Available via license: CC BY
Content may be subject to copyright.
Sensors2023,23,751.https://doi.org/10.3390/s23020751www.mdpi.com/journal/sensors
Article
Multi‐RobotTaskSchedulingwithAntColonyOptimization
inAntarcticEnvironments
SeokyoungKimandHeoncheolLee*
DepartmentofITConvergenceEngineering,KumohNationalInstituteofTechnology,
Gumi‐si39177,RepublicofKorea
*Correspondence:hclee@kumoh.ac.kr;Tel.:+82‐54‐478‐7476
Abstract:Thispaperaddressestheproblemofmulti‐robottaskschedulinginAntarcticenviron‐
ments.Therearevariousalgorithmsformulti‐robottaskscheduling,butthereisariskinrobot
operationwhenappliedinAntarcticenvironments.Thispaperproposesapracticalmulti‐robot
schedulingmethodusingantcolonyoptimizationinAntarcticenvironments.Theproposedmethod
wastestedinbothsimulatedandrealAntarcticenvironments,anditwasanalyzedandcompared
withotherexistingalgorithms.Theimprovedperformanceoftheproposedmethodwasverifiedby
findingmoreefficientlyscheduledmultiplepathswithlowercoststhantheotheralgorithms.
Keywords:Antarcticenvironments;antcolonyoptimization;multi‐robottaskscheduling
1.Introduction
Duetothedevelopmentofrobottechnology,robotsareworkinginsteadofhumans
inmanyplaces.Robotshavetheadvantageofbeingabletoperformprecisetasksthat
humanscannotdo,andtasksthataredangerousforhumanstodo.Basedonthesead‐
vantages,robotsareusedinmanyplacessuchasinhomes,services,industry,medical
applications,andmilitaryapplications.Robotapplicationsusingasingleobject,suchasa
cleaningrobot,aguiderobot,andaprocessusingarobotarm,havebeencommercialized.
However,inthecaseofasinglerobot,thelimitationsareclear,suchaslowefficiencyor
unachievabletasks.Toovercomethis,multi‐robotsbegantobeintroduced,whichshowed
increasedworkefficiencyandmorediversemissionperformance.Inotherwords,using
multi‐robotsenablesefficientperformanceoftaskssuchasfastprocessingspeedandlarge
workload,butthisrequiresadvancedtechnology.Thisisbecauseasthenumberofrobots
increases,thecontrolstructureandcalculationtimeincreasedramatically.Forthisreason,
researchfieldsformulti‐robotssuchastaskallocation,coverage,andschedulinghave
beencreatedandarebeingstudiedsteadily.
Amongthem,schedulingisfortheefficientoperationoftherobotandaimstoreduce
thedrivingtimeoftherobot.Whentherearemultiplerobotsandmultipledestinations,
eachrobotisgivenanappropriatevisitordertominimizetherobot’straveldistanceand
reducedrivingtime.Thiscanbeseenasakindoftravelingsalesmanproblem(TSP)[1–
5].TheTSPistofindtheshortestpossibleroutefromagivensetofcities,visitingevery
cityexactlyonceandreturningtothestartingpoint.TheTSPisNP‐Hard,andtherearea
numberofalgorithmstosolvethisproblem.Representatively,therearebreadth‐first
search(BFS)anddepth‐firstsearch(DFS)[6].Thesearealgorithmsfortraversingor
searchingtreeorgraphdatastructures,whichguaranteestheminimumdistance,buthas
thedisadvantageofconsumingalotofresourceswhenthepathislongandnotguaran‐
teeingaproblem‐solvingtime.Nearestneighbor[7]isasimplealgorithmtorepeatvisit‐
ingthenearestcity.Thishastheadvantageofbeingeasytoimplementandfasttocalcu‐
late,butitdoesnotguaranteeminimumdistance.Thegeneticalgorithm(GA)[8–11],one
oftheheuristicalgorithms,guaranteesdistanceandtimeaccordingtothesettingofthe
Citation:Kim,S.;Lee,H.
Multi‐RobotTaskSchedulingwith
AntColonyOptimizationin
AntarcticEnvironments.
Sensors2023,23,751.
https://doi.org/10.3390/s23020751
AcademicEditor:AiguoSong
Received:5December2022
Revised:31December2022
Accepted:3January2023
Published:9January2023
Copyright:©2023bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(https://cre‐
ativecommons.org/licenses/by/4.0/).
Sensors2023,23,7512of14
userparameter.Iftheuserparameterisproperlyset,thedistancecanbecalculatedwith
areasonablecalculationtime.Antcolonyoptimization(ACO)[12–20]isalsoaheuristic
algorithmthatwasconceivedinthewayantsreturnhomeinsearchoffood.Variousap‐
proacheshavebeentakentosolvetheTSPusingACO,whichalsomadeitpossibleto
obtaindistanceswithreasonablecomputationaltime.WhentheTSPisappliedtomulti‐robots,
itiscalledthemultipletravelingsalesmanproblem(MTSP)[21–28].TheMTSPisanoptimi‐
zationprobleminwhichmultiplesalesmenvisitalldestinationswithminimaldistance.Many
approacheshavebeentakentosolvetheMTSPbasedontheabovealgorithms.
