Preprint

Effects of Toll Like Receptor Agonists and SARS-Cov-2 Antigens on Interferon (IFN) Expression by Peripheral Blood CD3+ T Cells in COVID-19 Patients

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

Background: Signaling by toll like receptors (TLRs) initiates important immune responses against viral infection. The role of TLRs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is not well elucidated. Thus, we investigated the interaction of TLRs agonists and SARS-COV-2 antigens with immune cells in vitro. Material & methods: 30 coronavirus disease 2019 (COVID-19) patients (15 severe and 15 moderate) and 10 age and sex matched control (HC) were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and activated with TLR3, 7, 8 and 9 agonists, the spike protein (SP) of SARS-CoV-2 and the Receptor Binding Domain (RBD) unit of SP. Frequencies of CD3+IFN-β+ T cells, and CD3+IFN-g+ T cells was evaluated by flow cytometry. Interferon (IFN)-b gene expression was assessed by qRT-PCR. Results: The frequency of CD3+IFN-β+ T cells was higher in moderate and severe patients at baseline in comparison with HCs. Stimulation of PBMCs from moderate patients with SP and TLR8 agonist significantly upregulated the frequency of CD3+IFN-β+ T cells (P=0.0005 and 0.0024, respectively) when compared to non-stimulated (NS) samples. The greatest increase in CD3+IFN-b+ T cell frequency in PBMCs from severe patients was seen with TLR8 and TLR7 agonists when compared to NS (P= 0.003 and 0.0167, respectively). TLR stimulation did not significantly enhance the frequency of CD3+IFN-g+ T cells generated from PBMCs from moderate and severe patients compared with unstimulated controls. However, the frequency of CD3+IFN-ɣ+ T cells in PBMCs from moderate patients was upregulated by agonists of TLR3, 8 and 9, SP and RBD when compared with NS samples from HCs. The expression of the IFN-β gene after stimulation of CD3+T cells with the TLR8 agonist was also up-regulated in moderate than severe patients (moderate vs. severe: p=0.0006). In addition, stimulation of CD3+ T cells with SP, up-regulated the expression of IFN-β gene expression in cells from patients with moderate disease (moderate vs. severe: p=0.01). Conclusion: Stimulation of PBMCs from COVID-19 patients with a TLR8 agonist and with SP enhanced IFN-b protein and gene levels. This may potentiate immune responses against SARS-CoV-2 infection and prevent viral replication and spread.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Respiratory virus infections initiate in the upper respiratory tract (URT). Innate immunity is critical for initial control of infection at this site, particularly in the absence of mucosal virus-neutralising antibodies. If the innate immune response is inadequate, infection can spread to the lower respiratory tract (LRT) causing community-acquired pneumonia (as exemplified by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019). Vaccines for respiratory viruses (influenza and SARS-CoV-2) leverage systemic adaptive immunity to protect from severe lung disease. However, the URT remains vulnerable to infection, enabling viral transmission and posing an ongoing risk of severe disease in populations that lack effective adaptive immunity. Innate immunity is triggered by host cell recognition of viral pathogen-associated molecular patterns via molecular sensors such as Toll-like receptors (TLRs). Here we review the role of TLRs in respiratory viral infections and the potential of TLR-targeted treatments to enhance airway antiviral immunity to limit progression to severe LRT disease and reduce person-to-person viral transmission. By considering cellular localisation and antiviral mechanisms of action and treatment route/timing, we propose that cell surface TLR agonist therapies are a viable strategy for preventing respiratory viral diseases by providing immediate, durable pan-viral protection within the URT.
Article
Full-text available
Background Non−small-cell lung cancer (NSCLC) is the major type of lung cancer. MicroRNAs (miRNAs) are novel markers and targets in cancer therapy and can act as both tumor suppressors and oncogenes and affect immune function. The aim of this study was to investigate the expression of miR146a and miR155 in linked to blood immune cell phenotypes and serum cytokines in NSCLC patients. Methods Thirty-three NSCLC patients and 30 healthy subjects were enrolled in this study. The allele frequencies of potential DNA polymorphisms were studied using polymerase chain reaction (PCR)–restriction fragment length polymorphism (PCR-RFLP) analysis in peripheral blood samples. Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of miR-146a and miR-155 in peripheral blood mononuclear cells (PBMCs). Serum cytokine (IL-1β, IL-6, TNF-α, TGF-β, IL-4, IFN-γ) levels were determined by ELISA. The frequency of circulating CD3+CTLA-4+ and CD4+CD25+FOXP3+ (T regulatory cells/Treg) expression was measured by flow cytometry. Results miR-146a was significantly downregulated in PBMC of NSCLC patients (P ≤ 0.001). Moreover, IL-6 and TGF-β levels were elevated in NSCLC patients (P ≤ 0.001, P ≤ 0.018, respectively). CD3+ CTLA-4+ and Treg cells frequencies were higher in patients than in control subjects (P ≤ 0.0001, P ≤ 0.0001, respectively). There was a positive correlation between miR-155 and IL-1β levels (r=0.567, p ≤ 0.001) and a negative correlation between miR-146a and TGF-β levels (r=-0.376, P ≤ 0.031) in NSCLC patients. No significant differences were found in the relative expression of miR-146a and miR-155, cytokine levels or immune cell numbers according to miR-146a and miR-155 (GG/GC/CC, TT/AT/AA) genotypes. However, there was a positive correlation between miR-146a and IL-1β levels (r=0.74, P ≤ 0.009) in GG subjects and a positive correlation between miR-146a expression and CD3+CTLA4+ cell frequency (r=0.79, P ≤ 0.01) in CC genotyped subjects. Conversely, a negative correlation between miR-146a expression and Treg cell frequency (r=−0.87, P ≤ 0.05) was observed with the GG genotype. A positive correlation between miR-155 and IL-1β expression (r=0.58, p ≤ 0.009) in the TT genotype and between miR-155 expression and CD3+CTLA-4 cell frequency (r=0.75, P ≤ 0.01) was observed in the AT genotype. Conclusions The current data suggest that the miR-146a expression in PBMC and serum TGF-β and IL-1β levels may act as blood markers in NSCLC patients. Further study is needed to elucidate the link between immune cells and serum miR146 at early disease stages.
Article
Full-text available
Background: The innate immune system is recognized as an essential aspect of COVID-19 pathogenesis. Toll-like receptors (TLRs) are important in inducing antiviral response, triggering downstream production of interferons (IFNs). Certain loss-of-function variants in TLR7 are associated with increased COVID-19 disease severity, and imiquimod (ImiQ) is known to have immunomodulating effects as an agonist of TLR7. Given that topical imiquimod (topImiQ) is indicated for various dermatologic conditions, it is necessary for dermatologists to understand the interplay between innate immunity mechanisms and the potential role of ImiQ in COVID-19, with a particular focus on TLR7. Summary: Our objective was to survey recent peer-reviewed scientific literature in the PubMed database, examine relevant evidence, and elucidate the relationships between IFNs, TLR7, the innate immune system, and topImiQ in the context of COVID-19. Despite limited studies on this topic, current evidence supports the critical role of TLRs in mounting a strong immune response against COVID-19. Of particular interest to dermatologists, topImiQ can result in systemic upregulation of the immune system via activation of TLR7. Key Message: Given the role of TLR7 in the systemic activation of the immune system, ImiQ, as a ligand of the TLR7 receptor, may have potential therapeutic benefit as a topical immunomodulatory treatment for COVID-19.
