ArticlePDF AvailableLiterature Review

Electrochemical Sensors for Controlling Oxygen Content and Corrosion Processes in Lead-Bismuth Eutectic Coolant—State of the Art

Authors:

Abstract and Figures

Controlling oxygen content in the primary circuit of nuclear reactors is one of the key tasks needed to ensure the safe operation of nuclear power plants where lead-bismuth eutectic alloy (LBE) is used as a coolant. If the oxygen concentration is low, active corrosion of structural materials takes place; upon increase in oxygen content, slag accumulates due to the formation of lead oxide. The generally accepted method of measuring the oxygen content in LBE is currently potentiometry. The sensors for measuring oxygen activity (electrochemical oxygen sensors) are galvanic cells with two electrodes (lead-bismuth coolant serves as working electrode) separated by a solid electrolyte. Control of corrosion and slag accumulation processes in circuits exploring LBE as a coolant is also based on data obtained by electrochemical oxygen sensors. The disadvantages of this approach are the low efficiency and low sensitivity of control. The alternative, Impedance Spectroscopy (EIS) Sensors, are proposed for Real-Time Corrosion Monitoring in LBE system. Currently their applicability in static LBE at temperatures up to 600 °C is shown.
Content may be subject to copyright.
Sensors2023,23,812.https://doi.org/10.3390/s23020812www.mdpi.com/journal/sensors
Review
ElectrochemicalSensorsforControllingOxygenContentand
CorrosionProcessesinLeadBismuthEutecticCoolant—State
oftheArt
SergeyN.Orlov
1,2,3
,NikitaA.Bogachev
1
,AndreyS.Mereshchenko
1
,AlexandrA.Zmitrodan
2

andMikhailYu.Skripkin
1,
*
1
InstituteofChemistry,SaintPetersburgStateUniversity,7/9UniversitetskayaEmb.,
199034St.Petersburg,Russia
2
FederalStateUnitaryEnterprise“AlexandrovResearchInstituteofTechnology”,72,KoporskoeShosse,
188540SosnovyBor,Russia
3
InstituteofNuclearIndustry,PetertheGreatSt.PetersburgPolytechnicUniversity(SPbSU),29,
PolytechnicheskayaStreet,195251St.Petersburg,Russia
*Correspondence:m.skripkin@spbu.ru
Abstract:Controllingoxygencontentintheprimarycircuitofnuclearreactorsisoneofthekeytasks
neededtoensurethesafeoperationofnuclearpowerplantswhereleadbismutheutecticalloy(LBE)
isusedasacoolant.Iftheoxygenconcentrationislow,activecorrosionofstructuralmaterialstakes
place;uponincreaseinoxygencontent,slagaccumulatesduetotheformationofleadoxide.The
generallyacceptedmethodofmeasuringtheoxygencontentinLBEiscurrentlypotentiometry.The
sensorsformeasuringoxygenactivity(electrochemicaloxygensensors)aregalvaniccellswithtwo
electrodes(leadbismuthcoolantservesasworkingelectrode)separatedbyasolidelectrolyte.Con
trolofcorrosionandslagaccumulationprocessesincircuitsexploringLBEasacoolantisalsobased
ondataobtainedbyelectrochemicaloxygensensors.Thedisadvantagesofthisapproacharethe
lowefficiencyandlowsensitivityofcontrol.Thealternative,ImpedanceSpectroscopy(EIS)Sensors,
areproposedforRealTimeCorrosionMonitoringinLBEsystem.Currentlytheirapplicabilityin
staticLBEattemperaturesupto600°Cisshown.
Keywords:leadbismutheutecticcoolant;structuralmaterials;protectivefilm;corrosion;oxygen
activitysensors;impedancespectroscopy
1.Introduction
Fastneutronreactorswithleadorleadbismutheutecticcoolantareoneofthesix
promisingreactortechnologiesselectedwithintheframeworkoftheGIF(GenerationIV
InternationalForum)internationalprojectasthebasisfornuclearpowerofthefuture[1].
Theadvantagesofleadbismutheutecticcoolantarearelativelylowmeltingpoint(125
°C),ahighboilingpoint(above1700°C),lowchemicalactivitycomparedtosodiumand
sodiumpotassiumcoolant.Allthesefactorsdetermineafairlywiderangeofnuclear
powerplantswithleadbismutheutecticcoolantcurrentlybeingdevelopedinRussia[2],
USA[3],China[4,5]andJapan[6].Atthesametime,theleadbismutheutecticcoolantis
highlycorrosionaggressiveinrelationtothestructuralmaterialsofthefirstcircuit[7]
becauseofthesignificantsolubilityofstructuralmaterialscomponentsinlead.
Thestructuralmaterialsoftheprimarycircuitareprotectedfromthedestructionby
oxidefilmsformedontheirsurface[8].Thestructureandprotectivepropertiesofthese
filmsdependonthechemicalcompositionofstructuralmaterials,flowrateandtemper
atureoftheLBEand,primarily,ontheoxygencontentinthecoolant[9].Anotherproblem
thataccompaniestheexplorationofreactorswithleadbismutheutecticcoolantisslag
Citation:Orlov,S.N.;
Bogachev,N.A.;
Mereshchenko,A.S.;
Zmitrodan,A.A.;Skripkin,M.Y.
ElectrochemicalSensorsfor
ControllingOxygenContentand
CorrosionProcessesin
LeadBismuthEutectic
Coolant—StateoftheArt.Sensors
2023,23,812.https://doi.org/10.3390/
s23020812
AcademicEditors:MatjažFinšgar
andTinkaraMastnak
Received:24November2022
Revised:7January2023
Accepted:9January2023
Published:10January2023
Copyright:©2023bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Sensors2023,23,8122of14
accumulationduetooxidationofthecoolantifoxygencontentinthecircuitistoohigh.
Insufficientattentionthatwaspaidtothisissueattheearlystageofoperationledtoa
seriousradiationaccidentwiththemeltingofthecoreontheK27nuclearsubmarineof
Project645[10].
Thus,anadequatechoiceofoperatingrangesandeffectivecontroloftheoxygencon
tentintheprimarycircuitisthebasisfortroublefreeoperationofnuclearreactorswhere
leadbismutheutecticcoolantisexplored.Inaddition,animportantissuerelatedtothe
aggressivenessofLBEinrelationtostructuralmaterialsistheorganizationofcorrosion
monitoring.
Theaimofthisreviewistoanalyzeexistingapproachestothemeasurementofoxy
gencontentandcontrolofcorrosionandslagaccumulationprocessesinLBE.Specialat
tentionispaidtotheuseofoxygenactivitysensorsandalternativeelectrochemicalmeth
odsformonitoringcorrosionprocessesandslagaccumulationincircuitswithLBE.An
additionaltaskofthereviewistofamiliarizetheinternationalscientificcommunitywith
theresultsoftheworkofRussianscientists,currentlypublishedmainlyinRussian.
2.Discussion
2.1.TheOperatingRangeofOxygenConcentrations
Aswasmentionedabove,theprotectivepropertiesoffilmsformeduponoxygenin
hibitionofcorrosionaredeterminedbytheconditionsoftheirformation—thetempera
tureandflowrateoftheLBE,thetemperaturegradientinthecircuitandtheconcentration
ofoxygeninthecoolant.Dependingontheoxygencontentinthecoolant,theconditions
inthecircuitcanbedividedintothreegroups[9]:
(1) Highoxygencontent:from1×106%to1×103%byweight;
(2) Averageoxygencontent:from1×106%–1×107%byweight;
(3) Lowoxygencontent:≤1×107%.
Iftheoxygencontentinthecircuitislow,thestructuralmaterialsareactivelydis
solved.Asimilarsituationisalsoobservedattemperaturessohighthattheresultingox
idelayercannotpreventthedissolutionofstructuralmaterials[11].Atanaverageoxygen
concentration,anoxidefilmformsonthesurfaceofstructuralmaterials.Atthesametime,
oxygenreactswiththedissolvedcomponentsofsteel.Theresultinginsolubleoxidesof
corrosionproductsaredepositedonthesurfaceofthesteel,asaresultofwhichasingle
layeroxidefilmofferrochromiumspinel(Fe2xCrx)2O4isformedonthesurface[11].
Atahighoxygenconcentration,theoxidationofironatomsdiffusedoutwardfrom
structuralmaterialtakesplaceontheoxidefilm/LBEinterface,resultingintheformation
ofanexternaloxidelayerofmagnetite.Asnotalloxygenisboundinthisreaction,the
remainingmoleculesmigratethroughtheoxidelayerandreactwithbothironandchro
miumunderthefilm,increasingthethicknessoftheferrochromiumspinellayer.Asa
result,atwolayeroxidefilmisformedonthesurfaceofthestructuralmaterial,inwhich
onlytheinnerlayerhasprotectivefunctions[12,13].
Theprocessesofcorrosionandoxidationofstructuralmaterialsintheflowofliquid
metalcoolantdifferfromthecaseofstaticLBE.Klok[14]hasshownthatthecorrosion
rateisproportionaltov0.60.8,wherevisthelinearvelocityofLBE.Theincreaseinthe
corrosionratewithanincreaseintheflowrateofthecoolantisexplained,firstly,bydam
ageoftheoxidelayerduetoerosionand,secondly,byacceleratingthediffusionofcorro
sionproductsfromthesurfaceofthestructuralmaterialintothevolumeofthecoolant.
