In the present study, the RAD7 and NaI(Tl) techniques were utilized to determine the radon concentrations in drinking water resources and the natural primordial radionuclides in soil samples collected from Hawraman villages. The measured radon concentrations ranged from 1.7 ± 0.6 to 34.0 ± 2.8 Bq L-1 with an arithmetic mean of 14.8 ± 1.2 Bq L-1. This research demonstrates that roughly 54% of drinking water samples exceed the EPA-recommended level of 11.1 Bq L-1. For adults, children, and infants, the total annual effective doses for the three types (Ding, Dinh, and Ddi) vary from 7.6 to 149.2 μSv y-1 with an average of 65.0 μSv y-1, 8.1-160.0 μSv y-1 with an average of 69.7 μSv y-1, and 10.5-207.0 μSv y-1 with an average of 90.2 μSv y-1.18.2%, 22.7%, and 36.4%, respectively, of the annual effective dose for adults, children, and infants exceeds the 100 μSv y-1 level recommended by WHO and UNCEAR 2000. The activity concentrations of 226Ra, 232Th, and 4 K in soil samples varied from 10.9 ± 0.1 to 32.6 ± 0.2 Bq kg-1, 18.3 ± 0.4 to 52.1 ± 0.6 Bq kg-1, and 252.7 ± 2.5 to 585.6 ± 3.7 Bq kg-1. The arithmetic mean concentrations of 226Ra, 232Th, and 4 K were determined to be 19.4 ± 0.2 Bq kg-1, 36.2 ± 0.5 Bq kg-1and 426.6 ± 3.2 Bq kg-1, respectively. This research reveals that the average soil activity concentrations of 226Ra, 232Th, and 4 K are within the global average limits of 32, 45, and 420 Bq kg-1, respectively. Comparing the concentrations to global averages, some soil samples revealed significant amounts of radionuclides, with around 18% of 232Th and 41% of 4 K. The computed radiological hazard indices of 100% of Raeq., 82% of Dout, 82% of Eout, and 95.5% of ELCRout are all below the internationally recommended levels declared by Unscear 2000.