ArticlePublisher preview available

Stoichiometry and environmental change drive dynamical complexity and unpredictable switches in an intraguild predation model

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

We incorporate stoichiometry (the balance of key elements) into an intraguild predation (IGP) model. Theoretical and numerical results show that our system exhibits complex dynamics, including chaos and multiple types of both bifurcations and bistability. Types of bifurcation present include saddle-node, Hopf, and transcritical bifurcations, and types of bistability present include node-node, node-cycle, and cycle-cycle bistability; cycle-cycle bistability has never been observed in IGP ordinary differential equation models. Stoichiometry can stabilize or destabilize the system via the disappearance or appearance of chaos. The species represented in the model can coexist for moderate levels of light intensity and nutrient availability. When the amount of light or nutrients present is extremely high or low, coexistence of the species becomes impossible, potentially harming biodiversity. Interestingly, stoichiometry can facilitate the re-emergence of severely endangered species as light intensity increases. In a temporally changing environment, the system can jump between different unstable states following changes in light intensity, with the trajectory followed depending strongly on initial conditions.
Node-node bistability. The boundary equilibria E21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^1_2$$\end{document} and E23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^3_2$$\end{document} are both stable, while E22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^2_2$$\end{document} is unstable. Parameter values are: r=1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1.2$$\end{document}; a1=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1=0.25$$\end{document}; a2=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2=0.75$$\end{document}; a3=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_3=0.25$$\end{document}; c1=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1=0.8$$\end{document}; c2=0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2=0.1$$\end{document}; c3=0.81\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_3=0.81$$\end{document}; e1=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1=0.9$$\end{document}; e2=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_2=0.8$$\end{document}; e3=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_3=0.8$$\end{document}; θ1=0.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _1=0.04$$\end{document}; θ2=0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _2=0.05$$\end{document}; d1=0.313\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1=0.313$$\end{document}; d2=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=0.75$$\end{document}; q=0.004\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0.004$$\end{document}; P=0.024\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=0.024$$\end{document}; K=0.5372180656\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=0.5372180656$$\end{document}
… 
Node-cycle bistability. A stable limit cycle coexists with a stable boundary equilibrium. The boundary equilibria E21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^1_2$$\end{document} and E22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^2_2$$\end{document} are both unstable, while the boundary equilibrium E23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^3_2$$\end{document} is stable. A stable limit cycle appears around the boundary equilibrium E21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^1_2$$\end{document}. Parameter values are: r=1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1.2$$\end{document}; a1=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1=0.25$$\end{document}; a2=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2=0.75$$\end{document}; a3=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_3=0.25$$\end{document}; c1=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1=0.8$$\end{document}; c2=0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2=0.3$$\end{document}; c3=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_3=0.8$$\end{document}; e1=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1=0.8$$\end{document}; e2=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_2=0.8$$\end{document}; e3=0.85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_3=0.85$$\end{document}; θ1=0.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _1=0.04$$\end{document}; θ2=0.03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _2=0.03$$\end{document}; d1=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1=0.25$$\end{document}; d2=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=0.6$$\end{document}; q=0.004\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0.004$$\end{document}; P=0.026\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=0.026$$\end{document}; k=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=0.75$$\end{document}
… 
Node-node bistability. A stable boundary equilibrium coexists with a stable interior equilibrium. The boundary equilibrium E21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^1_2$$\end{document} and interior equilibrium E2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*_2$$\end{document} are stable, while other equilibria are unstable. Parameter values are: r=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=5$$\end{document}; a1=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1=0.25$$\end{document}; a2=0.55\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2=0.55$$\end{document}; a3=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_3=0.25$$\end{document}; c1=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1=0.8$$\end{document}; c2=0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2=0.4$$\end{document}; c3=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_3=0.5$$\end{document}; e1=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1=0.8$$\end{document}; e2=0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_2=0.4$$\end{document}; e3=0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_3=0.3$$\end{document}; θ1=0.03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _1=0.03$$\end{document}; θ2=0.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _2=0.04$$\end{document}; d1=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1=0.25$$\end{document}; d2=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=0.25$$\end{document}; q=0.0038\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0.0038$$\end{document}; P=0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=0.1$$\end{document}; K=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=2$$\end{document}
… 
Node-cycle bistability. A stable limit cycle coexists with a stable interior equilibrium. The interior equilibrium E2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*_2$$\end{document} is stable, while other equilibria are all unstable. A stable limit cycle appears around the boundary equilibrium E21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^1_2$$\end{document}. Parameter values are: r=1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1.2$$\end{document}; a1=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1=0.25$$\end{document}; a2=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2=0.75$$\end{document}; a3=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_3=0.25$$\end{document}; c1=0.81\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1=0.81$$\end{document}; c2=0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2=0.3$$\end{document}; c3=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_3=0.8$$\end{document}; e1=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1=0.8$$\end{document}; e2=0.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_2=0.8$$\end{document}; e3=0.85\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_3=0.85$$\end{document}; θ1=0.04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _1=0.04$$\end{document}; θ2=0.03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _2=0.03$$\end{document}; d1=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1=0.25$$\end{document}; d2=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=0.5$$\end{document}; q=0.004\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0.004$$\end{document}; P=0.026\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=0.026$$\end{document}; K=0.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=0.75$$\end{document}
… 
This content is subject to copyright. Terms and conditions apply.