Theeffectoftheflowvelocityonthestructureoftheoxidefilmisdemonstratedbythe
resultsofWiesenburgandhiscoauthors[15].Thecorrosionresistanceofmartensiticsteel
T91wasanalyzed.Itwasshownthat,atanoxygencontentof108–1010%,acoolanttem
peratureof450°C,aflowrateof1m/sfor2000hoftheexperimentandthepenetration
ofLBEintothesteeltoadepthof10micronsoccurred.Atanoxygencontentof108%,a
coolanttemperatureof300°Candaflowrateof1m/sfor10,000hoftheexperiment,
neithertheformationofanoxidefilmnorthedissolutionofsteelwasobserved.Whenthe
Sensors2023,23,8123of14
temperatureofthecoolantroseto450°Cundersimilarconditions,athinlayerofoxide
filmwasformedonT91steel,preventingitscorrosion.Atanoxygencontentof106%,a
coolanttemperatureof480°C,aflowvelocityof1.3m/sandtwolayer(magnetiteand
ferrochromiumspinel)filmwithathicknessof28micronswasformedonsteelduring
6600hoftheexperiment.Anincreaseintemperatureupto550°Cundersimilarcondi
tionsledtoanincreaseinthefilmthicknessupto45microns.Withanincreaseintheflow
rateupto2m/s(oxygencontent106%,coolanttemperature550°C)for15,000hofthe
experiment,asinglelayerspinelfilmwithathicknessof45micronswasformedonT91
steel.Additionally,oneoftheexperimentsconductedintheLBEstream(1m/s),atan
oxygenconcentrationof108%ontheLINCEloop(Madrid),shouldbenoted[16]—when
thesamplewasheldfor5000h,thedissolutionofT91steel(upto300microns)wasob
served,althoughneitherforsampleswithanexposureof2000h,norforsampleswithan
exposureof10,000,suchapatternwasnotobserved.Theincreasedcorrosiondamagein
theconsideredexperimentwasexplainedbytheturbulentflowofLBE,whichconfirmed
theinfluenceofthecharacteristicsofthecoolantflowonthestateofstructuralmaterials.
Theareasofleadoxidesandprotectivefilmsformationdependingonthetempera
tureandoxygenconcentrationintheLBE[17,18]areshowninFigure1.
Figure1.ConditionsofleadoxideandprotectivefilmsformationaccordingtoMartynov[17]and
Müller[18].Theredlineindicatesthemaximumcoretemperatureforcurrentlydesigned
reactorswithLBE.
Sensors2023,23,8124of14
AsonecanseefromthedatapresentedinFigure1,ifthetemperatureofleadbismuth
eutecticcoolantwasabove350°Candoxygenconcentrationwasabove(7–8)×106wt%,
leadmonooxidewasformedinthecircuit.Theoptimaloxygenconcentrationvalues,
whichensuredtheformationofstrongprotectivefilmsandatthesametimeprevented
theformationofslag,areinanarrowrangewith(1–4)×106wt%width[19].Currently,
attemptsarebeingmadetoexpandthisrangebymodifyingthecompositionofstructural
materialsandapplyingthincoatingsenrichedwithelementswithahighaffinityforoxy
gentotheirsurface.ItwasshownbyDingetal.[20]thattheenergiesoftheelement
oxygenbondintheLBEmediumforthepairsFe–O,Cr–O,Ni–O,Al–OandSi–Ohadthe
followingvalues:−0.93;−1.26;−0.56;−1.45and−1.75eV,respectively.Thus,silicon,chro
miumandaluminumformedmorestableprotectiveoxidefilmscomparedtoirononthe
surfaceofstructuralmaterials.Aluminumiscurrentlythemostwidelyusedmaterial
whenapplyingprotectivecoatings.
Alltheprincipalindustrialmethodsofsurfacefilmsformationwereusedforcoating
structuralmaterials.Amongthemwerechemicalandphysicaldepositionfromthegas
phase(batchcementing,pulsedlaserspraying,vacuumarctechnology,thermalspray
ing),mechanicalmillingandsoon[21–28].Themainproblemoftheapplicationofthese
coatingstoinhibitcorrosionofstructuralmaterialsintheLBEenvironmentwasensuring
theirsufficientmechanicalstrengthandadhesiononthesurfaceofthemainalloy[27].
Themethodofhighcurrentpulsedelectronbeamsofmicrosecondrange[29–31]isa
promisingapproachtocreateprotectivecoatingsonthesurfaceofstructuralmaterialsin
nuclearreactorswithLBE.Whentheelectronbeamactedonthepreliminarylayerofalu
minum,itsmeltingwiththestructuralmaterialtookplace.Asaresult,anintermetallic
phaseoftheAlxFeycompositionwithadepthof20–30micronsformedonthesurface.The
mixingprocesshadavortexcharacter.Becauseoftheoxidationoftheintermetallicphase
inLBE,anextremelydenseultrathinAl2O3oxidefilmformedonthesurfaceofthemate
rial,whichpersistedduringthetestingprocess.Thisfilmcompletelypreventedliquid
metalcorrosionatanoxygencontentof108–107wt%andallowedtheexpansionofthe
oxygenrangeofnormaloperationofreactorswithheavyliquidmetalcoolants[32].
Thus,maintainingtheoxygencontentatagivenlevelintheLBEensuredthecorro
sionresistanceofstructuralmaterialsthatdeterminestheactualityofthemonitoringof
theoxygenconcentrationinthecoolant.
2.2.MeasurementofOxygeninaLeadBismuthEutecticCoolant
Oneofthemostcommonwaystomeasureoxygenconcentrationinliquidsisthe
electrochemicalone[33].Theconventionalelectrochemicalsensorstomeasureoxygenac
tivityinaleadbismuthcoolantareagalvaniccellwithtwoelectrodesseparatedbyasolid
electrolyte.InsensorsutilizedatnuclearplantsinRussia,thereferenceelectrodeisasat
uratedoxygensolution(withaconstantoxygenactivityequalto1)inmetalswithalow
meltingpoint.Usually[34–39],BiBi2O3system(meltingpoint544K)isusedfortherefer
enceelectrode.Theoperatingtemperaturerangeoftheoxygensensorcanbeexpanded
bysubstitutionofthissystemonInIn2O3[40,41](meltingpoint433K)eitherSnSnO2
[42,43](meltingpoint505K)systems.
Alternativeoptionsforreferenceelectrodesare:
Air/metal(Pt)[43,44]orperovskiteoxidee.g.,LanthanumStrontiumManganite
(LSM)andLanthanumStrontiumManganiteGadoliniumDopedCeria(LSMGDC)
[45,46];
Solidmetal/metaloxidemixturese.g.,Fe/Fe3O4[47–50],Cu/Cu2O[51].
ThemaindisadvantageofthePtairreferenceelectrodeisthehighminimumtem
peratureofthereadings—about400°C.Atlowertemperatures,especiallyintheareaof
lowoxygenconcentrations,asignificantmeasurementerrorispossible[52,53].
Sensors2023,23,8125of14
Todate,thepossibilityofusingperovskitesforhightemperaturesensorshasbeen
proven[54].Atthesametime,asignificantdisadvantageofallairelectrodesisthepossi
bilityofcontactofthecoolantwiththeexternalatmospherewhentheinsulatinglayerof
theelectrodeisdamaged[44].
Liquidmetal/metaloxidereferenceelectrodesmightcausethemechanicalfailureof
thesolidelectrolyteoncethemeltingpointofthemetalphaseiscrossede.g.,indiummelts
at157°CandLBEmeltsat125°C[44].Atthesametime,animportantadvantageofthe
liquidbismuth/bismuthoxidereferenceelectrodeistherefinementofitstechnologyand
extensiveexperienceinapplicationofthesensorsbasedonitbothinreactorswithstatic
andwithcirculatedcoolantatnumerousnuclearindustryenterprisesinRussia(JSC“NI
KIET”,Moscow.CRISM“Prometey”,SaintPetersburg,OKB“Giropress”JSC,Podolsk
etc.)andabroad(e.g.,ENEAcenteratBrazimone,Italy)[49].
Asaworkingelectrode,aleadbismutheutecticcoolantacts,theoxygenactivityin
whichislessthanorequalto1.Solidelectrolytesseparatingtheworkingandreference
electrodeinthesensorsaresolidsolutionsofthecompositionMeOx*Me’Oy.Thesolutions
arebasedonrefractoryoxidesZrO2,HfO2,ThO2,stabilizedbytheadditionofCaO,Y2O3
andSc2O3[50,55].Theseoxideadditivesprovideionicconductivityandmechanical
strengthofelectrolytesduetostabilizationofthecubiccrystallatticesimilartofluorite.
Thehighestionicconductivityofelectrolytesisachievedatconcentrationsofstabilizing
additivesof7–15mol%[50].
Theseoxidesdemonstratentypeconductivity,whichispreservedinsolidsolutions.
Asaresult,solidelectrolytesinoxygensensorshavemixedionelectronconductivity.To
accountforthisfact,theaveragetransfernumberswereused—iontiandelectronte[50].
Thesenumbersareequaltothefractionsofionicandelectronicconductivity,respectively.
𝑡𝑡 =1(1)
Theionictransfernumbersoftheoxygensensorelectrolyteweredeterminedexper
imentally.Itisconsideredtobeaconditionedsensoriftiisintherange0.95–1.
Whenthesensorwasoperating,theionizationreactionofoxygenatomsproceeded
onthereferenceelectrode,followedbythetransferofanionsthroughtheelectrolyteto
theworkingelectrode,wheretheanionsweredischarged[56].Itwasassumedthatoxy
gendissolvedinaliquidmetalandinareference,electrodewasinatomicform[57]and
wassubjecttotheSievertslawthatallowsthepredictionofitssolubilityinmetals.
OxygenactivityinLBEcanbedeterminedfromtheNernstequation:
𝐸 𝑅𝑇
2𝐹ln 𝑎
𝑎(2)
whereETisthecalculatedEMFofthegalvaniccell,V;Ristheuniversalgasconstantequal
to8.31J/(mol×K);FistheFaradaynumberequalto96,500C/mol;Tisthetemperatureof
thecoolantinthesensorarea,K;aref—thermodynamicactivityofoxygeninthereference
electrode;aLBE—thermodynamicactivityofoxygeninLBE.
