ArticlePublisher preview available

Exosomes from bone marrow-derived mesenchymal stem cells facilitate corneal wound healing via regulating the p44/42 MAPK pathway

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

PurposeThis study was aimed at exploring the function of Exosomes isolated from bone marrow-derived mesenchymal stem cells (BMSC-Exos) in corneal wound healing and at revealing the underlying mechanisms involving the p44/42 mitogen-activated protein kinase (MAPK) pathway.Methods The isolated BMSC-Exos were identified by transmission electron microscopy, Western blot, and nanoparticle tracking analysis. After coculture with BMSC-Exos, the proliferation and migration of human corneal epithelial cells (HCEs) were evaluated. The protein expression of p-MEK/MEK and p44/42 MAPK was detected by Western blot. A mouse model of alkali-burned cornea was established via NaOH exposure. After injection with BMSC-Exos, the pathological changes and expression of α-SMA (a fibrosis marker) and CD31 (a vascularization marker) in corneal tissues were detected.ResultsBMSC-Exos enhanced the proliferation and migration of HCEs in a dose-dependent manner. The p44/42 MAPK pathway was activated by the treatment of BMSC-Exos, and its blocking using U0126 partially abrogated the effects of BMSC-Exos on promoting the proliferation and migration of HCEs. In vivo, the injection of BMSC-Exos facilitated the remission of the pathological changes (inflammation) and weakened the upregulation of α-SMA (fibrosis) and CD31 (vascularization) in corneal tissues of mice with alkali-burn injury.ConclusionBMSC-Exos promoted the proliferation and migration of HCEs via activating the p44/42 MAPK pathway in vitro and also inhibited alkali burn-induced inflammation, fibrosis, and vascularization in corneal tissues in vivo. BMSC-Exos may be promising resources for promoting corneal wound healing.
This content is subject to copyright. Terms and conditions apply.
Vol.:(0123456789)
1 3
https://doi.org/10.1007/s00417-022-05956-4
BASIC SCIENCE
Exosomes frombone marrow‑derived mesenchymal stem cells
facilitate corneal wound healing viaregulating thep44/42 MAPK
pathway
JinZhou1· YuanyuanDing2· YongqiangZhang3· DehuiZheng1· LifengYan1· MengxiangGuo1· YaniMao1·
LihongYang1
Received: 21 June 2022 / Revised: 4 December 2022 / Accepted: 21 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
Abstract
Purpose This study was aimed at exploring the function of Exosomes isolated from bone marrow-derived mesenchymal stem
cells (BMSC-Exos) in corneal wound healing and at revealing the underlying mechanisms involving the p44/42 mitogen-
activated protein kinase (MAPK) pathway.
Methods The isolated BMSC-Exos were identified by transmission electron microscopy, Western blot, and nanoparticle
tracking analysis. After coculture with BMSC-Exos, the proliferation and migration of human corneal epithelial cells (HCEs)
were evaluated. The protein expression of p-MEK/MEK and p44/42 MAPK was detected by Western blot. A mouse model
of alkali-burned cornea was established via NaOH exposure. After injection with BMSC-Exos, the pathological changes and
expression of α-SMA (a fibrosis marker) and CD31 (a vascularization marker) in corneal tissues were detected.
Results BMSC-Exos enhanced the proliferation and migration of HCEs in a dose-dependent manner. The p44/42 MAPK pathway was
activated by the treatment of BMSC-Exos, and its blocking using U0126 partially abrogated the effects of BMSC-Exos on promoting the
proliferation and migration of HCEs. In vivo, the injection of BMSC-Exos facilitated the remission of the pathological changes (inflam-
mation) and weakened the upregulation of α-SMA (fibrosis) and CD31 (vascularization) in corneal tissues of mice with alkali-burn injury.
Conclusion BMSC-Exos promoted the proliferation and migration of HCEs via activating the p44/42 MAPK pathway in
vitro and also inhibited alkali burn-induced inflammation, fibrosis, and vascularization in corneal tissues in vivo. BMSC-
Exos may be promising resources for promoting corneal wound healing.
Keywords Bone marrow-derived mesenchymal stem cell· Exosome· Human corneal epithelial cell· Corneal wound healing
Key messages
BMSC-Exos exhibit therapeutic potential in corneal diseases.
BMSC-Exos promote the proliferation and migration of HCEs.
BMSC-Exos activate the p44/42 MAPK pathway in HCEs.
BMSC-Exos facilitate corneal wound healing in mice.
Jin Zhou and Yuanyuan Ding contributed equally.
