ArticlePDF Available

ヤマトアシナガアリ及びアズマオオズアリの巣から発見されたナナフシ卵 Phasmid eggs found in nests of Aphaenogaster japonica Forel, 1911 and Pheidole fervida Smith, 1874 (Hymenoptera: Formicidae: Myrmicinae)

Authors:

Abstract

Eggs of three phasmid species, Phraortes elongatus (Thunberg, 1815), Micadina phluctainoides (Rehn, 1904) and Micadina yasumatsui (Shiraki, 1935) were collected from nests of Aphaenogaster japonica Forel, 1911 and Pheidole fervida Smith, 1874 in Mt. Yufu-dake, Oita Prefecture, Kyushu, Japan. All capitulum of eggs of P. elongatus in the nests were removed. Ants deposited the eggs in the nests despite the absent capitulum, eggs attracted the ants whether presence of capitulum. In addition, the parasitoid wasps of phasmid egg, Nipponosega yamanei Kurzenko & Lelej, 1994 were collected in the sampling sites.
Pulex No. 101, 2022
959
and Niijima Islands, the Izu Islands, Tokyo, Japan. Makunagi/Acta Dipterologica, (25): 116.
Tokuda, M., Matsuo, K. & Yukawa, J. (2012) Insect galls found on Miyakejima and Hachijojima, the
Izu Islands, Tokyo, Japan. Esakia, (52): 5966.
山内政栄池長裕史湯川淳一1982南西諸島から採集されたタマエのゴール.SATSUMA,
(31): 123.
湯川淳一・桝田 1996日本原色虫えい図鑑826 pp. 全国農村育協会,東京
Yukawa, J., Matsuo, K. & Fujii, T. (2021) Natural enemies with special reference to parasitic wasps.
In Yukawa, J. & Tokuda, M. (eds.) Biology of Gall Midges Evolution, Ecology, and Biological
Interactions: 225251. Springer, Singapore.
湯川淳一形之木紘 2013種子島で採集されたタマバエのゴール.
SATSUMA, (150): 4861.
64 (Phas.:Varia) ヤマトアシナガアリ及びアズマオオズアリの巣から発見された
ナナフシ卵
勝部菜摘・久末 ・西谷光平・橋爪拓斗(九大院・生資環・昆虫)・
三田敏治(九大院・農・昆虫)
アリ類はしばしばナナフシ類の卵をへ持ち帰ることが知られいるCompton & Ware,
1991; Hughes & Westoby, 1992; Windsor et al., 1996; Stanton et al., 2015; Yamada et al., 2021;
Toyama et al., 2021多くのナナフシ類の卵には蓋帽と呼ばれる附属物が発達しており
れに含まれる脂肪酸が栄養報酬になると考えられている(Stanton et al., 2015).筆者らは
分県 2021 年から 2022 年にかけて行った調査において,アリ類の巣からナナフシ類の卵
を得たので報告する
調査は,大分県別府市日向自然観察路で石の下に営巣しているアズマオオズアリ
Pheidole fervida Smith, 1874 とヤマトアシナガアリ Aphaenogaster japonica Forel, 1911 を対
象に行ったを起こして巣内のナナフシ卵の有無を確認し,視で見つけられる範囲の卵
を回収したまた,その周辺の林床やリター層のアリ類,ナナフシ卵,寄生蜂を目視や篩い
採集で調査した.2021 919 日及 25 日の調査では石起こしでアリの巣内を確認し
ナナフシ卵が発見された場合のみ内容を記録した.2022 年は 518 日と 19 日,920
21 日に調査を実施した.石こしで調べたアリの種類と巣の数またナナフシ卵が見
れた場合その内容に加え以外の植物の種子の有無を記録した子は原型をとどめて種
子と認識できるもののみ採集した
[結果]
2021 の調査では,ナナフシ卵が確認できなかった巣の数は記録していないため不明だ
が,9月に 6個のアズマオオズアリの巣3のヤマトアシナガアリの巣からエダナナフ
Phraortes elongatus (Thunberg, 1815),ヤスマツトビナナフ Micadina yasumatsui (Shiraki,
1935ニホントビナナフ Micadina phluctainoides (Rehn, 1904) 卵が発見された(表 1).
