ArticlePDF Available

Abstract and Figures

Bakuchiol is a plant-derived substance that is more and more used by cosmetics manufacturers as an ingredient of anti-aging preparations. The aim of the article was to compare the structure and action of bakuchiol to retinol, as well as to present its effect on the skin based on already published research. Due to its properties, bakuchiol becomes an alternative ingredient to retinol, hence is also known as vegetable retinol.
Content may be subject to copyright.
ABSTRACT

-
ging preparations.
-


-


STRESZCZENIE
-
     

-


-



Marta Wysocka 
Faculty of Health Sciences, Wroclaw Medical University, K. Bartla Street 5, 50-996 Wrocław
+48 691394 702 dubielecka.marta@gmail.com
 
Aesth Cosmetol Med. 2022;11(6):199-201. https://doi.org./10.52336/acm.2022.031
Bakuchiol - a plant-based retinol.
The review article
Bakuchiol – roślinny retinol. Przegląd literatury


Psoralea corylifolia-Babći
Psoralea glandulosa
Pimelea drupaceaeUlmus
davidiana   Otholobium pubescens and Piper
longum        
      


-


       





     
        
(a) 


          

        


Fig. 1 Comparison of the chemical structure of retinol (a) and bakuchiol (b).
Source: Own study by ChemSketch program.





6 / 2022 / vol. 11 199
(a) 
(c)
Fig. 3 Chemical structures of bakuchiol (a), bavachin (b) and isobavachalcone (c).
Source: Own study using the ChemSketch program, based on [19-21].




 


        
water
(aqua), glycerin, hydroxyethyl acrylate/sodium acryloyldimethyl
taurate copolymer, isohexadecane, titanium dioxide,
phenoxyethanol, chlorphenesin, polysorbate 60, alumina, stearic
acid   


 

P.acnes

 
   




 


 
        
 

    
 

 


 
 

retinol.


 






Piper
longum
 α      
   
     

       


Fig. 2 Effect of retinol (B) and bakuchiol (C) on type IV collagen expression compared to control (A) in the EpidermF tissue
model. Arrows point to the basement membrane where type IV collagen is located. The darker band in (B) and (C) compa-
red to (A) indicates greater expression of type IV collagen.
Source: [13]

6 / 2022 / vol. 11
200










  

  
       

 


 




       
 

    
 







  
       

  



1    Psoralea corylifolia L.-1.
Tetrahedron. 1973;29:1119-1125.
2  Psora-
lea corylifoliaTetrahedron.
1973;29:1127-1130.
3 Pso-
ralea glandulosa. Phytochemistry.
 -
Psoralea glandulosa   -
retic activities. JEthnopharmacol. 2001;78:27-31.
5    
in vitro Psoralea drupaceaPlant Cell Tissue Organ Cult.
2010;101:99-103.
6    -
Ulmus davidiana var. japonica. JMed Food. 2010;13:
1019-1023.
7  -
Otholobium pubescens (Fabaceae-
     Bio Pharm
Bull.
8 
Oncotar-
get.
9 -
    J Pharm Pharmacol.

10  
Psora-
lea corylifolia-
ted macrophages. Bio Pharm Bull.
11 

-
Clin Cosmet Investig Dermatol. 2015;8:187-191.
12-

Nat Prod Res
13 -
       
Int JCosmet Sci
Soap Perfum Cosmet
15  -
Arch Dermatol. 1991;127(5):666-672.
16          
Clin Interv Aging.

17         -
-
ing. Br JDermatol. 2019;180(2): 289-296.
18      
piper longum on melanin
Bioscience, Biotechnology and
Biochemistry
19  
     

20
     

21   


22  Annu Rev Pharmacol
Toxicol.
23-
-
Chem Res Toxicol. 2003;16:1062-1069.
-
 Journal of
Drugs in Dermatology.2020;19(12):1181-1183.
    

