detector (GC-ECD), J. Iran. Chem. Soc. 16 (11)
(2019) 2401–2408, https://doi.org/10.1007/s13738-019-01709-z.
[851] H. Harris, H. Lee, Arson and explosives, in: H.A. Harris, H.C. Lee (Eds.),
Introduction to Forensic Science and Criminalistics, second ed., CRC Press, 2019,
pp. 289–325, https://doi.org/10.4324/9781315119175.
[852] Z. He, W. Weng, Synergic effects in the assessment of multi-hazard coupling
disasters: res, explosions, and toxicant leaks, J. Hazard Mater. 388 (2020),
121813, https://doi.org/10.1016/j.jhazmat.2019.121813.
[853] Z. He, Y. Huang, G. Ji, J. Chen, Q. Wu, Electron properties and thermal
decomposition behaviors for HMX/HTPB plastic-bonded explosives, J. Phys.
Chem. C 123 (39) (2019) 23791–23799, https://doi.org/10.1021/acs.
jpcc.9b04759.
[854] D. Herrmannsdorfer, T.M. Klaptke, High-precision density measurements of
energetic materials for quality assessment, Propellants, Explos. Pyrotech. 46 (3)
(2021) 413–427, https://doi.org/10.1002/prep.202000272.
[855] M. Hobbs, J. Brown, M. Kaneschige, C. Sviles-Ramos, A micromechanics
pressurization model for cookoff, Propellants, Explos. Pyrotech. 47 (2) (2022),
e202100155, https://doi.org/10.1002/prep.202100155.
[856] M. Hobbs, J. Brown, M. Kaneshige, C. Aviles-Ramos, Cookoff of powdered and
pressed explosives using a micromechanics pressurization model, Propellants,
Explos. Pyrotech. 47 (2) (2022), e202100156, https://doi.org/10.1002/
prep.202100156.
[857] M. Hobbs, M. Kaneshige, W. Erikson, J. Brown, M. Anderson, S. Todd, D. Moore,
Cookoff experiments of a melt cast explosive (Comp-B3), Combust. Flame 213
(2020) 268–278, https://doi.org/10.1016/j.combustame.2019.12.004.
[858] Q. Huang, X. Liu, Y. Xiao, L. Luo, G. Luo, B. Jin, R. Peng, S. Chu, Isothermal
thermal decomposition of the HMX-based PBX explosive JOL-1, J. Energetic
Mater. (2020), https://doi.org/10.1080/07370652.2020.1737988.
[859] D. Huegli, S. Merks, A. Schwainger, Automation reliability, human–machine
system performance, and operator compliance: a study with airport security
screeners supported by automated explosives detection systems for cabin baggage
screening, Appl. Ergon. 86 (2020), 103094, https://doi.org/10.1016/j.
apergo.2020.103094.
[860] E. Ioannou, N. Nikiforakis, Multiphysics modeling of the initiating capability of
detonators. I. The underwater test, J. Appl. Phys. 129 (2) (2021), 025902, https://
doi.org/10.1063/5.0030478.
[861] E. Ioannou, Numerical Study of Detonation in Solid Explosives under
Hydrodynamic and Elastic-Plastic Connement, PhD, University of Cambridge,
2019, https://www.repository.cam.ac.uk/handle/1810/296704.
[862] D.G. Itkis, M.A. Bohn, Simulation of heat ow curves of NC-based propellants-part
1: determination of reaction enthalpies and other characteristics of the reactions
of NC and stabilizer DPA using quantum mechanical methods, Propellants,
Explos. Pyrotech. 46 (8) (2021) 1188–1203, https://doi.org/10.1002/
prep.202000314.
[863] D.G. Itkis, M.A. Bohn, Simulation of heat ow curves of NC-based propellants-part
2: application of DPA stabilized propellants, Propellants, Explos. Pyrotech. 46 (8)
(2021) 1204–1215, https://doi.org/10.1002/prep.202000313.
[864] J. James, Explosives Experimentation: a Holistic View of Fireballs: infrared
Spectroscopy Facilitates the Acquisition of Continuous Chemical Data from
Explosions, Analytical Scientist, 2019. https://theanalyticalscientist.com/elds-a
pplications/under-re-explosive-experimentation.
[865] F. Jiang, X. Wang, Y. Huang, B. Feng, X. Tian, Y. Niu, K. Zhang, Effect of particle
gradation of aluminum on the explosion eld pressure and temperature of RDX-
based explosives in vacuum and air atmosphere, Defence Technol. 15 (6) (2019)
844–852, https://doi.org/10.1016/j.dt.2019.06.007.
[866] G. Kang, Y. Ning, P. Chen, K. Ni, Meso-structure construction and effective
modulus simulation of PBXs, J. Energetic Mater. (2019), https://doi.org/
10.1080/07370652.2019.1684594.
[867] N. Kerschen, J. Drake, C. Sorensen, Z. Guo, J. Mares, K. Fezzaa, T. Sun, S. Son,
W. Chen, X-ray phase contrast imaging of the impact of the multiple HMX
particles in a polymeric matrix, Propellants, Explos. Pyrotech. 45 (4) (2020)
607–614, https://doi.org/10.1002/prep.201900217.
[868] E. Kim, D. Hong, M. Han, S. Moon, Desensitization of high explosives by
encapsulation in metal-organic frameworks, Chem. Eng. J. 407 (2021), 127882,
https://doi.org/10.1016/j.cej.2020.127882.
[869] C. Knox, D. Linskey, J. Tyler, Preparing ofcers to build a culture of preparedness:
a case study of the Boston Marathon Bombings, in: M. Landahl, T. Thornton
(Eds.), The Role of Law Enforcement in Emergency Management and Homeland
Security, Emerald Publishing, 2021, pp. 203–215, https://doi.org/10.1108/
S2040-726220210000024011.