2022 の調査では,5月に 3個のアズマオオズアリの巣,10 個のヤマトアシナガアリの巣
を調査したがナナフシ卵は発見されなかった.一方9月の調査では,アズマオオズアリ
4個とヤマトアシナガアリの巣 27 の合 31 個の巣の内,8個の巣でエダナナフシ,
スマツトビナナフシニホントビナナフシの卵が発見され(表 1ナナフシの卵は石
裏にできた巣で見つかっ(図 1).
ナナフシの卵と同時に植物種子が得られる場合があり,2021 920 日と 25 日にアズ
Pulex No. 101, 2022
960
マオオズアリの巣からそれぞ 2個と 1個の種子,2022 920 日にヤマトアシナガアリ
の巣から 8個の種子が採集された.ハギ Lespedeza sp.の種子が 2つのアズマオオズアリ
巣か 1個ずつ採集されたが, その他の種子は同定が困難であったは巣の表面に露出し
ているものを回収したが1だけ露出している卵の下にも卵が埋まっていたことがあった
巣の表土の下にはまだ卵が残されていた可能性があるが調査では調べていないダナ
ナフシではすべての卵で蓋帽がなくなっていた
巣の周辺の林床では,2021 919
日の調査でニホントビナナフシの卵を
運ぶアズマオオズアリ( 2)を 1例確
認し,リター層からナナフシヤドリバ
Nipponosega yamanei Kurzenko & Lelej,
1994 のメスを 3体得た.ナナフシ
ドリバチの標本は九州大学農学部昆虫
学教室で保管している.
[考察]
Yamada et al. (2021) は,Acanthomyrmex
glabfemoralis Zhou & Zheng, 1997 の巣
り,傷つけられ蓋帽を失ったナナフシの
卵が得られたことを報告している.ま
た,Toyama et al. (2021) はアミメアリ
Pristomyrmex punctatus (Smith, 1860) がエ
ダナナフシの卵,特にその蓋帽を巣に持
1アズマオオズア Pheidole fervida 巣内で見つか
ったエダナナフシ Phraortes elongatusA)とホントビ
ナナフシ Micadina phluctainoidesBの卵. 2021 9
19 日撮影.
1. アズマオオズア Pheidole fervidaヤマトアシナガア Aphaenogaster japonica 巣内でみられ
ナナフシ卵の種構成と種子の数.
Phraortes
elongatus
Micad ina
phluctainoides
Micad ina
yasuma tsui
P. fervida
P. fervida
P. fervida
Sep. 19, 2021 3 3
P. fervida
Sep. 19, 2021 4
P. fervida
Sep. 19, 2021 3 3
P. fervida
Sep. 25, 2021 1 1
P. fervida
Sep. 21, 2022 1
A. ja ponica
Sep. 19, 2021 1
A. ja ponica
Sep. 19, 2021 1
A. ja ponica
Sep. 25, 2021 1 1
A. ja ponica
Sep. 20, 2022 2 8
A. ja ponica
Sep. 21, 2022 1 1
A. ja ponica
Sep. 21, 2022 2
A. ja ponica
Sep. 21, 2022 2
A. ja ponica
Sep. 21, 2022 1
A. ja ponica
Sep. 21, 2022 2 1
A. ja ponica
Sep. 21, 2022 1
Ant species
date
No. of phasmid eggs
No. of seeds
Pulex No. 101, 2022
961
ち帰ることを実験的に明らかにしてい
る.筆者らの調査で見出されたナナフシ
類の卵でもYamada et al. (2021) の観察
のように卵の多くは表面が傷つけられて
おり,エダナナフシの蓋帽は全て取り外
されていた.蓋帽の発達しない卵も同様
に巣に持ち込まれていた(表 1ため
る程度どの卵もアリを惹きつけていると
考えられる
Readshaw (1965) は様々なアリの巣で
ナナフシの卵が種子とともにみられると
報告しているが,著者らが確認したり,
具体的な記録 Yamada et al. (2021)
加えて本報告で 2例目となる調査地で
は対象としたアリの巣からナナフシの
卵が見つかることは稀ではなかったた
め,日本国内の他の地域でも広くみられる可能性が高また,5月の調査では巣内で卵
見つからなかったことから,9月に見出されたナナフシ卵は当年産卵されたものだと考えら
れる今回確認されたアリ類は両種共にフタフシアリ亜科に属する.本調査を含めると
れまで少なくとも 4亜科 12 属のアリでナナフシ類の卵との関わりが報告されており
Readshaw, 1965; Hughes & Westoby, 1992; Rapp, 1995; Windsor et al., 1996; Stanton et al., 2015;
Yamada et al., 2021; Toyama et al., 2021,実際に幅広アリ類が様々なナナフシの卵の二
的分散に関与していると考えられる.
