ArticlePDF Available

Investigating the Relationship Between the Perception of motor Competence and the Actual motor Competence of Elementary School Children; A Cross-Sectional Study (‫یک‬ ‫دبستبًی؛‬ ‫کَدکبى‬ ‫ٍاقعی‬ ‫حرکتی‬ ‫شبیستگی‬ ‫بب‬ ‫حرکتی‬ ‫شبیستگی‬ ‫از‬ ‫ادراک‬ ‫ارتببط‬ ‫بررسی‬ ‫هقطعی‬ ‫هطبلعِ)

Authors:
  • Islamic azad University of Abadan branch
  • Sari Branch, Islamic Azad University

Abstract

Introduction: Actual and Perceived Motor Competence are important correlates of participation in physical activity. The aim of this study was to investigate the relationship between the perception of motor competence (PMC) and the actual motor competence (AMC) of primary school children. Materials and Methods: The study method is cross-sectional and descriptive-analytical. The statistical population of the study was children aged 7 to 10 who were active in sports clubs in Ahvaz. 652 children were selected through multi-stage cluster sampling from eight districts of Ahvaz city. AMC was assessed with the Test of Gross Motor Development-3rd Edition and PMC was assessed with the pictorial scale of Perceived Movement Skills Competence Test. Data were analyzed through student t-test for independent samples and Pearson correlation coefficient with SPSS version 24 software at a significance level of 0.05. Results: The correlation coefficient between actual and perceived locomotor subtests was positive and significant (r(0.652)=0.258, p=0.001). Also, between the actual and perceived object control subtests, the correlation coefficient was positive and significant (r(0.652)=0.251, p=0.001). In the total score of actual and perceived motor competence tests, the correlation coefficient was positive and significant (r(0.652)=0.318, p=0.001). In the performance of actual and perceived object control subtests and the total score of actual and perceived motor competence tests, gender differences were observed in favor of boys (p<0.05). Conclusion: The positive correlation between actual and perceived motor competence indicates that children have accurate perception as a result of the development of cognitive skills needed to evaluate their competence. Considering the existence of gender differences and the weaker performance of girls, it is necessary to design intervention programs for them.








 



 Farzad.Mohammadi@iau.ac.ir 






SPSS

 p r
p r
p r
         
>p

-





[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
1 / 11



      

      
  
      
 



 
 

        




 -
       
 





        
       
   


       

 Stodden   
  


1
- Fundamental Motor Skills; FMS
2
- Perceived Motor Competence; PMC

    
      
    
  
Stodden
      
     
        

        

  
       

      
 .     
        
 
       
     


        
    
      


       

        




        

3
- Actual Motor Competence; AMC

[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
2 / 11


 
 





     Barnett
      


 TGMD-3PMSC-
         
  FMS 
        


         



       
 

      


         
         
    
        
        N
Zqpd
  

1
- Perceived Movement Skills Competence; PMSC
2
- Test of Gross Motor Development-3: TGMD-3
)1()1(
)1(
2
2
1
2
2
2
1
PPZdN
PPZN
n


   




    
TGMD-3
TGMD-3    
   
    
   

         

 
 
        

        
TGMD-3       
       



        


    
  TGMD-3   
         
    

TGMD-3

[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
3 / 11



    
     
PMSCBarnett
   PMSC   

      

         
         

PMSC       
  

   

       







           
 
        
        
       
"" ""      
           
""""-
   "
"
   "   " 
  
      
" "" """"
"  
  
      

    


    PMSC 

      
      
         








   PMSC
   TGMD-3    
PMSC

        

PMSC
PMSC


[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
4 / 11



         

        
   
      

   TGMD-3  
        
   
           



     
SPSS    
TGMD-3 PMSC   
 d
      
<d     
   
       >d

        
    -


     
   


      

AMCPMC 
PMC
AMC







M(SD)
M(SD)
M(SD)
M(SD)
M(SD)
M(SD)



































        
AMCPMC 
AMC
>p

  d       
         
    >p
 d 
    
       
     PMC  
    
<p
>p  >p  




[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
5 / 11


     
AMCPMC 
      
   
pr   
pr p
r
AMCPMC 



d
p
df
t
±
±

< *

-
 ± 
 ± 

AMC

< **


 ± 
 ± 


< **


 ± 
 ± 




 ± 
 ± 

PMC

< **


 ± 
 ± 


< **


 ± 
 ± 

*p0.05
**p0.001
AMCPMC

±
N
r
p
BCa 95% CI

 ± 


**
[ ,  ]

 ± 

 ± 


**
[ ,  ]

 ± 

 ± 


**
[ ,  ]

 ± 

 AMCPMC 
         
AMCPMC 



  Stodden
        

  
 