ThecalculatedEMFofagalvaniccellcorrelateswiththemeasuredoneasfollows:
Eo=tiET(3)
ForasensorwithabismuthreferenceelectrodeinLBE,therelationshipbetweenthe
valueofthemeasuredEMFandactivityofoxygencanbeexpressedintheform[58]:
Eo=ti(0.088−9.91105T(0.18+lgaLBE)),(4)
wherethermodynamicactivityofoxygeninLBEcanberelatedtoitsconcentrationbythe
simpleequation:
aLBE=CLBE/Cs(5)
whereCLBEistheoxygenconcentrationinLBE,mass%;Csisthesolubilityofoxygenin
LBE,mass%.ThesolubilityofoxygeninLBEcanbecalculatedaccordingtotheequation:
Sensors2023,23,8126of14
Cs=A−B/T(6)
whereAandBareempiricalcoefficients.ThevaluesofparametersAandBobtainedby
variousauthorsweresummarizedbyAskhadullin[49].TheyarelistedbelowinTable1.
Table1.ParametersforcalculatingthelimitsolubilityofoxygeninLBE[49].
AuthorYearTemperatureRange,°CAB
Martynov1998400–7001.203400
Ghetta2004300–5003.274852
Muller2003200–6002.524803
Gouruouau2004350–5003.344962
Ganesan2006540–7402.424287
Pityk[56]hasmentionedthattheuseoftheabovementionedequationtocalculate
thelimitsolubilityofoxygeninLBEisnotmetrologicallyjustified,and,therefore,the
oxygenconcentrationvaluesobtainedusingthisequationcanonlybeusedasillustrative
andhavenomeaningasphysicalquantities.
AnotherproblemarisinguponuseofthermodynamicactivitysensorsinLBEwasthe
polarizationoftheelectrodes.Thefollowingpolarizationfactorsthatchangedtheelec
trodepotentialcanbeimplementedontheworkingelectrodeofthesensor[50]:
Oxidesdepositiononthesurfaceofthesolidelectrolyte;
adsorptionofmetallicimpuritiesontheelectrolytesurface;
formationofmicrocracks;
reductionoftheresistanceoftheinterelectrodeinsulator;
thepresenceofopenmicroporesonthesurfaceoftheelectrolyte.
Polarizingfactorsincreasedtheioniccurrentinthesensorcircuitandtheoxygen
activityontheelectrolytesurface,whichledtoanincreaseintheelectrodepotentialby
thepolarizationvalueη.Therefore,themeasuredEMFoftheoxygensensorwasreduced
bythesamevalue:
E=E0−η.(7)
ToaccountforthemagnitudeofpolarizationMusikhin[50]calculatedthecorre
spondingfunctionsthatallowedthemodelingandpredictingofthepolarizationpro
cessesontheworkingelectrode.
Oxygenactivitysensorsaredesignedtoworkinacorrosiveenvironmentwithaddi
tionalexposuretoradiationandneutronflux,whichcancauseadditionaldamagetosen
sormaterials[59].Okuboandcoauthors[60,61]havestudiedeffectoftheirradiationofa
solidelectrolyte—zirconiumdioxidestabilizedbytheadditionofyttriumoxide—by
gammaradiationandelectronswithanenergyof100keV.Theyshowedthatbend
strengthwasnotaffectedbytheirradiationevenathighdoseof10mGy.Atthesame
time,forpartiallystabilizedzirconiawithyttriacontentof3%byweight,apartialtransi
tionofthemonoclinicphasetothetetragonalphasewasobserved.
Despitetheharshoperatingconditions,thelifetime(servicelife)ofsensorsinLBEis
4000hormore[62].Tocontrolpossiblesensorfailures,itwasproposedtoinstallatleast
threeDACsinthecircuit[63].Inthiscase,beforemeasuringtheoxygenactivityinthe
coolant,itwaspossibletochecktheoperabilityofthesensors.Thistestconsistedinmeas
uringthepotentialdifferencebetweenthereferenceelectrodesofapairofsolidelectrolyte
sensors.Ifthisdifferencewasconstantwithintheabsolutemeasurementerror,thesesen
sorswereoperational.Ifthisconditionwasnotmet,thenbysequentiallysortingthrough
pairsofsensors,aninoperablesensorwasdetectedandexcludedfromfurtherconsidera
tion.
Tosummarizetheresults,themeasurementofoxygencontentinthecoolantwas
currentlycarriedoutbythepotentiometricmethod;thehardwareaspectsofthemethod
Sensors2023,23,8127of14
werewelldeveloped.Atthesametime,questionswereraisedabouttherelationshipbe
tweenthevaluesobtainedbymeansofsensorsandtheactualoxygenconcentrationinthe
coolant,aswellasconfirmationoftheoperabilityofsensorsinstalledintheflowcircuits
withLBE.
2.3.ControlofCorrosionandSlagFormationProcessesinLBEUsingOxygenActivitySensors
Diagnosticsofthestateofstructuralmaterialsandprotectivecoatingsontheirsur
facesduringtheoperationofnuclearpowerplantswithLBEinRussiawascarriedout
duringtheejectionofgasmixturesinisothermalmodeat300–330°C[64].Twovariants
oftheintroducedgasmixtureswereprovided:He+O2andHe+H2O(g)+N2+H2.
Whenthefirstcompositionwasused,achangeinthethermodynamicactivityofox
ygenwasconsideredanindicator.Inthecaseofsignificantamountsofnonoxidizedcor
rosionproductsofstructuralmaterialspresentinthecoolant(liquidmetalcorrosion)or
violationofprotectivecoatingsonthesurfaceofthecircuittakesplace,therateofdeoxi
dationofthecoolantincreased.Onthecontrary,inthepresenceofsignificantamountsof
slags(oxidecompounds)inthecircuit,therateofdeoxidationdecreased.Ifareducinggas
mixturewasusedindiagnosticmode,therateofincreaseintheconcentrationofhydrogen
intheprotectivegaswasmonitored.Inthepresenceofoxideslagsinthecoolant,therate
ofhydrogenincomingdecreased,inthepresenceofnonoxidizedcorrosionproducts,it
increased.Infact,whenthisapproachwasused,thecontrolwasratherqualitativeand
didnotprovidearelationshipwiththequantitativevaluesofthecontentofcorrosion
productsandslaginthecoolant.
Diagnosticsofthestateofthesurfacesofstructuralmaterialsofpromisingnuclear
powerplantswithLBEwasproposedtobecarriedoutonthebasisofmonitoringthe
amountofdissolvedoxygensuppliedfromthemasstransferapparatus[65].Anincrease
inthisindicatorreflectedtheintensificationofcorrosionprocesses,adecreaseistheevi
denceoftheaccumulationofslagsortheappearanceofanadditionalsourceofoxygen.
Establishingtherelationshipofthesechangeswiththeratesofcorrosionprocessesand,
moreover,thelocalizationofcorrosionsites,thedeterminationofcorrodingequipment
waspracticallyimpossible.
Toincreasetheinformativenessofthecontrolofcorrosionandslagaccumulation
processesbasedonthedataoftheoxygenactivitysensors,IvanovandSalaevhaveana
lyzedtherelationshipbetweenthekindoftemperaturedependencesofoxygenactivity
andthecontentofchemicallyactiveimpuritiesinthecoolant[66,67].Thedeviationfrom
thelinearformofthedependenceofthereadingsoftheoxygenactivitysensoronthe
temperatureofthecoolanttakesplaceasaresultofachangeinthephysicochemicalstate
ofthecoolantassociatedwiththeappearanceofimpuritiesinit.Theresearcherssupposed
that,inthefuture,arelationshipwillbedevelopedthatquantitativelylinkstheoxygen
activitysensorreadingsobtainedinthemodesofthermalcyclingofthecoolantwiththe
contentofimpuritiesinthecoolant,butatthemomentthisworkhasnotbeencompleted.
Tosummarizetheresults,thedevelopmentofaquantitativerelationshipbetween
theindicationsofoxygenactivitysensorsandcorrosionprocessesinthecircuitwithLBE
isacomplexandnontrivialproblem,thesolutionofwhichhasnotyetbeenobtained.
2.4.ImpedanceSpectroscopyApplicationtoMonitorCorrosionProcessesinLBE
Atthemoment,theElectrochemicalImpedanceSpectroscopymethodiswidelyused
tomonitorthecorrosionprocessesinvariousenvironments[68–72].Thismethodisused
tostudythestructureofcorrosiondepositsandthemechanismoftheirformation[73],the
resistanceofcoatingsonthesurfaceofmaterials[74]andtheeffectivenessofcorrosion
inhibitors[75].TheadvantageoftheImpedanceSpectroscopymethodisitsabilitytotrack
changesinthestateofthemetal/liquidmetalinterface,whichisextremelyimportantin
thecaseofusingoxidefilmstoinhibitcorrosionprocessesinLBE.
Electrochemicalimpedancespectroscopyisbasedonmonitoringtheresponseofan
electrochemicalsystemtoasinusoidaldisturbanceofsmallamplitude(severalmV)ina
Sensors2023,23,8128of14
widefrequencyrange(10
7
to10
4
Hz).Quantitativeanalysisofthefrequencydependence
oftheimpedanceonthebasisoftheselectedequivalentcircuitmakesitpossibletointer
pretitselementsinaccordancewiththephysicochemicalnatureoftheprocessesoccurring
ontheelectrodes[76,77].