However,theseTSPsolutionswillbecomemoredifficulttoimplementinextreme
environments.TheextremeenvironmentexaminedhereisAntarctica,aplacewithalarge
areaofabout14,000,000km2,verylowtemperatures,andvariousadverseconditionsin‐
cludingsnow,ice,andcrevasses.AntarcticaisthesouthernmostcontinentoftheEarth,
andisanattractiveunexploredregionwithenormousscientificvalue,fisheryresources,
andenergyresourcestocopewiththeEarth’sclimatechangeproblems.Todiscoverthis
valueofAntarctica,47countrieshavejoinedtheAntarcticTreatyandarefiercelycompet‐
ingforAntarcticresearch.ManyscientistsaretryingtostudyAntarctica,butinextreme
weather,crevassesmakeitdifficultforhumanstoexplorethepolarregions.Toovercome
this,scientistshavebeguntoresearchandintroduceunmannedautonomousdrivingro‐
bots.Theoperationofrobotsingeneralenvironmentssuchasroadsandindoorsisrela‐
tivelyfreefromtheaforementionedconstraints.Thegeneralenvironmentdoesnotmake
robotoperationdifficultbecausethefloorisrelativelyflatandnotslippery,andthereare
fewfatalobstaclessuchascrevasses.However,inAntarcticenvironments,slopingareas
suchashillsandmountains,slipperyfloorscausedbysnoworice,andcrevassesshould
beconsidered.TheColdRegionsResearchandEngineeringLab(CRREL)intheUnited
Stateshasdeveloped‘CoolRobot’[29]and‘Yeti’[30],autonomousvehiclesthatcanbe
operatedinpolarenvironments,andtheyareusedtocollectresearchdatainextremeareas
suchasAntarctica.However,theyshowdisadvantagesinenvironmentssuchassnowand
ice.Inaddition,theaveragespeedoftherobotisabout0.4to1.5m/s,whichisslow,andit
issomewhatdisadvantageousintimetoexplorethevastareaofAntarctica.Therefore,the
needforefficientexplorationworkusingmulti‐robotsratherthansinglerobotshas
emerged.Figure1describestheconceptofmulti‐robotscheduling.
Inthispaper,weproposeapracticalmulti‐robotschedulingmethodinAntarcticen‐
vironments.Thisallowsmulti‐robotstovisitallnodeswiththeshortestdistance.Thiscan
beseenasakindofMTSPproblem‐solving,butconsideringthespecificityofAntarctica,
theprocessofreturningtothestartingpointaftervisitingallnodeswasomitted.Inaddi‐
tion,stabledrivingcanberealizedbyavoidingsharpslopesbyreflectingAntarcticalti‐
tudeinformationinscheduling.Itcanalsoproducebetterresultswithreasonablecompu‐
tationaltime.Thecontributionsofthispaperareasfollows.
Tothebestofourknowledge,thisisthefirstapproachwhichsolvesthemulti‐robot
taskschedulingprobleminAntarcticenvironments.
Theperformanceofthemulti‐robottaskschedulingresultwastestedandevaluated
inbothsimulatedandrealAntarcticenvironments.
Thescheduledpathsbytheproposedmethodcanimprovetheefficiencyofoperating
multiplerobotsbyconsideringthecharacteristicsofrobotmovementinAntarctic
environments.
Theremainderofthispaperisorganizedasfollows.Section2describesconstraints
intheAntarcticenvironmentsandthenecessityforschedulingincludingconstraints,as
wellasthedefinitionofMTSPandproblemsofapplyingexistingalgorithmstoAntarctic
environments.Section3describesthecostfunctionandthestructureofACOusedfor
multi‐robotscheduling.Section4showstheexperimentalresultsandthecomparisonwith
othermethods.Finally,Section5istheconclusion.
Sensors2023,23,7513of14
Figure1.Theconceptofmulti‐robotschedulinginAntarcticenvironments.
2.ProblemDescription
Thispaperaddressestheproblemofmulti‐robotschedulinginAntarcticenviron‐
ments.First,wedefinethespecificityoftheAntarcticenvironmentanditsproblems.It
addressesproblemsthatcanbecausedbyextremelylowtemperatures,snowandiceen‐
vironments,andaltitudes.Apracticalschedulingmethodforovercomingtheseproblems
isdescribedlater.ThiscanbeseenasakindofMTSP,butconsideringthecharacteristics
ofAntarcticenvironments,itisassumedthatthemulti‐robotdoesnotreturntothestart‐
ingpointaftervisitingallnodes.