     
AMC 
      
 PMC
  

        

          


    
         


[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
6 / 11



        
        

AMC
   
       
          

 
  
PMC



       Carcamo-
Oyarzun  Morano  
Barnett
      

     
        

        
         



      

 
 

      
        
       
       
        
      Morano
     Barnett
     
Valentini



       
Valentini






AMCPMC

   
        


  

         
 FMS  
     

 FMS 
 FMS

      
 
     .    



[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
7 / 11


    

        


     

 

         

        
     




.  
        
       



    




    
   
      
   



          
        
     
      
     

       



 

 "
 "   
  

   
IR.ABADANUMS.REC.1400.034


References
1. Abarca-mez L, Abdeen ZA, Hamid ZA, Abu-
Rmeileh NM, Acosta-Cazares B, Acuin C, et al.
Worldwide trends in body-mass index,
underweight, overweight, and obesity from 1975 to
2016: a pooled analysis of 2416 population-based
measurement studies in 128· 9 million children,
adolescents, and adults. The lancet.
2017;390(10113):2627-42.
2. Bher M. Obesity: global epidemiology and
pathogenesis. Nature Reviews Endocrinology.
2019;15(5):288-98.
3. Aaltonen S, Latvala A, Rose RJ, Pulkkinen L,
Kujala UM, Kaprio J, et al. Motor development and
physical activity: a longitudinal discordant twin-
pair study. Medicine and Science in Sports and
Exercise. 2015;47(10):2111.
4. Guthold R, Stevens GA, Riley LM, Bull FC.
Global trends in insufficient physical activity
among adolescents: a pooled analysis of 298