Article
Full-text available
The role of innate immunity in COVID-19 is not completely understood. Therefore, this study explored the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection on the expression of Pattern Recognition Receptors (PRRs) in peripheral blood cells and their correlated cytokines. Seventy-nine patients with severe COVID-19 on admission, according to World Health Organization (WHO) classification, were divided into two groups: patients who needed mechanical ventilation and/or deceased (SEVERE, n = 50) and patients who used supplementary oxygen but not mechanical ventilation and survived (MILD, n = 29); a control group (CONTROL, n = 17) was also enrolled. In the peripheral blood, gene expression (mRNA) of Toll-like receptors (TLRs) 3, 4, 7, 8, and 9, retinoic-acid inducible gene I (RIGI), NOD-like receptor family pyrin domain containing 3 (NLRP3), interferon alpha (IFN-α), interferon beta (IFN-β), interferon gamma (IFN-γ), interferon lambda (IFN-λ), pro-interleukin(IL)-1β (pro-IL-1β), and IL-18 was determined on admission, between 5–9 days, and between 10–15 days. Circulating cytokines in plasma were also measured. When compared to the COVID-19 MILD group, the COVID-19 SEVERE group had lower expression of TLR3 and overexpression of TLR4.
Article
Full-text available
INTRODUCTION Interindividual clinical variability is vast in humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranging from silent infection to rapid death. Three risk factors for life-threatening coronavirus disease 2019 (COVID-19) pneumonia have been identified—being male, being elderly, or having other medical conditions—but these risk factors cannot explain why critical disease remains relatively rare in any given epidemiological group. Given the rising toll of the COVID-19 pandemic in terms of morbidity and mortality, understanding the causes and mechanisms of life-threatening COVID-19 is crucial. RATIONALE B cell autoimmune infectious phenocopies of three inborn errors of cytokine immunity exist, in which neutralizing autoantibodies (auto-Abs) against interferon-γ (IFN-γ) (mycobacterial disease), interleukin-6 (IL-6) (staphylococcal disease), and IL-17A and IL-17F (mucocutaneous candidiasis) mimic the clinical phenotypes of germline mutations of the genes that encode the corresponding cytokines or receptors. Human inborn errors of type I IFNs underlie severe viral respiratory diseases. Neutralizing auto-Abs against type I IFNs, which have been found in patients with a few underlying noninfectious conditions, have not been unequivocally shown to underlie severe viral infections. While searching for inborn errors of type I IFN immunity in patients with life-threatening COVID-19 pneumonia, we also tested the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical COVID-19. We searched for auto-Abs against type I IFNs in 987 patients hospitalized for life-threatening COVID-19 pneumonia, 663 asymptomatic or mildly affected individuals infected with SARS-CoV-2, and 1227 healthy controls from whom samples were collected before the COVID-19 pandemic. RESULTS At least 101 of 987 patients (10.2%) with life-threatening COVID-19 pneumonia had neutralizing immunoglobulin G (IgG) auto-Abs against IFN-ω (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three individual type I IFNs. These auto-Abs neutralize high concentrations of the corresponding type I IFNs, including their ability to block SARS-CoV-2 infection in vitro. Moreover, all of the patients tested had low or undetectable serum IFN-α levels during acute disease. These auto-Abs were present before infection in the patients tested and were absent from 663 individuals with asymptomatic or mild SARS-CoV-2 infection (P < 10−16). They were present in only 4 of 1227 (0.33%) healthy individuals (P < 10−16) before the pandemic. The patients with auto-Abs were 25 to 87 years old (half were over 65) and of various ancestries. Notably, 95 of the 101 patients with auto-Abs were men (94%). CONCLUSION A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men. In these patients, adaptive autoimmunity impairs innate and intrinsic antiviral immunity. These findings provide a first explanation for the excess of men among patients with life-threatening COVID-19 and the increase in risk with age. They also provide a means of identifying individuals at risk of developing life-threatening COVID-19 and ensuring their enrolment in vaccine trials. Finally, they pave the way for prevention and treatment, including plasmapheresis, plasmablast depletion, and recombinant type I IFNs not targeted by the auto-Abs (e.g., IFN-β).
Article
Full-text available
In late December 2019, a vtiral pneumonia with an unknown agent was reported in Wuhan, China. A novel coronavirus was identified as the causative agent. Because of the human-to-human transmission and rapid spread; coronavirus disease 2019 (COVID-19) has rapidly increased to an epidemic scale and poses a severe threat to human health; it has been declared a public health emergency of international concern (PHEIC) by the World Health Organization (WHO). This review aims to summarize the recent research progress of COVID-19 molecular features and immunopathogenesis to provide a reference for further research in prevention and treatment of SARS coronavirus2 (SARS-CoV-2) infection based on the knowledge from researches on SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV).