Initially,theapplicationofthismethodtothestudyofoxidefilmsinLBEwaspro
posedbyLillardandStubbinsin2004–2008[78–80].Asmallsinusoidalvoltageexcitation
wasmeasuredbetweenthesampleandreferenceelectrodeinathreeelectrodeconfigura
tion,wherethecurrentfromtheworkingelectrodepassedthroughacounterelectrode
andtheimpedancewasmeasuredasafunctionoffrequency.Inthefirstsetoftheexper
iments,theworkingelectroderepresentedametalrodinaceramictube[81]andimped
ancespectroscopyprobewasformedbypushingastainlesssteelweldingroddownthe
centerofaceramictube,untilthetipoftherodpenetratedveryslightlyfromtheendof
thetube.AsteelreferenceelectrodewasalsoplacedintheLBE.Thedifferencebetween
theimpedancesmeasuredfromthesteelwithandwithouttheoxidelayersindicatedthe
existenceoftheoxidelayersinthefirstcase,andthemagnitudeand/orkindofdifference
yieldedinformationaboutprocessesoccurringontheelectrodes[77].Thisdevicepro
ducedreasonableresultsonlyattemperaturesupto200°Cor300°C,whichwasnot
enoughtoorganizerealtimecorrosionmonitoringinthecircuitsofnuclearreactorswith
LBE.
Tosolvethisproblemthemodificationofworkingelectrodewassuggested[81,82].
Themodifiedelectrodeconsistedofa410stainlesssteeldisk,completelycoatedwithalu
minaexceptfortwosmallareasonthebackside,forelectricalconnections,andonesmall
areaonthefrontside,actingastheactiveareatobeexposedtotheLBE.Thisactivearea
wasacircleof0.25inchdiameter.Thisdiskwasthenpushedontothemostlyclosedbot
tomofastainlesssteelcylinder;thebottomhada0.375inchdiameterholedrilled
throughittoallowtheactiveareaofthedisktocommunicatewiththeoutsideofthe
cylinder.
Thisimprovementofworkingelectrodemadeitpossibletoraisetheoperatingrange
oftheimpedancespectroscopymethodinSVTtoatemperatureof600°C.Kondo[83,84]
hasshownthattheapplicationofthismethodinaleadcoolantispossibleuptoatemper
atureof500°C.
AsimplifiedRandleselectricalequivalentcircuit(EEC),withouttheWarburgdiffu
sionelement[84],wasusedforequivalentcircuitfittinginliquidmetal,asshowninFig
ure2.Forequivalentcircuitfitting,aparallelcombinationofaresistorandconstantphase
element(CPE)wasused.TheresistorandCPEinthiscircuithavebeenassignedtothe
resistanceandcapacitanceoftheoxidelayer.
Figure2.Electricalequivalentcircuitusedtofitimpedancedata.
CPEImpedanceZ
CPE
[78]isequalto:
𝑍
1
𝐴
󰇛𝑖𝑤󰇜(8)
wherew—frequency,Hz;A—frequencydependentparameter;n—mathematicalconstant
withoutobviousphysicalsense.
Theequivalentcapacitanceofthesurfaceoxidefilmcanbecalculatedas
Sensors2023,23,8129of14
𝐶𝑅


𝐴
(9)
whereRoxide—polarizationresistanceofthesurfaceoxidefilmformedonsample,Ohm.
AlltheparameterscouldbeacquiredfromthefittingoftheNyquistplot,basedon
theexperimentaldata.TheNyquistplotisacomplexohmicplane,impedancerealcom
ponentZ′wasdepositedalongthexaxis,andtheimaginarycomponentofresistanceZ′′
wasdepositedalongtheyaxis
𝑍𝑍
󰆒𝑖𝑍󰆒󰆒(10)
𝑍󰆒 𝑍cos 𝜑(11)
Z′′ 𝑍sin 𝜑(12)
whereZ0isvoluminousimpedanceofthesampleandφisphaseangle.
WhenconstructingtheimpedancespectruminNyquistcoordinates,toobtaineach
pointofthecurve,thevaluesZ′andZ″arecalculatedfromthedataarray(ω,Z0,φ)orthe
vectorZ0isplacedontheplaneatanangleφtothexaxisandthepositionofitsendpoint
isfixed(thecoordinategridmustbesquare).
TheexampleofNyquistplotfortheneatironinLBEandtheresultsoffittingtheEIS
datausingtheZviewsoftware[85]areshownatFigure3below.Measuredandfitted
impedanceagreeoneanotherfairlywell.
Figure3.NiquistplotforironinLBE:experimentaldataaremarkedwithsquares,solidlinerepre
sentsfittinone.Fittingparametersare:n=0.964,Q0=8.671010Ssn/cm2,RLBE=3.02104Ω/cm2,Roxide
=2.71104Ω/cm2.
Fromequivalentcapacitancethethicknessofoxidefilmcanbecalculatedasfollows:
𝑑𝜀𝜀𝑠
𝐶(13)
wheredisoxidelayerthickness,μm;ε—absolutepermittivity,(F/m);ε0—vacuumpermit
tivity,(F/m);s—theelectrodearea(surfaceexposureareaofthespecimeninLBE),cm2.
Qiuetal.[86]consideredtheimpedancepropertiesofironoxidefilmsinLBE.They
showedthattheimpedancevaluewasproportionaltothethicknessofthefilm.Whenthe
thicknessoftheironoxidefilmwaslessthan50nm,theimpedancevaluewasinsignifi
cant.Withanincreaseinthethicknessoftheoxidefilmto200nm,theimpedancevalue
increasedto1kΩcm2.Disruptionoftheoxideviascratchingledtoanimmediatelossof
Sensors2023,23,81210of14
impedanceduetoshortcircuiting.Thisfacttestifiestothepossibilityofimpedancespec
troscopysensorsapplicationtodetectdamagetotheoxidefilmonstructuralmaterialsin
LBEinrealtime.
Thenextsteptowardstheintroductionofimpedancespectroscopyintothecorrosion
monitoringsystemofstructuralmaterialsofthefirstcircuitofthenuclearreactorswith
LBEcoolantisthetestingofthismethodinLBEstreamsatcirculationstandsthatallow
ustodrawthefinalconclusionabouttheapplicabilityofthiskindofsensors.
3.Conclusions
Theelementsthatmakeupausteniticandmartensiticsteelswereeffectivelydis
solvedinleadbismuthcoolant.Oxidefilmsprotectedthestructuralmaterialsofthe
primarycircuitfromdestruction.
Topreservetheprotectivefunctionsofoxidefilms,astableoxygenconcentrationwas
maintainedintheprimarycoolantinanarrowrangefrom1×106%to4×106%or
upto1×108–1×107%whenusingprotectivecoatingsmadeofaluminumoxide.
MeasurementoftheoxygencontentintheLBEwascarriedoutbythemethodof
potentiometry.Atthemoment,thismethodisfullydeveloped,butdoesnotexclude
anumberofmetrologicaldifficultiesininterpretationandensuringthereliabilityof
measurementresults.
Theuseofoxygenactivitysensorstomonitortheprocessesofcorrosionandslag
formationinLBEwashamperedbythelackofaquantitativerelationshipbetween
thesensorreadingsandthecontentofimpuritiesinthecoolant.
Toobtaindataonthestateofprotectiveoxidefilms(includingthicknessandme
chanicaldamage)onstructuralmaterialsinstaticLBEattemperaturesupto600°C,
impedancespectroscopysensorscanbeused.
Thenextstagefortheintroductionofimpedancespectroscopysensorsintothecor
rosionmonitoringsystemofthefirstcircuitofpromisingnuclearreactorswithLBE
istoconfirmtheiroperabilityinflowingLBEloops.
AuthorContributions:Conceptualization:S.N.O.andM.Y.S.;methodology:A.A.Z.;software:
N.A.B.;validation:A.S.M.;formalanalysis:A.S.M.;investigation:S.N.O.;resources:A.A.Z.;data
curation:M.Y.S.;writing—originaldraftpreparation:S.N.O.;writing—reviewandediting:M.Y.S.;
visualization:N.A.B.;supervision:A.S.M.;projectadministration:N.A.B.;findingacquisition:
M.Y.S.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterests.
References
1. Fedorovich,E.D.;Kurdyukov,I.I.Analyticalreviewofoperationalexperienceandmoderndevelopmentsofmediumandlow
powernuclearpowerplantswithliquidmetalcoolant.(Moderndevelopments).Technol.EnsuringLifeCycleNucl.Power.2020,
21Pt2,9–31.
2. Toshinskiy,G.I.;Komlev,O.G.;Martynov,P.N.;Rusanov,A.E.;Stepanov,V.S.;Klimov,N.N.;Dedul’,A.V.;Bolvanchikov,S.N.
Leadbismuthreactorsforregionalenergetics.Nucl.Power2011,111,290–293.
3. Loewen,E.P.;Tokuhiro,A.T.StatusofResearchandDevelopmentoftheLeadAlloyCooledFastReactor.J.Nucl.ScienceTech
nol.2003,40,614–627.https://doi.org/10.1080/18811248.2003.9715398.
4. Choi,S.;Cho,J.H.;Bae,M.H.;Lim,J.;Puspitarini,D.;Jeun,J.H.;Joo,H.G.;Hwang,I.S.PASCAR:Longburningsmallmodular
reactorbasedonnaturalcirculation.Nucl.Eng.Des.2011,241,1486–1499.https://doi.org/10.1016/j.nucengdes.2011.03.005.
5. Shin,Y.H.;Choi,S.;Cho,J.;Kim,J.H.;Hwang,I.S.Advancedpassivedesignofsmallmodularreactorcooledbyheavyliquid
metalnaturalcirculation.Prog.Nucl.Energy2015,83,433–442.https://doi.org/10.1016/j.pnucene.2015.01.002.
Sensors2023,23,81211of14
6. Takahashi,M.;Igashira,M.;Obara,T.;Sekimoto,H.;Kikuchi,K.;Aoto,K.;Kitano,T.Studiesonmaterialsforheavyliquidmetal
cooledrectorsinJapan.InProceedingsofICONE10:TenthInternationalConferenceonNuclearEngineering;Arlington,VA,
USA,14–18April2002;pp.5549–5559.https://doi.org/10.1115/ICONE1022166.