2.1.AntarcticEnvironments
AntarcticaisoneofthecoldestregionsonEarth,coveringanareaofabout14
14,000,000
km
2,ofwhich98%ismadeupofsnowandice.Inallregions,thetemperature
doesnotexceed0°C,andthelowesttemperatureis−89.2°C,whichisthecoldestarea.
Theseconditionsmakeitdifficulttooperatetherobot.Forexample,whenexposedtolow
temperatures,itcausesdamagetothebatteryandisbadforthechassisoftherobot.Ad‐
ditionally,thesnowandicefloorreducetherobot’sabilitytomove.Forstabledrivingin
snowandonicyterrain,itwillbenecessarytoavoidslopesinconsiderationofheight.
Thecrevasse,adeepcrackontheglacialsurface,isalsooneoftheobstaclesthatmustbe
avoided.Forstablerobotoperation,theseconstraintsshouldbeavoidedasmuchaspos‐
sible.Therefore,schedulinginAntarcticenvironmentsneedstoreflectelementsofthe
terrainaswellasdistanceinthecost.
2.2.DefinitionofMTSP
Inthispaper,thedefinitionofMTSPisasfollows.Themulti‐robotschedulingprob‐
lemisdefinedasvisitingagivenasetofnodes𝐂𝑐
,
𝑐
,𝑐
,… ,𝑐
,where 𝑛1, ⋯,𝑁
foreachrobot𝑟,withtheshortestdistance.Eachrobothasanumberofvisits𝐏
𝑝
,
𝑝
,𝑝
,… ,𝑝
,where 𝑟1, ⋯,𝑅.Itisdefinedasasingledepotifthereisonestarting
positionandamultipledepotiftherearemultiplestartingpositions.Inthispaper,asingle
depotisassumed.EachoftheRrobotslocatedinthesingledepotmustvisitoneormore
Sensors2023,23,7514of14
nodesandwillnotreturntothestartingposition.Eachrobothasatour𝐓,whichisde‐
scribedasfollows.𝐓𝑐,⋯, where 𝑐∈𝐂(1)
where𝑐isthenodevisitedbytherobot𝑟and𝑝isthetotalnumberofnodesthatthe
robot𝑟willvisit,calculatedasfollows.
𝑝
𝑁(2)
Inthetour𝐓,whenthedistancebetweenthenodes𝑐and𝑐
is𝑑,thetotal
tourdistanceforthetour𝐓,isasfollows.
𝐷𝐓𝑑
(3)
𝐓,,thetourwiththeminimumtotaltraveldistance,isdefinedasfollows.
𝐓, argmin
𝐓𝐷𝐓(4)
Then,thegoalistoobtainasetof𝐓,for𝑅robots.
𝐓 𝐓,,𝐓,,⋯,𝐓,(5)
Tominimizethedistance,itisrequiredtosetthenumberoftournodes𝑝foreach
robot𝑟andobtain𝐓throughanappropriatealgorithm.
2.3.TheProblemofApplyingtheExistingSchedulingAlgorithmtoAntarcticEnvironments
Variousalgorithmshavebeenstudiedtosolvethemulti‐robotschedulingproblem.
Amongthem,thenearestneighboralgorithmisasimplealgorithm,summarizedasfollows.
(1) Selectastartingpointforanycityandregisteritasavisitingnode.
(2) Movetotheunvisitednodewiththelowestcostandregisteritasthevisitednode.
(3) RepeatStep2ifthereisacitythatwasnotvisited.
Itissimpleandeffective.However,duetothegreedynatureoftheNNalgorithm,it
onlyseeksimmediatebenefits.Thus,itmissestheopportunitytomakelong‐termgains.
Thisleadstothecreationofabadpath.Whenscheduledbasedonthecostreflectingnot
onlythedistancebutalsothetopographicalelements,thesecharacteristicswillbere‐
vealedasdisadvantages.
ACOisalsooneofthealgorithmsforsolvingthemulti‐robotschedulingproblem.ACO
isanalgorithmthatsolvesproblemsbyexploringartificialants.Antshavearulethatthey
preferplaceswithalowcostandhighpheromones,whichissummarizedasfollows.
(1) Exploreants.
1.1 Anantselectsanodebytheprobability𝑝,whichisproportionaltotheamount
ofpheromonesandthecost.
(2) Whentheantsfinishtheirsearch,theyleavepheromonesinthepathoftheantthat
hasthelowestcost.
(3) Repeatasiteration.
(4) Afterthat,theantthatmovedtothelowestcostbecomesasolution.
InACO,pheromonesaswellascostareadditionallyconsidered.Moreover,proba‐
bilisticnodeexplorationallowsantstoexplorevariouspaths,whichgivesthemanoppor‐
tunitytochoosebetternodesinthelongterm.Thiseventuallymakesitpossibletofinda
betterpath.