Journal of Mathematical Biology (2023) 86:31
https://doi.org/10.1007/s00285-023-01866-z
Mathematical Biology
Stoichiometry and environmental change drive dynamical
complexity and unpredictable switches in an intraguild
predation model
Juping Ji1·Russell Milne1·Hao Wang1
Received: 4 January 2022 / Revised: 17 November 2022 / Accepted: 2 January 2023 /
Published online: 13 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023
Abstract
We incorporate stoichiometry (the balance of key elements) into an intraguild predation
(IGP) model. Theoretical and numerical results show that our system exhibits com-
plex dynamics, including chaos and multiple types of both bifurcations and bistability.
Types of bifurcation present include saddle-node, Hopf, and transcritical bifurcations,
and types of bistability present include node-node, node-cycle, and cycle-cycle bista-
bility; cycle-cycle bistability has never been observed in IGP ordinary differential
equation models. Stoichiometry can stabilize or destabilize the system via the disap-
pearance or appearance of chaos. The species represented in the model can coexist for
moderate levels of light intensity and nutrient availability. When the amount of light or
nutrients present is extremely high or low, coexistence of the species becomes impos-
sible, potentially harming biodiversity. Interestingly, stoichiometry can facilitate the
re-emergence of severely endangered species as light intensity increases. In a tem-
porally changing environment, the system can jump between different unstable states
following changes in light intensity, with the trajectory followed depending strongly
on initial conditions.
Keywords Stoichiometry ·Intraguild predation model ·Light intensity ·Nutrient
availability ·Environmental change
Mathematics Subject Classification 34C23 ·34D20 ·37G15 ·92B05
BHao Wang
hao8@ualberta.ca
1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G
2R3, Canada
123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
An intraguild predation model with intraguild predator diffusion is proposed and studied in this work. It is shown that the local system can have four boundary equilibria and at most two interior equilibria. The interior equilibria may exist even when the system is not uniformly persistent. When only intraguild predator diffusion is incorporated into our three-species model, the resulting model is a partially degenerate reaction-diffusion system. For this partially degenerate system, we show that the solution semiflow is bounded dissipative and the positive orbits of bounded sets are bounded. We also demonstrate that intraguild predator diffusion can lead to the occurrence of spatially nonhomogeneous oscillations and spatiotemporal chaos. Further, we show that intraguild predator diffusion can induce transitions between spatially homogeneous oscillations, spatially nonhomogeneous oscillations and chaos.
Article
Full-text available
In a grassland ecosystem, the dynamics and coexistence mechanisms of two herbivores competing for one herbaceous plant have been widely studied, while the chemical heterogeneity of herbaceous plant’s aboveground and belowground parts is usually ignored in dynamic modeling. Based on the traditional two herbivore-one herbaceous plant competition model, a new stoichiometric competition model, which incorporates the chemical heterogeneity of herbaceous plants, is formulated to investigate effects of the aboveground–belowground interactions and the chemical heterogeneity on the dynamics of the two herbivore-one herbaceous plant system. We perform theoretical analysis for the stability of boundary equilibria and show that a stable coexistent equilibrium is possible with two herbivores on one herbaceous plant. Moreover, numerical simulations reveal that various light intensity and nitrogen input can also allow all populations to coexist in periodic oscillations or irregularly cyclic oscillations. Our findings further indicate that when the nitrogen input is fixed, higher light intensity leads to a dominance of the lower N-demand herbivore, while the light intensity is fixed, higher nitrogen input leads to a dominance of the higher N-demand herbivore. Moderate levels of light and nutrient could promote the coexistence of two herbivores and herbaceous plant. This study also explains the functional mechanism for the decline of species diversity in response to nitrogen enrichment.
Article
Full-text available
Stoichiometry-based models can yield many new insights into producer - grazer systems. Many interesting results can be obtained from models continuous in time. There raises the question of how robust the model predictions are to time discretization. A discrete stoichiometric food-chain model is analyzed and compared with a corresponding continuous model. Theoretical and numerical results show that the discrete and continuous models have many properties in common but differences also exist. Stoichiometric impacts of producer nutritional quality also persist in the discrete system. Both types of models can exhibit qualitatively different behaviors with the same parameter sets. Discretization enlarges the parameter ranges for the existence of chaotic dynamics. Our results suggest that the stoichiometric mechanisms are robust to time discretization and the nutritional quality of the producer can have dramatic and counterintuitive impacts on population dynamics, which agrees with the existing analysis of pelagic systems.