[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
8 / 11


population-based surveys with 1· 6 million
participants. The Lancet Child and Adolescent
Health. 2020;4(1):23-35.
5. Katzmarzyk PT, Barreira TV, Broyles ST,
Champagne CM, Chaput JP, Fogelholm M, et al.
Physical activity, sedentary time, and obesity in an
international sample of children. Medicine and
Science in Sports and Exercise. 2015;47(10):2062-
9.
6. Stodden DF, Goodway JD, Langendorfer SJ,
Roberton MA, Rudisill ME, Garcia C, et al. A
developmental perspective on the role of motor
skill competence in physical activity: An emergent
relationship. Quest. 2008;60(2):290-306.
7. Barnett LM, Lai SK, Veldman SL, Hardy LL,
Cliff DP, Morgan PJ, et al. Correlates of gross
motor competence in children and adolescents: a
systematic review and meta-analysis. Sports
Medicine. 2016;46(11):1663-88.
8. Barnett LM, Morgan PJ, Van Beurden E, Ball K,
Lubans DR. A reverse pathway? Actual and
perceived skill proficiency and physical activity.
Medicine and Sciences in Sports and Exercise.
2011;43(5):898-904.
9. Clark JE, Metcalfe JS. The mountain of motor
development: A metaphor. Motor development:
Research and Reviews. 2002;2(163-190):183-202.
10. Goodway JD, Ozmun JC, Gallahue DL.
Understanding motor development: Infants,
children, adolescents, adults: Jones & Bartlett
Learning; 2019.
11. Robinson LE, Stodden DF, Barnett LM, Lopes
VP, Logan SW, Rodrigues LP, et al. Motor
competence and its effect on positive
developmental trajectories of health. Sports
Medicine. 2015;45(9):1273-84.
12. Cattuzzo MT, dos Santos Henrique R, Ré
AHN, de Oliveira IS, Melo BM, de Sousa Moura
M, et al. Motor competence and health related
physical fitness in youth: A systematic review.
Journal of Science and Medicine in Sport.
2016;19(2):123-9.
13. Utesch T, Bardid F, Büsch D, Strauss B. The
relationship between motor competence and
physical fitness from early childhood to early
adulthood: A meta-analysis. Sports Medicine.
2019;49(4):541-51.
14. Harter S. Effectance motivation reconsidered.
Toward a developmental model. Human
Development. 1978;21(1):34-64.
15. Khodaverdi Z, Bahram A, Stodden D,
Kazemnejad A. The relationship between actual
motor competence and physical activity in
children: mediating roles of perceived motor
competence and health-related physical fitness.
Journal of Sports Sciences. 2016;34(16):1523-9.
16. LeGear M, Greyling L, Sloan E, Bell RI,
Williams BL, Naylor PJ, et al. A window of
opportunity? Motor skills and perceptions of
competence of children in Kindergarten.
International Journal of Behavioral Nutrition and
Physical Activity. 2012;9(1):1-5.
17. Breslin G, Murphy M, McKee D, Delaney B,
Dempster M. The effect of teachers trained in a
fundamental movement skills programme on
childrens self-perceptions and motor competence.
European Physical Education Review.
2012;18(1):114-26.
18. Bardid F, Huyben F, Lenoir M, Seghers J, De
Martelaer K, Goodway JD, et al. Assessing
fundamental motor skills in Belgian children aged
38 years highlights differences to US reference
sample. Acta Paediatrica. 2016;105(6):e281-90.
19. Barnett LM, Ridgers ND, Salmon J.
Associations between young children's perceived
and actual ball skill competence and physical
activity. Journal of Science and Medicine in Sport.
2015;18(2):167-71.
20. Barnett LM, Van Beurden E, Morgan PJ,
Brooks LO, Beard JR. Childhood motor skill
proficiency as a predictor of adolescent physical
activity. Journal of Adolescent Health.
2009;44(3):252-9.
21. Bolger LE, Bolger LA, O’Neill C, Coughlan E,
O’Brien W, Lacey S, et al. Age and sex differences
in fundamental movement skills among a cohort of
Irish school children. Journal of Motor Learning