ACOcaneasilycontrolthecostfunction,soitiseasytoevaluatefactorsotherthan
distance.Itisalsoimmediateandintuitivebecauseitreflectsthecosteachtimewhen
visitingthenodesonebyone.
Sensors2023,23,7515of14
3.ProposedMethod
3.1.Overview
Figure2isaflowchartoftheproposedalgorithm.ThisalgorithmisbasedonACO,
buttwomainfeaturesareadded.First,formulti‐robotscheduling,thenumberofnodes
eachrobotwillvisitisset.Thisisdeterminedbytheuserorautomaticallydividedbythe
numberofrobots.Then,pathsforeachrobot,anMTSPsolution,isgeneratedformulti‐
robotsusingACO.Afterpathsformulti‐robotsarecreatedusingtheproposedmethod,
eachrobotmovesaccordingtoitspath.Inthispaper,anewcostfunctionforACOispro‐
posedtoproperlyreflectthecharacteristicsofAntarcticenvironments.
Figure2.Theflowchartoftheproposedmethod.
3.2.CostFunction
Onlythedistancebetweennodeswasconsideredforcostfunctionusedintheexisting
ACO.ThisisdifficulttoreflectAntarcticenvironments.Theproposedcostfunctioncontains
elevationinformation.Intheexistingcostfunction,thedistancebetweennodes𝑝and𝑞is
calculatedastheEuclideandistance.However,thisisastraightdistance,whichbecomesin‐
accurateifaltitudeinformationisadded.Itisalsodifficulttomeasuretheexactdistance
Sensors2023,23,7516of14
betweennodes𝑝and𝑞includingaltitudeinformation.Thiswasovercomebyobtainingan
approximatedistancevaluebysamplingbetweennodes.Amethodofobtainingthedistance
betweennodes𝑝and𝑞includingthealtitudevalueisasfollows.
Thenode𝑝andthenode𝑞aresampled𝑘times,andthedistanceobtainedbydi‐
viding𝑑,by𝑘is𝑑,where𝑑,isthedistancebetweennodes𝑝and𝑞.Thealti‐
tudevalue𝐻,sampledbetweennode𝑝andnode𝑞isasfollows.
𝐻,ℎ,ℎ,ℎ,⋯ , ℎ,ℎ (6)
whereℎistheheightofthe𝑘thsampledpoint.Thedifference𝑙ofthesampledheight
valueisasfollows.𝑙ℎℎ (7)
Theelevationdistance𝑑′,forreflectingthealtitudeinformationbetweennodesp
andqisdefinedasfollows.
𝑑′,𝑑𝑙
(8)
ThevalueΘ,forreflectingthealtitudeinformationbetweennode𝑝andnode𝑞
isasfollows.
Θ,𝜃
(9)
where𝜃istheanglebetweenthestraightlinebetweenℎandℎandthestraightline
paralleltothex‐axis.Finally,theproposedcostfunction𝑐,isasfollows.
𝑐,𝐴𝑑′,𝐵Θ, (10)
where𝐴and𝐵areweights,whichcanbearbitrarilydeterminedbytheuser.𝑑′,isthe
distanceofthecitytime,andΘ,isthealtitudevalueofthecitytime.Figure3showsthat
thecostfunctioniscalculatedbasedonthealtitudeinformationincludedattheedgebe‐
tweennodes,wherethecurveisheightinformationandthestraightredlineisastraight
lineconnectingpointssampledatregularintervals;thesumofthelengthsofthestraight
redlineis𝑑′,,andthesumoftheanglesisΘ,.
Figure3.Exampleofcalculatingtheproposedcostfunctionbetweennodes𝑝and𝑞.
Sensors2023,23,7517of14
3.3.AntColonyOptimization
TherearevarioustypesofACOs;amongthem,AntColonySystem(ACS)[13]was
used.ACSisanimprovedalgorithmbyaddingseveralprocessestotheexistingAntSys‐
tem(AS)[14–16].Basedonthis,multi‐robotschedulingusingcostfunctionadaptedto
Antarcticenvironmentswasimplemented.
First,itistherandom‐proportionalrulethatantkvisitsfromnode𝑝tonode𝑞.
𝜔
𝜏𝜂
∑𝜏𝜂
∉,𝑖𝑓 𝑔∉𝑉
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(11)
where𝜏isthepheromonesand𝜂istheimportanceoftheedge,whichistheinverseof
thecost.ThecostisthevalueobtainedusingEquation(10).𝑉isthesetofnodesvisited
byant𝑘.𝛼isaparameterthatdeterminestheimportanceofpheromones,and𝛽isa
parameterthatdeterminestheimportanceofedgecost.Here,thestatetransitionruleof
ACSisappliedasfollows.