[870] E. Koch, High Explosives, Propellants, Pyrotechnics, De Gruyter, 2021.
[871] M. Kohga, D. Shigi, M. Beppu, Detonation properties of ammonium nitrate/
nitramine-based composite propellants, J. Energetic Mater. 37 (3) (2019)
309–319, https://doi.org/10.1080/07370652.2019.1607921.
[872] S. Konar, A. Michalchuk, N. Sen, C. Bull, C. Morrison, C. Pulham, High-pressure
study of two polymorphs of 2,4,6-Trinitrotoluene using neutron powder
diffraction and density functional theory methods, J. Phys. Chem. C 123 (43)
(2019) 26095–26105, https://doi.org/10.1021/acs.jpcc.9b07658.
[873] O. Kudryashova, A. Pavlenko, S. Titov, A. Vorozhtsov, A mathematical model for
evaporation of explosive thin lm, J. Energetic Mater. (2020), https://doi.org/
10.1080/07370652.2020.1806947.
[874] K. Lee, A. Hernandez, D. Stewart, Well-posed equations of states for condensed-
phase explosives, Propellants, Explos. Pyrotech. (2019), https://doi.org/10.1002/
prep.201900121.
[875] D. Lewis, J. Padeld, S. Connors, I. Wilson, J. Akhavan, Further insights into the
discoloration of TATB under ionizing radiation, J. Energetic Mater. 38 (3) (2020)
362–376, https://doi.org/10.1080/07370652.2020.1716109.
[876] S. Li, J. Xu, Y. Liu, Characterization of interfacial micro-structures of explosive-
binder composites by gas permeation, Propellants, Explos. Pyrotech. 44 (9)
(2019) 1160–1166, https://doi.org/10.1002/prep.201900050.
[877] Z. Li, Y. Sun, L. Xu, N. Zhang, J. Liu, H. Wang, Q. Zhao, Explosion scene forensic
image interpretation, J. Forensic Sci. 64 (4) (2019) 1221–1229, https://doi.org/
10.1111/1556-4029.13996.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
28
[878] Z. Liang, B. Chen, Y. Nan, J. Jiang, L. Ding, Research on the computing method
for the forming velocity of circumferential multiple explosive formed projectiles,
J. Defense Model. Simulat.: Appl. Methodol. Technol. 17 (2) (2020) 125–136,
https://doi.org/10.1177/1548512919833187.
[879] H. Lin, Q. Zhu, C. Huang, D. Yang, N. Lou, S. Zhu, H. Li, Dinitromethyl,
uorodinitromethyl derivatives of RDX and HMX as high energy density
materials: a computational study, Struct. Chem. 30 (6) (2019) 2401–2408,
https://doi.org/10.1007/s11224-019-01366-1.
[880] J. Liu, C. He, R. Zhang, H. Zhao, Q. Wang, Study on a method to determine the
transverse impact strength of propellants based on impact absorbing energy,
Propellants, Explos. Pyrotech. 46 (11) (2021) 1645–1652, https://doi.org/
10.1002/prep.202100084.
[881] K. Liu, M. Wang, M. Xu, Z. Meng, H. Chang, G. Zhang, Z. Chen, L. Zhang,
Determination of the component mass ratio and moisture in BTTN/NG nitrate
ester mixture simultaneously by qNMR and method validation, Microchem. J. 152
(2020), 104337, https://doi.org/10.1016/j.microc.2019.104337.
[882] Y. Liu, J. Yin, Z. Wang, Study on overdriven detonation of double-layer shaped
charge, Propellants, Explos. Pyrotech. 44 (11) (2019) 1410–1422, https://doi.
org/10.1002/prep.201900105.
[883] R. Lodes, H. Krier, N. Glumac, Spectrally- and temporally-resolved optical depth
measurements in high explosive post-detonation reballs, Propellants, Explos.
Pyrotech. 45 (3) (2020) 406–415, https://doi.org/10.1002/prep.201900225.
[884] C. Lopez-Munoz, F. Velasco, J. Carcia-Cascales, R. Mur, R. Oton-Martinez,
Validation of a multi-dimensional model for unsteady combustion of AP/HTPB
propellants, Propellants, Explos. Pyrotech. 44 (11) (2019) 1482–1493, https://
doi.org/10.1002/prep.201900032.
[885] E. Lozano, G.S. Jackson, V. Petr, An Eulerian multimaterial framework for
simulating high-explosive aquarium tests, Comput. Fluids 205 (2020), 104524,
https://doi.org/10.1016/j.compuid.2020.104524.
[886] K. Lv, K. Yang, B. Zhou, F. Zhang, J. Guo, C. Han, Y. Tian, The densication and
mechanical behaviors of large-diameter polymer-bonded explosives processed by
ultrasonic-assisted powder compaction, Mater. Des. 207 (2021), 109872, https://
doi.org/10.1016/j.matdes.2021.109872.
[887] V. Manner, C. Tiemann, J. Yeager, L. Kay, N. Lease, M. Cawkwell, G. Brown,
S. Anthony, D. Montanari, Examining explosives handling sensitivity of
trinitrotoluene (TNT) with different particle sizes, AIP Conf. Proc. 2272 (2020),
https://doi.org/10.1063/12.0001125, 050015.
[888] J.O. Mares, Z.A. Roberts, I.E. Gunduz, N.D. Parab, T. Sun, K. Fezzaa, W.W. Chen,
J.F. Son, J.F. Rhoads, In-situ X-ray observations of ultrasound-induced explosive
decomposition, Appl. Mater. Today 15 (2019) 286–294, https://doi.org/
10.1016/j.apmt.2019.01.009.