ナナフシの卵とアリや天敵との関わりは興味深い課題である.調査地で確認されたナナ
フシヤドリバチは,ニホントビナナフシの他複数種のナナフシの卵に寄生する可能性が示
唆されている(Mita, 2021).日本国内では例を知らないが,寄生蜂の他にはげっ歯類や
がナナフシの卵の捕食者として知られRapp, 1995.アリの巣でナナフシが孵化すると
アリから襲われるかもしれないが,巣内に放置されたり土に埋められた卵は天敵から逃れ
ることができる(Hughes & Westoby, 1992; Yamada et al., 2021.また,アリ類はしばしば巣
を移させるため,残された卵はアリとの直接の遭遇を回避できる可能性があHughes &
Westoby, 1992; Toyama et al., 2021).
末筆ながら,本報をまとめるにあたり,種子の同定のアドバイスをご教示いただいた大河
原恭祐博士(金沢大学)採集に協力いただいた青山拓実(九州大学),外村俊輔氏(
州大学)に厚く御礼申し上げる.本研究の一部は旭硝子財団の助成を受けて行われた
[引用文献]
Compton, S.G. & Ware, A.B. (1991) Ants disperse the elaiosome-bearing eggs of an african stick insect.
Psyche (Stuttg) , 98: 207214.
Hughes, L. & Westoby, M. (1992) Capitula on stick insect eggs and elaiosomes on seeds: convergent
adaptations for burial by ants. Functional Ecology, 6: 642648.
Mita, T. (2021) Taxonomic study of Baeosega and its allies, with description of a new species of
Nipponosega (Hymenoptera, Chrysididae, Amiseginae). ZooKeys, 1041: 125.
2巣外でアズマオオズ Pheidole fervida ニホ
トビナナフ Micadina phluctainoides の卵を運搬する
子.2021 919 日撮影.
Pulex No. 101, 2022
962
Rapp, G. (1995) Eggs of the stick insect Graeffea crouanii Le Guillou (Orthoptera, Phasmidae).
Mortality after exposure to natural enemies and high temperature. Journal of Applied Entomology,
119: 8991.
Readshaw, J.L. (1965) A theory of phasmatid outbreak release. Australian Journal of Zoology, 13(3):
475490.
Stanton, A.O., Dias, D.A. & O'Hanlon, J.C. (2015) Egg dispersal in the Phasmatodea: convergence in
chemical signaling strategies between plants and animals? Journal of Chemical Ecology, 41(8):
689695.
Toyama, Y., Kuroki, I., & Nakamura, K. (2021) Dispersal of Phraortes illepidus (Phasmida:
Phasmatidae) eggs by workers of the queenless ant, Pristomyrmex punctatus (hymenoptera:
Formicidae). Sociobiology, 68(4): e7194.
Windsor, D.M., Trapnell, D.W. & Amat, G. (1996) The egg capitulum of a Neotropical walkingstick,
Calynda bicuspis, induces aboveground egg dispersal by the ponerine ant, Ectatomma ruidum.
Journal of Insect Behavior, 9(3): 353367.
Yamada, A., Bresseel, J., Chen, Z., Nguyen, A.D. & Eguchi, K. (2021) Deposition of phasmid eggs
(Phasmatodea) in the nests of Acanthomyrmex glabfemoralis Zhou and Zheng, 1997
(Hymenoptera: Formicidae: Myrmicinae). Taiwania, 66(2): 267272.