𝑠𝑎𝑟𝑔𝑚𝑎𝑥∉𝜏𝜂,𝑖𝑓 𝑧𝑧
𝑆, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(12)
where𝑆isarandomvariabledeterminedbyEquation(11).Itisaruleaboutantschoosing
apheromone‐richpath.Iftherandomnumber𝑧 0𝑧1islessthan𝑧,antschoose
thepathwherethepheromonelevelishigh,andifnot,itfollowstherandom‐proportional
ruleoftheAS.Thispreventsfallingintothelocaloptimalsolution.Random‐proportional
rulesandthestatetransitionrulesareapplied,andlocalparentupdateisperformedac‐
cordingtoEquation(13)whenevervisitinganode.
𝜏 1𝜑𝜏𝜑𝜏 (13)
where0𝜑1isapheromonedecayparameter.𝜏isainitialvalueofpheromone;it
isusually𝜏1/𝑛𝑐.𝑐isthenumberofcities,and𝑐isthecostcalculatedbythe
nearestneighbor.Thisallowsallantstobeaffectedbypheromonesinrealtimeandavoid
localoptimums.
Whenallantsgenerateatour,globalpheromoneupdateisperformedthroughEqua‐
tions(14)and(15).𝜏 1𝜌𝜏 Δ𝜏
(14)
Δ𝜏
1/𝑐,𝑖𝑓 𝑏𝑒𝑠𝑡 𝑎𝑛𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑝,𝑞
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (15)
where𝑐isthebestant’stour.Thisincreasestheprobabilityofexploringabetterpath
inthenextiterationbyaccumulatingpheromonesalongthetourofthebestsolution.
Theproposedmethodappropriatelydividedthenumberofnodessothatmulti‐ro‐
botscanperformTSP.Althoughtheusermaydeterminethenumberofnodestobevisited
bytherobot,itisbasicallyimplementedbydividingthenumberofnodesbythenumber
ofrobots.Algorithm1isapseudo‐codefortheproposedmethod.
Sensors2023,23,7518of14
Algorithm1Multi‐robotschedulingalgorithminAntarcticEnvironments
1:Initializethemultirobot’stour
T
2:Setnumberofnodesthattherobotwillvisit
N
anditerationI
3:fori←Ndo
4:for
j
← Ido:
5:foreachantdo
6:Buildasolutionaccordingtothenumberofnodesi
7:Updatelocalpheromone
8:endfor
9:Updateglobalpheromone
10:endfor
11:Appendbestant’stourto
T
12:endfor
13:returnMultirobot’stourT
4.Results
4.1.ResultsinSimulationEnvironments
SimulationswereperformedtocomparetheproposedmethodwithNNandGA.
Theyshowaspecificperformancedifferencebycomparingtheelevationdistance.The
elevationdistanceusesthevalueaccordingtoEquation(8)accordingtothex,y,andz
coordinatesofthenodeandtheedge.ThesimulationswereperformedinPython3.9.7
andtheresultswerevisualizedusingmatplotlib.Theenvironmentwithinthesimulation
isavirtual3Dspace,whichis1000×1000×500pixels.Inordertorealizetheheightinthe
virtualspace,virtualhillsAandBaccordingtothenormaldistributionweregenerated
usingtheprobabilitydensityfunction.ThenormaldistributionfunctionvalueofhillAis
asfollows:σ75,μ20.Theheightis400.Thenormaldistributionfunctionvalueof
hillBisasfollows:σ100,μ15.Theheightis200.Thelocationofthenodeswas
randomlyset,andsimulationswereperformedon20,30,and40nodes.Figure4showsavir‐
tualspace,where(a)isthespaceviewedfromtheside,and(b)isthespaceviewedvertically.
(a)(b)
Figure4.(a)Thesideviewofthesimulationenvironment.(b)Theverticalviewofthesimulation
environment.AandBarethehillsofthesimulationenvironment.
Sensors2023,23,7519of14
Fortheelevationdistancecomparisonwiththeproposedmethod,thenearestneigh‐
boralgorithmandthegeneticalgorithmwereperformed.Thecostfunctionsofthepro‐
posedmethod,NN,andGAweredefinedaccordingtoEquation(10),andtheparameter
valueswereasfollows: 𝐴10, 𝐵15.TheparametervaluesofGAwereasfollows:
𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒0.05, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛50, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛300,selectionoperatorwastour‐
nament,crossoveroperatorwastwo‐pointcrossoverandelitismwasapplied.andelitism
wasapplied.TheparametervaluesofACOintheproposedmethodwereasfollows:
𝑎𝑛𝑡𝑠40, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛20, 𝛼2, 𝛽𝑏,𝜑0.1, 𝜌0.05, 𝑧
0.5,𝑎𝑛𝑡𝑠isthenumberof
ants,𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛isthenumberofiterations.Figures5–7aretheresultsofNN,GA,andthe
proposedmethodinthesimulationenvironment,andTable1isacomparisontableofthe
elevationdistance.Figure8isacomparisonchartoftheelevationdistance.
