ArticlePDF Available

工程噬菌体的合成生物学 智造 Merging the frontiers: when synthetic biology meets advanced bacteriophage design

Authors:

Abstract

Bacteriophages (phages), natural viruses known for infecting and killing bacteria, are the most diverse and abundant organisms on Earth. In the past 100 years of research about phages, breakthroughs in genetics, molecular biology, and synthetic biology have been successfully achieved. The fascinating scientific history of phage therapy has been repeatedly reported as drug-resistant bacteria are becoming increasingly prevalent. Although phages outnumber other species combined in nature (1031 in total), only a small fraction of them have been successfully exploited in fighting infections caused by drug-resistant bacteria. Therefore, there is an urgent need to implement the core thought of synthetic biology,"build to learn, build to use", and to use methods such as high-throughput sequencing and precise genome editing to create enhanced variants with unique features to improve the efficacy and programmability of phage therapy. In the review, we discuss the recent technological advances in phage genome engineering approaches and the potential directions of synthetic biology to fuel phage development, such as modifying phage host range according to practical needs, mining the extensive resources of phages in nature with the help of macro genomes, combining multi-omics technologies to reveal the molecular mechanisms of phage-host interactions, regulating the intestinal phages to maintain intestinal homeostasis for human health and using big data and artificial intelligence to guide rational phage design. Synthetic biology is driving a paradigm shift in traditional experimental research by combining"Design-Build-Test-Learn (DBTL) cycles" to rationally designed phages. The synthetic phage design is promising for both top-down system optimization and bottom-up life-form reconstruction.
2022 3 XX期 |w ww.synbioj.com
Synthetic Biology Journal 2022,3XX1-18
工程噬菌体的合成生物学“智造”
陈青黎,童贻刚
(北京化工大学生命科学与技术学 北京 100029)
摘要:菌体,以杀菌特性而闻名的天然病毒,是地球上多样性和丰度最高的生物体。在过去一百多年中,噬菌
体的研究极大地推动了遗传学、分子生物学和合成生物学的发展。随着耐药超级细菌的流行,噬菌体疗法引人入
胜的科 学历史也被 广为传颂。 然而,相对 于自然环境 中丰富的噬 菌体数量 总数为 1031,比所有其他生物的总和
还要多,目前只有少数噬菌体被成功地应用于对抗耐药性细菌感染及其它工程领域。当前,急需践行合成生物
学从“造物致知”到“造物致用”理念,采用高通量测序和基因组精准编辑等先进生物技术来创建具有独特属性
的增强变体,提高噬菌体治疗的疗效和可编程性。本文综述了近年来噬菌体基因工程改造方法的技术进展以及合
成生物学助力噬菌体应用技术发展的研究动态,如按照实际需求改造噬菌体宿主范围、借助宏基因组挖掘自然界
中噬菌体的广泛资源、结合多组学技术揭示噬菌体与宿主互作的分子机制、调控肠道噬菌体组维持肠道稳态以促
进人体健康及利用大数据和新型人工智能指导噬菌体理性设计。总之,合成生物学正在跨时代驱动传统实验研究
范式转变,结合“设
—构建
—测试
—学 DBTL 循环”理性设计目标噬菌体,无论是自上而下的体
系优化,还是自下而上的生命体重构,工程噬菌体的合成生物体“智造”都大有可为。
关键词:噬菌体;合成生物学;工程噬菌体;可编程基因组;理性设计;噬菌体治疗
中图分类号:Q816 文献标志码:A
Merging the frontierswhen synthetic biology meets advanced
bacteriophage design
CHEN QingliTONG Yigang
College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing 100029China
Abstract: Bacteriophages (phages), natural viruses known for infecting and killing bacteria, are the most diverse and
abundant organisms on Earth. In the past 100 years of research about phages, breakthroughs in genetics, molecular
biology, and synthetic biology have been successfully achieved. The fascinating scientific history of phage therapy has
been repeatedly reported as drug-resistant bacteria are becoming increasingly prevalent. Although phages outnumber
other species combined in nature (1031 in total), only a small fraction of them have been successfully exploited in
收稿日期:202 2-12-06 修回日 期:XXXX-XX-XX
基金项目:国家 自然科学基金资助32001834)国家 重点研究发展 计划2018Y FA 0903000)军事生物安全研究计划(20SWAQX27)
引用本文:陈青 黎,童贻 . 工程噬菌体的合成生物学智造”J]. 合成生物学,2022,3. DOI:10.12 211/2096-8280.2022-070
Citation: CHEN Qingli,TONG Yigang. Me rging t he fro ntier s:when synthetic b iology meets adva nced b acte riophage design[J. Sy nthetic Bio logy Journa l,
2022,3. DOI:10 .12211/2096-8280.2022-070
DOI:10.12211/2096-8280.2022-070
特约评述
合成生物学 3
fighting infections caused by drug-resistant bacteria. Therefore, there is an urgent need to implement the core thought
of synthetic biology,"build to learn, build to use", and to use methods such as high-throughput sequencing and precise
genome editing to create enhanced variants with unique features to improve the efficacy and programmability of phage
therapy. In the review, we discuss the recent technological advances in phage genome engineering approaches and the
potential directions of synthetic biology to fuel phage development, such as modifying phage host range according to
practical needs, mining the extensive resources of phages in nature with the help of macro genomes, combining multi-
omics technologies to reveal the molecular mechanisms of phage-host interactions, regulating the intestinal phages to
maintain intestinal homeostasis for human health and using big data and artificial intelligence to guide rational phage
design. Synthetic biology is driving a paradigm shift in traditional experimental research by combining"Design-Build-
Test-Learn (DBTL) cycles" to rationally designed phages. The synthetic phage design is promising for both top-down
system optimization and bottom-up life-form reconstruction.
Keywords: phage; synthetic biology; engineered phage; reprogramming genome; rational design; phage therapy