and Development. 2018;6(1):81-100.
22. Carcamo-Oyarzun J, Estevan I, Herrmann C.
Association between actual and perceived motor
competence in school children. International
Journal of Environmental Research and Public
Health. 2020;17(10):3408.
23. Lubans DR, Morgan PJ, Cliff DP, Barnett LM,
Okely AD. Fundamental movement skills in
children and adolescents. Sports Medicine.
2010;40(12):1019-35.
24. Morano M, Bortoli L, Ruiz MC, Campanozzi
A, Robazza C. Actual and perceived motor
competence: Are children accurate in their
perceptions? PLoS One. 2020;15(5):e0233190.
25. Liong GH, Ridgers ND, Barnett LM.
Associations between skill perceptions and young
children's actual fundamental movement skills.
Perceptual and Motor Skills. 2015;120(2):591-603.
26. Barnett LM, Ridgers ND, Zask A, Salmon J.
Face validity and reliability of a pictorial
instrument for assessing fundamental movement
skill perceived competence in young children.

[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
9 / 11


Journal of Science and Medicine in Sport.
2015;18(1):98-102.
27. Johnson TM, Ridgers ND, Hulteen RM,
Mellecker RR, Barnett LM. Does playing a sports
active video game improve young children's ball
skill competence? Journal of Science and Medicine
in Sport. 2016;19(5):432-6.
28. Ulrich DA. TGMD-3: Test of gross motor
development: Austin, TX: Pro-Ed; 2018.
29. Mohammadi F, Bahram A, Khalaji H, Ulrich
DA, Ghadiri F. Evaluation of the psychometric
properties of the Persian version of the test of gross
motor development3rd edition. Journal of Motor
Learning and Development. 2019;7(1):106-21.
30. Mohammadi F. The psychometric of the
pictorial scale of perceived movement skill
competence in 7-10 years old children Ahvaz
City1. Motor Behavior. 2021;13(46):45-76.
31. Cohen J. Statistical power analysis for the
behavioral sciences: Routledge; 2013.
32. De Meester A, Barnett LM, Brian A, Bowe SJ,
Jiménez-Díaz J, Van Duyse F, et al. The
relationship between actual and perceived motor
competence in children, adolescents and young
adults: A systematic review and meta-analysis.
Sports Medicine. 2020;50(11):2001-49.
33. Menescardi C, De Meester A, Morbée S,
Haerens L, Estevan I. The role of motivation into
the conceptual model of motor development in
childhood. Psychology of Sport and Exercise.
2022:102188.
34. Jekauc D, Wagner MO, Herrmann C, Hegazy
K, Woll A. Does physical self-concept mediate the
relationship between motor abilities and physical
activity in adolescents and young adults? PLOS
One. 2017;12(1):e0168539.
35. Jaakkola T, Huhtiniemi M, Salin K, Seppälä S,
Lahti J, Hakonen H, et al. Motor competence,
perceived physical competence, physical fitness,
and physical activity within Finnish children.
Scandinavian Journal of Medicine and Science in
Sports. 2019;29(7):1013-21.
36. Valentini NC, Barnett LM, Bandeira PFR,
Nobre GC, Zanella LW, Sartori RF. The pictorial
scale of perceived movement skill competence:
Determining content and construct validity for
Brazilian children. Journal of Motor Learning and
Development. 2018;6(s2):S189-204.
37. Arman M, Bahram A, Kazemnejad A,
Parvinpour S. Perceived movement skills
competence in preschool girls and boys. Journal of
Rehabilitation Medicine. 2021;9(4):135-43.
38. Slykerman S, Ridgers ND, Stevenson C,
Barnett LM. How important is young children's
actual and perceived movement skill competence to
their physical activity? Journal of Sscience and
Medicine in Sport. 2016;19(6):488-92.
39. Cohen KE, Morgan PJ, Plotnikoff RC, Callister
R, Lubans DR. Physical activity and skills
intervention: SCORES cluster randomized
controlled trial. Medicine and Science in Sports
and Exercise. 2015;47(4):765-74.