(a)(b)(c)
Figure5.Simulationresultsofthenearestneighborinvirtualspacefor:(a)20nodes,(b)30nodes,
(c)40nodes.Thereddotisthestartingpointandthebluedotsarethenodestovisit.Eachcolorline
isthepathofeachrobot.
(a)(b)(c)
Figure6.Simulationresultsofthegeneticalgorithminvirtualspacefor:(a)20nodes,(b)30nodes,
(c)40nodes.
Sensors2023,23,75110of14
(a)(b)(c)
Figure7.Simulationresultsoftheproposedmethodinvirtualspacefor:(a)20nodes,(b)30nodes,
(c)40nodes
Figure8.Theelevationdistancecomparisoninsimulationenvironments.
Table1.Theelevationdistancecomparisonresultsofthesimulation.
PartNode20Node30Node40
NearestNeighbor5476.986255.677943.39
GeneticAlgorithm5729.226348.658335.68
ProposedMethod5584.365784.936484.76
Regardingtheresultsinsimulationenvironments,asshowninTable1,NNandthe
proposedmethodshowedsimilarresultsfor20nodes.However,asthenumberofnodes
increased,theproposedmethodshowedashorterelevationdistance.GAshowedlow
performanceinalloftheresults.NNisshorterincomputationaltime,butrealtimedoes
notneedtobeguaranteed,sotheproposedmethodisreasonablebygeneratingshorter
andmorestablepathswithlessthan10s.
4.2.ResultsinRealAntarcticEnvironments
SimulationsinAntarcticenvironmentswereperformedtocomparetheproposed
methodwithNNandGA.Asdescribedabove,specificperformancedifferencesarepre‐
sentedbycomparingtheelevationdistance.
Inthesimulation,theAntarcticenvironmentwaslocatedat74°37.4’S,164°13.7’E,
andnodeswererandomlysetnearby.Thelatitudeandlongitudevaluesofarbitrarynodes
Sensors2023,23,75111of14
wereextractedfromGoogleEarth.Thedistancebetweennodeswasobtainedusingthe
HaversineFormula.Thealtitudeinformationobtainedthealtitudevaluesofnodesand
edgesusingtheGoogleMapsAPI.Thealtitudevaluesfortheedgesweresampled500
timesatthesameinterval.Forperformancecomparisonwiththeproposedmethod,the
nearestneighboralgorithmandthegeneticalgorithmwereperformed.Thecostfunctions
oftheproposedmethod,NN,andGAweredefinedaccordingtoEquation(10),andthe
parametervalueswereasfollows: 𝐴3, 𝐵2.TheparametervaluesofGAwereasfol‐
lows:𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡,𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑡𝑤𝑜𝑝𝑜𝑖𝑛𝑡 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟,𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
0.05, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛50, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛300,andelitismisapplied.Theparametervaluesof
ACOintheproposedmethodwereasfollows:𝑎𝑛𝑡𝑠40, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛20, 𝛼2, 𝛽
𝑏,𝜑0.1, 𝜌0.05, 𝑧
0.5,𝑎𝑛𝑡𝑠isthenumberofants,𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛isthenumberofiter‐
ations.Figures9–11arethesimulationresultsofNN,GA,andtheproposedmethodin
theAntarcticenvironments,respectively,andTable2isacomparisontableoftheeleva‐
tiondistance.Figure12isacomparisonchartoftheelevationdistance.
RegardingtheresultsinAntarcticenvironments.AsshowninTable2,forallcases,
theACOgeneratedashorterpath,especiallywhenthenumberofnodeswasmorethan
20,showingbetterperformance.AlthoughNNhadashortercomputationaltime,thepro‐
posedmethodwaslessthan5s,whichcanbeconsideredreasonableifitgeneratesshorter
andmorestablepaths.
(a)(b)(c)
Figure9.SimulationresultsofthenearestneighborinAntarcticenvironmentsfor:(a)10nodes,(b)
20nodes,(c)30nodes.Thereddotisthestartingpointandthebluedotsarethenodestovisit.Each
colorlineisthepathofeachrobot.
(a)(b)(c)
Figure10.SimulationresultsofthegeneticalgorithminAntarcticenvironmentsfor:(a)10nodes,
(b)20nodes,(c)30nodes.
Sensors2023,23,75112of14
(a)(b)(c)
Figure11.SimulationresultsoftheproposedmethodinAntarcticenvironmentsfor:(a)10nodes,
(b)20nodes,(c)30nodes
Table2.TheelevationdistancecomparisonresultsofrealAntarcticenvironments.
PartNode10Node20Node30
NearestNeighbor82.01km99.89km145.67km
GeneticAlgorithm79.41km93.93km141.36km
ProposedMethod78.17km82.95km122.78km
Figure12.TheelevationdistancecomparisoninAntarcticenvironments.