Article
Full-text available
Contents I. II. III. IV. V. VI. VII. References Appendix A1 Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth, respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth, while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change.
Article
Full-text available
‘Omnivory’, a widespread mechanism in interacting populations, is defined as feeding on more than one trophic levels. In this work we have considered a three species model consisting of prey, intermediate predator which predates upon prey and top predator with intraguild predation. It is well known that intraguild predation destabilizes the food webs consisting of three and more trophic levels, and induces chaotic oscillation for Holling type-I functional response when the intensity of the intraguild predation becomes low. Here we have considered Holling type-II functional response between intermediate predator and intraguild predator and other functional responses are assumed to be linear. First we investigate local stability and bifurcation analysis of all axial and boundary equilibrium points. We observe two types of coexistence of three species - a steady-state coexistence and an oscillatory coexistence. Although it is difficult to find the analytical expressions for stability and bifurcation of the interior equilibrium point, we have verified numerically that a stable limit cycle bifurcates from the interior equilibrium point and ultimately chaos occurs via successive period doubling bifurcations. Bifurcation diagrams have been drawn with respect to all the system parameters to explore the complete dynamics of the model. Consideration of saturating functional response instead of law of mass action can suppress the chaotic oscillation leading to stable coexistence of three species at their steady-state.
Article
Full-text available
A diffusive intraguild predation model with delay and BeddingtonDeAngelis functional response is considered. Dynamics including stability and Hopf bifurcation near the spatially homogeneous steady states are investigated in detail. Further, it is numerically demonstrated that delay can trigger the emergence of irregular spatial patterns including chaos. The impacts of diffusion and functional response on the model’s dynamics are also numerically explored.
Competitive exclusion is a phenomenon that often occurs in ecology when two species compete for the same limited resource, while coexistence of predator and prey is required to sustain a predator–prey system. It is of great interest to examine if coexistence of intraguild predator and prey is possible when they are competing for the same resource. In this paper, we study competitive exclusion and coexistence in an intraguild predation model that incorporates species’ mutual interference characterized by a Beddington–DeAngelis functional response. We derive conditions for competitive exclusion and conditions for coexistence of intraguild predator and prey. This is achieved by discussing the existence, local and global stability of all feasible equilibria and uniform persistence. Numerical simulations are carried out to explore effects of intraguild predator interference and intraguild predation strength on the coexistence modes of intraguild predator and prey.
Article
Predators can greatly influence the coexistence of competing prey species via direct consumptive effects as well as non-consumptive effects on prey behavior. This makes predicting the consequences of predator introduction on biodiversity and ecological structure very challenging. In this paper, inspired by recent experimental observations (Pringle et al., Nature, 570(2019), 58–64), we develop a novel mathematical model that couples a competition model with an intraguild predation model via dispersal of intraguild prey driven by intraguild predator-avoidance. We show that a large dispersal rate would lead to the collapse of species coexistence, which is consistent with the reported experimental results. In addition, we show that three modes of species coexistence are possible when the intraguild prey dispersal rate is not too large. Moreover, for a certain range of dispersal rates, a stable interior equilibrium can coexist with a stable positive limit cycle.
Article
Ecological systems can show complex and sometimes abrupt responses to environmental change, with important implications for their resilience. Theories of alternate stable states have been used to predict regime shifts of ecosystems as equilibrium responses to sufficiently slow environmental change. The actual rate of environmental change is a key factor affecting the response, yet we are still lacking a non‐equilibrium theory that explicitly considers the influence of this rate of environmental change. We present a metacommunity model of predator‐prey interactions displaying multiple stable states, and we impose an explicit rate of environmental change in habitat quality (carrying capacity) and connectivity (dispersal rate). We study how regime shifts depend on the rate of environmental change and compare the outcome with a stability analysis in the corresponding constant environment. Our results reveal that in a changing environment, the community can track states that are unstable in the constant environment. This tracking can lead to regime shifts, including local extinctions, that are not predicted by alternative stable state theory. In our metacommunity, tracking unstable states also controls the maintenance of spatial heterogeneity and spatial synchrony. Tracking unstable states can also lead to regime shifts that may be reversible or irreversible. Our study extends current regime shift theories to integrate rate‐dependent responses to environmental change. It reveals the key role of unstable states for predicting transient dynamics and long‐term resilience of ecological systems to climate change. This article is protected by copyright. All rights reserved.