[889] N. Marks, M. Stewart, M. Netherton, C. Stirling, Airblast variability and fatality
risks from a VBIED in a complex urban environment, Reliab. Eng. Syst. Saf. 209
(2021), 107459, https://doi.org/10.1016/j.ress.2021.107459.
[890] J. Meng, C. Wang, M. Cheng, S. Zhang, R. Gou, Y. Chen, Y. Li, The thermal
decomposition behavior of the TNT-RDX-Al explosive by molecular kinetic
simulation, Int. J. Quant. Chem. 121 (11) (2021), e26635, https://doi.org/
10.1002/qua.26635.
[891] C. Miller, D. Kittell, C. Yarrington, M. Zhou, Prediction of probabilistic detonation
threshold via millimeter-scale microstructure-explicit and void-explicit
simulation, Propellants, Explos. Pyrotech. 45 (2) (2020) 254–269, https://doi.
org/10.1002/prep.201900214.
[892] S.B. Mishra, S. Marutheeswaran, S.C. Roy, V. Natarajan, P.K. Rai, B.R.K. Nanda,
Adsorption and degradation mechanism of 2,4,6-trinitrotoluene on TiO2 (110)
surface, Surf. Sci. 713 (2021), 121902, https://doi.org/10.1016/j.
susc.2021.121902.
[893] T. Moorthy, M. Baskaran, Suicide bombing in a money lending shop—a rare non-
terrorist explosion scene report, Indian J. Forensic Med. Toxicol. 15 (2) (2021)
1138–1141.
[894] G.M. Nazin, B.L. Korsunskiy, Determination of the thermal stability of explosives,
Russ. J. Phys. Chem. B 15 (2) (2021) 271–277, https://doi.org/10.1134/
S1990793121020093.
[895] C. Nell, P. Sable, Short pulse initiation of an RDX-based explosive using large
diameter yer-plate impacts, Propellants, Explos. Pyrotech. 45 (12) (2020)
1894–1897, https://doi.org/10.1002/prep.202000089.
[896] T. Nguyen, Switchable compound for safer explosives, C&EN Global Enterprise 98
(8) (2020) 9–10. https://pubs.acs.org/doi/10.1021/cen-09808-scicon7.
[897] I. Oluwoye, S. Mosallanejad, G. Soubans, M. Altarawneh, J. Gore, B. Dlugogorski,
Thermal decomposition of ammonium nitrate on rust surface: risk of low-
temperature re, Fire Saf. J. 120 (2021), 103062, https://doi.org/10.1016/j.
resaf.2020.103063.
[898] T. Owolabi, Determination of the velocity of detonation of primary explosives
using genetically optimized support vector regressions, Propellants, Explos.
Pyrotech. 44 (10) (2019) 1282–1292, https://doi.org/10.1002/prep.201900077.
[899] H.J. Pasman, C. Fouchier, S. Park, N. Quddus, D. Laboureur, Beirut ammonium
nitrate explosion: are not we really learning anything? Process Saf. Prog. 39 (4)
(2020), e12203 https://doi.org/10.1002/prs.12203.
[900] G. Pster, J. Murison, A. Grosset, A. Duhoux, E. Lapeyre, B. Bauer, L. Mathieu,
Blast injury of the hand related to warfare explosive devices: experience from the
French Military Health Service, BMJ Mil. Health (2020), https://doi.org/
10.1136/jramc-2019-001326.
[901] M.C. Phillips, B.E. Bernacki, S.S. Harilal, B.E. Brumeld, J.M. Schwallier, N.
G. Glumac, Characterization of high-explosive detonations using broadband
infrared external cavity quantum cascade laser absorption spectroscopy, J. Appl.
Phys. 126 (9) (2019), 093102, https://doi.org/10.1063/1.5107508.
[902] H. Pouretedal, S. Damiri, A. Shari, Study of triplet kinetic of thermal
decomposition reaction and sensitivity to impact and electrostatic discharge of
HMX polymorphs, J. Therm. Anal. Calorim. 139 (3) (2020) 545–553, https://doi.
org/10.1007/s10973-019-08411-5.
[903] D.B. Powers, E.D. Rodriguez, Characteristics of ballistic and blast injuries, in: A.
H. Dorafashar, E.D. Rodriguez, P.N. Manson (Eds.), Facial Trauma Surgery: from
Primary Repair to Reconstruction, 2020, pp. 261–272, https://doi.org/10.1016/
B978-0-323-49755-8.00028-1.
[904] T. Prescott, Accidental sulfur mustard exposure from explosive ordnance in a UK
military service person, BMJ Mil. Health 167 (4) (2021) 287–288, https://doi.
org/10.1136/bmjmilitary-2020-001687.
[905] H. Qin, M. Stewart, Casualty risks induced by primary fragmentation hazards
from high-explosive munitions, Reliab. Eng. Syst. Saf. 215 (2021), 107874,
https://doi.org/10.1016/j.ress.2021.107874.
[906] J. Quaresma, L. Deimling, J. Campos, R. Mendes, Active and passive optical
metrology for detonation velocity measurements, Propellants, Explos. Pyrotech.
45 (6) (2020) 921–931, https://doi.org/10.1002/prep.201900197.
[907] K. Ramamurthi, in: Modeling Explosions and Blast Waves, third ed., Springer,
2021. https://link.springer.com/book/10.1007/978-3-030-74338-3.
[908] E. Reinke, Human Cell Line Activation Test of the Novel Energetic N,N’- Bis(4 Nitro
1,2,5 Oxadiazol 3 Yl)-Methanediamine (MBANF) February-March 2020, (Toxicity
Study No. 0070548-19), U.S. Army Public Health Center, 2020. https://apps.dtic.
mil/sti/citations/AD1099566.