Article
Full-text available
Background Pharmacological therapies of proven efficacy in coronavirus disease 2019 (COVID-19) are still lacking. We have identified IFNβ-1a as the most promising drug to be repurposed for COVID-19. The rationale relies on the evidence of IFNβ anti-viral activity in vitro against SARS-CoV-2 and animal models resembling SARS-CoV-2 infection and on a recent clinical trial where IFNβ was indicated as the key component of a successful therapeutic combination. Methods This is a randomized, controlled, open-label, monocentric, phase II trial (INTERCOP trial). One hundred twenty-six patients with positive swab detection of SARS-CoV-2, radiological signs of pneumonia, and mild-to-moderate disease will be randomized 2:1 to IFNβ-1a in addition to standard of care vs standard of care alone. No other anti-viral drugs will be used as part of the regimens, both in the control and the intervention arms. IFNβ-1a will be administered subcutaneously at the dose of 44 mcg (equivalent to 12 million international units) three times per week, at least 48 h apart, for a total of 2 weeks. The primary outcome is the time to negative conversion of SARS-CoV-2 nasopharyngeal swabs. Secondary outcomes include improvement or worsening in a clinical severity score measured on a 7-point ordinal scale (including transfer to intensive care unit and death), oxygen- and ventilator-free days, mortality, changes in pulmonary computed tomography severity score, hospital stay duration, reduction of viral load measured on nasopharyngeal swabs, number of serious adverse events, and changes in biochemical markers of organ dysfunction. Exploratory outcomes include blood cell counts, cytokine and inflammatory profile, peripheral mRNA expression profiles of interferon-stimulated genes, and antibodies to SARS-CoV-2 and to IFNβ-1a. INTERCOP is the first study to specifically investigate the clinical benefits of IFNβ-1a in COVID-19 patients. Discussion Potential implications of this trial are multifaceted: should the primary outcome be fulfilled and the treatment be safe, one may envisage that IFNβ-1a be used to reduce the infectivity of patients with mild-to moderate disease. In case IFNβ-1a reduced the duration of hospital stay and/or ameliorated the clinical status, it may become a cornerstone of COVID-19 treatment. Trial registration EudraCT 2020-002458-25. Registered on May 11, 2020 ClinicalTrials.gov Identifier: NCT04449380
Article
Full-text available
The genetics underlying severe COVID-19 The immune system is complex and involves many genes, including those that encode cytokines known as interferons (IFNs). Individuals that lack specific IFNs can be more susceptible to infectious diseases. Furthermore, the autoantibody system dampens IFN response to prevent damage from pathogen-induced inflammation. Two studies now examine the likelihood that genetics affects the risk of severe coronavirus disease 2019 (COVID-19) through components of this system (see the Perspective by Beck and Aksentijevich). Q. Zhang et al. used a candidate gene approach and identified patients with severe COVID-19 who have mutations in genes involved in the regulation of type I and III IFN immunity. They found enrichment of these genes in patients and conclude that genetics may determine the clinical course of the infection. Bastard et al. identified individuals with high titers of neutralizing autoantibodies against type I IFN-α2 and IFN-ω in about 10% of patients with severe COVID-19 pneumonia. These autoantibodies were not found either in infected people who were asymptomatic or had milder phenotype or in healthy individuals. Together, these studies identify a means by which individuals at highest risk of life-threatening COVID-19 can be identified. Science , this issue p. eabd4570 , p. eabd4585 ; see also p. 404
Article
Full-text available
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. As of 14th July 2020, a total of 13.1 million confirmed cases globally and 572,426 deaths had been reported by the World Health Organization (WHO). SARS-CoV-2 belongs to the β-coronavirus family and shares extensive genomic identity with bat coronavirus suggesting that bats are the natural host. SARS-CoV-2 uses the same receptor, angiotensin-converting enzyme 2 (ACE2), as that for SARS-CoV, the coronavirus associated with the SARS outbreak in 2003. It mainly spreads through the respiratory tract with lymphopenia and cytokine storms occuring in the blood of subjects with severe disease. This suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus. The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
Article
Full-text available
The new pandemic virus SARS-CoV-2 emerged in China and spread around the world in <3 months, infecting millions of people, and causing countries to shut down public life and businesses. Nearly all nations were unprepared for this pandemic with healthcare systems stretched to their limits due to the lack of an effective vaccine and treatment. Infection with SARS-CoV-2 can lead to Coronavirus disease 2019 (COVID-19). COVID-19 is respiratory disease that can result in a cytokine storm with stark differences in morbidity and mortality between younger and older patient populations. Details regarding mechanisms of viral entry via the respiratory system and immune system correlates of protection or pathogenesis have not been fully elucidated. Here, we provide an overview of the innate immune responses in the lung to the coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2. This review provides insight into key innate immune mechanisms that will aid in the development of therapeutics and preventive vaccines for SARS-CoV-2 infection.
Article
Full-text available
Recombinant interferon-α (IFN-α) treatment functionally cures chronic hepatitis B virus (HBV) infection in some individuals and suppresses virus replication in hepatocytes infected in vitro. We studied the antiviral effect of conditioned media (CM) from peripheral blood mononuclear cells (PBMCs) stimulated with agonists of Toll-like receptors (TLRs) 2, 7, 8 and 9. We found that CM from PBMCs stimulated with dual-acting TLR7/8 (R848) and TLR2/7 (CL413) agonists were more potent drivers of inhibition of HBe and HBs antigen secretion from HBV-infected primary human hepatocytes (PHH) than CM from PBMCs stimulated with single-acting TLR7 (CL264) or TLR9 (CpG-B) agonists. Inhibition of HBV in PHH did not correlate with the quantity of PBMC-produced IFN-α, but it was a complex function of multiple secreted cytokines. More importantly, we found that the CM that efficiently inhibited HBV production in freshly isolated PHH via various cytokine repertoires and mechanisms did not reduce covalently closed circular (ccc)DNA levels. We confirmed our data with a cell culture model based on HepG2-NTCP cells and the plasmacytoid dendritic cell line GEN2.2. Collectively, our data show the importance of dual-acting TLR agonists inducing broad cytokine repertoires. The development of poly-specific TLR agonists provides novel opportunities towards functional HBV cure.
Article
Full-text available
COVID-19-associated morbidity and mortality have been attributed to a pathologic host response. Two divergent hypotheses have been proposed: a hyper-inflammatory 'cytokine-storm'-mediated injury versus failure of host protective immunity resulting in unrestrained viral dissemination and organ injury. A key explanation for the inability to address this controversy has been the lack of diagnostic tools to evaluate immune function in COVID-19 infections. ELISpot, a highly sensitive, functional immunoassay was employed in 27 COVID-19, 51 septic, 18 critically-ill non-septic (CINS), and 27 healthy controls to evaluate adaptive and innate immune status by quantitating T cell IFN-ɣ and monocyte TFN-α production. Circulating T cell subsets were profoundly reduced in COVID-19 patients. Additionally, stimulated blood mononuclear cells produced less than 40% to 50% of the IFN-ɣ and TNF-α observed in septic and CINS patients, consistent with markedly impaired immune effector cell function. Approximately 25% of COVID-19 patients had increased IL-6 levels greater than 1,000 pg/mL that were not associated with elevations in other canonical pro-inflammatory cytokines. Collectively, these findings support the hypothesis that COVID-19 suppresses host functional adaptive and innate immunity. Importantly, Interleukin-7 administered ex vivo restored T cell IFN-ɣ production in COVID-19 patients. Thus, ELISpot may functionally characterize host immunity in COVID-19 and inform prospective therapies.
Article
Full-text available
Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
Article
Full-text available
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging coronavirus that has resulted in nearly 1,000,000 laboratory-confirmed cases including over 50,000 deaths. Although SARS-CoV-2 and SARS-CoV share a number of common clinical manifestations, SARS-CoV-2 appears to be highly efficient in person-to-person transmission and frequently cause asymptomatic infections. However, the underlying mechanism that confers these viral characteristics on high transmissibility and asymptomatic infection remain incompletely understood. Methods: We comprehensively investigated the replication, cell tropism, and immune activation profile of SARS-CoV-2 infection in human lung tissues with SARS-CoV included as a comparison. Results: SARS-CoV-2 infected and replicated in human lung tissues more efficiently than that of SARS-CoV. Within the 48-hour interval, SARS-CoV-2 generated 3.20 folds more infectious virus particles than that of SARS-CoV from the infected lung tissues (P<0.024). SARS-CoV-2 and SARS-CoV were similar in cell tropism, with both targeting types I and II pneumocytes, and alveolar macrophages. Importantly, despite the more efficient virus replication, SARS-CoV-2 did not significantly induce types I, II, or III interferons in the infected human lung tissues. In addition, while SARS-CoV infection upregulated the expression of 11 out of 13 (84.62%) representative pro-inflammatory cytokines/chemokines, SARS-CoV-2 infection only upregulated 5 of these 13 (38.46%) key inflammatory mediators despite replicating more efficiently. Conclusions: Our study provided the first quantitative data on the comparative replication capacity and immune activation profile of SARS-CoV-2 and SARS-CoV infection in human lung tissues. Our results provided important insights on the pathogenesis, high transmissibility, and asymptomatic infection of SARS-CoV-2.