噬菌 体约 100 年前被发现1-2
,是
细菌 简单
壳和 从噬 宿
到引起细菌裂解并释放出子代噬菌体为止,为一
个增 殖周期 ,一般 15-20 min据是
解期,可将噬菌体为烈性噬菌体和温噬菌
其中烈性噬菌体应用场景更广泛3
。烈性噬菌体
的繁 、入
裂解 5个阶段。噬菌体通过吸附蛋白与宿主细菌表
面的受体特异性结合,将其遗传物质注入宿主细
胞, 宿 核酸
和子 现子
细菌的相互抵抗防御可发生在噬菌体繁殖周期的
不同阶段
对噬
研究 对建
DNA
RNA
蛋白质”的分子生物学中心
4
、揭示遗传密码的三联子性质5 关重
人们基于此建立了基因调控的全新范式;细菌编
码限制性内切酶6并通过切割特定的 DNA 序列来
防止噬菌体感染这一现象启发研究人员利用限制
性内切酶与 T4 连接酶实现了 DNA 片段的重组和克
隆构,标着重 DNA 黄金时代的开始7
;而
噬菌体 DNA 聚合酶8推动了测序技术的发展9
CRISPR-Cas 系统的发现10-11更是引领一场
的基因编 辑技术革命并摘 2020诺贝尔奖
在过去的几十年里,世界范围内爆发了数次
大型 、真
002
3 www.synbioj.com
12
使
13
14
,但使用天然
宿
15
1416- 17
广 宿
噬菌 基因 转移 DNA 片段的
生素
合成生物学的进步使科学家们能够设计出用
1 8
19
20
21-23
24
32 周的静脉注射噬菌体中治疗耐
功出
本文总结了近年来噬菌体合成生物学领域内
突破性进展25
,将工程噬菌体视为有机整体,
Biology Technology BT Information
Technology IT ,利 合成 物学
“设
DBTL
环”,思
宿
宿
使
噬菌体作为治疗或预防药物26- 27
One
Health”降本增效28- 29
1噬菌体的裂解类型及生物学特性
1.1 温和噬菌体
侵入细菌后,其核酸附着并整合在宿主染色
体上 宿 同步
宿主细菌裂解的噬菌体称作温和噬菌体30
温和噬菌体对细菌有三大进化益处:作为水
平基因转Horizontal gene transferHGT)的
介、 变异
菌竞武器31
。通为温 菌体
毒力基因在增加细菌致病性中起重要作用,Chen
32报告了温和噬菌体 vB_BbrS_PHB09
PHB09)的迅速进化可减轻细菌毒力。Sousa
33通过评估两个噬菌体群体中基因流动频率证
实温 宿比烈
感染 宿噬菌
可能 广宿主烈
导的 定了
多基因的转移频率、结果和有利转移发生因素34
温和噬菌体因其高丰度和基因组多样性35
广
36
,搭建改造细菌和清除耐药质粒的平台,我
们也 体的
性必 编码
抗生 有安
性噬菌体
1.2 烈性噬菌体
烈性噬菌体,是指侵入宿主细菌后,随即引
起宿 解决
Labrie 37证明了烈性乳球菌噬菌体基因组的显
著可塑性,使它们能够快速适应动态的乳腺环境。
常见的工程思路为:选取有潜力的烈性噬菌
体, 菌株
活性新型 噬菌体 phiLLS38
,对耐药泛耐
生物膜形成尿路致病性大肠杆菌具有活性的新型
噬菌体 vB_EcoA_RDN8.139
,分析注释其基因组
学特征40
,并基因 强化 到应
临床的新型噬菌体重组体,如 Masuda 41通过基
003
合成生物学 3
因工 程将 LLB 结构基因引入烈性噬菌体基因组中
得到一种应对耐药问题的新型抗菌剂。Nick 42
成功使用经过工程改造的噬菌体治疗分枝杆菌引
发的难治性肺部感染,他们根据患者肺部的脓肿
分枝 十种
确定了两种能有效杀死感染患者体内分枝杆菌的
候选噬菌体,通过对这些噬菌体进行基因工程改
造来 力,
症的年轻患者接受挽救生命的肺移植手术扫清了
障碍。Jin 43采用基因编辑技术设计了一种可以
特异性靶向肠出血性大肠杆菌的工程噬菌体,该
工程 实验
肠出血性大肠杆菌的高效杀菌作用。
2噬菌体基因工程改造技术
2.1 温和噬菌体改造
噬菌 宿
点,可以采用编辑宿主细菌基因组的通用方法对
其进行改44-46
Ababi 47使 λRed 重组系统促进外源
ssDNA 在宿主基因组复制过程中结合到噬菌体基
因组上,并通过失活错配修复系统蛋白来抑制
DNA 修复在不 引入 标记 础上
重组频率可保证在六个循环后获取超过 40%
组噬菌体。这种基于无痕重组的 方法,可 4-5
内将多点突变引入温和噬菌体的基因组中。
Tridgett 48同样使用 λRed 组系来编
噬菌 抗生
选标记, 能够在 3-5 天内完成重组体构建。
本文仅列举部分改造温和噬菌体的代表案例,
此外还可 以采用 CRISPR-Cas 等多种方编辑
温和噬菌体,下文主要着重讨论针对烈性噬菌体
的改造案例。
2.2 烈性噬菌体改造
2.2.1 随机诱
诱变
需特性的酶、蛋白甚至整个基因组的大工具。
该技 力,
选目标重组体,可来获得具有所需表型的噬菌体。
常用紫外线49-50
化学 变剂 例如 基化
剂)提高突变频率,借助全基因组测序确认是否
获取 引入
表型筛选。Favor 51开发了化学加速病毒进化
输入
INPUT
输出
OUTPUT
菌群分析
Microbiota information analysis
噬菌体库的数据挖掘
Data mining in Phage database
计算机智能设计基因组
Computer-designed
phage genomes
下载序列信息
Download
电转化DNA的噬菌体重组
BRED
噬菌体工程改造
Phage genome engineering
噬菌体重启
Genome reboot
随机诱变
Random mutagenesis
经典同源重组系统
Homologous
recombination
CRISPR-Cas编辑
CRISPR-Cas gene editing
U
V
Cas9
tracrRN
A
crRNA
Host cell
1“智造”工程噬菌体流程及噬菌体基因工程改造方法
Fig. 1 Advanced bacteriophages design pipeline and the approachesof phage engineering
004
3 www.synbioj.com
Chemically accelerated viral evolution
CAVE,成功改造大肠杆菌噬菌体 T3 菌体T7
噬菌体以及肠道沙门氏菌噬菌体 NBSal001
NBSal002明了
稳定性。随机诱变可快速获取多种突变株,操作
简单,但需要注意随机诱变也可能导致噬菌体基
因组中其他部位产生额外的未知突变。
2.2.2 经典同源重组系统
同源重组策略是基因工程最常用的方法之
52-53
变体。
Pouillot 54开发了基于同源重组工程的噬菌
体编 同时
列中 多个 区域 保持 因的 其余 分完
可逆性地干扰宿主内特异性噬菌体 T4 噬菌体的裂
解周期;通过同源重组将任意数量的工程基因有
效地入到 T4 天然噬菌体的失活基因组;通过重
新激活噬菌体产生工程噬菌体的重组子代,构建
了庞 菌体
快速分离具有检测 (即诊断)感染和破坏革兰氏
阴性菌株 的重组 T4 噬菌体颗粒。
Jensen 55开发了基于 λRed 重组系统实现
T7 噬菌体的体内重组,可 以在 T7 噬菌体基因组上
进行单碱基改变和全基因替换,并将 T7 噬菌体基
因组 DNA 转化细胞的效率提高了 100
现使另外两种通常在大肠杆菌中不繁殖的 T7 样噬
菌体能够在基因组转化后重启。
同源
式菌的宿(尤其革兰氏阳性菌),没有有效的
化方 案; 1%
(例 因) 带来
常需 劳动
前常用两种方式设计和选择目标噬菌体基因组,
提高 外引
噬菌 光蛋
56
在某 些情
可以 菌体 宿
围的 某种
的噬 检测
异性物, 进行 PCR 扩增反应完成57
,并 PCR
条带 纯化
筛选标记、表型筛选和基于 PCR 的筛选方案均有
助于得到所需的噬菌体突变体。
2.2.3 BRED 系统
电转化 DNA 的噬菌体重组策略58-5 9
Bacteriophage recombineering of electroporated
DNABRED是一种简单有的对噬菌基因
组进 它是
重组模板共同电转到宿主菌株中来改噬菌
电转化后可通过 PCR 筛选出平板中发生重组的噬
菌斑。
Marinelli 58 BRED 在分枝杆菌噬菌体
Giles 中实现了非必需基因缺失、读码框内缺失、
点突 标签
的精确插入。F ehér 60首次在肠杆菌科噬菌体中
应用 BERD 技术,从肠杆菌基因工程中最常用的转
噬菌 P1vir 的基因组中去除了移动元件
IS1 IS 元件的基因工程载体 P1virdeltaIS
其噬 爆发
Marinelli 59 BRED
技术 首例
法治疗人 类分枝杆菌感染 的案例(即 BRED 技术实
现将治疗性温和噬体转化为烈性噬菌体)并指
出用 噬菌
的优势以 BRED 进行此类修饰的未来前景。
BRED 技术可做到在噬菌体基因组中进行点突
变等精确突变,重组效率提高到 10-15%
删除 能够
更高 体基
分枝杆菌、大杆菌、沙氏菌61和克雷伯菌噬
菌体62的基因组中成功应用,并具有扩展到更多
噬菌 有局
转化 宿细胞
,许 BRED 的变体逐渐出现,如 Wetzel 63
BRED 技术 CRISPR-Cas9 相结合,以促进高效
和精确的噬菌体基因组工程。
2.2.4 CRISPR- Cas 系统
CRISPR-Cas 是细菌和古细菌在长期的演化过
程中出现的一种对抗噬菌体感染或外源 DNA 入侵
的适性免 御系 CRISPR-Cas 系统的出现
加速 展, 广
一种 CRISPR-
005
合成生物学 3
Cas 结合进行噬菌体基因编辑的技术,可用于编辑
原本 体的
们进一步了解噬菌体与宿主相互作用52-53
Martel 64通过使用嗜热链球菌 CRISPR-Cas
II-A 系统作为提高重组效率的选择性压力在烈性噬
菌体 2972 的基因组中实现特异性点突变和大片段
的删编辑 Kiro 65 I-E CRISPR-Cas
统开发将大肠杆菌噬菌体 T7 噬菌体基因工程化的
通过 源重 T7 噬菌
DNA 序列侧会 同源 ,而 成功
的基因组 会被 CRISPR-Cas 系统除,从而离所
需的重组 噬菌体,并将使 用的 CRISPR-Cas 类型在
人们原来认知的 II 基础上扩展,该方法可应用到
任何噬菌体基因工程。
Lemay 66-67成功地将化脓性链球菌 II-A
CRISPR-Cas 统用辑乳乳球 烈性
P2 的基 因组,实 现了 ORF47 单碱基突、插
入及 ORF24ORF42 ORF49 删除Shen 68
应用化脓 链球菌 CRISPR-Cas 统在肺炎雷伯
氏菌噬菌 phiKpS2 ,仅需 30-60 bp 的同源臂即
可完成点突变、基因缺失和交换,成功删除了 1
9个基 Nayeemul 69使 III-A
CRISPR- Cas 系统的 CRISPR-Cas1 0 改造金黄色葡萄
球菌噬菌体, 100% 的效率分离出目标噬菌体突
变体,证 CRISPR-Cas10 种噬体基工程
Tao 70 VCRISPR-Cas12a
系统与 II C RISPR-Cas9 系统相比,显示出对葡
Glucosyl hydroxymethyl
cytosineGhmC 饰基 组的 效切 ,可
解决因 T4 噬菌体的 GhmC 基因组对 CR ISPR-Cas
统表现出不同程度的抗性带来的编辑难题,并基
于此 开发了使 VCRISPR-Cas12a 系统的 T4
菌体基因组中创建插入和缺失的编辑技术,并应
用此 技术 T4 噬菌体衣壳蛋白 Hoc Soc
内将外源肽和蛋 白质连接到 T4 菌体衣壳的能力。
Zhang 71设计了基于异源 CRISPR-Cas9 系统的
宿 Vibrio
natriegens TT4 体内进行了 Natriegens phage TT4P2
基因组编辑实验,实现了噬菌体基因的缺失和
替换。
Joseph Bondy-Denomy72Jennifer A.