[909] R. Rettinger, M. Porter, J. Canaria, J. Smith, J. Oxley, Fuel-oxidizer mixtures: a
lab and eld study, J. Energetic Mater. 38 (2) (2020) 170–190, https://doi.org/
10.1080/07370652.2019.1679282.
[910] S. Rigby, C. Osborne, G. Langdon, S. Cooke, D. Pope, Spherical equivalence of
cylindrical explosives: effect of charge shape on deection of blast-loaded plates,
Int. J. Impact Eng. 155 (2021), 103892, https://doi.org/10.1016/j.
ijimpeng.2021.103892.
[911] I. Rubtsov, K. Ten, E. Pruuel, A. Kashkarov, S. Kremenko, M. Voronin,
B. Tolochko, Methods to restore the dynamics of carbon condensation during the
detonation of high explosives, J. Phys. Conf. 1147 (1) (2019), https://doi.org/
10.1088/1742-6596/1147/1/012038, 012038.
[912] T. Rudisill, K. Preamble, C. Pilkerton, The liberalization of reworks legislation
and its effects on rework-related injuries in West Virginia, BMC Publ. Health 20
(1) (2020) 137, https://doi.org/10.1186/s12889-020-8249-0.
[913] L. Safatly, M. Baydoun, Alipour, A. Al-Takach, K. Atab, M. Al-Husseini, A. El-Hajj,
H. Ghaziri, Detection and classication of landmines using machine learning
applied to metal detector data, J. Exp. Theor. Artif. Intell. 33 (2) (2021) 203–226,
https://doi.org/10.1080/0952813X.2020.1735529.
[914] M. Santaspirt, Improvised Explosive Devices: Assessing the Global Risk for Use in
Terrorism, Doctoral dissertation, Rutgers University, 2020, https://rucore.librar
ies.rutgers.edu/rutgers-lib/64147/.
[915] N.P. Satonkina, Inuence of the grain size of high explosives on the duration of a
high conductivity zone at the detonation, Sci. Rep. 9 (2019), 12256, https://doi.
org/10.1038/s41598-019-48807-9.
[916] A. Schmid (Ed.), Handbook of Terrorism Prevention and Preparedness, ICCT
Press, 2020. https://icct.nl/handbook-of-terrorism-prevention-and-preparedness.
[917] Y. Sha, X. Zhang, Impact sensitivity and moisture adsorption on the surface of CL-
20/TNT cocrystal by molecular dynamics simulation, Appl. Surf. Sci. 483 (2019)
91–97, https://doi.org/10.1016/j.apsusc.2019.03.231.
[918] J. Shi, P. Zhu, S. Zhao, C. Xu, F. Yan, R. Shen, H. Xia, H. Jiang, S. Xu, F. Zhao,
Continuous spheroidization strategy for explosives with micro/nano hierarchical
structure by coupling microuidics and spray drying, Chem. Eng. J. 412 (2021),
128613, https://doi.org/10.1016/j.cej.2021.128613.
[919] Q. Shi, B. Chen, C. Nie, Z. Zhao, J. Zhang, S. Si, S. Cui, J. Gu, A novel model of
blast induced traumatic brain injury caused by compressed gas produced
sustained cognitive decits in rats: involvement of phosphorylation of tau at the
Thr205 epitope, Brian Res. Bull. 157 (2020) 149–161, https://doi.org/10.1016/j.
brainresbull.2020.02.002.
[920] M. Short, E.K. Anderson, C. Chiquete, S.I. Jackson, Experimental and modeling
analysis of detonation in circular arcs of the conventional high explosive PBX
9501, Proc. Combust. Inst. 38 (3) (2021) 3683–3690, https://doi.org/10.1016/j.
proci.2020.07.107.
[921] V. Siditskii, A. Smirnova, T. Vu, S. Filatov, V. Serushkin, G. Rudakov, Thermal
decomposition of 1,3,5,5-Tetranitrohexahydro-Pyrimidine: a new type of
autocatalysis that persists at high temperatures, Propellants, Explos. Pyrotech. 46
(1) (2021) 150–158, https://doi.org/10.1002/prep.202000259.
[922] P. Sieloicki, M. Stewart, T. Gajewski, M. Malendowski, P. Peksa, H. Al-Rifaie,
R. Studzinski, W. Sumelka, Field test and probabilistic analysis of irregular steel
debris casualty risks from a person-borne improvised explosive device, Defence
Technol. 17 (6) (2020) 1852–1963, https://doi.org/10.1016/j.dt.2020.10.009.
[923] S. Sivaraman, S. Varadharajan, Investigative consequence analysis: a case study
research of beirut explosion accident, J. Loss Prev. Process. Ind. 69 (2021),
104387, https://doi.org/10.1016/j.jlp.2020.104387.
[924] B. Sreekanth, S. Anand, V.R. Ikkurthi, P. Chaudhury, B. Sapra, Y.S. Mayya,
S. Chaturvedi, Evolution of particle metric in a buoyant aerosol cloud from
explosive release, Aerosol Sci. Technol. 54 (6) (2020) 656–667, https://doi.org/
10.1080/02786826.2020.1723788.
[925] K. Stauffer, C. Mestre, Long-term risk management tools for protocols for residual
explosive ordnance mitigation: a pretest in Vietnam, J. Conventional Weapons
Destruction 23 (3) (2020) 18–21. https://commons.lib.jmu.edu/cisr-journal/v
ol23/iss3.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
29
[926] A. Sudhakar, The Behavior of sUASs under Explosive Loading Conditions and
Implications for Safe Operating Procedures (Publication No. 27547442), Doctoral
Dissertation, Missouri University of Science and Technology, 2019.