Article
Full-text available
The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 3,000 people and infected over 80,000 in China and elsewhere in the world, resulting in catastrophe for humans. Similar to its homologous virus, SARS-CoV, which caused SARS in thousands of people in 2003, SARS-CoV-2 might also be transmitted from the bats and causes similar symptoms through a similar mechanism. However, COVID-19 has lower severity and mortality than SARS but is much more transmissive and affects more elderly individuals than youth and more men than women. In response to the rapidly increasing number of publications on the emerging disease, this article attempts to provide a timely and comprehensive review of the swiftly developing research subject. We will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease. Although many questions still require answers, we hope that this review helps in the understanding and eradication of the threatening disease.
Article
Full-text available
As the world is witnessing the epidemic of COVID-19, a disease caused by a novel coronavirus, SARS-CoV-2, emerging genetics and clinical evidences suggest a similar path to those of SARS and MERS. The rapid genomic sequencing and open access data, together with advanced vaccine technology, are expected to give us more knowledge on the pathogen itself, including the host immune response as well as the plan for therapeutic vaccines in the near future. This review aims to provide a comparative view among SARS-CoV, MERS-CoV and the newly epidemic SARS-CoV-2, in the hope to gain a better understanding of the host-pathogen interaction, host immune responses, and the pathogen immune evasion strategies. This predictive view may help in designing an immune intervention or preventive vaccine for COVID-19 in the near future.
Article
Full-text available
Objective To study the clinical characteristics of patients in Zhejiang province, China, infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) responsible for coronavirus disease 2019 (covid-2019). Design Retrospective case series. Setting Seven hospitals in Zhejiang province, China. Participants 62 patients admitted to hospital with laboratory confirmed SARS-Cov-2 infection. Data were collected from 10 January 2020 to 26 January 2020. Main outcome measures Clinical data, collected using a standardised case report form, such as temperature, history of exposure, incubation period. If information was not clear, the working group in Hangzhou contacted the doctor responsible for treating the patient for clarification. Results Of the 62 patients studied (median age 41 years), only one was admitted to an intensive care unit, and no patients died during the study. According to research, none of the infected patients in Zhejiang province were ever exposed to the Huanan seafood market, the original source of the virus; all studied cases were infected by human to human transmission. The most common symptoms at onset of illness were fever in 48 (77%) patients, cough in 50 (81%), expectoration in 35 (56%), headache in 21 (34%), myalgia or fatigue in 32 (52%), diarrhoea in 3 (8%), and haemoptysis in 2 (3%). Only two patients (3%) developed shortness of breath on admission. The median time from exposure to onset of illness was 4 days (interquartile range 3-5 days), and from onset of symptoms to first hospital admission was 2 (1-4) days. Conclusion As of early February 2020, compared with patients initially infected with SARS-Cov-2 in Wuhan, the symptoms of patients in Zhejiang province are relatively mild.
Article
Full-text available
Coronaviruses (CoVs) are by far the largest group of known positive‐sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. Immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV‐induced inflammation of lung tissue, as well as the role of the innate immune system in pathogenesis and clinical treatment. This article is protected by copyright. All rights reserved.
Article
Full-text available
Background: A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods: All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings: By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0-58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0-13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation: The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding: Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
Article
Full-text available
The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.
Article
Full-text available
Objective Autoimmune thyroid disease (AITD) is an organ-specific disorder due to the interplay between environmental and genetic factors. Toll-like receptors (TLRs) are pattern recognition receptors expressed abundantly on monocytes. There is a paucity of data on TLR expression in AITD. The aim of this study was to examine TLR expression, activation, ligands, and downstream signaling adaptors in peripheral blood mononuclear cells (PBMCs) extracted from untreated AITD patients and healthy controls. Method We isolated PBMC of 30 healthy controls, 36 patients with untreated Hashimoto’s thyroiditis, and 30 patients with newly onset Graves’ disease. TLR mRNA, protein expression, TLR ligands, and TLR adaptor molecules were measured using real-time PCR, Western blot, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). PBMC was simulated with TLR agonists. The effects of TLR agonists on the viability of human PBMC were evaluated using the MTT assay. The supernatants of cell cultures were measured for the pro-inflammatory cytokines, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), and IL-10 by ELISA. Results TLR2, TLR3, TLR9, and TLR10 mRNA were significantly increased in AITD patients compared with controls. TLR2, TLR3, TLR9, high mobility group box 1 (HMGB1), and RAGE expression on monocytes was higher in patients than control at baseline and TLR agonists’ stimulation. The release of TNF-α and IL-6 was significantly increased in PBMCs from AITD patients with TLR agonists, while IL-10 was significantly decreased. Downstream targets of TLR, myeloid differentiation factor 88 (MyD88), and myeloid toll/IL-1 receptor-domain containing adaptor-inducing interferon-β were significantly elevated in AITD patients. Levels of TLR2 ligands, HMGB1, and heat shock protein 60 were significantly elevated in AITD patients compared with those in controls and positively correlated with TgAb and TPOAb, while sRAGE concentration was significantly decreased in AITD patients. Conclusion This work is the first to show that TLR2, TLR3, and TLR9 expression and activation are elevated in the PBMCs of patients with AITD and TLRs may participate in the pathogenesis of AITD.
Article
Full-text available
Background: Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood) and suboptimal (ASubopt) asthma symptom control. Methods: Peripheral blood neutrophils from AGood (ACQ < 0.75, n = 11), ASubopt (ACQ > 0.75, n = 7), and healthy controls (HC) (n = 9) were stimulated with bacterial (LPS (1 μg/mL), fMLF (100 nM)), and viral (imiquimod (3 μg/mL), R848 (1.5 μg/mL), and poly I:C (10 μg/mL)) surrogates or live rhinovirus (RV) 16 (MOI1). Cell-free supernatant was collected after 1 h for neutrophil elastase (NE) and matrix metalloproteinase- (MMP-) 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions: Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.
Article
Full-text available
Background and objective: Respiratory viral infections are a major cause of asthma exacerbations. Neutrophils accumulate in the airways and the mechanisms that link neutrophilic inflammation, viral infections and exacerbations are unclear. This study aims to investigate anti-viral responses in neutrophils from patients with and without asthma and to investigate if neutrophils can be directly activated by respiratory viruses. Methods: Neutrophils from peripheral blood from asthmatic and non-asthmatic individuals were isolated and stimulated with lipopolysaccharide (LPS) (1 μg/mL), f-met-leu-phe (fMLP) (100 nM), imiquimod (3 μg/mL), R848 (1.5 μg/mL), poly I:C (10 μg/mL), RV16 (multiplicity of infection (MOI)1), respiratory syncytial virus (RSV) (MOI1) or influenza virus (MOI1). Cell-free supernatants were collected after 1 h of neutrophil elastase (NE) and matrix metalloproteinase (MMP)-9 release, or after 24 h for CXCL8 release. Results: LPS, fMLP, imiquimod and R848 stimulated the release of CXCL8, NE and MMP-9 whereas poly I:C selectively induced CXCL8 release only. R848-induced CXCL8 release was enhanced in neutrophils from asthmatics compared with non-asthmatic cells (P < 0.01). RSV triggered the release of CXCL8 and NE from neutrophils, whereas RV16 or influenza had no effect. Conclusion: Neutrophils release CXCL8, NE and MMP-9 in response to viral surrogates with R848-induced CXCL8 release being specifically enhanced in asthmatic neutrophils. Toll-like receptor (TLR7/8) dysregulation may play a role in neutrophilic inflammation in viral-induced exacerbations.