6 / 2022 / vol. 11 201
Article
Full-text available
A clear trend of replacing synthetic cosmetic ingredients with natural ones can be observed in modern cosmetology. This entails the need to search for bioactive ingredients in the natural environment, especially in plants. This paper presents a comprehensive overview of dermatological, cosmetic, and pharmacological properties of highly potent plants, namely Acmella oleracea (A. oleracea), Centella asiatica (C. asiatica), Psoralea corylifolia (P. corylifolia), Plantago lanceolata L. (P. lanceolata L.), and Solidago virgaurea L. (S. virgaurea L.). Biological activity and phytochemical constituents are presented for all plants, but special attention is paid to ingredients of particular value to the cosmetics industry. The advantages of spilanthol and bakuchiol as a replacement for the popular botulinum toxin and retinol are discussed. Natural habitats, ethnomedical importance, cultivation area, as well as extraction methods of active plant ingredients are presented in detail. A wide spectrum of biological activity indicates the enormous potential of the presented plants in formulating new cosmetic and dermatological preparations.
Article
Full-text available
Bakuchiol is a meroterpene present in the medicinal plant Psoralea corylifolia, which has been traditionally used in China, India, Japan and Korea for the treatment of premature ejaculation, knee pain, alopecia spermatorrhea, enuresis, backache, pollakiuria, vitiligo, callus, and psoriasis. Here, we report the chemopreventive properties of bakuchiol, which acts by inhibiting epidermal growth factor (EGF)-induced neoplastic cell transformation. Bakuchiol also decreased viability and inhibited anchorage-independent growth of A431 human epithelial carcinoma cells. Bakuchiol reduced A431 xenograft tumor growth in an in vivo mouse model. Using kinase profiling, we identified Hck, Blk and p38 mitogen activated protein kinase (MAPK) as targets of bakuchiol, which directly bound to each kinase in an ATP-competitive manner. Bakuchiol also inhibited EGF-induced signaling pathways downstream of Hck, Blk and p38 MAPK, including the MEK/ERKs, p38 MAPK/MSK1 and AKT/p70S6K pathways. This report is the first mechanistic study identifying molecular targets for the anticancer activity of bakuchiol and our findings indicate that bakuchiol exhibits potent anticancer activity by targeting Hck, Blk and p38 MAPK.
Article
Full-text available
Background Acne vulgaris is an inflammatory disorder of the pilosebaceous unit. Aim To confirm that BGM (bakuchiol, Ginkgo biloba extract, and mannitol) complex increases the established clinical efficacy of adapalene 0.1% gel in patients with acne. Methods A clinical trial was conducted in acne patients. A total of 111 subjects received adapalene 0.1% gel and BGM complex or vehicle cream for 2 months. Assessments comprised Investigator Global Assessment (IGA), global efficacy, seborrhea intensity, inflammatory and non-inflammatory lesions, and subject perception, as well as overall safety and local tolerance and quality of life. Results At the end of the trial, inflammatory and non-inflammatory lesions, IGA, global efficacy, and seborrhea intensity had significantly improved in both treatment groups. Differences were statistically significant (P<0.05) in favor of BGM complex for inflammatory lesions as well as IGA and seborrhea intensity. Global efficacy assessments and subject perception confirmed the superiority of BGM complex-including treatment over the comparative combination. Quality of life had improved more with the active combination than with the vehicle combination. In the active group, four subjects had to interrupt temporarily BGM complex and 12 adapalene compared to seven subjects interrupting the vehicle and eleven adapalene in the vehicle group. One subject withdrew from the trial due to an allergy to adapalene. The majority of all events were mild. Conclusion BGM complex improves the treatment outcome of adapalene 0.1% gel in patients with acne vulgaris. Overall, safety and local tolerance of BGM complex were good.
Article
Full-text available
The study was undertaken to compare the skin care related activities of retinol and bakuchiol, a potential alternative to retinoids. Retinol is a pivotal regulator of differentiation and growth of developing as well as adult skin. Retinoic acid is the major physiologically active metabolite of retinol regulating gene expression through retinoic acid receptor - dependant and independent pathways. Comparative gene expression profiling of both substances in the EpiDerm FT full thickness skin substitute model was undertaken. Type I, III and IV collagen and aquaporin 3 synthesis in normal human dermal fibroblasts and in were analysed by ELISA and/or histochemistry in EpiDerm FT full thickness skin model were determined. Bakuchiol is a meroterpene phenol abundant in seeds and leaves of the plant Psoralea corylifolia. We present evidence that bakuchiol, having no structural resemblance to retinoids, can function as a functional analogue of retinol. Volcano plots show the great similarity of retinol and bakuchiol gene expression. Retinol-like functionality was further confirmed for the upregulation of types I, and IV collagen in DNA microarray study and also show stimulation of type III collagen in the mature fibroblast model. Bakuchiol was also formulated into a finished skin care product and was tested in clinical case study by twice-a-day facial application. The results showed that, after twelve weeks treatment, significant improvement in lines and wrinkles, pigmentation, elasticity, firmness and overall reduction in photo-damage was observed, without usual retinol therapy-associated undesirable effects. Based on these data, we propose that bakuchiol can function as an anti-aging compound through retinol-like regulation of gene expression. This article is protected by copyright. All rights reserved.