* Jin Zhou
jinzhou5188@163.com
1 Department ofOphthalmology, Guangzhou Women
andChildren’s Medical Center, No. 9, Jinsui Road, Tianhe
District, GuangzhouCity510623, China
2 Department ofOphthalmology, Nanfang Hospital, Southern
Medical University, GuangzhouCity510515, China
3 Department ofOphthalmology, Beijing Children’s Hospital
East Branch, BeijingCity100002, China
/ Published online: 28 December 2022
Graefe's Archive for Clinical and Experimental Ophthalmology (2023) 261:723–734
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
... Exosomes from bone marrow-derived MSCs promote wound healing via MAPK signaling in human corneal epithelial cells [122]. U0126, which is an inhibitor of MAPK, prevents exosomes from enhancing the proliferation and migration of human corneal epithelial cells [122]. ...
... Exosomes from bone marrow-derived MSCs promote wound healing via MAPK signaling in human corneal epithelial cells [122]. U0126, which is an inhibitor of MAPK, prevents exosomes from enhancing the proliferation and migration of human corneal epithelial cells [122]. Thus, MAPK inhibitors could suppress cancer cell proliferation by exerting a functional block on exosomes. ...
Article
Full-text available
Exosomes are a subset of extracellular vesicles produced by all cells, and they are present in various body fluids. Exosomes play crucial roles in tumor initiation/progression, immune suppression, immune surveillance, metabolic reprogramming, angiogenesis, and the polarization of macrophages. In this work, we summarize the mechanisms of exosome biogenesis and secretion. Since exosomes may be increased in the cancer cells and body fluids of cancer patients, exosomes and exosomal contents can be used as cancer diagnostic and prognostic markers. Exosomes contain proteins, lipids, and nucleic acids. These exosomal contents can be transferred into recipient cells. Therefore, this work details the roles of exosomes and exosomal contents in intercellular communications. Since exosomes mediate cellular interactions, exosomes can be targeted for developing anticancer therapy. This review summarizes current studies on the effects of exosomal inhibitors on cancer initiation and progression. Since exosomal contents can be transferred, exosomes can be modified to deliver molecular cargo such as anticancer drugs, small interfering RNAs (siRNAs), and micro RNAs (miRNAs). Thus, we also summarize recent advances in developing exosomes as drug delivery platforms. Exosomes display low toxicity, biodegradability, and efficient tissue targeting, which make them reliable delivery vehicles. We discuss the applications and challenges of exosomes as delivery vehicles in tumors, along with the clinical values of exosomes. In this review, we aim to highlight the biogenesis, functions, and diagnostic and therapeutic implications of exosomes in cancer.
... This effect was related to the activation of the p44/42 MAPK signaling pathway. In an animal experiment using a mouse alkali burn model, the injection of BM-MSCsderived exosomes was observed to promote the healing of corneal damage by reducing inflammation and mitigating the overproduction of proteins associated with fibrosis (α-SMA) and vascularization (CD31) [182]. In a murine corneal damage model caused by alkali burns, scientists demonstrated promising results by topically administering BM-MSCs-derived extracellular vesicles (BMSC-EVs) embedded with methylcellulose. ...
Article
Full-text available
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
... Rho-associated protein kinase inhibitor shows promise as an adjunctive therapy to endothelial cell-based therapies by shortening recovery time and increasing central ECD. [17]. Other studies concentrate on new delivery systems since viral vectors can cause toxicity [18]. ...
Article
Purpose of review: With limited access of more than half the world's population to corneal transplantation, regenerative medicine may represent a promising alternative. This review explores the main advancements achieved in cell-based therapies for corneal epithelium, stroma, and endothelium during 2021-2022. Recent findings: Multiple surgical techniques have been developed for epithelial limbal stem cell replacement. Recent studies aimed to gain greater understanding and characterization of these techniques. Though no clear superiority could be demonstrated, simple limbal epithelial transplantation seems to have the most clinical and cost effectiveness. For stromal disease, autologous adipose-derived stem cells have shown favorable results. For endothelial dysfunction, the validity of intracameral cultivated allogeneic endothelial cell injection and Descemetorrhexis without endothelial keratoplasty, as well as the benefits of adjunctive rho-associated kinase inhibitors, were emphasized. Summary: A plethora of innovative cell-based regenerative therapies for corneal diseases have been developed in past years. While recent literature solidifies our knowledge, most studies are still in preliminary or preclinical stages. Though showing great promise, these approaches will require larger studies with better-defined endpoints to establish their benefits over currently available treatments.