Article
Full-text available
Unlabelled: Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3(-/-), TLR4(-/-), and TRAM(-/-) mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF(-/-) mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF(-/-) mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections. Importance: Toll-like receptors are a family of sensor proteins that enable the immune system to differentiate between "self" and "non-self." Agonists and antagonists of TLRs have been proposed to have utility as vaccine adjuvants or antiviral compounds. In the last 15 years, the emergence of highly pathogenic coronaviruses SARS-CoV and MERS-CoV has caused significant disease accompanied by high mortality rates in human populations, but no approved therapeutic treatments or vaccines currently exist. Here, we demonstrate that TLR signaling through the TRIF adaptor protein protects mice from lethal SARS-CoV disease. Our findings indicate that a balanced immune response operating through both TRIF-driven and MyD88-driven pathways likely provides the most effective host cell intrinsic antiviral defense responses to severe SARS-CoV disease, while removal of either branch of TLR signaling causes lethal SARS-CoV disease in our mouse model. These data should inform the design and use of TLR agonists and antagonists in coronavirus-specific vaccine and antiviral strategies.
Article
Full-text available
Toll-like receptors (TLRs) are members of the pattern recognition receptor family and are essential in the innate immune response. In total, 11 TLRs exist in humans, which are expressed in a variety of cells, including peripheral blood cells. TLR4 plays a significant role in the defense against gram-negative pathogens by recognizing the lipopolysaccharide (LPS) molecules in these bacteria. The aim of the present study was to detect the expression level variation of a number of major immune molecules in peripheral blood mononuclear cells (PBMCs) stimulated by LPS, in order to identify candidate genes involved in the biological functions mediated by TLR4. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and an antibody chip were performed in the current study. The RT-qPCR results revealed a marked enhancement in the expression levels of various molecules, including cytokines, chemokines, growth factors and protein kinases. In addition, the antibody chip identified the increased secretion of crucial proinflammatory molecules in the supernatants collected from LPS-treated PBMCs. In conclusion, a large number of molecules were found to be involved in TLR4-mediated functions.
Article
Full-text available
Toll-like receptors (TLRs) play crucial roles in the innate immune system by recognizing pathogen-associated molecular patterns derived from various microbes. TLRs signal through the recruitment of specific adaptor molecules, leading to activation of the transcription factors NF-κB and IRFs, which dictate the outcome of innate immune responses. During the past decade, the precise mechanisms underlying TLR signaling have been clarified by various approaches involving genetic, biochemical, structural, cell biological, and bioinformatics studies. TLR signaling appears to be divergent and to play important roles in many aspects of the innate immune responses to given pathogens. In this review, we describe recent progress in our understanding of TLR signaling regulation and its contributions to host defense.
Article
Full-text available
Defective Rhinovirus induced interferon-β and interferon-λ production has been reported in bronchial epithelial cells from asthmatics but the mechanisms of defective interferon induction in asthma are unknown. Virus infection can induce interferon through Toll like Receptors (TLR)3, TLR7 and TLR8. The role of these TLRs in interferon induction in asthma is unclear. This objective of this study was to measure the type I and III interferon response to TLR in bronchial epithelial cells and peripheral blood cells from atopic asthmatics and non-atopic non-asthmatics. Bronchial epithelial cells and peripheral blood mononuclear cells from atopic asthmatic and non-atopic non-asthmatic subjects were stimulated with agonists to TLR3, TLR4 & TLRs7-9 and type I and III interferon and pro-inflammatory cytokine, interleukin(IL)-6 and IL-8, responses assessed. mRNA expression was analysed by qPCR. Interferon proteins were analysed by ELISA. Pro-inflammatory cytokines were induced by each TLR ligand in both cell types. Ligands to TLR3 and TLR7/8, but not other TLRs, induced interferon-β and interferon-λ in bronchial epithelial cells. The ligand to TLR7/8, but not those to other TLRs, induced only type I interferons in peripheral blood mononuclear cells. No difference was observed in TLR induced interferon or pro-inflammatory cytokine production between asthmatic and non-asthmatic subjects from either cell type. TLR3 and TLR7/8,, stimulation induced interferon in bronchial epithelial cells and peripheral blood mononuclear cells. Interferon induction to TLR agonists was not observed to be different in asthmatics and non-asthmatics.
Article
Full-text available
Glial activation via Toll-like receptor (TLR) signaling has been shown in animals to play an important role in the initiation and establishment of chronic pain. However, our ability to assess this central immune reactivity in clinical pain populations is currently lacking. Peripheral blood mononuclear cells (PBMCs) are an accessible source of TLR expressing cells that may mirror similarities in TLR responsiveness of the central nervous system. The aim of this study was to characterize the IL-1β response to various TLR agonists in isolated PBMCs from chronic pain sufferers (on and not on opioids) and pain-free controls. Venous blood was collected from 11 chronic pain sufferers on opioids (≥ 20 mg of morphine / day), 8 chronic pain sufferers not on opioids and 11 pain-free controls. PBMCs were isolated and stimulated in vitro with a TLR2 (Pam3CSK4), TLR4 (LPS) or TLR7 (imiquimod) agonist. IL-1β released into the supernatant was measured with ELISA. Significantly increased IL-1β expression was found in PBMCs from chronic pain sufferers (on and not on opioids) compared with pain-free controls for TLR2 (F (6, 277) = 15, P<0.0001), TLR4 (F (8, 263) = 3, P = 0.002) and TLR7 (F (2,201) = 5, P = 0.005) agonists. These data demonstrate that PBMCs from chronic pain sufferers were more responsive to TLR agonists compared with controls, suggesting peripheral cells may have the potential to become a source of biomarkers for chronic pain.
Article
Full-text available
Schistosoma infection is thought to lead to down-regulation of the host's immune response. This has been shown for adaptive immune responses, but the effect on innate immunity, that initiates and shapes the adaptive response, has not been extensively studied. In a first study to characterize these responses, we investigated the effect of Schistosoma haematobium infection on cytokine responses of Gabonese schoolchildren to a number of Toll-like receptor (TLR) ligands. Peripheral blood mononuclear cells (PBMCs) were collected from S. haematobium-infected and uninfected schoolchildren from the rural area of Zilé in Gabon. PBMCs were incubated for 24 h and 72 h with various TLR ligands, as well as schistosomal egg antigen (SEA) and adult worm antigen (AWA). Pro-inflammatory TNF-α and anti-inflammatory/regulatory IL-10 cytokine concentrations were determined in culture supernatants. Infected children produced higher adaptive IL-10 responses than uninfected children against schistosomal antigens (72 h incubation). On the other hand, infected children had higher TNF-α responses than uninfected children and significantly higher TNF-α to IL-10 ratios in response to FSL-1 and Pam3, ligands of TLR2/6 and TLR2/1 respectively. A similar trend was observed for the TLR4 ligand LPS while Poly(I:C) (Mda5/TLR3 ligand) did not induce substantial cytokine responses (24 h incubation). This pilot study shows that Schistosoma-infected children develop a more pro-inflammatory TLR2-mediated response in the face of a more anti-inflammatory adaptive immune response. This suggests that S. haematobium infection does not suppress the host's innate immune system in the context of single TLR ligation.