7. Zhang,J.;Li,N.ReviewofthestudiesonfundamentalissuesinLBEcorrosion.J.Nucl.Mater.2008,373,351–377.
doi.org/10.1016/j.jnucmat.2007.06.019.
8. Ilincev,G.ResearchresultsonthecorrosioneffectsofliquidheavymetalsPb,BiandPb–Bionstructuralmaterialswithand
withoutcorrosioninhibitors.Nucl.Eng.Design.2002,217,167–177.https://doi.org/10.1016/S00295493(02)001589.
9. Klok,O.LiquidMetalCorrosionEffectsinMYRRHACandidate316LAusteniticStainlessSteel.Ph.D.Thesis,VrijeUniversiteit,
Brussel,Belgium,2018;253p.
10. Fedorovich,E.D.;Kurdyukov,I.I.Analyticalreviewofoperationalexperienceandmoderndevelopmentsofmediumandlow
powernuclearpowerplantswithliquidmetalcoolant.(Operationalexperience).Technol.EnsuringLifeCycleNucl.PowerPlants
2020,20Pt1,19–26.
11. Tan,T.ModelingoftheProtectiveOxideLayerGrowthinNonIsothermalLeadAlloysCoolantSystems.Ph.D.Thesis,Univer
sityofNevada,Reno,NV,USA,2007;193p.
12. Lambrinou,K.;Koch,V.;Coen,G.;VandenBosch,J.;Schroer,C.Corrosionscalesonvarioussteelsafterexposuretoliquid
lead–bismutheutectic.J.Nucl.Mater.2014,450,244–255.https://doi.org/10.1016/j.jnucmat.2013.09.034.
13. Lee,S.G.;Shin,Y.H.;Park,J.;Hwang,I.S.HighTemperatureCorrosionBehaviorsofStructuralMaterialsforLeadAlloy
CooledFastReactorApplication.Appl.Sci.2021,11,2349–2368.https://doi.org/10.3390/app11052349.
14. Klok,O.TheEffectofCorrosionofLiquidMetalsonAusteniticStainlessSteeloftheMYRRHA316LBrand.Ph.D.Thesis,Vrige
oftheUniversityofBrussels,Brussels,Belgium,2018;253p.
15. Weisenburg,A.;Schroer,S.;Gianu,A.;Heinzel,A.;Konis,J.;Steiner,H.;Muller,G.;Fazio,S.;Gessi,A.;Babayan,S.;etal.Long
termcorrosiononsteelT91andAISI1316Linafluidleadalloyandthedevelopmentofabarrierforcorrosionprotection:
ExperimentsandModels.J.Nucl.Mater.2011,415,260–269.https://doi.org/10.1016/j.jnucmat.2011.04.028.
16. MartinMunoz,F.J.;SolerCrespo,L.;GomezBriceno.D.Corrosionbehaviourofmartensiticandausteniticsteelsinflowing
lead–bismutheutectic.J.Nucl.Mater.2011,416,87–93.https://doi.org/10.1016/j.jnucmat.2011.01.108.
17. Martynov,P.N.;Ivanov,K.D.PropertiesofLeadBismuthCoolantandPerspectivesofNonElectricApplicationsofLeadBismuthReac
tor:TechnicalReport;IAEA:Vienna,Austria,1997.
18. Müller,G.;Heinzel,A.;Schumacher,G.;Weisenburger,A.Controlofoxygenconcentrationinliquidleadandlead–bismuth.J.
Nucl.Mater.2003,321,256–262.https://doi.org/10.1016/S00223115(03)002502.
19. Askhadullin,R.S.;Storozhenko,A.N.;Melnikov,V.P.;Legkikh,A.Y.;Uliyanov,V.V.Provisionofheavyliquidmetalcoolant
technologyinnewgenerationreactorinstallations.InProceedingsoftheFifthConference:HeavyLiquidMetalHeatCarriers
inNuclearTechnologies;Obninsk,Russia,8–10October2018;pp.136–137.
20. Ding,W.;Jiang,Zh.;Xin,J.;Zhang,M.;Zheng,M.Interactionsbetweenalloyelementsandoxygenatthesteel–liquidLBE
interfacedeterminedfromfirstprinciplesmoleculardynamicssimulations.Phys.Chem.Chem.Phys.2019,21,25735–25742.
https://doi.org/10.1039/C9CP05626B.
21. Deloffre,P.;BalbaudCélérier,F.;Terlain,A.CorrosionbehaviourofaluminizedmartensiticandausteniticsteelsinliquidPb–
Bi.J.Nucl.Mater.2004,335,180–184.https://doi.org/10.1016/j.jnucmat.2004.07.014.
22. GarcíaFerré,F.;Bertarelli,E.;Chiodoni,A.;Carnelli,D.;Gastaldi,D.;Vena,P.;Beghi,M.G.;DiFonzo,F.Themechanicalprop
ertiesofananocrystallineAl2O3/α‐Al2O3compositecoatingmeasuredbynanoindentationandBrillouinspectroscopy.ActaMa
ter.2013,61,2662–2670.https://doi.org/10.1016/j.actamat.2013.01.050.
23. Dou,P.;Kasada,R.Preliminarystudyonnano‐andmicrocompositesolgelbasedaluminacoatingsonstructuralcomponents
oflead–bismutheutecticcooledfastbreederreactors.J.Nucl.Mater.2011,409,177–182.
https://doi.org/10.1016/j.jnucmat.2010.11.022.
24. Chen,Y.;Hu,L.;Qiu,C.;Huang,Q.Characterizationofmultiphaseceramiccoatingsfabricatedvialaserinsitureactiontech
nology.Surf.Eng.2018,34,301–308.https://doi.org/10.1080/02670844.2017.1315484.
25. Rivai,A.K.;Takahashi,M.CorrosioninvestigationsofAl–Fecoatedsteels,highCrsteels,refractorymetalsandceramicsinlead
alloysat700°C.J.Nucl.Mater.2010,398,146–152.https://doi.org/10.1016/j.jnucmat.2009.10.025.
26. Shi,Q.;Yan,W.;Sha,W.;Wang,W.;Shan,Y.Y.;Yang,K.CorrosionresistanceofselfgrowingTiCcoatingonSIMPsteelinLBE
at600°C.Mater.Corros.2016,67,1204–1212.https://doi.org/10.1002/maco.201508727.
27. Vogt,J.B.;ProriolSerre,I.AReviewoftheSurfaceModificationsforCorrosionMitigationofSteelsinLeadandLBE.Coatings
2021,11,53–67.https://doi.org/10.3390/coatings11010053.
28. Wang,H.;Xiao,J.;Wang,H.;Chen,Y.;Yin,X.;Guo,N.CorrosionBehaviorandSurfaceTreatmentofCladdingMaterialsUsed
inHighTemperatureLeadBismuthEutecticAlloy:AReview.Coatings2021,11,364–381.https://doi.org/10.3390/coat
ings11030364.
29. Weisenburger,A.;Heinzel,A.;Müller,G.;Muscher,H.;Rousanov,A.T91claddingtubeswithandwithoutmodifiedFeCrAlY
coatingsexposedinLBEatdifferentflow,stressandtemperatureconditions.J.Nucl.Mater.2008,376,274–281.
https://doi.org/10.1016/j.jnucmat.2008.02.026.
30. Weisenburger,A.;Heinzel,A.;Fazio,C.;Müller,G.;Markow,V.G.;Kastanov,A.D.Lowcyclefatiguetestsofsurfacemodified
T91steelin106wt.%oxygencontainingPb45Bi55at550°C.J.Nucl.Mater.2008,377,261–267.
https://doi.org/10.1016/j.jnucmat.2008.02.075.
Sensors2023,23,81212of14
31. Weisenburger,A.;Jianu,A.;An,W.;Fetzer,R.;DelGiacco,M.;Heinzel,A.Creep,creeprupturetestsofAlsurfacealloyedT91
steelinliquidleadbismuthat500and550°C.J.Nucl.Mater.2012,431,77–84.https://doi.org/10.1016/j.jnucmat.2011.11.027.
32. Kashtanov,A.D.DevelopmentofScientificandTechnologicalPrinciplesfortheSelectionofMaterials,TakingintoAccountthe
PeculiaritiesofTheirDamageduringtheOperationofVariousElementsofReactorEquipmentwithHeavyLiquidMetalHeat
Carriers.Ph.D.Thesis,SaintPetersburg,Russia,2020.35p.
33. Wei,Yu;Jiao,Yu;An,D.;Li,D.;Li,V.;Wei,K.Overviewofdissolvedoxygendetectiontechnology:Fromlaboratoryanalysis
tointelligentonlinedetection.Sensors2019,19,3995.https://doi.org/10.3390/s19183995.
34. Martynov,P.N.;Chernov,M.E.;Gulevsky,V.A.;Provorov,A.A.Developmentofacapsuletypeelectrochemicalsensorfor
monitoringoxygeninaheavycoolant.Nucl.Power2005,98,360.
35. Merkens,W.;Shmitz,R.Asensorfordeterminingtheactivityofoxygeninmetalmeltsandthemethodofitsproduction.Saint
PetersburgStatePolytechnicUniversity,PatentRU2325633С2,20October2003.
36. Schroer,C.;Konys,J.;Verdaguer,A.;Abellа,J.;Gessi,A.;Kobzova,A.;Babayan,S.;Courouau,J.L.Designandtestingofelec
trochemicaloxygensensorsforserviceinliquidleadalloys.J.Nucl.Mater.2011,415,338–347.
https://doi.org/10.1016/j.jnucmat.2011.04.045.