[927] Y. Sugiyama, K. Wakabayashi, T. Matsumura, Y. Nakayama, Numerical study of
the effect of high-explosive storage facility shape on the azimuthal distribution of
blast-wave pressures, Eur. J. Mech. B Fluid 79 (2020) 153–164, https://doi.org/
10.1016/j.euromechu.2019.09.008.
[928] X. Sun, S. Lu, Effect of large-scale perturbation on the critical condition of
detonation formation in stoichiometric CH4-2O2 mixtures, Process Saf. Environ.
Protect. Trans. Inst. Chem. Eng. Part B 130 (2019) 86–93, https://doi.org/
10.1016/j.psep.2019.07.022.
[929] L. Szleszkowski, A. Thannhauser, K. Szwagrzyk, M. Kuliczkowski, T. Jurek, Blast
injuries found on the exhumed remains of Polish postwar partisans killed by the
Polish security service in 1946, Leg. Med. 42 (2020), 101659, https://doi.org/
10.1016/j.legalmed.2019.101659.
[930] M. Tahtabasi, S. Er, M. Kalayci, Imaging ndings in patients after the bomb
explosion in Somalia on December 28, 2019, Clin. Imag. 78 (2021) 230–239,
https://doi.org/10.1016/j.clinimag.2021.05.018.
[931] J. Teitelbaum, The yule bomber, Forensic Sci. Rev. 32 (3) (2020) 97–100.
[932] K.A. Thorn,
13
C and
15
N NMR identication of product compound classes from
aqueous and solid phase photodegradation of 2,4,6-trinitrotoluene, PLoS One 14
(10) (2019), e0224114, https://doi.org/10.1371/journal.pone.0224112.
[933] D. Tin, C. Margus, G. Ciottone, Half-a-century of terrorist attacks: weapons
selection, casualty outcomes, and implications for counter-terrorism medicine,
Prehospital Disaster Med. 36 (5) (2021) 526–530, https://doi.org/10.1017/
S1049023X21000868.
[934] C. Todd, Explosive: Bringing the World’s Deadliest Bombers to Justice, Headline
Publishing Group, 2021.
[935] J. Tringe, D. Stobbe, G. Parker, L. Smilowitz, B. Henson, M. De Haven, A. Ruch,
B. White, J. Reaugh, K. Vandersall, Observation of asymmetric explosive density
evolution in the deagration-to-detonation transition for porous explosives,
J. Appl. Phys. 129 (3) (2021), 035091, https://doi.org/10.1063/5.0031340.
[936] J. Wang, L. Yang, W. Zheng, J. Zhang, Study on comparative performance of CL-
20/RDX-based CMDB propellants, Propellants, Explos. Pyrotech. 44 (9) (2019)
1175–1182, https://doi.org/10.1002/prep.201900029.
[937] L. Wang, H. Du, H. Xu, Compensation method for infrared temperature
measurement of explosive reball, Themochim. Acta 680 (2019), 178432,
https://doi.org/10.1016/j.tca.2019.178342.
[938] R. Wei, Z. Fei, M. Yoosean, Water molecules can signicantly increase the
explosive sensitivity of Nitrotriazolone (NTO) in storage and transport, J. Mol.
Liq. 336 (2021), 116372, https://doi.org/10.1016/j.molliq.2021.116372.
[939] S.D. Wilkinson, Numerical Modelling of Detonation and Ignition of Condensed
Phase Explosives (Doctoral dissertation, University of Cambridge), Apollo,
University of Cambridge Repository, 2019, https://www.repository.cam.ac.uk
/handle/1810/297692.
[940] N. Wingborg, Heat of formation of ADN-based liquid monopropellants,
Propellants, Explos. Pyrotech. 44 (9) (2019) 1090–1095, https://doi.org/
10.1002/prep.201900142.
[941] R. Wolstenholme, S. Jickells, S. Forbes (Eds.), Analytical Techniques in Forensic
Science, John Wiley & Sons, 2021, https://doi.org/10.1002/9781119373421.
[942] Y. Wong, L. Khoo, M. Ibrahim, M. Noor, M. Mahmood, The rst case of C4-Blast
related death in Malaysia: a multidisciplinary approach illustrated with emphasis
on conjoint anthropologic and radiologic expertise in forensic identication of
skeletal remains, J. Forensic Legal Med. 83 (2021), 102253, https://doi.org/
10.1016/j.jm.2021.102253.
[943] S. Wongwattanaporn, T. Phienthrakul, January 21-24). Machine learning for
explosive detection form electronic nose datasets [Paper presentation], in: 13th
International Conference on Knowledge Smart Technology (KST), Bagsaen,
Chonbur, Thailand, 2021, https://doi.org/10.1109/KST51265.2021.9415845.
[944] Y. Wu, H. Duan, K. Yang, H. Guo, F. Huang, Ignition and combustion
developments of granular explosives (RDX/HMX) in response to mild-impact
loading, Propellants, Explos. Pyrotech. (2020), https://doi.org/10.1002/
prep.201900365.
[945] W. Xiao, M. Andrae, N. Gebbeken, Air blast TNT equivalence factors of high
explosive materials PETN for bare charges, J. Hazard Mater. 377 (2019) 152–162,
https://doi.org/10.1016/j.jhazmat.2019.05.078.
[946] W. Xiao, K. Chen, M.F. Yang, X.W. Hong, H.W. Li, B.L. Wang, Effects of the
particle size and gas environment on after burning reactions and explosion
performance of aluminized HMX-based explosives, Combust. Explos. Shock
Waves 57 (2) (2021) 222–231, https://doi.org/10.1134/S0010508221020118.