Article
Full-text available
In order to establish an infection, viruses need to either suppress or escape from host immune defense systems. Recent immunological research has focused on innate immunity as the first line of host defense, especially pattern recognition molecules such as Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptors (NLRs). Various microbial components are recognized by their vague and common molecular shapes so-called, pathogen-associated molecular patterns (PAMPs). PAMPs induce inflammatory reactions mediated by the activation of the transcription factor, NF-kappaB, and by interferons, which lead to an antiviral immune response. Viruses have the capacity to suppress or escape from this pattern recognition molecule-mediated antimicrobial response in various ways. In this paper, we review the various strategies used by viruses to modulate the pattern recognition molecule-mediated innate immune response.
Article
Full-text available
Arsenic is a metalloid that commonly contaminates drinking water, and is a known human carcinogen. It has been shown that peripheral blood mononuclear cells (PBMCs) from healthy donors treated in vitro with NaAsO(2) and stimulated with phytohemagglutinin (PHA) show a lower proliferation than nontreated cells. We reported previously a reduction in the secretion of IL-2 in NaAsO(2)-treated PBMCs stimulated with PHA, an observation that might explain, in part, the reduction in proliferation. Since arsenic induces cytoskeleton alterations, which in turn may affect protein transport of the cell, we assumed that NaAsO(2) induced an accumulation of IL-2 inside the cells, and thus a reduction in the secretion of IL-2. In order to demonstrate this hypothesis, we assessed the intracellular IL-2 at the single cell level by flow cytometry, and unexpectedly found a reduction in the percentage of IL-2 producing T cells in the presence of NaAsO(2). We tracked the proliferation of T cells by using the 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) dye and found that NaAsO(2) slows down the entrance to cell division and delays the proliferation of cells that have already entered the cell cycle. Nevertheless, the expression of the activation molecules, CD25 and CD69, was unaltered. Assessment of the intracellular and secreted IL-2 in kinetic experiments showed that in fact, NaAsO(2) delays the production of IL-2, given that a recovery of both intracellular and secreted IL-2 was detected at 72 h. Evaluation of the cell cycle showed a higher proportion of cells in G(0)/G(1) and a lower proportion in G(2)/M in the presence of NaAsO(2). We thus conclude that NaAsO(2) reduces proliferation of T cells by delaying the production and secretion of IL-2, thus blocking T cells in G(1); as a consequence, the entry to cell cycle and the rounds of cell division are retarded, and a lower proliferation of T cells is hence observed.
Article
Full-text available
The severe acute respiratory syndrome coronavirus (SARS-CoV) is highly pathogenic in humans, with a death rate near 10%. This high pathogenicity suggests that SARS-CoV has developed mechanisms to overcome the host innate immune response. It has now been determined that SARS-CoV open reading frame (ORF) 3b, ORF 6, and N proteins antagonize interferon, a key component of the innate immune response. All three proteins inhibit the expression of beta interferon (IFN-beta), and further examination revealed that these SARS-CoV proteins inhibit a key protein necessary for the expression of IFN-beta, IRF-3. N protein dramatically inhibited expression from an NF-kappaB-responsive promoter. All three proteins were able to inhibit expression from an interferon-stimulated response element (ISRE) promoter after infection with Sendai virus, while only ORF 3b and ORF 6 proteins were able to inhibit expression from the ISRE promoter after treatment with interferon. This indicates that N protein inhibits only the synthesis of interferon, while ORF 3b and ORF 6 proteins inhibit both interferon synthesis and signaling. ORF 6 protein, but not ORF 3b or N protein, inhibited nuclear translocation but not phosphorylation of STAT1. Thus, it appears that these three interferon antagonists of SARS-CoV inhibit the interferon response by different mechanisms.
Article
An inflammatory cytokine storm is considered an important cause of death in severely and critically ill COVID-19 patients, however, the relationship between the SARS-CoV-2 spike (S) protein and the host's inflammatory cytokine storm is not clear. Here, the qPCR results indicated that S protein induced a significantly elevated expression of multiple inflammatory factor mRNAs in peripheral blood mononuclear cells (PBMCs), whereas RS-5645 ((4-(thiophen-3-yl)-1-(p-tolyl)-1H-pyrrol-3-yl)(3,4,5-trimethoxyphenyl)methanone) attenuated the expression of the most inflammatory factor mRNAs. RS-5645 also significantly reduced the cellular ratios of CD45+/IFNγ+, CD3+/IFNγ+, CD11b+/IFNγ+, and CD56+/IFNγ+ in human PBMCs. In addition, RS-5645 effectively inhibited the activation of inflammatory cells and reduced inflammatory damage to lung tissue in mice. Sequencing results of 16S rRNA v3+v4 in mouse alveolar lavage fluid showed that there were 494 OTUs overlapping between the alveolar lavage fluid of mice that underwent S protein+ LPS-combined intervention (M) and RS-5645-treated mice (R), while R manifested 64 unique OTUs and M exhibited 610 unique OTUs. In the alveoli of group R mice, the relative abundances of microorganisms belonging to Porphyromonas, Rothia, Streptococcus, and Neisseria increased significantly, while the relative abundances of microorganisms belonging to Psychrobacter, Shimia, and Sporosarcina were significantly diminished. The results of KEGG analysis indicated that the alveolar microbiota of mice in the R group can increase translation and reduce the activity of amino acid metabolism pathways. COG analysis results indicated that the abundance of proteins involved in ribosomal structure and biogenesis related to metabolism was augmented in the alveolar microbiota of the mice in the R group, while the abundance of proteins involved in secondary metabolite biosynthesis was significantly reduced. Therefore, our research results showed that RS-5645 attenuated pulmonary inflammatory cell infiltration and the inflammatory storm induced by the S protein and LPS by modulating the pulmonary microbiota.
Article
COVID-19, caused by SARS-CoV-2 infection, is mild to moderate in the majority of previously healthy individuals, but can cause life-threatening disease or persistent debilitating symptoms in some cases. The most important determinant of disease severity is age, with individuals over 65 years having the greatest risk of requiring intensive care, and men are more susceptible than women. In contrast to other respiratory viral infections, young children seem to be less severely affected. It is now clear that mild to severe acute infection is not the only outcome of COVID-19, and long-lasting symptoms are also possible. In contrast to severe acute COVID-19, such ‘long COVID’ is seemingly more likely in women than in men. Also, postinfectious hyperinflammatory disease has been described as an additional outcome after SARS-CoV-2 infection. Here I discuss our current understanding of the immunological determinants of COVID-19 disease presentation and severity and relate this to known immune-system differences between young and old people and between men and women, and other factors associated with different disease presentations and severity.