Doudna73两个课题组利用新挖掘的 CRISPR-
Cas13a 作为反筛工具,构建表达 Cas13a 和靶向噬
菌体内源基因 crRNA 的反筛菌株和含同源模版质
粒的 滴在
除天然噬菌体,实了高效的噬菌体基组编辑。
两项工作也有各自的别出心裁之处,即利用的
Cas13a 源及目标噬菌体不同Jennifer A. Doudna
等通过生物信息学分析及实验证明筛选出来源于
Leptotrichiabuccalis Cas13a
力,并 9个大肠杆菌噬菌体都有效,得到应用于
广 LbuCas13a Joseph Bondy-
Denomy 等选取生化表征最充分的来源于 Listeria
seeligeri Cas13a 靶向噬菌体 ФKZOMKO1
PaMx41 增加 向筛 步骤 噬菌 ФKZ
ORF120 下游整合 anti-CRISPR 基因 acrVIA1
噬菌体在表达针对其他转录物的 crRNA 的宿主中
也可以高效工作。
基于 CRISPR-Cas 系统的噬菌体工程的局限性
在于仅限 于编码表征的天 CRISPR-Cas 系统或能
够进行转 化以表达活性异 CRISPR-Cas 系统的细
菌宿主;可能会受到天然噬菌体携带的 Acr 系统的
DNA 靶向和 RNA CRISPR-Cas
统都 筛选
噬菌体工程中的适用性可能会受到宿主基因组上
天然 space r 存在的限制,通常可以通过预先分析宿
主基因 组上的 spacer 序列,筛选出合适的宿主体系
来克 服这一此外 ,研究 表明 II CRISPR-Cas
系统在 T7 噬菌体中比 I型系统更易于使用且通常更
有效74
,这一研究成果为未来更有效的 T7 噬菌体
工程化提供了基础
Ramirez-Chamorro 75指出依赖于 CRISPR-
Cas 核酸酶靶向消除天然噬菌体的同源重组的策略
基因 较大 烈性 噬菌 中往 效果 稳定
II-A CRISPR- Cas9 系统对 T5 的编辑效率低下
Retron 的重组替换方案,不需要
较长 隆难
的长度有一定限制
基于 CRISPR-Cas 系统的噬菌体基因组编辑平
台的 具普
解决 究不
菌体 术的
006
3 www.synbioj.com
现新的分子生物学工具。
2.2.5 Genome reboot
合成噬菌体基因组的 DNA,并 或体
组装 宿将其
整的基因组,这个过程称为噬菌体重新启动
Phage genome reboot 可分为 4 1
过从头合成或 PCR 扩增产生大量较短的、重叠的
片段 2)在酵母重组平台或体外将人工噬菌体
76
3)将组装好的噬菌体基因组转化至大肠杆菌、L
型细 宿胞表
性的 菌体 颗粒 4)使用氯仿等裂解释放重启
的噬 使新侵 宿
增殖富集,获取大量工程化噬菌体
噬菌体 DNA 被用作模板来生成覆盖整个噬菌
体基因组的重叠 PCR ,或 接合
方式 片段
装有多种可选方案
首选是在酵母平台实现噬菌体基因组的高效
重组。在酵母人工染色体重组技术77
PCR 扩增噬菌体基因组得到长约 4-12 kb 的多个片
段, 段具 线
染色体 Yeast artificial chromosomesYAC)重
的同 转化
天然 有效
组和 YAC 载体78
。随后从酵母细胞中提取含有组
装完整的噬菌体基因组的 YAC 载体其转
细菌 宿 动功
得的 序以
改造 止,
工程已成功用于改造大肠杆菌78
、克雷伯78
和铜绿假单胞79对应的噬菌体,重新启动首先
发生 体的 宿
略还适用于工程噬菌体诱导的染色体岛(Phage-
inducible chromosomal islandsPICIs
80
YAC
助的 ,但
启仅 宿化,
略对高度可转化细菌的适用性。
Pryor 81通过优化体外 DNA 组装方法
Golden Gate assembly GGA 52
个部分的 40 kb T7 噬菌体基因组,并且在细胞转
后重启噬菌体颗粒。也可以通过 Gibson 组装策
82拼接 Pulkkinen 83使
用这 配反
荧光素酶 的报告型 T7 噬菌体。
将组装完整的噬菌体基因组转入宿主或其他
合适体系,是决定能否重启成功的关键步骤。
电穿已成 为将 DNA 递送到原核细胞和真核
细胞 菌体 宿
细胞 重启
肠杆菌中实现电转噬菌体基因组84
Milho 85
使用电穿孔 DNA 的噬菌体重组来评估功能未知的
单个基因缺失对沙门氏菌噬菌体 PVP-SE2 响。
穿 DNA 的成功率受限于 DNA
效率。
Transcription and
translationTXTL)系统是利用细胞提取物(而
不是 和翻
势是 细胞
人为 ,可
Rustad 86展示了在无细胞平台中完整合成基因
组长 169kb T4 噬菌最大
体之 了无
因调控、代谢和自组装的整合强大的调控能力,
将生 成提
平。Garenne 87利用无细胞平台成功重启 40kb
T7 便
Emslander 88通过将枯草芽孢杆菌的 RNA
Σ-igA SigA 加入无细胞系统,将无细胞生
产扩 细菌
升的 剂量
杆菌 肺炎
体。TXTL 统已发展到体外可行的、复杂的、自
我组 的体
MS289
ΦX17490
T791
T486
疫耶尔森氏菌噬菌体88
88和抗酸性分枝杆菌噬菌体92
,未来有希望扩
展到 无细
使用变文时,重启间难保留因型-
型关联,使用微流控液滴模拟单分子系统93将是
一个很好的解决方案。
007
合成生物学 3
细胞壁缺陷的李斯特菌 L细菌 Bacterial L-
forms
94-95代表
生命 同样
启动合成噬菌体基因组,即从裸露的合成 DNA
产生病毒 粒。Kilcher 96证实 L细菌仅支
持天然和合成的李斯特菌噬菌体基因组的重新启
动,还能够跨属重新激活芽孢杆氏菌和葡萄球菌
噬菌体L型细菌中的噬菌体重启工程不受噬菌体
的生方式 态、 DNA 包装策略以及基因组大
小和 ,为
工程平台,但目前尚无研究表明是否可以成功为
所有细菌 物种生成 L型细菌。
Cheng 97开发了一种全新的“跳板”宿主
Stepping-stone
host assisted phage engineeringSHAPE 使
Red 同源重组系统重组天然噬菌体基因组与目的
DNA段,实现对天然噬菌体基因组的精准编辑
为提高同 源重组效率,借 CRISPR-Cas 系统精准
靶向识别并只切割原始噬菌体基因组的特性,可
从同时存在原始的天然噬菌体与成功改造的噬菌
体基 宿菌中
突变体,最后利用天然宿主菌的激活系统重启得
有活目标 体。 SHAPE 术也 利用
源重组与 CRISPR-Cas 结合进行噬菌体基因改造的
范畴,避免了体内外组装等耗时的工作。
重启
安全 便经济
组装、编辑和激活,有效地提高产生工程噬菌体
的效 通常
后组装的 DNA 片段,未来可能合成整个噬菌体基
因组,甚至建立完整噬菌体基因组的文库;重新
启动合成噬菌体基因组需要宿主细胞或 L型细菌的
转化,但重新启动过大的合成基因组仍有难度。L
型细菌可以帮助将较大的基因组转化到遗传上任
意操 ,而
除了细胞膜的屏障,允许各种任意大小的噬菌体
基因 动,
株的生长,有效缩短 DBTL 周期,更可能成为
选方法。虽然无细胞系统目前仍然局限于少数物
种和菌株,未来此策略有望扩展到其他物种。
3合成生物学助力噬菌体疗法的前沿
方向
3.1 改变噬菌体宿主范围
菌体 宿
围狭窄101
。噬菌体的受体结合蛋白(Receptor
binding proteinRBP宿
因素 ,对 RBP 特异 改变
菌体 宿 菌体 宿
用的特异性还取决于宿主受体的类型和结构,受
体的定位以及在细胞表面的数量和密度也会影响
吸附的特异性102
Yoichi 103通过构建携带 PP01 gp37gp38
的重组 T2 噬菌体 T2ppD1,证实其可感染异质宿主
细胞大 肠杆菌 O157H7 和相关物种,改变了噬菌
体感 异性 Mahichi 98尝试将 T2 噬菌体
长尾 纤维基 gp37
gp38 性同 产生
嵌合菌体在保 T2 噬菌体原始裂解活性的同
时获更广 IP008 宿主范围。Ando 78通过在
酵母菌体内工程化噬菌体基因组来调节噬菌体宿
主范 ,改
支架以靶向致病性耶尔森氏菌和克雷伯氏菌,同
样克雷伯氏菌噬菌体支架通过模块化交换噬菌体
尾部件也可以靶向大肠杆菌。Chen 99以宿主菌
DE017 为介导,确定了可能用作同源序列重组序
列区域的区域 ,构建了包含 Q L01 不同 gp37 基因片
段的 WG01 子代嵌合噬菌体,通过对 gp37 基因片
段的 致宿
不同的机 制:第一代 WG01 形成的没有突变的嵌合
体;由嵌合体形成的第二代 WG01 突变体。部分子
代噬菌体宿主范围的扩大表明,C末端以外的区域
可能通过改变对结合位点的亲和性间接改变受体
特异 Yosef 104设计了各种噬菌体尾丝蛋白
的杂交颗粒,并将这些模块化的颗粒程序化包装
并转到限 T7 噬菌体传播的宿主体内,证明了
杂合颗粒 能将所期望 DNA 转导入目标宿主。
项研究通 过人为选择 能高效转导 DNA 的尾丝蛋白
大大扩展了新的宿主范围。Yehl 105通过对噬菌
体尾 体宿
细菌性的制。们确 T3 噬菌尾丝
008
3 www.synbioj.com
宿 Host-range-determining
regionsHRDRs,并借助定向诱变发展出一种高
通量因工技术结果 HRDRs 突变产生的
噬菌 宿,并
体内 将对
Avramucz 100采用基于质粒的同源重组和 BRED
重编通常 感染共 K12 大肠杆菌菌株的 T7
体,以感 染病原体 相关的表 K1 胶囊的菌株
两种基因 替换的构 建:一种取 T7 菌体 gp17
K1F 对应物替换 T7 噬菌体的
gp11gp12 gp17。两种方法均成功地将 K1F
列整 T7 噬菌体基因组中,并应用包括标记基
trxA宿主 特异性 CRISPR-Cas 选择的多种方
集结 K1F gp17
该研究表明 BRED 可作为快速获得新的 RBP
1应用基因工程成功改造噬菌体的案例
Tab. 1 Applications of successful modification of engineered phages
策略策略
随机诱变随机诱变
经典同源重经典同源重
BRED
CRISPR-Cas
Genome Reboot
菌株菌株
T4 噬菌体
T3T7肠道沙门氏菌噬菌体
T2 噬菌体
T4 噬菌体
T7 噬菌体
T7 噬菌体
分枝杆菌噬菌体 Giles
肠杆菌科噬菌体 P1
沙门氏菌噬菌体
克雷伯氏菌噬菌体
分岐杆菌噬菌体 BPsZoeJ
链球菌噬菌 2972
T7 噬菌体
乳酸乳球菌烈性噬菌体 P2
克雷伯氏菌噬菌体
金黄色葡萄球菌噬菌体
T4 噬菌体
T5 噬菌体
需钠弧菌噬菌体 TT4
大肠杆菌噬菌体
ФKZOMKO1 Pa Mx41 噬菌体
大肠杆菌、克雷伯菌噬菌体
PICIs
铜绿假单胞菌噬菌体
大肠杆菌噬菌体
沙门氏菌噬菌体
MS2 噬菌体
T7 噬菌体
T4 噬菌体
耶尔森氏菌噬菌体
克雷伯氏菌噬菌体
抗酸性分枝杆菌噬菌体
李斯特菌胞杆菌、葡萄球菌噬菌体
具体方法具体方法
紫外线诱变获取突变体
改善噬菌体的热稳定性
改造尾丝蛋白结构
改变或扩大 宿主 T4 样噬菌体宿主范围
T7 噬菌体基因组的单碱基替换和全基因替换
获得新的 RBP
非必需基因缺失、读码框内缺失、点突变 无义突变、外源基因精确插
去除 IS 元件
实现溶原和裂解性质转换
建立了克雷伯氏菌噬菌体基因组的重组系统
将治疗性温和噬菌体转化为烈性噬菌体
II-A CRISPR-Cas 实现特定点突变和大片段删除
I-ECRISPR-Cas 系统编辑 T7 基因组
点突变基因缺失和替换
点突变基因缺失和替换
III-ACRISPR-Cas 系统 CRISPR-Cas10
VCRISPR-Cas12a 系统构建包含缺失和插入的重组 T4
II-A CRISPR- Cas9 系统效果不稳 定, 出基于 Retron 的重组方案
使用 CRISPR- Cas9 基因的缺失和替换
CRISPR-Cas13a
CRISPR-Cas13a+正向选择基因 acrVIA1
YAC
YAC
YAC
电转重启
电转重启
无细胞体系
无细胞体系
无细胞体系
无细胞体系
无细胞体系
无细胞体系
L-forms
年份年份
1966
2020
2009
2017
2020
2021
2008
2011
2017
2017
2019
2014
2014
2017
2018
2019
2021
2021
2022
2022
2022
2015
2020
2021
2019
2022
1996
2012
2018
2022
2022
2022
2018
出处出处
[49]
[51]
[98].