5.Conclusions
Thispaperaddressestheproblemofpracticalmulti‐robottaskschedulinginAntarc‐
ticenvironments.WeanalyzedthedifficultiesofrobotoperationinAntarcticaandpresent
asolution.Forstablerobotoperation,ACOwithanovelcostfunctionincludingaltitude
informationisproposed.Theproposedmethodcreatesapaththatavoidssteepslopes,
enablingstablerobotoperationinAntarcticenvironmentsconsistingofsnowandice.Fur‐
thermore,thecomparisonoftheresultswiththenearestneighboralgorithmshowsthat
theproposedmethodgeneratesshorterpaths,enablingefficientscheduling.However,as
mentionedearlier,thereareanumberofconstraintsintheAntarcticenvironment,such
asaltitude,snow,ice,crevasses,windspeed,andlimitedcommunications.Inthispaper,
onlyafewconstraintsareconsidered.Variousfactorsmustbeconsideredformoreeffi‐
cientrobotoperation.Inthefuture,schedulingwillbecarriedoutconsideringvarious
constraintswhileincludingaltitudeinformation.Stableandefficientrobotoperationwill
bepossiblebyfurtherreflectingthefactorsofAntarcticenvironments.
60.00
80.00
100.00
120.00
140.00
160.00
Node10 Node20 Node30
ElevationDistance
NearestNeighbor GeneticAlgorithm Proposedmethod
Sensors2023,23,75113of14
AuthorContributions:Conceptualization,H.L.;Methodology,S.K.;Writing—originaldraft,S.K.;
Writing—review&editing,H.L.Allauthorshavereadandagreedtothepublishedversionofthe
manuscript.
Funding:Thisworkwassupportedinpartbytheprojecttitled‘ResearchonCo‐OperativeMobile
RobotSystemTechnologyforPolarRegionDevelopmentandExploration’,fundedbytheKorean
MinistryofTrade,Industry,andEnergy(1525011633);inpartbytheGovernment‐wideR&DFund
forInfectionsDiseaseResearch(GFID),fundedbytheMinistryoftheInteriorandSafety,Republic
ofKorea(grantnumber:20014854);andinpartbytheNationalResearchFoundationofKorea(NRF)
grantfundedbytheKoreagovernment(MSIT)(no.2021R1F1A1064358).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Flood;Merrill,M.Thetraveling‐salesmanproblem.Oper.Res.1956,4,61–75.
2. Croes,G.A.AMethodforSolvingTraveling‐SalesmanProblems.Oper.Res.1958,6,791–812.
https://doi.org/10.1287/opre.6.6.791.
3. Beardwood,J.;Halton,J.H.;Hammersley,J.M.Theshortestpaththroughmanypoints.InMathematicalProceedingsoftheCam‐
bridgePhilosophicalSociety;CambridgeUniversityPress:Cambridge,UK,1959;pp.299–327.
4. Matai,R.;Singh,S.P.;Mittal,M.L.Travelingsalesmanproblem:anoverviewofapplications,formulations,andsolutionap‐
proaches.Travel.Salesm.Probl.TheoryAppl.2010,1.https://doi.org/10.5772/12909
5. Chandra,A.;Naro,A.AComparativeStudyofMetaheuristicsMethodsforSolvingTravelingSalesmanProblem.Int.J.Inf.
Sci.Technol.2022,6,1–7.
6. Sathya,N.;Muthukumaravel,A.Asurveyoftravellingsalesmanproblemusingheuristicsearchtechniques.Int.J.Innov.Res.
Comput.Commun.Eng.2016,4,847–851.
7. Johnson,D.S.;McGeoch,L.A.Thetravelingsalesmanproblem:Acasestudyinlocaloptimization.LocalSearchCom‐Binatorial
Optim.1997,1,215–310.
8. Golberg,D.E.Geneticalgorithmsinsearch,optimization,andmachinelearning.AddionWesley1989,102,36.
9. Mitchell,M.AnIntroductiontoGeneticAlgorithms;MITPress:Cambridge,MA,USA,1998.
10. AlRahedi,N.T.;Atoum,J.SolvingTSPproblemusingNewOperatorinGeneticAlgorithms.Am.J.Appl.Sci.2009,6,1586–
1590.
11. Dong,X.;Cai,Y.Anovelgeneticalgorithmforlargescalecoloredbalancedtravelingsalesmanproblem.Futur.Gener.Comput.
Syst.2019,95,727–742.https://doi.org/10.1016/j.future.2018.12.065.
12. Gambardella,LucaMaria;Dorigo,Marco.SolvingsymmetricandasymmetricTSPsbyantcolonies.InProceedingsofIEEE
InternationalConferenceonEvolutionaryComputation,Nagoya,Japan,20–22May1996;pp.622–627.