[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
10 / 11
Mohammadi et al/ Investigating the relationship Between the Perception of motor Competence and the Actual
motor Competence of Elementary School Children; A Cross-Sectional Study
2202 Autumn ,3 Issue ,9 Volume / Sciences Medical of University Jiroft of ournalJ
Investigating the Relationship Between the Perception of motor
Competence and the Actual motor Competence of Elementary School
Children; A Cross-Sectional Study
Received: 13 Oct 2022 Accepted: 19 Dec 2022
Farzad Mohammadi1*, Negar Salehi Mobarakeh2, Leila Zameni3, Senad Mehmedinov4
1. Assistant Professor, Department of Physical Education and Sport Science, Abadan Branch, Islamic Azad
University, Abadan, Iran 2. Assistant Professor, Department of Physical Education and Sport Science,
Abadan Branch, Islamic Azad University, Abadan, Iran 3. Assistant Professor, Department of Motor
Behavior, Faculty of Humanities, Sari Branch, Islamic Azad University, Sari, Iran 4. Assistant Professor,
Faculty for Education and Rehabilitation, University of Tuzla.
*Corresponding Author: Assistant Professor, Department of Physical Education & Sport Science, Abadan
Branch, Islamic Azad University, Abadan, Iran.
Email: Farzad.Mohammadi@iau.ac.ir Tel: +98 9167038194 Fax: +98 6153360111
Abstract
Introduction: Actual and Perceived Motor Competence are important correlates of participation in
physical activity. The aim of this study was to investigate the relationship between the perception of motor
competence (PMC) and the actual motor competence (AMC) of primary school children.
Materials and Methods: The study method is cross-sectional and descriptive-analytical. The statistical
population of the study was children aged 7 to 10 who were active in sports clubs in Ahvaz. 652 children
were selected through multi-stage cluster sampling from eight districts of Ahvaz city. AMC was assessed
with the Test of Gross Motor Development-3rd Edition and PMC was assessed with the pictorial scale of
Perceived Movement Skills Competence Test. Data were analyzed through student t-test for independent
samples and Pearson correlation coefficient with SPSS version 24 software at a significance level of 0.05.
Results: The correlation coefficient between actual and perceived locomotor subtests was positive and
significant (r(0.652)=0.258, p=0.001). Also, between the actual and perceived object control subtests, the
correlation coefficient was positive and significant (r(0.652)=0.251, p=0.001). In the total score of actual
and perceived motor competence tests, the correlation coefficient was positive and significant
(r(0.652)=0.318, p=0.001). In the performance of actual and perceived object control subtests and the total
score of actual and perceived motor competence tests, gender differences were observed in favor of boys
(p<0.05).
Conclusion: The positive correlation between actual and perceived motor competence indicates that
children have accurate perception as a result of the development of cognitive skills needed to evaluate their
competence. Considering the existence of gender differences and the weaker performance of girls, it is
necessary to design intervention programs for them.
Keywords: Motor Competence, Perception, Motor skills, Gender
1090
[ Downloaded from journal.jmu.ac.ir on 2023-01-09 ]
Powered by TCPDF (www.tcpdf.org) 11 / 11
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Background: Actual and perceived motor competence are important correlates of various health-related behaviors. As such, numerous studies have examined the association between both constructs in children and adolescents. Objectives: The first aim of this review and meta-analysis was to systematically examine, analyze and summarize the scientific evidence on the relationship between actual and perceived motor competence (and by extension more general physical self-perception) in children, adolescents and young adults with typical and atypical development. The second aim was to examine several a priori determined potential moderators (i.e., age, sex, and developmental status of study participants, as well as level of alignment between measurement instruments) of the relationship between actual motor competence and perceived motor competence/physical self-perception. Design: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement and was registered with PROSPERO on August 21st 2017. Data sources: A systematic literature search of five electronic databases (i.e., MEDLINE, SPORTDiscus, Web of Science, PsycINFO and EMBASE) with no date restrictions was conducted. Eligibility criteria for selecting studies: Eligibility criteria included (1) a study sample of youth aged 3-24 years, (2) an assessment of actual motor competence and perceived motor competence/physical self-perception, and (3) a report of the association between both, using a cross-sectional, longitudinal, or experimental design. Only original articles published in peer-reviewed journals with at least the title and abstract in English were considered. Analyses: Meta-analyses were conducted by type of actual motor competence (i.e., overall motor competence, locomotor, object control, stability/balance and sport-specific competence) through univariate and multivariable random-effects meta-regression and clustered random-effects meta-regression models. Results: Of the 1643 articles screened, 87 were included for the qualitative review, while 69 remained for the final meta-analyses. All included studies had some risk of bias with only 15% meeting five of the six examined criteria. Significant (p < 0.001) pooled effects were found for overall motor competence (N = 54; r = 0.25; 95% CI [0.20, 0.29]), locomotor (N = 45; r = 0.19; 95% CI [0.13, 0.25]), object control (N = 50; r = 0.22; 95% CI [0.17, 0.27]), stability/balance (N = 8; r = 0.21; 95% CI [0.12, 0.30]), and sport-specific competence (N = 8; r = 0.46; 95% CI [0.28, 0.61]). None of the hypothesized moderators significantly influenced the relationship between actual motor competence and perceived motor competence/physical self-perception. Conclusions: The strength of the association between actual motor competence and perceived motor competence/physical self-perception in youth is low to moderate, with current data demonstrating that the strength of association does not differ by age, sex, developmental status, or alignment between measurement instruments. However, this review highlights the lack of clarity on the relationship between actual motor competence and perceived motor competence/physical self-perception. Future research should address issues surrounding the design of studies and measurement of actual motor competence and perceived motor competence/physical self-perception as well as explore other potential confounding variables (i.e., product- versus process-oriented assessments, race, culture) that might affect the relationship between these two constructs.