[99]
[55]
[100]
[58]
[60]
[61]
[62]
[24]
[64]
[65]
[66]
[68]
[69]
[70]
[75]
[71]
[72]
[73]
[78]
[80]
[79]
[84]
[85]
[89]
[91]
[86]
[88]
[88]
[92]
[96]
009
合成生物学 3
的高效工具,而无需设计可持续复制噬菌体。此
外, 在某些 情况下 ,单纯 的交换 RBP 不足以产生
有活力的嵌合噬菌体。
利用 RBP 宿性,
可以 宿谱,
Holtzman 106通过监测同时存在多个宿主的情况
T7 噬菌体宿主范围的变化,在 95 小时内进行
100 次噬 菌体 T7 噬菌体可以通过尾丝
蛋白基因 gp17 自发 失对整吸
LipopolysaccharideLPS K12
T7 噬菌体在两种宿主菌 K12ΔtrxA (噬菌体可吸附
无法 生物成) K12ΔwaaC LPS 部分缺失)
中多次传代驯化后,对 K12ΔwaaC 的吸附率增高
而对 K12ΔtrxA 的吸附率降低,也不再识别表面保
留完 整的 LPS K12ΔtrxA
菌体 RBP 范围 高宿
性的噬菌体生物制剂,应用于通过噬菌体检测或
消除特定血清型的细菌。
菌体
进和 法打
设计出智能的噬菌“鸡尾酒”,发现新的噬菌体
源性抗菌剂,并引导噬菌体抗性进化为临床可利
用的表型
3.2 宏基因组挖掘自然界噬菌体资源
体是
实体,全球宏基因组数据的比对分析揭示了病毒
噬菌 律,
体的认知:噬菌体的形态特征以及蛋白结构;噬
体基 组的 多样 以及 低的 基因 相似
群落水平噬菌体的多样性及其在不同生态系统里
的丰度与群落组成;不同噬菌体的基因交换、基
因组镶嵌性与多样性、噬菌体谱系呈现出的复杂
网络结构107
Chevallereau 108探讨了当前关于
噬菌 及它
数量 用的
研究需要更符合现实中自然环境的生态性,以揭
示中繁衍复杂的微生物群落。
Kavagutt i 109在远洋淡水生境进行超深度宏
基因组测序,从宏基因组数据中恢复了超过 2000
个噬菌体的完整基因组并研究了噬菌体在淡水系
统中 布特
系统的 Římov 水库 和自然系统的 Ji řická 池塘分别采
样, 产生共 23 个样本的宏基因组测序结果,并
进一 种类
在淡水系统中发现了 775 个未在数据库中发现的基
因组,同 时新发现 553 个海洋噬菌体独特基因组。
Al-Shayeb 110通过搜索从将近 30 种不
球环 (从 儿和 妇的 到西 温泉
病房、海 洋、湖泊和 深层地下) 产生的 DNA
库来发现全新的巨型噬菌体(huge phage,也称
megaphage 351 种不
体,它们的基因组比常见噬菌体的平均基因组大 4
倍或 存在
种最大的噬菌体,其基因组长达 735kb,比噬菌体
的平 均基因大近 15 至比 细菌
组大 现一
细菌 CRISPR-Cas 系统消除竞争性噬菌体。
测序
最多的 DNA 菌体,而高 通量 RNA 测序为探索
地球上的 R NA 病毒组提供了广泛的机会。
Neri 111挖掘了 5150 个不同的元转录组,并
发现 了超过 250 RNA 毒等位 点。对 超过 33
RNA RNA RNA-dependent
RNA polymeraseRdRP
相当于已知 RNA 病毒多样性的 5因内
析揭了以 前在 RNA 病毒中没有发现的、与病毒
和宿主相互作用有关的多个蛋白质结构域。扩展
RdRP 系统发育支持五个已建立分类门的单系
性,并揭示了两个假定的新增的噬菌体门和许多
新增 Lenarviricota
门, 由细菌关的 真核病组成 ,现占 RNA
病毒群的三分之一CRISPR 间隔和溶菌蛋白的鉴
定表明,以前 与真核生物有 关的 picobirnavirus es
partitiviruses 的亚群可感染原核生物宿主。该研究
结果拓 宽了己知的 R NA 多样性,指出 RNA 毒在
全球围内 具有普遍性 并且大多数 RNA 病毒类别
模式。
Kauffman 112以海洋噬菌体和沿海海洋异养
010
3 www.synbioj.com
弧菌科细菌为模型,针对 2010 年为期 3个月内于
三个时间点(第 222261 286 天) 分离 1440
个菌株研究其噬菌体-宿主互作关系。在 1287 个能
够在诱饵试验中生长且具有 hsp60 菌株
285 22%对噬体侵表现感性环境
互作 作较
株的噬菌体-捕食者负载较低,而且噬菌体具有宿
主菌 过高
基因 表明
染中 比突
献更 中重
噬菌 式,
全球和局部噬菌体多样性的贡献。
病毒宏基因组学通过阐明环境病毒的遗传潜
力和 病毒
助挖 菌体
方式 宿 展人
宿主 以广
物学、病原体监测和生物技术在内的学科进展。
3.3 多组学技术揭示噬菌体与宿主互作机制
随着高通量测序技术的发展,组学研究也在
不断 进行
据整 系统 宿
主之 菌体
菌体如何克服细菌免疫防御机制等。
噬菌体通常会劫持宿主细菌的转录机制来调
节自 宿 表达
体蛋 别是
础。Yo u 113揭示了噬 菌体蛋白 P7 通读转录终止
信号 因转
解释噬菌 体蛋白 P7 宿主菌转 分子
制。Shi 114-115系统地研 究了 T4 噬菌体中 和晚
期基 制,
MotA AsiA 劫持细菌 RNA 合酶
转录分子制,用冷电镜别解 T4
菌体 复合
物的结构,揭示 T4 噬菌体依赖滑动夹激活晚期基
因转录的机制。噬菌体蛋白 gp55 和细菌 RNA
酶可 的基
激活还需要环状三聚体蛋白滑动夹 gp45 以及辅助
激活 蛋白 gp33 σ配和
提供了基础。
TIR 结构域是识别细菌、植物和动物中病原体
入侵 分,
识别会刺激 TIR 结构域产生一种免疫信号分子,结
合并 激活 Thoeris 免疫效应器并执行免疫功能,但
其分子结构仍不清楚Le avitt 116确定了一个命
Thoeris 1Thoeris anti-defence
1Tad1)的大型噬菌体编码蛋白家族,它可以抑
Thoeris Tad1 蛋白能结合并封存由 TIR
构域 分子 使
应与免 疫效应器激活 脱钩,从而失活 Thoe ris 系统。
Tad1 也能有效地封存来自植物 TIR 结构域蛋白的
分子 Tad1 与植物衍生分子结合的高分辨率晶体
结构显示了 1''-2' ADPRGlycocyclic ADPR
gcADPR独特化学结构。该研究定了一个
心免 构,
制宿主免疫的一种全新的模式,即病毒抑制 TIR
gcADPR 信号传递来克服细菌防御。
这些研究通过组学方式从分子层面阐明了噬
菌体 基础
工噬菌体的构建提供了理论基础。
3.4 调节肠道菌群生
宿
病毒、真和其他微物真核细117
。尽管肠道
中的噬菌体有调节细菌群落和人类健康的作用,
但我 用机
列组 序列
不断涌现针对肠道噬菌体组的优秀研究成果。
Lawley 118通过挖掘全球范围内 28060 个人
类肠 道宏基组和 可培养 2898 个肠道菌参
基因 组数据立了 包含 142000 个非冗余病毒基
因组>10 kb)的肠道噬菌体数据库。宿主分组显
Fyrmicut es 菌系的病毒多样性最高,约36% 的病
毒簇 这种
人类肠道噬菌体组生态学和进化分析关研究。
011
合成生物学 3
Koonin 119通过检索人类肠道中的宏基因组数
据, 并借助 环形 contigs 来推断其为完整的噬菌体
组, 鉴定 451 个假定属的 3738
显完 验证
体与 宿 假设
好的 多样 的噬 菌体 加到 共数 库中
将有力促进对人类肠道病毒分类和功能表征的研
Flandersviridae
Quimbyviridae 是包括感染 Bacteroides
Parabacteroides Prevotella 的最常见和最丰富的
Gratiaviridae
Autographiviridae
Drexlerviridae Chaseviridae
有远缘关 系。对 CRISPR spacer 分析明,
三个假定家族的噬菌体都可以感染 Bacteroides
三个候选噬菌体家族的比较基因组分析找到了在
Quimbyviridae 噬菌体具有产生多样性的逆转录因
Diversity-generating retroelementsDGRs),
产生 套在 御相 关基 中的 可变 基因
而先前已知的噬菌体编 DGR的靶点是结构基因。
该研究首次报道了几种 Flandersviridae 噬菌体编码
参与脂质生物合成中异戊二烯类途径的酶。
Gratiaviridae 噬菌体编码一个 HipA
和糖 噬菌 宿
细胞 的超
和其他家族的数百个噬菌体被证明编码过氧化氢
酶和 以增
耐受性。
Gerber 120研究了噬菌体对模型菌群的动态
影响。已知的人类肠道共生细菌在无菌小鼠中定
植并 体的
菌体 感细
的相互作用对其他细菌物种产生级联效应。代谢
组学 侵染
肠道 影响
噬菌体作为肠道细菌定植调节剂的重要的生态学
义, 表明 肠道 噬菌 可以 向调 细菌
在哺乳动物治疗方面存在潜在的应用价值。
道细
究将帮助我们理解肠道内稳态及这种微生物系统
的功 康和
中的细菌、噬菌体和宿主免疫细胞的动态变化研
究可以提供有关疾病发展的关键信息和指导治疗
方法;了解噬菌体复制周期的调节可以帮助利用
肠道 。我 使
化治疗时考虑噬菌体在肠道内发挥的影响。
3.5 大数据和新型人工智能指导噬菌体设计
生物
功能 工程 架。 算机 助设 Computer
aided designCAD)应在促进设计方面发挥核心
阶段121
Molina 122提出并详细解释了两种根据给定
的新型计算方法。其中一种方法 Exhaustive Search
总是 鸡尾
Network Metrics 总是使用最短的运行时间
(几秒)。两 在可 使
的应 行了
研究 入其
Rebollo
123通过对 35 个宿主范围矩阵进行了宏基因组
分析,包括最近发表的研究和包含了在乳酪奶制
品中分离的大肠杆菌和从羊粪中分离的大肠杆菌
的新数据集,构建噬菌体与细菌感染网络后分析
由宿主范围矩阵提供的信息,通过使用 Nestedness
Temperature Calculator 和遗传算法 BinMatNest
az-Galián
124开发了一个名为 PhageCocktail R包,可自
动设计出来自噬菌体与细菌感染网络的高效的噬
菌体“ 鸡尾酒”,其原理为通 13 种经验性噬菌体
与细菌感染网络,对 ExhaustiveSearch
ExhaustivePhiClusteringSearch ClusteringPhi
4种方法进行了详细的解释和评估。对运行时间和
预期 (裂分比
示, 和结
异。ExhaustiveSearch 总是提供最好的噬菌体“鸡
尾酒”但运时间 很长 ExhaustivePhi
”,
012
3 www.synbioj.com
ExhaustiveSearch
ClusteringSearch
ClusteringPhi 1
秒)
降, 期成
样进 来评
质量 快,
的精 染网
复杂 和结
不同方法辅助设计高质量噬菌体“鸡尾酒”
此外,合成生物学家开发了合成生物学开放
Synthetic biology open language
SBOL
125
,让科学家能够交换生物组件和系统的
设计 合成
务的文 库,与合作者 共享 SBOL 数据,并储存局部
生物 Voigt 课题组设计出 Cello126-127
序, 动化
验室 算机
进合成生物学“智造”生物进程。
4总结与展望
尽管噬菌体研究已经延续了一个多世纪,但
针对 编辑
现。 仍处
DNA 测序、合成和基因编辑技术的迭代发展以及
我们 性、 宿
作关 ,未
挥其巨大潜力128
。最重要的是提供可在实验室和
医院 的、
不同 技术
菌体 将凭 便
很快 因编
噬菌 从头
限制 噬菌
着基 下降
酶的 启系
制将很快被突破。
204 2019
耐药相关数据进行分析发现,保守估计 2019 年有
127 万人直接死于抗生素耐药,另有 495 万人的死
亡与 抗生素药相 关,意 味着 2019 年抗素耐
直接 同于
死亡 药相
血性心脏病和风的全球三大死亡129
。随
着抗 病率
需求将持续增加。
此外,天然噬体分离物其相对容分离
不需 能申
的特 功能 提高 菌效 扩宽 宿 主谱
增强 能) 因工
于申 药公
奋的 ,商
产品 体产
噬菌 市场
3.5% 显著复合增长增长2021 年,全球
噬菌 体市场 价值为 11.7 亿美元,预计到 2028
达到 14.4 亿美元。预计未来几年噬菌体的需求将
大幅增加 ,在 2022 年至 2028 年的预测期内,噬菌
体产业将 为主要行 业参与者 创造价 2.688 亿美元
的收 区凭
投资 设施
的加强,将成为增长最快的地区130
未来噬菌体技术的发展趋势,包括围绕常见
的模式细菌不断优化开发精准的基因编辑方式,
借助生信分析手段挖掘高效的 CRISPR 基因编辑系
统, 体改
化基 全性
骨架”,在此基础上根据需求引入有效的外源功
能基 或其
化工 使 其通
来更 便 的噬
会被 的个
设计并在体外重启菌体可能会变得越越容
结合 进一
尾酒 成本
和运 体的
将成为现131
参考文献
[1] TWORT F W. AN INVESTIGATION ON THE NATURE OF