[947] X. Xie, Y. Fen, S. Liu, J. Zhu, Thermal behavior and stability of emulsion
explosives in the presence of ferrous ion, J. Therm. Anal. Calorim. 139 (2) (2020)
999–1006, https://doi.org/10.1007/s10973-019-08494-0.
[948] H. Xu, W. Li, W. Li, Y. Wang, Experimental studies of explosion energy output
with different igniter mass, Defence Technol. 15 (2019), https://doi.org/
10.1016/j.dt.2019.05.010.
[949] L. Xu, H. Xu, X. Li, M. Pan, A defect inspection for explosive cartridge using an
improved visual attention and image-weighted eigenvalue, IEEE Trans. Instrum.
Meas. 69 (4) (2020) 1191–1204, https://doi.org/10.1109/TIM.2019.2912237.
[950] C. Yang, P. Cronin, A. Agambayev, S. Ozev, A. Cetin, A. Orailoglu, A crowd-based
explosive detection system with two-level feedback sensor calibration, in: Y. Xie
(Ed.), ICCAD ’20: Proceedings of the 39
th
International Conference on Computer-
Aided Design, Association for Computing Machinery, New Youk, 2020, pp. 1–9,
https://doi.org/10.1145/3400302.3415670.
[951] H. Yang, H. Li, M. Zhou, M. Wei, T. Wei, C. Tang, L. Liu, Y. Zhou, X. Long,
A relationship between membrane permeation and partitioning of nitroaromatic
explosives and their functional groups. A computational study, Phys. Chem.
Chem. Phys. 22 (16) (2020) 8791–8799, https://doi.org/10.1039/D0CP00549E.
[952] Z. Yang, C. Lin, F. Gong, C. Zeng, J. Zhang, F. Huang, Effects of crystal quality and
morphology on the mechanical performance of LLM-105 based PBXs, Propellants,
Explos. Pyrotech. 44 (10) (2019) 1219–1225, https://doi.org/10.1002/
prep.201900106.
[953] G. Yu, Y. Wang, L. Zheng, J. Huang, J. Li, L. Gong, R. Chen, W. Li, J. Huang,
Y. Duh, Comprehensive study on the catastrophic explosion of ammonium nitrate
stored in the warehouse of Beirut port, Process Saf. Environ. Protect. 152 (2021)
201–219, https://doi.org/10.1016/j.psep.2021.05.030.
[954] J. Yuan, Liu, Y. Zhou, Y. Zhou, Y. Zhang, K. Cen, Thermal decomposition and
combustion characteristics of Al/AP/HTPB propellant, J. Therm. Anal. Calorim.
(2020), https://doi.org/10.1007/s10973-020-09297-4.
[955] W. Yuan, J. Dudley, A. Slutsky-Ganesh, J. Leach, P. Scheifele, M. Altaye, K. Barber
Foss, J. Diekfuss, C. Rhea, G. Myer, White matter alteration following SWAT
explosive breaching training and the moderating effect of a neck collar device: a
DTI and NODDI study, Mil. Med. 186 (11–12) (2021) 1183–1190, https://doi.
org/10.1093/milmed/usab168.
[956] T. Zeng, R. Yang, D. Li, D. Li, J. Li, X. Guo, P. Luo, Reactive molecular dynamics
study on the effect of H
2
O on the thermal decomposition of ammonium
dinitramide, Propellants, Explos. Pyrotech. 45 (10) (2020) 1590–1599, https://
doi.org/10.1002/prep.201900309.
[957] B. Zhang, H. Liu, Theoretical prediction model and experimental investigation of
detonation limits in combustible gaseous mixtures, Fuel 258 (2019), 116132,
https://doi.org/10.1016/j.fuel.2019.116132.
[958] B. Zhang, L. Zhang, H. Wang, X. Wang, Lessons learned from the explosion that
occurred during the synthesis of diaminomethanesulfonic acid: discussion and
preventative strategies, ACS Chem. Health Saf. 28 (4) (2021) 244–249, https://
doi.org/10.1021/acs.chas.1c00021.
[959] W. Zhang, L. Salavati, M. Akhtar, D. Dlott, Shock initiation and hop spots in
plastics-bonded 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), Appl. Phys. Lett.
116 (12) (2020), 124102, https://doi.org/10.1063/1.5145216.
[960] W. Zhang, X. Zhou, T. Bao, L. Deng, D. Gao, Evaluation of mechanical properties
of composite solid propellant by genetic engineering of materials: part a,
Propellants, Explos. Pyrotech. 44 (9) (2019) 1167–1174, https://doi.org/
10.1002/prep.201800385.
[961] Y. Zhang, C. Hou, C. Li, X. Zhang, Y. Tan, J. Wang, Rapid assembly and
preparation of energetic microspheres LLM-105/CL-20, Propellants, Explos.
Pyrotech. 45 (8) (2020) 1269–1274, https://doi.org/10.1002/prep.201900389.
[962] Z. Zhang, X. Fu, H. Yu, W. Tao, C. Mao, J. Chen, M. Wu, P. Chen, Enhanced the
thermal conductivity of hydroxyl-terminated polybutadiene (HTPB) composites
by graphene-silver hybrid, Compos. Commun. 24 (2021), 100661, https://doi.
org/10.1016/j.coco.2021.100661.
[963] Z. Zhang, B. Wu, Z. Yang, P. Xiao, W. Zhang, H. Li, A exible Rayleigh wave
transducer for surface cracks detection on heterogeneous composite explosives,
Instrum. Exp. Tech. 64 (3) (2021) 420–426, https://doi.org/10.1134/
S0020441221030325.