Article
Full-text available
(1) Background: The association between actual and perceived motor competence (MC) is one of the underlying mechanisms that influence the practice of physical activity. This study mainly aimed to analyze the structure and correlations between actual and perceived MC in schoolchildren and to compare actual and perceived MC between girls and boys. (2) Methods: A total of 467 fifth and sixth graders (43.9% girls, M = 11.26, SD = 0.70) participated. Actual and perceived MC were assessed. To examine the proposed four factor models, structural equation models (factor analyses, latent correlations, invariance testing for gender) were conducted. Student t-test for independent samples was used to compare boys and girls. (3) Results: Proposed models achieved acceptable fit values with moderate correlation between the factors according to the type of MC in actual and perceived MC. Invariant factor structure in boys and girls was revealed. Boys performed and perceived themselves higher in object control than girls; whereas girls showed higher actual and perceived self-movement than boys. (4) Conclusions: The association between actual and perceived MC exists both globally and separately by gender, despite the differences between boys and girls. It is important to consider the role of gender and type of MC in the development of motor competencies, as well as in the strengthening of the children’s sense of competence
Article
Full-text available
The aims of this study were (1) to investigate whether 6−7-year-old children are accurate in perceiving their actual movement competence, and (2) to examine possible age- and gender-related differences. A total of 603 children (301 girls and 302 boys, aged 6 to 7 years) were assessed on the execution accuracy of six locomotor skills and six object control skills using the Test of Gross Motor Development (TGMD-2). The perceived competence of the same skills, plus six active play activities, was also gauged through the Pictorial Scale of Perceived Movement Skill Competence (PMSC-2). The factorial validity of the TGMD-2 and PMSC-2 scales was preliminarily ascertained using a Bayesian structural equation modeling approach. The relationships between the latent factors of the two instruments were then assessed. Gender and age differences were also examined. The factorial validity of the TGMD-2 and the PMSC-2 was confirmed after some adjustments. A subsequent analysis of the relationship between the latent factors (i.e., locomotor skills and object control) of the two instruments yielded very low estimates. Finally, boys and older children showed better competence in object control skills compared to their counterparts. Weak associations between actual and perceived competence suggest that inaccuracy in children’s perceptions can be likely due to a still limited development of cognitive skills needed for the evaluation of the own competence. From an applied perspective, interventions aimed at improving actual motor competence may also increase children’s self-perceived motor competence and their motivation toward physical activity.
Article
Full-text available
The purpose of this study was to investigate reciprocal relationships among students’ motor competence (MC) (leaping, throwing, catching, jumping skills), perceived physical competence, health‐related fitness (HRF) (20 m. shuttle run, push‐up, abdominal muscles endurance tests) and objectively measured moderate‐to‐vigorous physical activity (MVPA). Participants included 422 Grade 5 Finnish children (246 girls). Two separate structural equation models investigated paths 1) from MC through both perceived physical competence and HRF to MVPA, and 2) from MVPA through both perceived physical competence and HRF to MC. Model 1 demonstrated an indirect path from MC through HRF to MVPA and a direct path from MC to perceived physical competence for both boys and girls. Additionally, model 1 revealed a direct path from perceived physical competence to MVPA for the girls and from MC to MVPA for the boys. MC, perceived physical competence and HRF explained 13% of variance in MVPA for the girls and 25% for the boys. Model 2 indicated indirect paths from MVPA through perceived physical competence to MC and from MVPA through HRF to MC for both boys and girls. Additionally, a direct path from MVPA to MC was found in the boys’ group. MVPA, perceived physical competence and HRF explained 48% of variance in MC for the girls and 53% for the boys. Results of this study provide preliminary support for the reciprocal nature of relationships among MC development, perceived physical competence, HRF and MVPA. This article is protected by copyright. All rights reserved.
Article
Full-text available
Background: Motor competence and physical fitness are important factors for promoting positive trajectories of health over time. In 2008, Stodden and colleagues developed a model that discussed the role of both factors in physical activity. Furthermore, the authors hypothesized that the relationship between motor competence and physical fitness is reciprocal and changes over time. Objective: The aim of the present meta-analysis was to synthesize the evidence on the relationship between motor competence and components of physical fitness from early childhood to early adulthood and the potential influence of age. Methods: Scientific databases Web of Science and PubMed were used for the literature search. German- as well as English-language studies were included that assessed typically developing children. In accordance with the PRISMA guidelines, 93 studies between 2005 and June 2018 were screened in full. Nineteen studies comprising of 32 samples, 87 single data points from 15,984 participants aged 4.5-20.4 years (Mage = 11.44, SD = 4.77) were included in the analysis. Results: A random effects model was conducted for the meta-regression with age as moderator variable. The relationship between motor competence and physical fitness was moderate to large (r = 0.43, p < 0.001) after controlling for multiple effects, including dependent samples and small sample sizes in the quantitative synthesis. Additionally, age was a small significant positive moderator of the effect size. Conclusions and implications: The findings provide support for a moderate to large positive relationship between motor competence and physical fitness that strengthens with increasing age. However, the results also indicate that there may be an overlap in content between motor competence and physical fitness assessments, which warrants further investigation. More research is also needed to assess similarities and differences in terms of the construct structures.