ULTRA-MICROSCOPIC VIRUSES[J]. Originally published
013
合成生物学 3
as Volume 2, Issue 4814The Lancet, 1915, 186(4814): 1241-
1243.
[2] D'HERELLE F. On an invisible microbe antagonistic toward
dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by
Mr. Roux. 1917[J]. Res Microbiol, 2007,158(7):553-554.
[3] OLSZAK T, LATKA A, ROSZNIOWSKI B, et al. Phage Life
Cycles Behind Bacterial Biodiversity[J]. Curr Med Chem,
2017,24(36):3987-4001.
[4] JACOB F, MONOD J. Genetic regulatory mechanisms in the
synthesis of proteins[J]. J Mol Biol, 1961,3:318-356.
[5] CRICK F H C, BARNETT L, BRENNER S, et al. General Na
ture of the Genetic Code for Proteins[J]. NATURE, 1961, 192
(4809):1227-1232.
[6] ANDERSON J E. Restriction endonucleases and modification
methylases[J]. CURRENT OPINION IN STRUCTURAL BI
OLOGY, 1993,3(1):24-30.
[7] PINGOUD A, WILSON G G, WENDE W. Type II restriction
endonucleases--a historical perspective and more[J]. Nucleic
Acids Res, 2014,42(12):7489-7527.
[8] BORKOTOKY S, MURALI A. The highly efficient T7 RNA
polymerase: A wonder macromolecule in biological realm[J].
Int J Biol Macromol, 2018,118(Pt A):49-56.
[9] KORLACH J, BJORNSON K P, CHAUDHURI B P, et al. Re
al-time DNA sequencing from single polymerase molecules[J].
Methods Enzymol, 2010,472:431-455.
[10] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR
provides acquired resistance against viruses in prokaryotes[J].
Science, 2007,315(5819):1709-1712.
[11] CONG L, RAN F A, COX D, et al. Multiplex genome engi
neering using CRISPR/Cas systems[J]. Science, 2013, 339
(6121):819-823.
[12] KHAN A, OSTAKU J, ARAS E, et al. Combating Infectious
Diseases with Synthetic Biology[J]. ACS Synth Biol, 2022, 11
(2):528-537.
[13] KORTRIGHT K E, CHAN B K, KOFF J L, et al. Phage Thera
py: A Renewed Approach to Combat Antibiotic-Resistant Bac
teria[J]. Cell Host Microbe, 2019,25(2):219-232.
[14] UYTTEBROEK S, CHEN B, ONSEA J, et al. Safety and effi
cacy of phage therapy in difficult-to-treat infections: a system
atic review[J]. Lancet Infect Dis, 2022,22(8):e208-e220.
[15] WEI J, PENG N, LIANG Y, et al. Phage Therapy: Consider the
Past, Embrace the Future[D] ,2020.
[16] LUONG T, SALABARRIA A C, EDWARDS R A, et al. Stan
dardized bacteriophage purification for personalized phage
therapy[J]. Nat Protoc, 2020,15(9):2867-2890.
[17] LIU D, VAN BELLEGHEM J D, DE VRIES C R, et al. The
Safety and Toxicity of Phage Therapy: A Review of Animal
and Clinical Studies[J]. Viruses, 2021,13(7)
[18] TAN Y, SHEN J, SI T, et al. Engineered Live Biotherapeutics:
Progress and Challenges[J]. Biotechnol J, 2020, 15(10):
e2000155.
[19] SUN X, ILCA S L, HUISKONEN J T, et al. Dual Role of a Vi
ral Polymerase in Viral Genome Replication and Particle Self-
Assembly[J]. mBio, 2018,9(5)
[20] VENTER J C, GLASS J I, HUTCHISON C A, et al. Synthetic
chromosomes, genomes, viruses, and cells[J]. Cell, 2022, 185
(15):2708-2724.
[21] WHITE R A. The Future of Virology is Synthetic[J]. mSys
tems, 2021,6(4):e0077021.
[22] WEYNBERG K D, JASCHKE P R. Building Better Bacterio
phage with Biofoundries to Combat Antibiotic-Resistant Bacte
ria[J]. Phage (New Rochelle), 2020,1(1):23-26.
[23] KILCHER S, LOESSNER M J. Engineering Bacteriophages as
Versatile Biologics[J]. Special Issue: Antimicrobial Resistance
and Novel TherapeuticsTrends in Microbiology, 2019, 27(4):
355-367.
[24] DEDRICK R M, GUERRERO-BUSTAMANTE C A, GARLE
NA R A, et al. Engineered bacteriophages for treatment of a pa
tient with a disseminated drug-resistant Mycobacterium absces
sus[J]. Nat Med, 2019,25(5):730-733.
[25] CHEN Y, BATRA H, DONG J, et al. Genetic Engineering of
Bacteriophages Against Infectious Diseases[J]. Front Microbi
ol, 2019,10:954.
[26] VIERTEL T M, RITTER K, HORZ H P. Viruses versus bacte
ria-novel approaches to phage therapy as a tool against multi
drug-resistant pathogens[J]. J Antimicrob Chemother, 2014, 69
(9):2326-2336.
[27] MEILE S, DU J, DUNNE M, et al. Engineering therapeutic
phages for enhanced antibacterial efficacy[J]. Curr Opin Virol,
2022,52:182-191.
[28] MCEWEN S A, COLLIGNON P J. Antimicrobial Resistance:
a One Health Perspective[J]. Microbiol Spectr, 2018,6(2)
[29] ASLAM B, KHURSHID M, ARSHAD M I, et al. Antibiotic
Resistance: One Health One World Outlook[J]. Front Cell In
fect Microbiol, 2021,11:771510.
[30] HOWARD-VARONA C, HARGREAVES K R, ABEDON S T,
et al. Lysogeny in nature: mechanisms, impact and ecology of
temperate phages[J]. ISME J, 2017,11(7):1511-1520.
[31] HARRISON E, BROCKHURST M A. Ecological and Evolu
tionary Benefits of Temperate Phage: What Does or Doesn't
Kill You Makes You Stronger[J]. Bioessays, 2017,39(12)
[32] CHEN Y, YANG L, YANG D, et al. Specific Integration of
Temperate Phage Decreases the Pathogenicity of Host Bacteria
[J]. Front Cell Infect Microbiol, 2020,10:14.
[33] SOUSA J, PFEIFER E, TOUCHON M, et al. Genome diversifi
cation via genetic exchanges between temperate and virulent
bacteriophages[M] , 2020.
[34] SOUSA J, PFEIFER E, TOUCHON M, et al. Causes and Con
014
3 www.synbioj.com
sequences of Bacteriophage Diversification via Genetic Ex
changes across Lifestyles and Bacterial Taxa[J]. MOLECU
LAR BIOLOGY AND EVOLUTIO N, 2021,38
[35] AL-ANANY A M, FATIMA R, HYNES A P. Temperate phage-
antibiotic synergy eradicates bacteria through depletion of lyso
gens[J]. Cell Rep, 2021,35(8):109172.
[36] SCHROVEN K, AERTSEN A, LAVIGNE R. Bacteriophages
as drivers of bacterial virulence and their potential for biotech
nological exploitation[J]. FEMS Microbiol Rev, 2021,45(1)
[37] LABRIE S J, MOINEAU S. Abortive infection mechanisms
and prophage sequences significantly influence the genetic
makeup of emerging lytic lactococcal phages[J]. J Bacteriol,
2007,189(4):1482-1487.