64 (Phas.: Varia) 州大学伊都キャンパスでみられるナナフシ類
勝部菜摘・久末 遊(九大院・生資環・昆虫)・三田敏治(九大院・農・昆虫
筆者らは九州大学伊都キャンパス(岡県福岡市西区元岡~桑原)でナナフシ類 4種の
分布を確認したため報告するどの種 6月までは若齢で,成虫は 7以降に出現した.
集データには,若虫で採集した場 nymphその後成虫まで飼育し性別を確認した個体に
ついてはさらに性別の情報を書き加えた.採集個体の一部は実験に使用したため保管して
いないが,標本として九州大学農学部昆虫学教室で保管している場合は個別に説明を加え
た.報告に立ち,調査に協力いただき,ナナフシ類を提供いただいた九州大学の荒島彈,
石東広地氏, 牧野迪彦氏, 西谷光平, 口奨悟氏, 野崎翼氏, 尚道氏またそれらに加え
て貴重な各種情報をご提供いただいた紙谷聡志博士に厚く御礼申し上げる
[採集デー]
ナナフシモドキ Ramulus mikado (Rehn, 1904)
1, 16. VII. 2021, S. Noguchi leg.; 3 (nymphs), イバ Rosa multiflora Thunb., 1784, 7. IV.
2022, N. Katsube leg.; 3 (nymphs), ヤマザク Cerasus jamasakura (Siebold ex Koidz.) H. Ohba,
1992, 2022. IV. 2022, S. Kamitani leg.1室保管)
トゲナナフ Neohirasea japonica (de Haan, 1842)
1 (nymph), 21. V. 2021, T. Nozaki leg.; 1 (nymph), 4. VI. 2021, M. Makino leg.; 2 (nymphs), 13.
VI. 2021, T. Nozaki & N. Tsuji leg.; 1, 27. VII. 2021, N. Katsube leg.(教室保管); 5, 1. VIII.
2021, N. Katsube leg.; 1, 19. VIII. 2021, N. Katsube leg.; 4, 29. IX. 2021, N. Katsube leg.; 1, 14.
X. 2021, H. Arashima leg.; 7 (nymphs), 27. VI. 2022, N. Katsube leg.; 1, 3. VIII. 2022, N. Katsube
& T. Mita leg.; 1, 8. IX. 2022, N. Katsube & T. Mita leg.; 1, 11. X. 2022, N. Katsube & T. Mita
leg.; 1, 16. XI. 2022, K. Nishiya leg.; 1, 1. XII. 2022, N. Katsube leg.(教室保管)
キャンパス内の林床で夜間に多くみられた
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Eggs of some stick insects bear external appendages called capitula. Foraging worker ants attracted by capitula disperse eggs in a response similar to the responses of workers to elaiosome-bearing seeds of many plants. For this study, we conducted rearing experiments in the laboratory to elucidate the interspecific relation between the queenless ant, Pristomyrmex punctatus Smith, and the stick insect, Phraortes illepidus (Brunner von Wattenwyl) of which eggs bear capitula. Eggs of P. illepidus were proposed to P. punctatus in the laboratory. Capitula were removed from most of the eggs not only when ants were starved but also when ants were well-fed. In large rearing containers, eggs were transported by ants from their place of origin. Many eggs were transferred horizontally on the surface. Although some eggs were found in the artificial ant nests, it is likely that stick insects are not in active ant nests at the time of hatching in nature because of P. punctatus nest-moving habits. The percentage of eggs buried in the sand was small. Furthermore, most of the buried eggs were found at less than 3 cm depth. Results show that many P. illepidus hatchlings can reach host plants safely without being attacked by ant workers. These results suggest that P. punctatus can be a good partner of P. illepidus. Ants disperse eggs of slow-moving stink insects in exchange for some nutrition from capitula.
Article
Full-text available
Ant-mediated secondary dispersal (myrmecochory) of phasmid eggs using a fleshy nutrient-rich appendage called capitulum remains poorly studied, albeit the egg capitula are present in a large number of phasmid species worldwide. We here report our unexpected collection of 42 multi-species phasmid eggs deposited together with seeds in the four nests of the myrmicine ant species, Acanthomyrmex glabfemoralis Zhou & Zheng, 1997, in southern China and northern Vietnam. The collected phasmid eggs were composed of five egg morphospecies that most likely belong to some related genera in the two lonchodid subfamilies, Necrosciinae and Lonchodinae. None of the collected phasmid eggs had an intact capitular structure, indicating a strong likelihood of their consumption by the ants. To our knowledge, these records are the first published field evidence of myrmecochory in the Oriental phasmid species and these two subfamilies, supporting the broad occurrence of the myrmecochory in phasmids. Notes on the seeds deposited in these nests are also provided herewith.