Article
Background: Despite the advances in the treatment of multiple myeloma (MM), complete remission is usually challenging. The interactions between tumor and host cells, in which exosomes (EXs) play critical roles, have been shown to be among the major deteriorative tumor-promoting factors herein. Therefore, any endeavor to beneficially target these EX-mediated interactions could be of high importance. Objectives: a) To investigate the effects of myeloma EXs on natural killer (NK) cell functions. b) To check whether treatment of myeloma cells with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), two polyunsaturated omega-3 fatty acids with known anti-cancer effects, can modify myeloma EXs in terms of their effects on natural killer functions. Methods: L363 cells were treated with either EPA or DHA or left untreated and the released EXs (designated as E-EX, D-EX and C-EX, respectively) were used to treat NK cells for functional studies. Results: Myeloma EXs (C-EXs) significantly reduced NK cytotoxicity against K562 cells (P ≤ 0.05), while the cytotoxicity suppression was significantly lower (P ≤ 0.05) in the (E-EX)- and (D-EX)-treated NK cells compared to the (C-EX)-treated cells. The expression of the activating NK receptor NKG2D and NK degranulation, after treatment with the EXs, were both altered following the same pattern. However, C-EXs could increase IFN-γ production in NK cells (P < 0.01), which was not significantly affected by EPA/DHA treatment. This indicates a dual effect of myeloma EXs on NK cells functions. Conclusion: Our observations showed that myeloma EXs have both suppressive and stimulatory effects on different NK functions. Treatment of myeloma cells with EPA/DHA can reduce the suppressive effects of myeloma EXs while maintaining their stimulatory effects. These findings, together with the previous findings on the anti-cancer effects of EPA/DHA, provide stronger evidence for the repositioning of the currently existing EPA/DHA supplements to be used in the treatment of MM as an adjuvant treatment. EXs released from L363 (myeloma) cells in their steady state increase IFN-γ production of NK cells, while reduce their cytotoxicity against the K562 cell line (right blue trace). EXs from L363 cells pre-treated with either EPA or DHA are weaker stimulators of IFN-γ production. These EXs also increase NK cytotoxicity and NKG2D expression (left brown trace) compared to the EXs obtained from untreated L363 cells. Based on these findings, myeloma EXs have both suppressive and stimulatory effects on different NK functions depending on the properties of their cells of origin, which can be exploited in the treatment of myeloma.
Article
Coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Without approved antiviral therapeutics or vaccines to this ongoing global threat, type I and type III interferons (IFNs) are currently being evaluated for their efficacy. Both the role of IFNs and the use of recombinant IFNs in two related, highly pathogenic coronaviruses, SARS-CoV and MERS-CoV, have been controversial in terms of their protective effects in the host. In this review, we describe the recent progress in our understanding of both type I and type III IFN-mediated innate antiviral responses against human coronaviruses and discuss the potential use of IFNs as a treatment strategy for COVID-19.
Article
The emerging outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread all over the world. Agents or vaccines of proven efficacy to treat or prevent human coronavirus infection are in urgent need and are being investigated vigorously worldwide. This review summarizes the current evidence of potential therapeutic agents, such as lopinavir/ritonavir, remdesivir, favipiravir, chloroquine, hydroxychloroquine, interferon, ribavirin, tocilizumab and sarilumab. More clinical trials are being conducted for further confirmation of the efficacy and safety of these agents in treating COVID-19.
Article
Background: Since December 2019, an outbreak of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, and is now becoming a global threat. We aimed to delineate and compare the immunologic features of severe and moderate COVID-19. Methods: In this retrospective study, the clinical and immunologic characteristics of 21 patients (17 male and 4 female) with COVID-19 were analyzed. These patients were classified as severe (11 cases) and moderate (10 cases) according to the Guidelines released by the National Health Commission of China. Results: The median age of severe and moderate cases was 61.0 and 52.0 years, respectively. Common clinical manifestations included fever, cough and fatigue. Compared to moderate cases, severe cases more frequently had dyspnea, lymphopenia, and hypoalbuminemia, with higher levels of alanine aminotransferase, lactate dehydrogenase, C-reactive protein, ferritin and D-dimer as well as markedly higher levels of IL-2R, IL-6, IL-10, and TNF-α. Absolute number of T lymphocytes, CD4+T and CD8+T cells decreased in nearly all the patients, and were markedly lower in severe cases (294.0, 177.5 and 89.0 × 106/L) than moderate cases (640.5, 381.5 and 254.0 × 106/L). The expressions of IFN-γ by CD4+T cells tended to be lower in severe cases (14.1%) than moderate cases (22.8%). Conclusion: The SARS-CoV-2 infection may affect primarily T lymphocytes particularly CD4+T and CD8+ T cells, resulting in decrease in numbers as well as IFN-γ production. These potential immunological markers may be of importance due to their correlation with disease severity in COVID-19.
Article
Abstract The innate and adaptive immune response could be initiated by toll like receptors (TLRs) by recognizing the conserved components of microbes. Among human TLR family, TLR9 was critical in sensing DNA viruses and endogenous DNA. Previous researches confirmed that activation of TLR9 could initiate many important cytokines such as IL-6, IL-8, IL-10 and IFN-β. The aim of this study was to analyze expression of more molecules upon TLR9 agonist stimulation, including tumor-related factors, kinase signal molecules, adhesion molecules and co-stimulators. Peripheral blood mononuclear cells (PBMCs) were isolated from health volunteer and stimulated by CpG. RNA extraction and supernatant collection were conducted four hours post CpG treatment. Reatl-time PCR and antibody chip were introduced to detect the expression of immune-related molecules in RNA and protein secretion in supernatant, respectively. The results indicated that activation of TLR9 pathway greatly influenced the expression and secretion of many interleukins, cytokine, chemokines, tumor-related genes, adhesion molecules, kinase signal molecules and co-stimulators. This is the first systematical analysis of immune-related molecules in PBMSCs upon TLR9 activation. Future study should focus on the role of the candidate molecules in TLR9-mediating biological functions.