[964] C. Zhao, Y. Chi, Q. Yu, X. Wang, G. Fan, K. Yu, A comprehensive study of the
interaction and mechanism between Bistetrazole ionic salt and Ammonium
Nitrate explosive in thermal decomposition, J. Phys. Chem. C (2019), https://doi.
org/10.1021/acs.jpcc.9b05728.
[965] P. Zhao, L. Chen, K. Yang, Y. Xiao, K. Zhang, J. Lu, J. Wu, Shaped-charge jet-
initiation of covered RDX-based aluminized explosives and effect of temperature,
Propellants, Explos. Pyrotech. 45 (9) (2020) 1443–1453, https://doi.org/
10.1002/prep.201900378.
[966] Y. Zhao, F. Zhao, S. Xu, X. Ju, Molecular reaction dynamics simulation of thermal
decomposition for aluminiferous RDX composites, Comput. Mater. Sci. 177
(2020), 109556, https://doi.org/10.1016/j.commatsci.2020.109556.
[967] M. Zhou, S. Chen, H. Zou, J. Wang, K. Chen, Y. Yu, G. Zhang, J. Li, M. Chen,
Investigation on the thermal decomposition performance and long-term storage
performance of HNIW-based PBXs through accelerated aging tests, J. Energetic
Mater. (2019), https://doi.org/10.1080/07370652.2019.1663564.
[968] C. Zhu, S. Tang, Z. Li, X. Fang, Dynamic study of critical factors of explosion
accident in laboratory based on FTA, Saf. Sci. 130 (2020), 104877, https://doi.
org/10.1016/j.ssci.2020.104877.
[969] R. Zito, Accelerated age testing of explosives and propellants, in: Mathematical
Foundations of System Safety Engineering, 2019, pp. 237–255, https://doi.org/
10.1007/978-3-030-26241-9_16.
Final Notes (Patents etc)
[970] Alani, T. (2020). Dynamic selective polarization matching for remote detection
smokeless gunpowder (U.S. Patent 2020191747A1). U.S. Patent and Trademark
Ofce. https://patents.google.com/patent/US20200191747A1/en.
[971] Alexander, T.B. & Price, D.W. (2020). High energy reduced sensitivity tactical
explosives (U.S. Patent No. 20200062671A1). U.S. Patent and Trademark Ofce.
https://patents.google.com/patent/US20200062671A1/en..
[972] Apblett, A.W., Materer, N.F., & Shaikh, S. (2019). Explosive-containing porous
materials as non-detonable training aid (U.S. Patent No. 2,019,018,687,8A1).
Washington, DC: U.S. Patent and Trademark Ofce. https://patents.google.
com/patent/US20190186878A1/en.
[973] Bell, W.T. & Rairigh, J.G. (2020). Mini-severing and back-off tool with pressure
balanced explosives (U.S. Patent No. 10,538,984 B2). U.S. Patent and Trademark
Ofce. https://www.lens.org/images/patent/US/10538984/B2/US_105389
84_B2.pdf.
D.J. Klapec et al.
Forensic Science International: Synergy 6 (2023) 100298
30
[974] Blaha, J., Dupac, J., Zastera, M., & Mazl, R. (2020). Explosives detector and
method for detecting explosives (U.S. Patent No. 10551304B2). U.S. Patent and
Trademark Ofce. https://patents.google.com/patent/US10551304B2/en.
[975] Boronse, A.W. (2021). Device for detecting explosive materials, or weapons or
rearms, or knives or substances (U.S. Patent No. 10,948,581 B1). U.S. Patent and
Trademark Ofce. https://www.lens.org/images/patent/US/10948587/B1/US_1
0948587_B1.pdf.
[976] Brogden, M. & Duffy, S. (2021). High delity sheet explosive simulants (U.S.
Patent 10941085B2). U.S. Patent and Trademark Ofce. https://patents.google.
com/patent/US10941085B2/en.
[977] Burn, P., Shaw, P., & Fan, S. (2020). Detection method (U.S. Patent
20200172561A1). U.S. Patent and Trademark Ofce. http://www.freepatents
online.com/y2020/0172561.html.
[978] Deline, J. (2021). Development of dry-deposit trace explosives detection test
standards, solutions and methods for deposition (U.S. Patent No. 11079369B2).
U.S. Patent and Trademark Ofce. https://patents.google.com/patent/US1107
9369B2/en.
[979] Gorski, B. (2020). Devices and methods for detecting an explosive substance (U.S.
Patent No. 10,746,717). U.S. Patent and Trademark Ofce. https://www.lens.or
g/images/patent/US/10746717/B2/US_10746717_B2.pdf.
[980] Hanumanthappa, S.H. & Jayaramakrishnan, S. (2021). System and method for
determining a location of an explosive device (U.S. Patent No. 20210225148A1).
U.S. Patent and Trademark Ofce. https://patents.google.com/patent/US202
10225148A1/en.
[981] Hgyuyen, D.H. (2020). Detection of nitrogen containing and nitrogen free
explosives (U.S. Patent No. 10641752B2). U.S. Patent and Trademark Ofce. htt
ps://patents.google.com/patent/US10641752B2/en.
[982] Hower, B. (2021). Defeat system for vehicle attached improvised explosive devices (U.
S. Patent No. 10,935,349 B1). U.S. Patent and Trademark Ofce. https://www.
lens.org/images/patent/US/10935349/B1/US_10935349_B1.pdf.
[983] Huber, H. & Lee, R. (2020). Mass spectrometer method and apparatus for
monitoring for TATP (U.S. Patent No. 10725006B2). U.S. Patent and Trademark
Ofce. https://patents.google.com/patent/US10725006B2/en.
[984] Laktas, J.M., Stochl, I.D., Place, G.J., Jelliss, P., Chung, S., & Buckner, S.W.