Article
Full-text available
Numerous tree species’ seeds contain an ‘elaiosome’ that acts as a food reward for ants and thus induces dispersal of the seeds. Many stick and leaf insect species appear to have evolved a convergent adaptation for dispersal whereby the egg ‘capitulum’ serves to induce ants to pick up and carry their eggs. Here, we investigated whether the capitulum facilitates egg dispersal by ants in the Australian stick insect Eurycnema goliath. The total fatty acid composition of E. goliath egg capsules and egg capitula were characterized to identify potential signaling compounds. Removing capitula from E. goliath eggs significantly reduced the likelihood of eggs being carried into the nests of Rhytidoponera metallica ants. Furthermore, attaching capitula to inert objects (polystyrene balls) resulted in these objects being carried into nests by R. metallica. Several fatty acids were present on the egg capsule surface in only trace amounts, whereas they made up over 10 % of the dry weight of egg capitula. The fatty acid composition of egg capitula consisted mostly of palmitic acid (C16:0), linoleic acid (C18: 2n6c), oleic acid (C18:1n9c), linolenic acid (C18:3n3), and stearic acid (C18:0). Previously reported research has found that a diglyceride lipid species of oleic acid induces carrying behavior in R. metallica when added to inert artificial stimuli. Therefore, we propose that the dispersal mechanism of E. goliath eggs has converged upon the same chemical signaling pathway used by plants to exploit ant behavior.
Article
Full-text available
Field observations of a walkingstick,Calynda bicuspis, reveal that its eggs are rapidly discovered and transported by the ponerine ant,Ectatomma ruidum during both dry and wet seasons in Costa Rica. The importance of the egg capitulum in inducing ant transport was established by presenting eggs from which the capitulum had been removed or sealed. Untreated eggs, including those initially taken into nests, were moved approximately 1 m and dropped on the surface of the ground, unlike the eggs of several Old World walkingstick species which ants bury. High rates of oviposition following the termination of prolonged copulatory periods appear to lead to the clumping of eggs, perhaps increasing their susceptibility to a specialist egg-parasitoid,Amisega sp. (Chrysididae, Amiseginae).
Article
The paper attempts to explain the causes of phasmatid outbreaks in a theory of outbreak release which is based on direct observations of the phasmatid Didymuria violescens (Leach) and a subjective analysis of several outstanding features associated with the history, distribution, and development of phasmatid outbreaks in the highlands of south-eastern Australia. The outbreaks of D. violescens are largely confined to mountain forests in southern New South Wales and Victoria where a 2-yr generation period predominates and a 2-yr cycling of population prevails with peaks and troughs of hatching, and hence "peak" and "off" years of phasmatid abundance, in alternate years. Birds greatly limit the survival rate of D. violescens during off-years but are ineffective during peak years because of their limited total response to increase in numbers of the prey. The theory implies that D. violescens has two systems of control: one at low density when increase is limited largely by egg parasites or birds or both; and another at high density when increase is ultimately prevented by intraspecific competition for food. The theory postulates that very cool summer weather conditions may occasionally disrupt the low-density system of control and thereby initiate outbreak release either directly in some situations or indirectly in others.
Eggs of the stick insect Graeffea crouanii Le Guillou (Orthoptera, Phasmidae)
  • G Rapp
Rapp, G. (1995) Eggs of the stick insect Graeffea crouanii Le Guillou (Orthoptera, Phasmidae).
ノイバラ Rosa multiflora Thunb
1♀, 16. VII. 2021, S. Noguchi leg.; 3♀ (nymphs), ノイバラ Rosa multiflora Thunb., 1784, 7. IV. 2022, N. Katsube leg.; 3♀ (nymphs), ヤマザクラ Cerasus jamasakura (Siebold ex Koidz.) H. Ohba, 1992, 20-22. IV. 2022, S. Kamitani leg.(1♀教室保管)