37. Brissonneau,L.;Beauchamp,F.;Morier,O.;Schroer,C.;Konys,J.;Kobzova,A.;Gabriele,F.D.;Courouau,J.L..Oxygencontrol
systemsandimpuritypurificationinLBE:LearningfromDEMETRAproject.J.Nucl.Mater.2011,415,348–360.
https://doi.org/10.1016/j.jnucmat.2011.04.040.
38. Lee,S.H.;Song,T.Y.KineticsofGasPhaseOxygenControlSystemandOxygenConcentrationMeasurementinLiquidPband
LBE.J.Ind.Eng.Chem.2007,13,602–607.
39. Nam,H.O.;Lim,J.;Han,D.Y.;Hwang,I.S.Dissolvedoxygencontrolandmonitoringimplementationintheliquidlead–bismuth
eutecticloop:HELIOS.J.Nucl.Mater.2008,376,381–385.https://doi.org/10.1016/j.jnucmat.2008.02.038.
40. Courouau,J.L.;Deloffre,P.;Adriano,R.Oxygencontrolinleadbismutheutectic:Firstvalidationofelectrochemicaloxygen
sensorsinstaticconditions.J.Phys.IV2002,12,141–153.https://doi.org/10.1051/jp4:20020329.
41. Courouau,J.L.;Trabuc,P.;Laplanche,G.;Deloffre,Ph.;Taraud,P.;Olliver,M.;Adriano,R.;Trambaud,S.Impuritiesandoxy
gencontrolinleadalloys.J.Nucl.Mater.2002,301,53–59.https://doi.org/10.1016/S00223115(01)007267.
42. Konys,J.;Schroer,C.;Wedemeyer,O.ElectrochemicalOxygenSensorsforCorrosionControlinLeadCooledNuclearReactors.
Corrosion2009,65,798–808.https://doi.org/10.5006/1.3319106.
43. Lim,J.;Manfredi,G.;Gavrilov,S.;Rosseel,K.;Aerts,A.;Bosch,J.Vanden.ControlofdissolvedoxygeninliquidLBEbyelec
trochemicaloxygenpumping.Sens.ActuatorsB2014,204,388–392.https://doi.org/10.1016/j.snb.2014.07.117.
44. Manfredi,G.OxygenSensorsandElectrochemicalOxygenPumpsforLeadAlloyCooledNuclearSystems.Ph.D.Thesis,Bel
gianNuclearResearchCentre,Wallonia,Belgium,2019.124p.
45. Adhi,P.M.;Kamal,D.M.;Vilcu,A.;Kondo,M.;Takahashi,M.MeasurementofOxygenConcentrationinStaticandFlowing
LiquidPbBibyUsingZirconiaBasedSensor.Indones.J.Physics.2020,5,31.
46. Martynov,P.N.;Askhadullin,R.Sh.;Ivanov,K.D.;Chernov,M.E.;Ulyanov,V.V.;Shelemetev,V.M.;Sadovnicchiy,R.P.;Chepo
rov,R.Yu.;Niyazov,S.A.S.Featuresoftheuseofironoxidereferenceelectrodesinsolidelectrolytesensorsformonitoringthe
thermodynamicactivityofoxygen.Izv.Vuzov.Yad.Energ.2012,3,62–67.https://doi.org/10.26583/npe.2012.3.08.
47. Tarantino,M.;Angiolini,M.;Bassini,S.;Cataldo,S.;Ciantelli,C.;Cristalli,C.;DelNevo,A.;DiPiazza,I.;Diamanti,D.;Eboli,
M.OverviewonLeadCooledFastReactorDesignandRelatedTechnologiesDevelopmentinENEA.Energies2021,14,5157.
https://doi.org/10.3390/en14165157.
48. Zeng,X.;Wang,Q.;Meng,X.;Chen,Z.;Zhang,Y.;Yan,Q.;Wei,Y.Oxygenconcentrationmeasurementandcontroloflead
bismutheutecticinasmall,staticexperimentalfacility.J.Nucl.Sci.Technol.2019,57,590–598.
https://doi.org/10.1080/00223131.2019.1700842.
49. Askhadullin,R.S.;Mzartynov,P.N.;Rachkov,V.I.;Legkikh,A.Yu.;Storozhenko,A.N.;Ul’yanov,V.V.;Gurlevskiy,V.A.Control
andregulationofoxygencontentinheavyliquidmetalheatcarriersforanticorrosiveprotectionofsteel.HighTemp.2016,54,
564–572.https://doi.org/10.1134/S0018151X16040015.
50. Musikhin,Y.A.OnElectrodePolarizationofElectrochemicalOxygenSensorinLiquidMetalCoolants.Izv.Vuzov.Yad.Energet
ica2012,4,75–84.https://doi.org/10.26583/npe.2012.4.09.
51. Adhi,P.M.;Kondo,M.;Takahashi,M.Performanceofsolidelectrolyteoxygensensorwithsolidandliquidreferenceelectrode
forliquidmetal.Sens.ActuatorsBChem.2017,241,1261–1269.https://doi.org/10.1016/j.snb.2016.10.003.
52. Bassini,S.;Antonelli,A.;DiPiazza,I.;Tarantino,M.Oxygensensorsforheavyliquidmetalcoolants:Calibrationandevaluation
oftheminimumreadingtemperature.J.Nucl.Mater.2017,486,197–205.https://doi.org/10.1016/j.jnucmat.2017.01.031.
53. Bassini,S.;DiPiazza,I.;Antonelli,A.;Angelucci,M.;Sermengi,V.;Palazzi,G.;Tarantino,M.InloopoxygenreductioninHLM
thermalhydraulicfacilityNACIEUP.Prog.Nucl.Energy2018,105,137–145.https://doi.org/10.1016/j.pnucene.2018.01.006.
54. Hinojo,A.;Soriano,I.;Abellà,J.;Colominas,S.EvaluationofHighTemperatureHydrogenSensorsBasedonBaCe0.6Zr0.3Y0.1O3
αandSr(Ce0.9Zr0.1)0.95Yb0.05O3‐αPerovskitesforIndustrialApplications.Sensors2020,20,7258.https://doi.org/10.3390/s20247258].
55. Saito,S.;Wan,T.;Okubo,N.;Obayashi,H.;Watanabe,N.;Odaira,N.;Kinoshita,H.;Yamaki,K.;Kita,S.;Yoshimoto,H.;etal.
StatusofLBEstudyandexperimentalplanatJAEA.InProceedingsofthe3rdJPARCSymposium(JPARC2019),Tsukuba,
Japan,23–26September2019.https://doi.org/10.7566/JPSCP.33.011041.
56. Pityk,A.V.;Arnoldov,M.N.Redoxprocessesasthebasisofpotentiometricmethodsforcontrolcoolantsstateofnuclearpower
systems.Probl.At.Sci.Technol.Nucl.React.Constants2014,2,5–18.
Sensors2023,23,81213of14
57. Chang,Y.A.;Fitzner,K.;Zhang,M.X.TheSolubilityofGasesinLiquidMetalsandAlloys.Prog.Mater.Sci.1988,32,97.
https://doi.org/10.1016/00796425(88)900011.
58. Blokhin,V.A.;Shimkedvich,A.L.;Musikhin,Y.A.Experienceinthecreationandoperationofsolidelectrolyteoxygenactivo
metersinaleadbismuthcoolant.InProceedingsoftheHeavyLiquidMetalHeatCarriersinNuclearTechnologies,Obnins,
Russia,3–9October1998;Tochinsky,G.I.Ed.;Volume2,pp.631–635.
59. Entler,S.;Soban,Z.;Duran,I.;Kovarik,K.;Vyborny,K.;Sebek,J.;Tazlaru,S.;Strelecek,J.;Sladek,P.CeramicChromiumHall
SensorsforEnvironmentswithHighTemperaturesandNeutronRadiation.Sensors2021,21,721.
https://doi.org/10.3390/s21030721.
60. Okubo,N.;Okuno,Y.;Kitamura,A.;Taguchi,T.InfluenceofgammarayirradiationonmechanicalpropertyofYSZforoxygen
sensorsinADS.Nucl.Instrum.MethodsPhys.Res.Sect.BBeamInteract.Mater.At.2018,435,198–202.
https://doi.org/10.1016/j.nimb.2017.10.021.
61. Okuno,Y.;Okubo,N.PhaseTransformationby100keVElectronIrradiationinPartiallyStabilizedZirconia.QuantumBeamSci.
2021,5,20.https://doi.org/10.3390/qubs5030020.
62. Courouau,J.L.;Sellier,S.;Chabert,C.;Pignoly,L.Electrochemicaloxygensensorforonlinemeasurementinliquidleadalloy
systemsatrelativelylowtemperature.Afinidad2005,62,519.
63. Martynov,P.N.;Askhadullin,R.Sh.;Storozhenko,A.N.;Shelemet’ev,V.M.;Sadovnichiy,R.P.;Skomorokhov,A.N.Methodfor
MeasuringtheThermodynamicActivityofOxygeninMoltenLiquidMetals.PatentRU2584378C1,19December,2014.
64. A.A.Sarkisov.TheroleofRussianScienceintheCreationofaDomesticSubmarineFleet;NaukaPublishingHouse:Moscow,Russia,
2008;p.654.
65. Martynov,P.N.;Askhadullin,R.S.;Orlov,Y.P.;Storozhenko,A.N.Modernissuesandproblemsoftechnologyofheavyliquid
metalheatcarriers(lead,leadbismuth).InProceedingsoftheForthConference:HeavyLiquidMetalHeatCarriersinNuclear
Technologies;Obninsk,Russia,23–28September2013;p.27.
66. Ivanov,K.D.;Niyazov,S.A.S.;Cheporov,R.Yu.Increasetheinformationcontentofcontrolofthermodynamicactivityofoxy
geninheavyliquidmetalcoolants.Probl.At.Sci.Technol.Nucl.React.Constants.2018,5,5–12.