13. Dorigo,M.;Gambardella,L.Antcolonysystem:acooperativelearningapproachtothetravelingsalesmanproblem.IEEE
Trans.Evol.Comput.1997,1,53–66.https://doi.org/10.1109/4235.585892.
14. Dorigo,M.;Maniezzo,V.;Colorni,A.Antsystem:Optimizationbyacolonyofcooperatingagents.IEEETrans.Syst.ManCy‐
bern.PartBCybern.1996,26,29–41.https://doi.org/10.1109/3477.484436.
15. Dorigo,M.;Gambardella,L.M.Antcoloniesforthetravellingsalesmanproblem.Biosystems1997,43,73–81.
https://doi.org/10.1016/s0303‐2647(97)01708‐5.
16. Dorigo,Marco;DiCaro,Gianni.Antcolonyoptimization:anewmeta‐heuristic.InProceedingsofthe1999CongressonEvo‐
lutionaryComputation‐CEC99(Cat.No.99TH8406),Washington,DC,USA,6–9July1999;pp.1470–1477.
17. Dorigo,M.;Birattari,M.;Stutzle,T.Antcolonyoptimization.IEEEComput.Intell.Mag.2006,1,28–39.
18. Peker,M.;Şen,B.;Kumru,P.Y.Anefficientsolvingofthetravelingsalesmanproblem:theantcolonysystemhavingparame‐
tersoptimizedbytheTaguchimethod.Turk.J.Electr.Eng.Comput.Sci.2013,21,2015–2036.https://doi.org/10.3906/elk‐1109‐
44.
19. Gülcü,Ş.;Mahi,M.;Baykan,Ö.K.;Kodaz,H.Aparallelcooperativehybridmethodbasedonantcolonyoptimizationand3‐
Optalgorithmforsolvingtravelingsalesmanproblem.SoftComput.2018,22,1669–1685.https://doi.org/10.1007/s00500‐016‐
2432‐3.
20. Wang,Y.;Han,Z.Antcolonyoptimizationfortravelingsalesmanproblembasedonparametersoptimization.Appl.SoftCom‐
put.2021,107,107439.https://doi.org/10.1016/j.asoc.2021.107439.
21. Bellmore,M.;Hong,S.TransformationofMultisalesmanProblemtotheStandardTravelingSalesmanProblem.J.ACM1974,
21,500–504.https://doi.org/10.1145/321832.321847.
22. Rao,M.R.TechnicalNote—ANoteontheMultipleTravelingSalesmenProblem.Oper.Res.1980,28,628–632.
https://doi.org/10.1287/opre.28.3.628.
Sensors2023,23,75114of14
23. Kara,I.;Bektas,T.Integerlinearprogrammingformulationsofmultiplesalesmanproblemsanditsvariations.Eur.J.Oper.
Res.2006,174,1449–1458.https://doi.org/10.1016/j.ejor.2005.03.008.
24. Venkatesh,P.;Singh,A.Twometaheuristicapproachesforthemultipletravelingsalespersonproblem.Appl.SoftComput.
2015,26,74–89.https://doi.org/10.1016/j.asoc.2014.09.029.
25. Jiang,C.;Wan,Z.;Peng,Z.Anewefficienthybridalgorithmforlargescalemultipletravelingsalesmanproblems.ExpertSyst.
Appl.2019,139,112867.https://doi.org/10.1016/j.eswa.2019.112867.
26. Bektas,T.Themultipletravelingsalesmanproblem:anoverviewofformulationsandsolutionprocedures.Omega2006,34,
209–219.https://doi.org/10.1016/j.omega.2004.10.004.
27. Cheikhrouhou,O.;Khoufi,I.AcomprehensivesurveyontheMultipleTravelingSalesmanProblem:Applications,approaches
andtaxonomy.Comput.Sci.Rev.2021,40,100369.https://doi.org/10.1016/j.cosrev.2021.100369.
28. Zheng,J.;Hong,Y.;Xu,W.;Li,W.;Chen,Y.Aneffectiveiteratedtwo‐stageheuristicalgorithmforthemultipleTraveling
SalesmenProblem.Comput.Oper.Res.2022,143,105772.https://doi.org/10.1016/j.cor.2022.105772.
29. Ray,L.E.;Lever,J.H.;Streeter,A.D.;Price,A.D.Designandpowermanagementofasolar‐powered“coolrobot”forpolar
instrumentnetworks.J.FieldRobot.2007,24,581–599.
30. Lever,J.H.;Delaney,A.J.;ERay,L.;Trautmann,E.;Barna,L.A.;Burzynski,A.M.AutonomousGPRSurveysusingthePolar
RoverYeti.J.FieldRobot.2012,30,194–215.https://doi.org/10.1002/rob.21445.
Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualau‐
thor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjuryto
peopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.