[38] AMARILLAS L, RUBí-RANGEL L, CHAIDEZ C, et al. Isola
tion and Characterization of phiLLS, a Novel Phage with Po
tential Biocontrol Agent against Multidrug-Resistant Escherich
ia coli[J]. Front Microbiol, 2017,8:1355.
[39] CHAUDHARY N, MOHAN B, MAVUDURU R S, et al. Char
acterization, genome analysis and in vitro activity of a novel
phage vB_EcoA_RDN8.1 active against multi-drug resistant
and extensively drug-resistant biofilm-forming uropathogenic
Escherichia coli isolates, India[J]. J Appl Microbiol, 2022, 132
(4):3387-3404.
[40] BAO H, SHAHIN K, ZHANG Q, et al. Morphologic and ge
nomic characterization of a broad host range Salmonella enteri
ca serovar Pullorum lytic phage vB_SPuM_SP116[J]. Microb
Pathog, 2019,136:103659.
[41] MASUDA Y, KAWABATA S, UEDOI T, et al. Construction of
Leaderless-Bacteriocin-Producing Bacteriophage Targeting E.
coli and Neighboring Gram-Positive Pathogens[J]. Microbiol
Spectr, 2021,9(1):e0014121.
[42] NICK J A, DEDRICK R M, GRAY A L, et al. Host and patho
gen response to bacteriophage engineered against Mycobacteri
um abscessus lung infection[J]. Cell, 2022,185(11):1860-1874.
e12.
[43] MENGLU J, JINGCHAO C, XUEYANG Z, et al. An Engi
neered λPhage Enables Enhanced and Strain-Specific Killing
of Enterohemorrhagic Escherichia coli[J]. Microbiology Spec
trumMicrobiology SpectrumMicrobiology Spectrum, 2022, 10
(4):e01271-01222.
[44] LIU G, LIN Q, JIN S, et al. The CRISPR-Cas toolbox and
gene editing technologies[J]. Mol Cell, 2022,82(2):333-347.
[45] YADAV R, KUMAR V, BAWEJA M, et al. Gene editing and
genetic engineering approaches for advanced probiotics: A re
view[J]. Crit Rev Food Sci Nutr, 2018,58(10):1735-1746.
[46] ARROYO-OLARTE R D, BRAVO RODRíGUEZ R, MO
RALES-RíOS E. Genome Editing in Bacteria: CRISPR-Cas
and Beyond[J]. Microorganisms, 2021,9(4)
[47] ABABI M, TRIDGETT M, OSGERBY A, et al. Scarless Re
combineering of Phage in Lysogenic State[J]. Methods Mol Bi
ol, 2022,2479:1-9.
[48] TRIDGETT M, ABABI M, JARAMILLO A. Lambda Red Re
combineering of Bacteriophage in the Lysogenic State[J].
Methods Mol Biol, 2022,2479:11-19.
[49] DRAKE J W. Ultraviolet mutagenesis in bacteriophage T-4. I.
Irradiation of extracellular phage particles[J]. J Bacteriol, 1966,
91(5):1775-1780.
[50] MEISTRICH M L, SHULMAN R G. Mutagenic effect of sen
sitized irradiation of bacteriophage T4[J]. J Mol Biol, 1969, 46
(1):157-167.
[51] FAVOR A H, LLANOS C D, YOUNGBLUT M D, et al. Opti
mizing bacteriophage engineering through an accelerated evo
lution platform[J]. Sci Rep, 2020,10(1):13981.
[52] LANIGAN T M, KOPERA H C, SAUNDERS T L. Principles
of Genetic Engineering[J]. Genes (Basel), 2020,11(3)
[53] MAHLER M, COSTA A R, VAN BELJOUW S, et al. Ap
proaches for bacteriophage genome engineering[J]. Trends Bio
technol, 2022
[54] POUILLOT F, BLOIS H, IRIS F. Genetically engineered viru
lent phage banks in the detection and control of emergent
pathogenic bacteria[J]. Biosecur Bioterror, 2010,8(2):155-169.
[55] JENSEN J, PARKS A, ADHYA S, et al. λRecombineering
Used to Engineer the Genome of Phage T7[J]. Antibiotics-Ba
sel, 2020,9:805.
[56] MøLLER-OLSEN C, HO S, SHUKLA R D, et al. Engineered
K1F bacteriophages kill intracellular Escherichia coli K1 in hu
man epithelial cells[J]. Sci Rep, 2018,8(1):17559.
[57] SHITRIT D, HACKL T, LAURENCEAU R, et al. Genetic en
gineering of marine cyanophages reveals integration but not ly
sogeny in T7-like cyanophages[J]. ISME J, 2022, 16(2):
488-499.
[58] MARINELLI L J, PIURI M, SWIGONOVá Z, et al. BRED: a
simple and powerful tool for constructing mutant and recombi
nant bacteriophage genomes[J]. PLoS One, 2008,3(12):e3957.
[59] MARINELLI L J, PIURI M, HATFULL G F. Genetic Manipu
lation of Lytic Bacteriophages with BRED: Bacteriophage Re
combineering of Electroporated DNA[J]. Methods Mol Biol,
2019,1898:69-80.
[60] FEHéR T, KARCAGI I, BLATTNER F, et al. Bacteriophage re
combineering in the lytic state using the lambda red recombi
nases[J]. Microbial Biotechnology, 2011,5:466-476.
[61] SHIN H, LEE J H, YOON H, et al. Genomic investigation of
lysogen formation and host lysis systems of the Salmonella
temperate bacteriophage SPN9CC[J]. Appl Environ Microbiol,
2014,80(1):374-384.
[62] PAN Y J, LIN T L, CHEN C C, et al. Klebsiella Phage ΦK64-1
Encodes Multiple Depolymerases for Multiple Host Capsular
Types[J]. J Virol, 2017,91(6)
015
合成生物学 3
[63] WETZEL K S, GUERRERO-BUSTAMANTE C A, DED
RICK R M, et al. CRISPY-BRED and CRISPY-BRIP: efficient
bacteriophage engineering[J]. Sci Rep, 2021,11(1):6796.
[64] MARTEL B, MOINEAU S. CRISPR-Cas: an efficient tool for
genome engineering of virulent bacteriophages[J]. Nucleic Ac
ids Res, 2014,42(14):9504-9513.
[65] KIRO R, SHITRIT D, QIMRON U. Efficient engineering of a
bacteriophage genome using the type I-E CRISPR-Cas system
[J]. RNA Biol, 2014,11(1):42-44.
[66] LEMAY M L, TREMBLAY D M, MOINEAU S. Genome En
gineering of Virulent Lactococcal Phages Using CRISPR-Cas9
[J]. ACS Synth Biol, 2017,6(7):1351-1358.
[67] LEMAY M L, RENAUD A C, ROUSSEAU G M, et al. Target
ed Genome Editing of Virulent Phages Using CRISPR-Cas9
[J]. Bio Protoc, 2018,8(1):e2674.
[68] SHEN J, ZHOU J, CHEN G Q, et al. Efficient Genome Engi
neering of a Virulent Klebsiella Bacteriophage Using CRISPR-
Cas9[J]. J Virol, 2018,92(17)
[69] NAYEEMUL BARI S M, HATOUM-ASLAN A. CRISPR-
Cas10 assisted editing of virulent staphylococcal phages[J].
Methods Enzymol, 2019,616:385-409.
[70] DONG J, CHEN C, LIU Y, et al. Engineering T4 Bacterio
phage for In Vivo Display by Type V CRISPR-Cas Genome
Editing[J]. ACS Synth Biol, 2021,10(10):2639-2648.
[71] ZHANG X, ZHANG C, LIANG C, et al. CRISPR-Cas9 Based
Bacteriopha ge Genome Editi ng[J]. Micr obiol Spect r, 2 022, 10
(4):e0082022.
[72] GUAN J, ORO -BOSCH A, MENDOZA S, et al. Bacterio
phage genome engineering with CRISPR Cas13a[J]. Nature
Microbiology, 2022:1-11.
[73] ADLER B A, HESSLER T, CRESS B F, et al. Broad-spectrum
CRISPR-Cas13a enables efficient phage genome editing[J].
Nat Microbiol, 2022
[74] GRIGONYTE A M, HARRISON C, MACDONALD P R, et
al. Comparison of CRISPR and Marker-Based Methods for the
Engineering of Phage T7[J]. Viruses, 2020,12(2)
[75] RAMIREZ-CHAMORRO L, BOULANGER P, ROSSIER O.
Strategies for Bacteriophage T5 Mutagenesis: Expanding the
Toolbox for Phage Genome Engineering[J]. Front Microbiol,
2021,12:667332.
[76] MERRYMAN C, GIBSON D G. Methods and applications for
assembling large DNA constructs[J]. Metab Eng, 2012, 14(3):
196-204.
[77] RAMSAY M. Yeast artificial chromosome cloning[J]. Mol Bio
technol, 1994,1(2):181-201.
[78] ANDO H, LEMIRE S, PIRES D P, et al. Engineering Modular
Viral Scaffolds for Targeted Bacterial Population Editing[J].
Cell Syst, 2015,1(3):187-196.
[79] PIRES D P, MONTEIRO R, MIL-HOMENS D, et al. Design
ing P. aeruginosa synthetic phages with reduced genomes[J].
Sci Rep, 2021,11(1):2164.
[80] IBARRA-CHAVEZ R, HAAG A, DORADO-MORALES P, et
al. Rebooting Synthetic Phage-Inducible Chromosomal Is
lands: One Method to Forge Them All[J]. BioDesign Research,
2020,2020:5783064.
[81] PRYOR J M, POTAPOV V, BILOTTI K, et al. Rapid 40 kb Ge
nome Construction from 52 Parts through Data-optimized As
sembly Design[J]. ACS Synth Biol, 2022,11(6):2036-2042.
[82] GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic as
sembly of DNA molecules up to several hundred kilobases[J].
Nat Methods, 2009,6(5):343-345.
[83] PULKKINEN E M, HINKLEY T C, NUGEN S R. Utilizing in
vitro DNA assembly to engineer a synthetic T7 Nanoluc report
er phage for Escherichia coli detection[J]. Integr Biol (Camb),
2019
[84] JANEž N,MEGLIč S H, FLISAR K, et al. Introduction of
Phage Genome into Escherichia coli by Electroporation[J].
Methods Mol Biol, 2019,1898:51-56.
[85] MILHO C, SILLANKORVA S. Implication of a gene deletion
on a Salmonella Enteritidis phage growth parameters[J]. Virus
Res, 2022,308:198654.