67. Salaev,S.V.;Askhadullin,R.S.;Ivanov,K.D.;Legkikh,A.Y.;Niyazov,S.A.S.Theresultsofstudiesontheextensionofmethod
ologicalcapabilitiesofdeterminingphysicochemicalconditionsofleadbasedliquidmetalcoolants.Izv.Vuzov.YadenayaEner
getika.2020,98–106.https://doi.org/10.26583/npe.2020.1.10.
68. Reddy,M.S.B.;Ponnamma,D.;Sadasivuni,K.K.;Aich,S.;Kailasa,S.;Parangusan,H.;Ibrahim,M.;Eldeib,S.;Shehata,O.;Ismail,
M.;etal.Sensorsinadvancingthecapabilitiesofcorrosiondetection:Areview.Sens.ActuatorsAPhys.2021,332,113086.
https://doi.org/10.1016/j.sna.2021.113086.
69. Wright,R.F.;Lu,P.;Devkota,J.;Lu,F.;ZiomekMoroz,M.;Ohodnicki,P.R.,Jr.CorrosionSensorsforStructuralHealthMoni
toringofOilandNaturalGasInfrastructure:AReview.Sensors2019,19,3964.https://doi.org/10.3390/s19183964.
70. Liu,L.;Xu,Y.;Wang,Z.;Li,G.;Wang,X.;Huang,Y.Probingandseparatingcorrosionanderosionofpipelinesteelusing
electricalresistancemethodinconjunctionwithelectrochemicalmeasurements.Measurement2021,183,109797.
https://doi.org/10.1016/j.measurement.2021.109797.
71. Shevtsov,D.;Cao,N.L.;Nguyen,V.C.;Nong,Q.Q.;Le,H.Q.;Nguyen,D.A.;Zartsyn,I.;Kozaderov,O.ProgressinSensorsfor
MonitoringReinforcementCorrosioninReinforcedConcreteStructures—AReview.Sensors2022,22,3421.
https://doi.org/10.3390/s22093421.
72. Meyer,Y.A.;Bonatti,R.S.;Bortolozo,A.D.;Osório,W.R.ElectrochemicalbehaviorandcompressivestrengthofAlCu/xCucom
positesinNaClsolution.J.SolidStateElectrochem.2021,25,1303–1317.https://doi.org/10.1007/s1000802004890x.
73. Mishra,P.;Yavas,D.;Bastawros,A.F.;Hebert,K.R.Electrochemicalimpedancespectroscopyanalysisofcorrosionproductlayer
formationonpipelinesteel.Electrochim.Acta2020,346,136232.https://doi.org/10.1016/j.electacta.2020.136232.
74. Duarte,T.;Meyer,Y.A.;Osório,W.R.TheHolesofZnPhosphateandHotDipGalvanizingonElectrochemicalBehaviorsof
MultiCoatingsonSteelSubstrates.Metals2022,12,863.https://doi.org/10.3390/met12050863.
75. Hafez,B.;Mokhtarі,M.;Elmsellem,H.;Steli,H.Environmentallyfriendlyinhibitorofthecorrosionofmildsteel:Commercial
oilofEucalyptus.Int.J.Corros.ScaleInhib.2019,8,573–585.https://doi.org/10.17675/230568942019838.
76. Magar,H.S.;Hassan,R.Y.A.;Mulchandani,A.ElectrochemicalImpedanceSpectroscopy(EIS):Principles,Construction,and
BiosensingApplications.Sensors2021,21,6578.https://doi.org/10.3390/s21196578.
77. Stoynov,Z.B.;Grafov,B.M.;SavovaStoynova,B.;Elkin,V.V.ElectrochemicalImpedance;NaukaPublishingHouse:Moscow,
Russia,1991;p.336.
78. Lillard,R.S.;Valot,C.;Hanrahan,R.J.RelationshipsbetweentheImpedanceofOxideScalesonMartensiticandAusteniticSteels
andCorrosionRateinLiquidLeadBismuthEutectic.Corrosion2004,60,1134–1143.https://doi.org/10.5006/1.3299227.
79. Stubbins,J.F.;Bolind,A.M.;Chen,X.Theelectricalimpedanceresponseofsteelsurfaceoxidelayersinmoltenlead–bismuth
eutectic.J.Nucl.Mater.2008,377,243–252.https://doi.org/10.1016/j.jnucmat.2008.02.091.
80. Stubbins,J.F.;Bolind,A.M.;Hosseman,P.;Chen,X.Analysisofcorrosionscalestructureofpreoxidizedstainlesssteel316in
moltenleadbismutheutecticandtherelationtoimpedancespectroscopyresponse.J.Nucl.Mater.2010,398,172–179.
https://doi.org/10.1016/j.jnucmat.2009.10.029.
81. Stubbins,J.F.;Bolind,A.M.;Chen,X.RealTimeCorrosionMonitoringinLeadandLeadBismuthSystems;FinalReport;University
ofIllinois,Champaign,IL,USA,2010.
Sensors2023,23,81214of14
82. Chen,X.;Haasch,R.;Stubbins,J.F.Impedancespectroscopyandmicrostructuralcharacterizationofthecorrosionbehaviorof
FeCrAlalloyinlead–bismutheutectic.J.Nucl.Mater.2012,431,125–132.https://doi.org/10.1016/j.jnucmat.2011.11.016.
83. Kondo,M.;Suzuki,N.;Nakajima,Y.;Tanaka,T.;Muroga,T.Electrochemicalimpedancespectroscopyoninsituanalysisof
oxidelayerformationinliquidmetal.FusionEng.Des.2014,89,1201–1208.https://doi.org/10.1016/j.fusengdes.2014.04.048.
84. Kawarai,A.;Kondo,M.SelfHealingBehaviorofOxideLayerinLiquidMetal.PlasmaFusionRes.2022,17,2405059.
https://doi.org/10.1585/pfr.17.2405059.
85. Qiu,J.;Han,J.;Schoell,R.;Popovic,M.;Ghanbari,E.;Kaoumi,D.;Scully,J.R.;Macdonald,D.D.;Hosemann,P.Electricalprop
ertiesofthermaloxidescalesonpureironinliquidleadbismutheutectic.Corros.Sci.2020,176,109052.
https://doi.org/10.1016/j.corsci.2020.109052.
86. Qiu,J.;Macdonald,D.D.;Li,N.;Schoell,R.;Kaoumi,D.;Hosemann,P.AnElectrochemicalImpedanceSpectroscopicStudyof
OxideFilmsinLiquidMetal.JOM2020,72,2082–2088.https://doi.org/10.1007/s11837020041209.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualau
thor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto
peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.
... If the oxygen concentration in LBE is more than 10 −6 wt%, the elemental O in liquid LBE will react chemically with the metal elements (Fe, Cr, etc.) in the steel material, thus causing oxidation corrosion on the surface of the structural steel [8,11,[13][14][15][16][52][53][54][55][56]. If a continuous and dense oxide film is produced on the surface of the structural steel, then oxidative corrosion will be effectively blocked. ...
... At high concentrations (C O > 10 −6 wt%) [56], the structural steel undergoes an oxidation reaction (Figure 1b). If multiple layers of poorly adherent oxide films are formed, these films can delaminate and oxidize the underlying surface. ...
... At low levels of oxygen in the LBE (C O < 5 × 10 −7 wt%), dissolution corrosion occurs mainly in structural steel. On the contrary, if the oxygen content in LBE is high (C O > 10 −6 wt%), oxidative corrosion will increase and Pb-O compounds will be formed, contaminating the liquid LBE and clogging the pipeline [56]. When the LBE's oxygen content is in this range, which can produce a stable Fe 3 O 4 that is not formed between Pb-O compounds, then a double-structured oxide layer will be formed. ...
Article
Full-text available
Liquid lead–bismuth eutectic alloy is one of the candidate coolants for fourth-generation nuclear power systems because of its good physical and chemical properties, neutron economic performance, and safety. However, the compatibility between the coolant and structural steel is still the main factor restricting its large-scale industrial application in the nuclear energy field. Structural steel in a liquid lead–bismuth eutectic alloy for a long time would cause severe corrosion. The erosion of structural steel by high-flow-rate liquid lead–bismuth alloy will lead to a more complex corrosion process. This paper mainly reviews the corrosion characteristics of liquid lead–bismuth and the corrosion behavior of structural steel in liquid lead-bismuth eutectic. The main methods of inhibiting liquid lead–bismuth corrosion are summarized, and future research directions are suggested.
... With respect to iron-based material calculations of the adsorption energy of liquid metal atoms and the escape energy of iron atoms on iron surfaces, bismuth exhibits a greater capacity for adsorption and dissolution corrosion compared to lead on Fe surfaces [8] According to the current literature, two reliable methods have been identified for mitigating the corrosion of steels in lead-bismuth Pb-Bi systems. The first method involves maintaining the oxygen concentration within a specified range [9], and the second method entails applying corrosion-resistant coatings to the surface of the materials [10]. ...
... After assembling, the experimental cells were tightly closed, evacuated, filled with high-purity argon (99.999%), and placed in vertical tube furnaces preheated to the desired temperature. (3); nickel heat reflecting screens (4); titanium getter (5); crucible (6); test samples (7); liquid metal (8); thermocouple (9). ...