Article
Full-text available
The Test of Gross Motor Development-3rd Edition (TGMD-3) is an instrument for measuring gross motor development in children with and without a disability. This study aims to evaluate the psychometric properties of the Persian version of the TGMD-3 in 3-to 10-year-old Iranian children. The TGMD-3 was administered to 1,600 children (M age = 6.56 ± 2.29 years; 50% boys). The content validity of the TGMD-3 was established by five experts while its reliability was assessed through calculating internal consistency, test-retest, intra-rater, and inter-rater reliability coefficients. All reliability indices were excellent (>.82). The two-factor model was validated using confirmatory factor analysis. Adequate fit indices were found for the two-factor model (Χ ² (64) = 389.02, p <.05, root mean square error of approximation (RMSEA) =.056, goodnesss of fit index (GFI) =.96, adjusted goodness of fit index (AGFI) =.94, normed fit index (NFI) =.96, non-normed fit index (NNFI) =.96, comparative fit index (CFI) =.96, incremental fit index (IFI) =.96, standardized root mean square residual (SRMR) =.03). An alternative one-factor model was also tested. Adequate fit indices in a one-factor model were found (Χ ² (65) = 615.88, p =.0001, RMSEA =.07, GFI =.94, AGFI =.92, NFI =.98, NNFI =.98, CFI =.98, IFI =.98, SRMR =.03). The psychometric properties of the Persian version of TGMD-3 in Iranian children were supported and users can confidently use this test to evaluate gross motor development in Iranian children.
Article
Full-text available
The purpose of this study was to assess fundamental movement skill (FMS) proficiency of Irish primary school children, relative to age and sex. Data collected were baseline measures for Project Spraoi, a physical activity (PA) and nutrition-based intervention. Participants (N=203) were senior infant (n=102, mean age: 6.0 ± 0.4 years) and fourth class (n=101, mean age: 9.9 ± 0.4 years) children from 3 primary schools in the south of Ireland. FMS testing was conducted using the Test of Gross Motor Development-2 (TGMD-2), assessing 6 locomotor and 6 object-control skills. Analysis of variance (ANOVA) was used to assess age and sex related differences in FMS proficiency. Older children scored significantly higher than younger children in both locomotor (p<0.05) and object-control score (p<0.05). Boys scored significantly higher than girls in object-control score (p<0.05), while girls scored significantly higher in locomotor score (p<0.05). FMS levels among Irish primary school children are similar to children worldwide, with age and sex differences evident. Early interventions, aimed at improving FMS, are warranted among Irish primary school aged children as greater proficiency is related to greater PA participation and numerous health benefits.
Article
The aim of this study was twofold: first, to investigate whether perceived motor competence (PMC) mediates the relation between actual motor competence (AMC) and physical activity (PA) according to the conceptual model of motor development, and second to examine the role of different motivational regulations (i.e., intrinsic, identified, introjected, and external regulation) in the relationship between PMC and PA. A sample of 504 Spanish students (46.2% girls, 8–12 years old) voluntarily participated in this study. In relation to the first aim, structural equation modeling revealed that PMC indeed mediates the association between AMC and PA. In relation to the second aim, positive associations between AMC and PMC (β = 0.32, p < .001), which in turn was positively related to intrinsic and identified regulations (β = 0.46 and β = 0.43 respectively, p < .001), were found. The model showed direct paths from intrinsic and introjected regulation to PA (β = 0.27 and β = 0.22, p < .05) and indirect paths from PMC through intrinsic motivation to PA (β = . 13, p < .05). This study confirms that intrinsic motivation mediates the association between PMC and PA. Strategies targeting to build and develop children’s AMC and PMC, and fostering children’s intrinsic motivation should be targeted to promote children’s PA engagement and motor development.
Article
The pictorial scale of Perceived Movement Skill Competence (PMSC) was developed to assess young children’s perceptions of competence in fundamental motor skills (FMS) and in active play. The objectives of the present study were to assess validity and reliability with Brazilian children. Nineteen health-related professionals and, 331 children (4 to 8 years-old) were enrolled in the study. Kappa concordance coefficient, intra-class correlation coefficient (ICC), polychoric correlations and confirmatory factor analyses were used. The back-reverse translation prevents the bias of a single translation. Experts and professionals confirmed the clarity and pertinence of the items with high agreement scores (values > .90). Test-retest reliability results showed strong ICC (values > .90). The Cronbach’s alpha coefficient showed good internal consistency (α values from .70 to .85). The CFA showed appropriate fit indexes for a three-factor model (i.e. six object control, six locomotion and six active play items) and a two-factor model (i.e. 12 FMS and six active play items). However the two-factor model showed superior indexes (χ2/DF = 3.1; RMSEA = .06; GFI = .90; CFI = .91; AIC = 485.8). The PMSC is a valid and reliable assessment to use in Brazil.