[86] RUSTAD M, EASTLUND A, JARDINE P, et al. Cell-free TX
TL synthesis of infectious bacteriophage T4 in a single test
tube reaction[J]. Synth Biol (Oxf), 2018,3(1):ysy002.
[87] GARENNE D, THOMPSON S, BRISSON A, et al. The all-E.
coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic
biology platform[J]. Synth Biol (Oxf), 2021,6(1):ysab017.
[88] EMSLANDER Q, VOGELE K, BRAUN P, et al. Cell-free pro
duction of personalized therapeutic phages targeting multidrug-
resistant bacteria[J]. Cell Chem Biol, 2022,29(9):1434-1445.e7.
[89] L. KATANAEV V, S. SPIRIN A, REUSS M, et al. Formation
of bacteriophage MS2 infectious units in a cell-free translation
system[J]. FEBS LETTERS, 1996,397(2):143-148.
[90] SMITH H O, HUTCHISON C A, PFANNKOCH C, et al. Gen
erating a synthetic genome by whole genome assembly:
phiX174 bacteriophage from synthetic oligonucleotides[J].
Proc Natl Acad Sci U S A, 2003,100(26):15440-15445.
[91] SHIN J, JARDINE P, NOIREAUX V. Genome replication, syn
thesis, and assembly of the bacteriophage T7 in a single cell-
free reaction[J]. ACS Synth Biol, 2012,1(9):408-413.
[92] MITSUNAKA S, YAMAZAKI K, PRAMONO A K, et al. Syn
thetic engineering and biological containment of bacteriophag
es[J]. Proceedings of the National Academy of SciencesPro
ceedings of the National Academy of SciencesProceedings of
the National Academy of Sciences, 2022,119(48):e2206739119.
[93] SPENCER A C, TORRE P, MANSY S S. The encapsulation of
cell-free transcription and translation machinery in vesicles for
the construction of cellular mimics[J]. J Vis Exp, 2013(80):
016
3 www.synbioj.com
e51304.
[94] ALLAN E J, HOISCHEN C, GUMPERT J. Bacterial L-
forms[J]. Adv Appl Microbiol, 2009,68:1-39.
[95] ERRINGTON J. Cell w all-deficient, L-form bacteria in the
21st century: a personal perspective[J]. Biochem Soc
Trans, 2017,45(2):287-295.
[96] KILCHER S, STUDER P, MUESSNER C, et al. Cross-ge
nus rebooting of custom-made, synthetic bacteriophage ge
nomes in L-form bacteria[J]. Proc Natl Acad Sci U S A,
2018,115(3):201714658.
[97] CHENG L, DENG Z, TAO H, et al. Harnessing stepping-
stone hosts to engineer, select, and reboot synthetic bacte
riophages in one pot[J]. Cell Rep Methods, 2022, 2(5):
100217.
[98] MAHICHI F, SYNNOTT A J, YAMAMICHI K, et al. Site-
specific recombination of T2 phage using IP008 long tail fi
ber genes provides a targeted method for expanding host
range while retaining lytic activity[J]. FEMS M icrobiol
Lett, 2009,295(2):211-217.
[99] CHEN M , ZHANG L, ABDELGA DER S A, et al. Altera
tions in gp37 Expand the Host Range of a T4-Like Phage
[J]. Appl Environ Microbiol, 2017,83(23)
[100] AVRA MUCZ Á, LLER-OLSEN C, GRIGONYTE A M,
et al. Analysing Parallel Strategies to Alter the Host Speci
ficity of Bacteriophage T7[J]. Biology (Basel), 2021,10(6)
[101] H YMAN P, ABEDON S T. Bacteriophage host range and
bacterial resistance[J]. Adv Appl Microbiol, 2010, 70:
217-248.
[102] G ORDILLO ALTAMIRANO F L , BARR J J. Unlocking the
next generation of phage therapy: the key is in the receptors
[J]. Curr Opin Biotechnol, 2021,68:115-123.
[103] Y OICHI M, ABE M, MIYANA GA K, et al. Alteration of
tail fiber protein gp38 enables T2 phage to infect Escherich
ia coli O157: H7[J]. JOURNAL OF BIOTECHN OLOGY,
2005,115(1):101-107.
[104] Y OSEF I, GOREN M G, G LOBUS R, et al. Extending the
Host Range of Bacteriophage Particles for DNA Transduc
tion[J]. Mol Cell, 2017,66(5):721-728.e3.
[105] Y EHL K, LEMIRE S, YANG A C, et al. Engineering Phage
Host-Range and Suppressing Bacterial Resistance through
Phage Tail Fiber Mutagenesis[J]. Cell, 2019, 179(2): 459-
469.e9.
[106] H OLTZMAN T, GLOBUS R, MOLSHANSKI-MOR S, et
al. A continuous evolution system for contracting the host
range of bacteriophage T7[J]. Sci Rep, 2020,10(1):307.
[107] D ION M B, OECHSLIN F, MOINEAU S. Phage diversity,
genomics and phylogeny[J]. Nat Rev Microbiol, 2020, 18
(3):125-138.
[108] CHEVALLEREAU A, PONS B J, VAN HOUTE S, et al. In
teractions between bacterial and phage communities in nat
ural environments[J]. Nat Rev Microbiol, 2022, 20(1):
49-62.
[109] K AVAGUTTI V S, ANDREI A Ş, MEHRSHAD M, et al.
Phage-centric ecological interactions in aquatic ecosystems
revealed through ultra-deep metagenomics[J]. Microbiome,
2019,7(1):135.
[110] A L-SHAYEB B, SACHDEVA R, CHEN L X, et al. Clades
of huge phages from across Earth's ecosystems[J]. Nature,
2020,578(7795):425-431.
[111] NERI U, WOLF Y I, ROUX S, et al. Expansion of the glob
al RNA virome reveals diverse clades of bacteriophages[J].
Cell, 2022,185(21):4023-4037.e18.
[112] K AUFFMAN K M, CHANG W K, BROWN J M , et al. Re
solving the structure of phage-bacteria interactions in the
context of natural diversity[J]. Nat Commun, 2022, 13
(1):372.
[113] Y OU L, SHI J, SHEN L, et al. Structural basis for transcrip
tion antitermination at bacterial intrinsic terminator[J]. Nat
Commun, 2019,10(1):3048.
[114] SHI J, WEN A, ZHAO M, et al. Structural basis of σappro
priation[J]. Nucleic Acids Res, 2019,47(17):9423-9432.
[115] SHI J, WEN A, JIN S, et al. Transcription activation by a
sliding clamp[J]. Nat Commun, 2021,12(1):1131.
[116] LEAVITT A, Y IRMIYA E, AMITAI G, et al. Viruses inhibit
TIR gcADPR signalling to overcome bacterial defence[J].
Nature, 2022,611(7935):326-331.
[117] M IRZAEI M K, MAURICE C F. nage à trois in the hu
man gut: interactions between host, bacteria and phages[J].
Nat Rev Microbiol, 2017,15(7):397-408.
[118] CAMARILLO-GUERRERO L F, ALMEID A A, RANGEL-
PINEROS G, et al. Massive expansion of human gut bacte
riophage diversity[J]. Cell, 2021,184(4):1098-1109.e9.
[119] BENLER S, YUTIN N, ANTIPOV D, et al. Thousands of
previously unknown phages discovered in whole-communi
ty human gut metagenomes[J]. Microbiom e, 2021,9(1):78.
[120] H SU B B, GIBSON T E, YELISEYEV V, et al. Dynamic
Modulation of the Gut Microbiota and Metabolome by Bac
teriophages in a Mouse Model[J]. Cell Host Microbe, 2019,
25(6):803-814.e5.
[121] BASSO-BLANDIN A, DELAPLACE F. Towards a behav
ioral-matching based compilation of synthetic biology func
tions[J]. Acta Biotheor, 2015,63(3):325-339.
[122] M ENOR-FLORES M, VEGA -RODGUEZ M A, MOLI
NA F. Computational design of phage cocktails based on
phage-bacteria infection networks[J]. Comput Biol Med,
2022,142:105186.
[123] M OLINA F, SIMANCA S A, RAREZ M, et al. A New
Pipeline for Designing Phage Cocktails Based on Phage-
017
合成生物学 3
Bac teri a In fect ion Net work s[J]. Fr ont Mi crobi ol, 202 1, 12:
564532.
[124] D íAZ-GAL N M V, VEGA-RODRíGUEZ M A, MOLINA
F. PhageCocktail: An R package to design phage cocktails
from experimental phage-bacteria infection networks[J].
Comput Methods Programs Biomed, 2022,221:106865.
[125] M ADSEN C, MCLAUGHLIN J A, MıSıRLı G, et al. The
SBOL Stack: A Platform for Storing, Publishing, and Shar
ing Synthetic Biology Designs[J]. ACS Synth Biol, 2016, 5
(6):487-497.
[126] N IELSEN A A, DER B S, SHIN J, et al. Genetic circuit de
sign automation[J]. Science, 2016,352(6281):aac7341.
[127] JONES T S, OLIVEIRA S, MYERS C J, et al. Genetic cir
cuit design automation with Cello 2.0[J]. Nat Protoc, 2022,
17(4):1097-1113.
[128] 袁盛建,马迎飞 .噬菌体合成生物学研究进展和应用[J].
成生物学, 2020, 1(6): 635-655.
YUAN SJ, MA YF. Advances and applications of phage
synthetic biology[J]. Synthetic Biology Journal, 2020, 1
(6): 635-655.
[129] G lobal burden of bacterial antimicrobial resistance in
2019: a systematic analysis[J]. Lancet, 2022, 399(10325):
629-655.
[130] CREDENCE R C O. Bacteriosphage Market By Product
(Phage Probiotics, Phage Therapeutics) By Route of Ad
ministration (Oral, Topical, Others) By Application (Gas
troenterology, Respiratory Infection Treatment, Skin Infec
tion Treatment, Wound Prophylaxis, Urogenital Infection
Treatment, Others) By Distribution Channel (Retail Phar
macies, Hospital Pharmacies, Online Pharm acies) -
Growth, Future Prospects & Competitive Analysis, 2016
2028[R]. India: 2022.
[131] PIRNAY J P. Phage Therapy in the Year 2035[J]. Front Mi
crobiol, 2020,11:1171.
通讯 1966—)
研究员博士生导师,究方向 为噬
体学 物学 量测 物信
息学研究、合成生物学等。
E-mail: tongyigang@mail.buct.edu.cn.
第一 2000—)
硕士研究生。研究方 向为合成生物学
改造工程噬菌体。
E-mail: ql.chen@buct.edu.cn.