(2020). Nano-enhanced explosive material (U.S. 10,766,832 B1). U.S. Patent
Trademark Ofce. https://www.lens.org/images/patent/US/10766832/B1/US_1
0766832_B1.pdf.
[985] Marsh, B.D. (2021). Energetic charge for propellant fracturing (U.S. Patent No.
10907460B2). U.S. Patent and Trademark Ofce. https://patents.google.com/pat
ent/US10907460B2/en.
[986] Miklaszewski, E. & Dilger, J. (2021). Systems and methods for modifying and
enhancing explosives by irradiating a reaction zone (U.S. Patent No.
10883805B2). U.S. Patent and Trademark Ofce. https://patents.google.com/pat
ent/US10883805B2/en.
[987] Morton, D. & Tan, S.N. (2020). Conveying of emulsion explosive (U.S. Patent No.
10,557575 B2). U.S. Patent and Trademark Ofce. https://www.lens.or
g/images/patent/US/10557575/B2/US_10557575_B2.pdf.
[988] Nesveda, J. (2021). Method for producing ecological explosive for primer compositions
of ammunition (U.S. Patent No. 20210163376A1). U.S. Patent and Trademark
Ofce. https://patents.google.com/patent/US20210163376A1/en.
[989] Park, I. & Kim, J.H. (2021). System for detecting explosives (U.S. Patent No.
10,921,098 B2). U.S. Patent and Trademark Ofce. https://www.lens.or
g/images/patent/US/10921098/B2/US_10921098_B2.pdf.
[990] Pettersen, J., McPhail, E., & Gore, J. (2021). Explosive compositions for use in
reactive ground and related methods (U.S. Patent No. 2021/0094889 A1). U.S.
Patent and Trademark Ofce. https://patents.google.com/patent/US2021009
4889A1/en.
[991] Reynolds, J., Leininger, L., & Myers, T. (2021). Enhanced colorimetric apparatus
and method for explosives detection using ionic liquids (U.S. Patent No.
202010010941A1). U.S. Patent and Trademark Ofce. https://patents.google.
com/patent/US20210010941A1/en.
[992] Shaffer, G.D. (2020). Explosive detection in cargo containers and packages (U.S.
Patent No. 20200041474). U.S. Patent and Trademark Ofce. http://www.
freepatentsonline.com/y2020/0041474.html.
[993] Shkolnikov, V. & Barcelo, S. (2021). Photoacoustic explosives detectors (U.S.
Patent No. 202100184466A1). U.S. Patent and Trademark Ofce. https://patents.
google.com/patent/US20210018466A1/en..
[994] Smith, Z., Griggs, B., Gore, J., & Paris, N. (2020). Explosive compositions with
reduced fume (U.S. Patent No. 20200216369A1). U.S. Patent and Trademark
Ofce. https://patents.google.com/patent/US20200216369A1/en..
[995] Splitzer, D., Pichot, V., & Risse, E. (2021). Methods for manufacturing nanoparticles
by detonation (U.S. Patent No. 10,906,016 B2). U.S. Patent and Trademark Ofce.
https://www.lens.org/images/patent/US/10906016/B2/US_10906016_B2.pdf..
[996] Steed, D. (2021). Methods of training to detect powdered explosives-detection
training aids (U.S. Patent No. 20210316924A1). U.S. Patent and Trademark
Ofce. https://patents.google.com/patent/US20210316924A1/en..
[997] Steed, D.J. (2020). Packaging for powdered explosive-detection training aids and
uses thereof (U.S. Patent 20200262629A1). U.S. Patent and Trademark Ofce. htt
ps://patents.google.com/patent/US20200262629A1/en..
[998] Tang, Q. (2020). Method and device for emulsifying emulsion explosive (U.S.
Patent No. 10,610,838 B2). U.S. Patent and Trademark Ofce. https://patents.
google.com/patent/US10610838B2/en..
[999] Tortoriello, V. & Picolli, R. (2020). Acoustic frequency based system with
crystalline transducer module for non-invasive detection of explosives,
contraband, and other elements (U.S. Patent No. 10,684,646). U.S. Patent and
Trademark Ofce. https://patents.google.com/patent/US10634646B2/en..
[1000] Vabnick, I. (2020). Penetrator projectile for explosive device neutralization (U.S.
Patent No. 2020173761A1). U.S. Patent and Trademark Ofce. https://patents.
google.com/patent/US20200173761A1/en..
[1001] Wald, L.B. & Keen, S.L. (2020). Fluorescence-based chemical detection (U.S.
Patent 10830764 B2). U.S. Patent and Trademark Ofce. https://patents.google.
com/patent/US10830764B2/en.
[1002] Widmann, S., Sinn, G., & Mittenzwey, K. (2020). Portable device for detecting
explosive substances comprising a device for generating and measuring the
emission of an indicator (U.S. Patent No. 10605732B2). U.S. Patent and
Trademark Ofce. https://patents.google.com/patent/US10605732B2/en..
[1003] Zaharia, S., Apostol, M., Ionita, S., Iana, V., Monea, C., Ionescu, L., Constantin,
D., Ilie, M., & Varga, A. (2020). Mobile detector and method for detecting
potentially explosive substances, explosives and drugs by nuclear quadrupole
resonance (nqr) (U.S. Patent No. 20200182810A1). U.S. Patent and Trademark
Ofce. https://patents.google.com/patent/US20200182810A1/en.
[1004] Zussman, E., Eshed, Y., & Gal-Oz, R. (2021). Composition and method for detection
of molecules of interest (U.S. Patent No. 202010109077A1). U.S. Patent and
Trademark Ofce. https://patents.google.com/patent/US20210109077A1/en.
D.J. Klapec et al.