Article
Background Lichen planus (LP) is a chronic inflammatory mucocutaneous disease. Toll-like receptors (TLRs) bind numerous exogenous and endogenous antigens by recognizing conserved pathogen-associated molecular patterns (PAMPs) and have the ability to induce the production of proinflammatory cytokines. Therefore, alterations in innate immunity could explain the inflammation and T-cell autoreactivity leading to the development of LP disease. Objectives To evaluate how the host innate immune response to PAMPs is affected by cutaneous LP, primarily by using TLR agonists to induce proinflammatory cytokine secretion from peripheral blood mononuclear cells (PBMCs). MethodsPBMCs from patients with LP and healthy control (HC) individuals were stimulated with agonists of TLR2/TLR1 (pam3csk4), TLR3 [poly(I:C)-RIG], TLR4 (lipopolysaccharide), TLR5 (flagellin), TLR7 (imiquimod), TLR7/TLR8 (CL097) and TLR9 (CpG). Cytokines from culture supernatants (n=10-12) andserum chemokines and cytokines (n=22-24) were measured using flow cytometry. ResultsActivation through the TLR2, TLR4 and TLR5 pathways induced increased tumour necrosis factor (TNF)- secretion by PBMCs from individuals with LP compared with the HC group. In contrast, activation through TLR3 and TLR7 was impaired in the LP group, leading to decreased TNF- secretion. Moreover, intracellular TLR activation resulted in reduced interleukin (IL)-1 and IL-6 secretion. Notably, individuals with LP became responders on stimulation with TLR7/TLR8 and TLR9 agonists; responses were measured as increases in interferon (IFN)- production. Detectable TNF- and high CXCL9 and CXCL10 serum levels were observed in patients with LP, suggesting their potential use as markers of the inflammatory status in LP. Conclusions These findings point to a defect in the TLR signalling pathways in cutaneous LP. Agonists of TLR7/TLR8 or TLR9 overcame impaired IFN- secretion in LP, strategically acting as adjuvants to improve the type I response.
Article
The discovery of Toll-like receptors (TLRs) was an important event for immunology research and was recognized as such with the awarding of the 2011 Nobel Prize in Physiology or Medicine to Jules Hoffmann and Bruce Beutler, who, together with Ralph Steinman, the third winner of the 2011 Nobel Prize and the person who discovered the dendritic cell, were pioneers in the field of innate immunity. TLRs have a central role in immunity - in this Timeline article, we describe the landmark findings that gave rise to this important field of research.
Article
Production of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 2 (IL-2), interferon gamma (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1β, TNF-α and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-γ and GM-CSF are stimulated by PHA. Combination of 5 μg/ml PHA and 25 μg/ml LPS gave the most reliable production of the six cytokines studied. IL-1β, TNF-α and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1β was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-γ and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-α and IFN-γ are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in response to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (106/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.
Article
Interferon (IFN)-gamma is important to the immune defense against intracellular pathogens and specifically the ability of macrophages to control Mycobacterium tuberculosis (MTB). Increasing evidence has accumulated to support the idea that macrophages produce IFN-gamma. We describe here the cytokine interactions that determine IFN-gamma expression and secretion during MTB infection of human macrophages. Detection of biologically important IFN-gamma levels in culture supernatants of MTB-infected human macrophages requires the addition of interleukin (IL)-12. IL-18 augmented IFN-gamma production from human macrophages in response to the combination of MTB and supplemental IL-12. Although IL-18 gene expression was generally unchanged, IL-18 protein secretion was enhanced by the combination of MTB and IL-12, and functioned primarily to stimulate IFN-gamma release. Importantly, IL-27 induced by MTB infection opposed IFN-gamma production by antagonizing IL-18 activity in human macrophages. Neutralization of IL-27 increased the expression of the IL-18 receptor beta-chain. Additionally, IL-27 blocked NF-kappaB activation in response to IL-18. These results define the signals required for IFN-gamma production by human macrophages and highlight the interactions between cytokines produced during MTB infection. Together, they identify a novel role for IL-27 in regulating macrophage function by disrupting IL-18 activity.
Article
J Am Acad Dermatol 2002;47:S205-8.
Article
Several studies have demonstrated that nonsteroidal anti-inflammatory drugs, such as acetylsalicylic acid (ASA), can have inhibitory or enhancing effects on inflammatory cell function. These effects seem independent of cyclooxygenase activity and prostaglandin synthesis inhibition. Here, we examined the effect of ASA on bone marrow-derived mast cells in more detail. ASA blocked the expression of cyclooxygenase-2, the production of tumor necrosis factor-alpha and interleukin-6, and the release of granule mediators from mast cells in a concentration-dependent fashion. Concomitantly, ASA inhibited nuclear factor (NF)-kappaB activity, as well as the phosphorylation and breakdown of the inhibitory protein IkappaB-alpha. We thus propose that the anti-inflammatory effects of ASA in mast cells are due to suppression of IkappaB kinase activity, thereby inhibiting subsequent phosphorylation and degradation of IkappaB-alpha, activation of NF-kappaB, and transcription of proinflammatory cytokines. The inhibition of BMMC degranulation was independent of NF-kappaB activation, however. Interestingly, the expression of cyclooxygenase-2 was not inhibited at 1mM ASA, but was even enhanced significantly. The latter might contribute to the adverse effects of ASA in ASA-sensitive asthmatics.
Article
Five TLRs are thought to play an important role in antiviral immunity, sensing viral products and inducing IFN-alpha/beta and -lambda. Surprisingly, patients with a defect of IRAK-4, a critical kinase downstream from TLRs, are resistant to common viruses. We show here that IFN-alpha/beta and -lambda induction via TLR-7, TLR-8, and TLR-9 was abolished in IRAK-4-deficient blood cells. In contrast, IFN-alpha/beta and -lambda were induced normally by TLR-3 and TLR-4 agonists. Moreover, IFN-beta and -lambda were normally induced by TLR-3 agonists and viruses in IRAK-4-deficient fibroblasts. We further show that IFN-alpha/beta and -lambda production in response to 9 of 11 viruses tested was normal or weakly affected in IRAK-4-deficient blood cells. Thus, IRAK-4-deficient patients may control viral infections by TLR-3- and TLR-4-dependent and/or TLR-independent production of IFNs. The TLR-7-, TLR-8-, and TLR-9-dependent induction of IFN-alpha/beta and -lambda is strictly IRAK-4 dependent and paradoxically redundant for protective immunity to most viruses in humans.
Article
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response.
Article
Currently, single TLR agonists are being utilized for vaccination and tumor immunotherapy. Here we investigated the effects of tandem combinations of TLR agonists on the production of cytokines with major focus on IFN-alpha, -beta, -gamma, TNF-alpha, and IL-12. Using a primary human PBMC culture system, we found that tandem combinations of TLR2-9 agonists can be inert, additive, synergistic or antagonistic. The most interesting combination was TLR2 or TLR4 agonists in combination with TLR7/8 or TLR8 agonists. TLR4-TLR7/8 combinations synergistically up-regulated IFN-gamma and IL-12, enhanced IFN-alpha and also moderately induced TNF-alpha. TLR2-TLR7/8 like TLR4-TLR7/8 synergistically up-regulated IFN-gamma but not IL-12. TLR9 agonist CpG2216 produced high IFN-alpha but failed to up regulate IFN-gamma singly or in tandem. Furthermore, TLR9-induced type-1 IFN was down regulated in combination with TLR7, or TLR8 agonists. TLR3 induced significant IFN-alpha/-beta responses when used in a complex with membrane permeability enhancer DOTAP, and additively enhanced response with agonists to TLR2, 5, 7/8, and 8. To our knowledge, this study is the first to compare cytokine responses of all the possible tandem combinations of TLR agonists in human PBMC. We identified certain combinations of TLR agonists that may or may not have advantages over single agonists, for generating an "optimal cytokine combination" preferred in combating diseases.