Article
Full-text available
The corrosion resistance of several types of steel (AISI 410, 321, 316L, 904L) was determined in a liquid Bi-Li (5 mol.%) alloy (BLA) medium at 650 °C combining gravimetric analysis of steel samples and chemical analysis of corrosion products’ content accumulating in the BLA phase. Energy dispersive X-ray spectrometry, scanning electron microscopy, X-ray fluorescence and inductively coupled plasma–atomic emission spectrometry analysis were employed for characterizing steel structure and alloy composition. AISI 321, 316L and 904L nickel-containing corrosion-resistant steels underwent severe corrosion in BLA, and their corrosion rates depended on the nickel content in the material. AISI 410 steel exhibited the lowest corrosion rate of all the materials investigated, and this type of steel can be considered as a reasonable structural material for work in BLA environments. The corrosion rates of AISI 410, 321, 316L and 904L steels in BLA at 650 °C were 77, 244, 252 and 280 µm/year, respectively. It was also found that chromium was etched more intensively than iron from the surface of steel samples.
Article
Full-text available
The present study aimed to develop and characterize new heavy metal sensors functionalized by extracellular polymeric substances (EPSs) isolated from a Tunisian thermophilic microalga strain Graesiella sp. The elaborated sensor showed a highly homogeneous character and revealed a microstructural lamellar arrangement, high crystalline nature, and several functional groups. Electrochemical impedance spectroscopy (EIS) and acoustic wave sensing were used as sensing techniques to explore the ability of microalgae-EPS-functionalized sensors to detect cadmium and mercury as heavy metals. For impedimetric measurements, a two-dipole circuit was adopted and showed good-fitted results with a low total error. The acoustic sensor platforms showed good compatibility with EPS in adjacent water. For both EPS-functionalized sensors, metal ions (Cd2+, Hg2+) were successfully detected in the concentration range from 10−10 M to 10−4 M. Impedimetric sensor was more sensitive to Cd2+ at low concentrations before saturation at 10−7 M, while the acoustic sensor exhibited more sensitivity to Hg2+ over the full range. The results highlight a new potential alternative to use microalgae EPSs as a sensitive coating material for the detection of heavy metals. However, its use in a real liquid medium requires further investigation of its selectivity in the presence of other compounds.
Article
Full-text available
The aim of this investigation is focused on the evaluation of distinctive coatings commonly applied in the automotive industry. The resulting corrosion behavior is analyzed by using electrochemical impedance spectroscopy (EIS), equivalent circuit (EC) and potentiodynamic polarization curves. The novelty concerns a comparison between tricationic phosphate (TCP), cataphoretic electrodeposition (CED) of an epoxy layer, TCP + CED and HDG (hot-dip galvanized) + TCP + CED multi-coatings. Both the naturally deposited and defect-induced damage (incision) coatings are examined. The experimental impedance parameters and corrosion current densities indicate that multi-coating system (HDG + TCP + CED layers) provides better protection. Both planar and porous electrode behaviors are responsible to predict the corrosion mechanism of the majority of samples examined. Although induced-damage samples reveal that corrosion resistances decreased up to 10×, when compared with no damaged samples, the same trend of the corrosion protection is maintained, i.e., TCP < CED < TCP + CED < HDG + TCP + CED. It is also found that the same trend verified by using electrochemical parameters is also observed when samples are subjected under salt spray condition (500 h). It is also found that porous electrode behavior is not a deleterious aspect to corrosion resistance. It is more intimately associated with initial thickness coating, while corrosion resistance is associated with adhesion of the CED layer on TCP coating. The results of relative cost-to-efficiency to relative coating density ratios are associated with fact that a CED coating is necessary to top and clear coating applications and the TCP + CED and the HDG/TCP + CED coating systems exhibit the best results.
Article
Full-text available
Non-destructive monitoring methods and continuous monitoring systems based on them are crucial elements of modern systems for the management and maintenance of assets which include reinforced concrete structures. The purpose of our study was to summarise the data on the most common sensors and systems for the non-destructive monitoring of reinforced concrete structures developed over the past 20 years. We considered systems based on electrochemical (potentiometry, methods related to polarisation) and physical (electromagnetic and ultrasonic waves, piezoelectric effect, thermography) examination methods. Special focus is devoted to the existing sensors and the results obtained using these sensors, as well as the advantages and disadvantages of their setups or other equipment used. The review considers earlier approaches and available commercial products, as well as relatively new sensors which are currently being tested.
Article
Full-text available
Electrochemical impedance spectroscopy (EIS) is a powerful technique used for the analysis of interfacial properties related to bio-recognition events occurring at the electrode surface, such as antibody–antigen recognition, substrate–enzyme interaction, or whole cell capturing. Thus, EIS could be exploited in several important biomedical diagnosis and environmental applications. However, the EIS is one of the most complex electrochemical methods, therefore, this review introduced the basic concepts and the theoretical background of the impedimetric technique along with the state of the art of the impedimetric biosensors and the impact of nanomaterials on the EIS performance. The use of nanomaterials such as nanoparticles, nanotubes, nanowires, and nanocomposites provided catalytic activity, enhanced sensing elements immobilization, promoted faster electron transfer, and increased reliability and accuracy of the reported EIS sensors. Thus, the EIS was used for the effective quantitative and qualitative detections of pathogens, DNA, cancer-associated biomarkers, etc. Through this review article, intensive literature review is provided to highlight the impact of nanomaterials on enhancing the analytical features of impedimetric biosensors.
Article
Full-text available
The next generation of nuclear energy systems, also known as Generation IV reactors, are being developed to meet the highest targets of safety and reliability, sustainability, economics, proliferation resistance, and physical protection, with improved performances compared with the currently licensed plants or those presently being built. Among the proposed technologies, lead-cooled fast reactors (LFRs) have been identified by nuclear industries in both Western and developing countries as being among the optimal Generation IV candidates. Since 2000, ENEA, the Italian National Agency for New Technologies, Energy, and Sustainable Economic Development is supporting the core design, safety assessment, and technological development of innovative nuclear systems cooled by heavy liquid metals (HLM) and, most recently, fully oriented on LFRs. ENEA is developing world-recognized skills in fast spectrum core design and is one of the largest European fleets of experimental facilities aiming at investigating HLM thermal-hydraulics, coolant chemistry control, corrosion behavior for structural materials, and material properties in the HLM environment, as well as at developing corrosion-protective coatings, components, instrumentation, and innovative systems, supported by experiments and numerical tools. Efforts are also dedicated to develop and validate numerical tools for specific application to HLM systems, ranging from neutronics codes, system and core thermal-hydraulic codes, computational fluid dynamics (CFD) and fuel pin performance codes, including their coupling. The present work aims at highlighting the capabilities and competencies developed by ENEA so far in the framework of liquid metal technologies for Generation IV LFRs. In particular, an overview on the ongoing R&D experimental program will be depicted considering the current fleet of facilities, namely: CIRCE, NACIE-UP, LIFUS5, LECOR, BID-1, HELENA, RACHEL, and Mechanical Labs. An overview on the numerical activities performed so far and those presently ongoing is also reported. Finally, an overview of the ENEA contribution to the ALFRED Project in the frame of the FALCON international consortium is reported, mainly addressing the ongoing activity in terms of core design, technology development, and auxiliary systems design.
Article
Full-text available
Partially stabilized zirconia (PSZ) is considered for use as an oxygen-sensor material in liquid lead-bismuth eutectic (LBE) alloys in the radiation environment of an acceleration-driven system (ADS). To predict its lifetime for operating in an ADS, the effects of radiation on the PSZ were clarified in this study. A tetragonal PSZ was irradiated with 100 keV electrons and analyzed by X-ray diffraction (XRD). The results indicate that the phase transition in the PSZ, from the tetragonal to the monoclinic phase, was caused after the irradiation. The deposition energy of the lattice and the deposition energy for the displacement damage of a 100 keV electron in the PSZ are estimated using the particle and heavy ion transport code system and the non-ionizing energy loss, respectively. The results suggest that conventional radiation effects, such as stopping power, are not the main mechanism behind the phase transition. The phase transition is known to be caused by the low-temperature degradation of the PSZ and is attributed to the shift of oxygen ions to oxygen sites. When the electron beam is incident to the material, the kinetic energy deposition and excitation-related processes are caused, and it is suggested to be a factor of the phase transition.
Article
The dynamic behaviors of oxide layer formation, growth and self-healing in liquid metal lead (Pb) were studied by on-line monitoring with electrochemical impedance spectroscopy (EIS). The metal rod made of zirconium (Zr) was immersed to liquid Pb at 773 K as the working electrode of EIS. The capacitance semicircle due to the oxide layer formation on the rod surface was detected by EIS after the immersion for 45 hr. The increase of impedance due to the growth of the oxide layer in liquid Pb was continuously detected. The rod was taken out from liquid Pb after the immersion for 150 hr, and the oxide layer formed on the rod was partially exfoliated using lathe to simulate the damage of the oxide layer. The rod was immersed again to liquid Pb for 200 hr. The capacitance semicircle due to the self-healing of the oxide layer was recognized after the immersion for 126 hr. The self-healing of the artificially damaged area on the oxide layer was recognized by the microscopic analysis.
Article
Liquid Lead-Bismuth Eutectic (LBE) has been proposed as one of the coolant for the Generation IV nuclear reactor. However, the oxygen should be controlled adequately to suppress the corrosion rate of the LBE. A device called oxygen sensor made of zirconia as solid electrolyte has been used to monitor the oxygen concentration online in order to control the oxygen concentration. The principle of this sensor is based on electrochemistry method where the difference oxygen activitiy between reference electrode (RE) and working electrode (in liquid LBE) can make potential difference. The potential difference is measured by electrometer and can be converted into oxygen concentration based on Nernst equation. Iron (Fe)/Magnetite (Fe3O4) was used as material for RE in this study. Measurement of oxygen concentration was conducted at 450 - 600°C for the static condition of LBE and around 390°C for the dynamic condition of flowing LBE. The oxygen concentration for both two experiment conditions were set in oxygen saturated condition of Pb-Bi. The oxygen sensor based on zirconia solid electrolyte with Fe/Fe3O4 as RE can measured the oxygen concentration in liquid LBE. The results showed that the measurement was agreed with the Nernst equation theoretical calculation.