Article
Full-text available
In vitro production of the meroterpene bakuchiol by Psoralea drupacea Bge (Fabaceae) has been studied using aseptically-grown plants, callus cultures of different origin, cell suspensions and transgenic hairy root cultures. The effect of phytohormones and methyl jasmonate on bakuchiol production was also investigated. Bakuchiol was not detected in cell suspensions or hairy root preparations of P. drupacea. In contrast, aerial parts of P. drupacea grown in vitro were found to accumulate up to 11% dry weight of bakuchiol and can therefore be regarded as a potentially useful source of this antimicrobial compound. KeywordsBakuchiol- Psoralea - Psoralea drupacea -In vitro cultures-Antimicrobial-Secondary metabolite
Article
Background: Patients with sensitive skin find topical retinoid use for anti-aging purposes challenging due to irritation. Bakuchiol, a meroterpene from the Psoralea corylifolia seed, has retinol functionality through retinol-like regulation of gene expression. Objective: This research examined the tolerability, efficacy, and barrier effects of a nature-based bakuchiol-containing cleanser and moisturizer in subjects with sensitive skin. Methods: 60 female subjects Fitzpatrick skin types I–V age 40–65 years with sensitive mild to moderate photodamaged skin were enrolled in this 12 week study. A sensitive skin panel was constructed: 1/3 eczema/atopic dermatitis, 1/3 rosacea, 1/3 cosmetic intolerance syndrome. Subjects used a nature-based cleanser and moisturizer twice daily and underwent transepidermal water loss (TEWL), corneometry, tolerability assessments, and efficacy assessments at baseline, 5–10 minutes post-application, and week 4. Results: The skin care products were well tolerated and efficacious (P<0.001) in terms of investigator assessed improvement in visual smoothness, tactile smoothness, clarity, radiance, overall appearance, and global anti-aging. Cheek corneometry measurements demonstrated a statistically significant 16% increase in skin moisture content (P<0.001). Conclusion: A bakuchiol nature-based anti-aging moisturizer is well tolerated and effective in individuals with sensitive skin.J Drugs Dermatol. 2020;19(12): doi:10.36849/JDD.2020.5522.
Article
The article presents the characteristics of bakuchiol – a natural compound valuable in cosmetology and pharmacology. The only source for obtaining this specific meroterpenic phenol is the fruit of the species Cullen corylifolium (Psoralea corylifolia). Bakuchiol has recently been playing a significant role in cosmetology as a “natural substitute” for retinol, free of side effects. Clinical studies confirm valuable cosmetological properties of bakuchiol, such as anti-ageing, anti-pigmentation and anti-acne effects. Scientific research has also shown valuable pharmacological properties of bakuchiol, such as anti-cancer, hepatoprotective, cardioprotective, hypoglycemic, hypolipemic, and antidepressant. In addition, antioxidant, anti-inflammatory and antimicrobal activities of bakuchiol, valuable from the point of view of both cosmetology and therapy, have also been confirmed. A separate part of the article is devoted to the botanical, chemical and pharmacological characteristics of the species C. corylifolium as the main source for obtaining bakuchiol.
Article
Background Bakuchiol is a phytochemical that has demonstrated cutaneous anti‐aging effects when applied topically. Early studies have suggested that bakuchiol is a functional analog of topical retinoids, as both compounds have been shown to induce similar gene expression in the skin and lead to improvement of cutaneous photodamage. No in vivo studies have compared the two compounds for efficacy and side effects. Objectives To compare the clinical efficacy and side effect profiles of bakuchiol to retinol in improving common signs of cutaneous facial aging. Methods This was a randomized, double‐blind, 12‐week study in which 44 subjects were asked to apply either 0.5% bakuchiol cream twice daily or 0.5% retinol cream daily. A facial photograph and analysis system was used to obtain and analyze high‐resolution photographs of subjects at 0, 4, 8, and 12 weeks. Subjects also completed tolerability assessment questions to review side effects. During study visits, a board‐certified dermatologist, blinded to study group assignments, graded pigmentation and redness. Results Bakuchiol and retinol both significantly decreased wrinkle surface area and hyperpigmentation, with no statistical difference between the compounds. The retinol users reported more facial skin scaling and stinging. Conclusion Our study demonstrates that bakuchiol is comparable to retinol in its ability to improve photoaging and is better tolerated than retinol. Bakuchiol is promising as a more tolerable alternative to retinol. This article is protected by copyright. All rights reserved.
Article
Organismal life encounters reactive oxidants from internal metabolism and environmental toxicant exposure. Reactive oxygen and nitrogen species cause oxidative stress and are traditionally viewed as being harmful. On the other hand, controlled production of oxidants in normal cells serves useful purposes to regulate signaling pathways. Reactive oxidants are counterbalanced by complex antioxidant defense systems regulated by a web of pathways to ensure that the response to oxidants is adequate for the body's needs. A recurrent theme in oxidant signaling and antioxidant defense is reactive cysteine thiol-based redox signaling. The nuclear factor erythroid 2-related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. Nrf2 controls the basal and induced expression of an array of antioxidant response element-dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure. This review discusses the impact of Nrf2 on oxidative stress and toxicity and how Nrf2 senses oxidants and regulates antioxidant defense.