018
... Existing studies have shown that phage usually hijack the transcriptional machinery of host bacteria to regulate their own and host bacterial gene expression, and that phage receptor binding protein (RBP) is the primary determinant of host specificity. However, the structural basis of phage protein-mediated transcriptional regulation, especially transcriptional repression, is still unclear due to the poor understanding of the phage-bacteria interaction mechanism [5]. ...
Article
Full-text available
The emergence of superbug has once again thrust century-old phage into the spotlight as a hot research topic. While the "phage display" technology has enabled targeted evolution of viruses, the successful application of phage remains uncertain due to their replicative and mutative nature, as well as the complexity of phage-bacteria interactions and evolutionary mechanisms. In this study, we used two rapidly evolving phages, P1 and T5, along with 18 types of E. coli strains, as representatives to explore the evolutionary characteristics of phage-infected bacteria. Our findings confirm that the evolutionary of phages and their hosts is a co-evolutionary process, resembling an "arms race", after the early rapid evolution of P1 and T5, the host range expands to infect different E. coli strains, but continued rapid evolution reaches a certain stage where P1, T5, and E. coli strains all experience a fitness cost, and the host range no longer expands. Three new findings in this study differ from previous studies. Firstly, although E. coli strains were not infected in the same way, there was no statistically significant difference between P1 and T5 infection in different E. coli strains at different evolutionary stages. Secondly, 11 types of E. coli strains that had been infected by T5 during co-evolution all showed E. coli tolerant plaques on the medium at the fifth stage of evolution, whether they had been infected by T5 at that stage of evolution, and at the sixth stage of evolution, all of these tolerant plaques disappeared again. Thirdly, after the fitness cost of the co-evolutionary process had already occurred, although the host range of P1 and T5 no longer continued to expand, the types of E. coli strains infected by P1 and T5 at the same evolutionary stage did not decrease in focus with the continued prolongation of the co-evolutionary time, but instead showed a gradual incremental trend. This study provides experimental evidence for the resolution of phage-bacteria co-evolutionary mechanism and new ideas for phagotherapy strategies for the superbug.
... On the basis of further analyzing the phage-bacteria interaction mechanism, engineering phage and recombinant phage through synthetic biology to improve phagotherapy effect and safety are gradually becoming a research hotspot to solve the problem of phage application disadvantage. The receptor binding protein (RBP) of phage is the primary determinant of host specificity [11]. Cutting-edge research is utilizing the property of RBP to assist phage in host recognition and artificially narrowing the phage host spectrum. ...
Article
Full-text available
The emergence of ultra-resistant superbug due to the widespread use and even abuse of antibiotics has caused people to start dying from common wound infections. It has become a global consensus to crack the superbug problem as soon as possible. In this battle, a virus called "phage" discovered a century ago has become a research hotspot again because of its characteristic of engulfing bacteria. Especially, the emergence of "phage display" technology has made the targeted evolution of viruses possible, and phage has become a potential weapon against superbug. By reviewing the discovery history of phage, dissecting the relationship between phage and bacteria as well as the molecular mechanism of interaction, this paper found that phage and bacteria are not in a simple parasitic relationship with each other, and that bacteria will evolve various active and passive defense mechanisms against phage infection, while phage will further evolve their responses against the various defense mechanisms of bacteria. In this invasion-defense-counter-defense arms race, phage and bacteria interact with each other and coexist in co-evolution. Phage not only indirectly affects human health by influencing the pathogenicity of bacteria, but also directly affects human health by interacting with human immune cells. The specificity and replication variability of phage, the large number of phage-bacteria, the complexity of phage-bacteria interactions and their unknown evolutionary mechanisms, and the insecurity of phage entry into the human body also contribute to the fact that the efficacy of phagotherapy, which has a century-long history, has always been uncertain and not reliable for large-scale application. Therefore, this study concludes that phage cannot defeat superbug alone, providing a new way of thinking about how humans can finally overcome the superbug problem.
Article
Full-text available
CRISPR-Cas13 proteins are RNA-guided RNA nucleases that defend against incoming RNA and DNA phages by binding to complementary target phage transcripts followed by general, non-specific RNA degradation. Here we analysed the defensive capabilities of LbuCas13a from Leptotrichia buccalis and found it to have robust antiviral activity unaffected by target phage gene essentiality, gene expression timing or target sequence location. Furthermore, we find LbuCas13a antiviral activity to be broadly effective against a wide range of phages by challenging LbuCas13a against nine E. coli phages from diverse phylogenetic groups. Leveraging the versatility and potency enabled by LbuCas13a targeting, we applied LbuCas13a towards broad-spectrum phage editing. Using a two-step phage-editing and enrichment method, we achieved seven markerless genome edits in three diverse phages with 100% efficiency, including edits as large as multi-gene deletions and as small as replacing a single codon. Cas13a can be applied as a generalizable tool for editing the most abundant and diverse biological entities on Earth.
Article
Full-text available
Jumbo phages such as Pseudomonas aeruginosa ФKZ have potential as antimicrobials and as a model for uncovering basic phage biology. Both pursuits are currently limited by a lack of genetic engineering tools due to a proteinaceous ‘phage nucleus’ structure that protects from DNA-targeting CRISPR–Cas tools. To provide reverse-genetics tools for DNA jumbo phages from this family, we combined homologous recombination with an RNA-targeting CRISPR–Cas13a enzyme and used an anti-CRISPR gene (acrVIA1) as a selectable marker. We showed that this process can insert foreign genes, delete genes and add fluorescent tags to genes in the ФKZ genome. Fluorescent tagging of endogenous gp93 revealed that it is ejected with the phage DNA while deletion of the tubulin-like protein PhuZ surprisingly had only a modest impact on phage burst size. Editing of two other phages that resist DNA-targeting CRISPR–Cas systems was also achieved. RNA-targeting Cas13a holds great promise for becoming a universal genetic editing tool for intractable phages, enabling the systematic study of phage genes of unknown function.
Article
Full-text available
The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants, and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signaling molecule whose molecular structure remained elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here Thoeris anti-defense 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are "sponges" that bind and sequester the immune signaling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule revealed a unique chemical structure of 1''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signaling molecule, and reveal a new mode of action by which pathogens can suppress host immunity.
Article
Full-text available
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
Article
Full-text available
In recent years, bacteriophage research has been boosted by a rising interest in using phage therapy to treat antibiotic-resistant bacterial infections. In addition, there is a desire to use phages and their unique proteins for specific biocontrol applications and diagnostics. However, the ability to manipulate phage genomes to understand and control gene functions, or alter phage properties such as host range, has remained challenging due to a lack of universal selectable markers. Here, we discuss the state-of-the-art techniques to engineer and select desired phage genomes using advances in cell-free methodologies and clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR-Cas) counter-selection approaches.
Article
Full-text available
Bacteriophages are the most abundant entities in the biosphere, and many genomes of rare and novel bacteriophages have been sequenced to date. However, bacteriophage functional genomics has been limited by a lack of effective research methods. Clustered regularly interspaced short palindromic repeat/CRISPR-associated gene (CRISPR–Cas) systems provide bacteriophages with a new mechanism for attacking host bacteria as well as new tools for study bacteriophage functional genomics. It has been reported that bacteriophages are not only the driving elements of the evolution of prokaryote CRISPR arrays but also the targets of CRISPR–Cas systems. In this study, a phage genome editing platform based on the heterologous CRISPR–Cas9 system was theoretically designed, and a Vibrio natriegens phage TT4P2 genome editing experiment was carried out in vivo in the host bacterium Vibrio natriegens TT4 to achieve phage gene deletion and replacement. The construction of this phage genome editing platform is expected to solve the problem of insufficient research on phage gene diversity, promote the development of phage synthetic biology and nanotechnology, and even accelerate the discovery of new molecular biology tools. IMPORTANCE Bacteriophages are the most numerous organisms on earth and are known for their diverse lifestyles. Since the discovery of bacteriophages, our knowledge of the wider biological world has undergone immense and unforeseen changes. A variety of V. natriegens phages have been detected, but few have been well characterized. CRISPR was first documented in Escherichia coli in 1987. It has been reported that the CRISPR–Cas system can target and cleave invaders, including bacteriophages, in a sequence-specific manner. Here, we show that the construction of a phage genome editing platform based on the heterologous CRISPR–Cas9 system can achieve V. natriegens phage TT4P2 gene editing and can also improve the efficiency and accuracy of phage TT4P2 gene editing.
Article
Full-text available
Bacteriophages (phages) are ideal alternatives to traditional antimicrobial agents in a world where antimicrobial resistance (AMR) is emerging and spreading at an unprecedented speed. In addition, due to their narrow host ranges, phages are also ideal tools to modulate the gut microbiota in which alterations of specific bacterial strains underlie human diseases, while dysbiosis caused by broad-spectrum antibiotics can be harmful. Here, we engineered a lambda phage (Eλ) to target enterohemorrhagic Escherichia coli (EHEC) that causes a severe, sometimes lethal intestinal infection in humans. We enhanced the killing ability of the Eλ phage by incorporating a CRISPR-Cas3 system into the wild-type λ (wtλ) and the specificity by introducing multiple EHEC-targeting CRISPR spacers while knocking out the lytic gene cro. In vitro experiments showed that the Eλ suppressed the growth of EHEC up to 18 h compared with only 6 h with the wtλ; at the multiplicity of infection (MOI) of 10, the Eλ killed the EHEC cells with;100% efficiency and did not affect the growth of other laboratory- and human-gut isolated E. coli strains. In addition, the EHEC cells did not develop resistance to the Eλ. Mouse experiments further confirmed the enhanced and strain-specific killing of the Eλ to EHEC, while the overall mouse gut microbiota was not disturbed. Our methods can be used to target other genes that are responsible for antibiotic resistance genes and/or human toxins, engineer other phages, and support in vivo application of the engineered phages.
Article
Full-text available
Synthetic genomics is the construction of viruses, bacteria, and eukaryotic cells with synthetic genomes. It involves two basic processes: synthesis of complete genomes or chromosomes and booting up of those synthetic nucleic acids to make viruses or living cells. The first synthetic genomics efforts resulted in the construction of viruses. This led to a revolution in viral reverse genetics and improvements in vaccine design and manufacture. The first bacterium with a synthetic genome led to construction of a minimal bacterial cell and recoded Escherichia coli strains able to incorporate multiple non-standard amino acids in proteins and resistant to phage infection. Further advances led to a yeast strain with a synthetic genome and new approaches for animal and plant artificial chromosomes. On the horizon there are dramatic advances in DNA synthesis that will enable extraordinary new opportunities in medicine, industry, agriculture, and research.