Article
Full-text available
Communication between cells and the microenvironment is a complex, yet crucial, element in the development and progression of varied physiological and pathological processes. Accumulating evidence in different disease models highlights roles of extracellular vesicles (EVs), either in modulating cell signaling paracrine mechanism(s) or harnessing their therapeutic moiety. Of interest, the human cornea functions as a refractive and transparent barrier that protects the intraocular elements from the external environment. Corneal trauma at the ocular surface may lead to diminished corneal clarity and detrimental effects on visual acuity. The aberrant activation of corneal stromal cells, which leads to myofibroblast differentiation and a disorganized extracellular matrix is a central biological process that may result in corneal fibrosis/scarring. In recent years, understanding the pathological and therapeutic EV mechanism(s) of action in the context of corneal biology has been a topic of increasing interest. In this review, we describe the clinical relevance of corneal fibrosis/scarring and how corneal stromal cells contribute to wound repair and their generation of the stromal haze. Furthermore, we will delve into EV characterization, their subtypes, and the pathological and therapeutic roles they play in corneal scarring/fibrosis.
Article
Full-text available
Corneal epithelial wound healing is a multifaceted process that encompasses cell proliferation, migration, and communication from the corneal stroma. Upon corneal injury, bidirectional crosstalk between the epithelium and stroma via extracellular vesicles (EVs) has been reported. However, the mechanisms by which the EVs from human corneal keratocytes (HCKs), fibroblasts (HCFs), and/or myofibroblasts (HCMs) exert their effects on the corneal epithelium remain unclear. In this study, HCK-, HCF-, and HCM-EVs were isolated and characterized, and human corneal epithelial (HCE) cell migration was assessed in a scratch assay following PKH26-labeled HCK-, HCF-, or HCM-EV treatment. HCE cells proliferative and apoptotic activity following EV treatment was assessed. HCF-/HCM-EVs were enriched for CD63, CD81, ITGAV, and THBS1 compared to HCK-EV. All EVs were negative for GM130 and showed minimal differences in biophysical properties. At the proteomic level, we showed HCM-EV with a log >two-fold change in CXCL6, CXCL12, MMP1, and MMP2 expression compared to HCK-/HCF-EVs; these proteins are associated with cellular movement pathways. Upon HCM-EV treatment, HCE cell migration, velocity, and proliferation were significantly increased compared to HCK-/HCF-EVs. This study concludes that the HCM-EV protein cargo influences HCE cell migration and proliferation, and understanding these elements may provide a novel therapeutic avenue for corneal wound healing.
Article
Full-text available
Recent years, the immunosuppressive properties of mesenchymal stem cells (MSCs) have been demonstrated in preclinical studies and trials of inflammatory and autoimmune diseases. Emerging evidence indicates that the immunomodulatory effect of MSCs is primarily attributed to the paracrine pathway. As one of the key paracrine effectors, mesenchymal stem cell-derived exosomes (MSC-EXOs) are small vesicles 30-200 nm in diameter that play an important role in cell-to-cell communication by carrying bioactive substances from parental cells. Recent studies support the finding that MSC-EXOs have an obvious inhibitory effect toward different effector cells involved in the innate and adaptive immune response. Moreover, substantial progress has been made in the treatment of autoimmune diseases, including multiple sclerosis (MS), systemic lupus erythematosus (SLE), type-1 diabetes (T1DM), uveitis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSC-EXOs are capable of reproducing MSC function and overcoming the limitations of traditional cell therapy. Therefore, using MSC-EXOs instead of MSCs to treat autoimmune diseases appears to be a promising cell-free treatment strategy. In this review, we review the current understanding of MSC-EXOs and discuss the regulatory role of MSC-EXOs on immune cells and its potential application in autoimmune diseases.
Article
Full-text available
Purpose: Chemical corneal injuries carry a high morbidity and commonly lead to visual impairment. Here, we investigate the role of Serp-1, a serine protease inhibitor, in corneal wound healing. Methods: An alkaline-induced corneal injury was induced in 14 mice. Following injury, five mice received daily topical saline application while nine mice received Serp-1 100 μL topically combined with a daily subcutaneous injection of 100 ng/gram body weight of Serp-1. Corneal damage was monitored daily through fluorescein staining and imaging. Cross sectional corneal H&E staining were obtained. CD31 was used as marker for neovascularization. Results: Serp-1 facilitates corneal wound healing by reducing fibrosis and neovascularization while mitigating inflammatory cell infiltration with no noticeable harm related to its application. Conclusions: Serp-1 effectively mitigates inflammation, decreases fibrosis, and reduce neovascularization in a murine model of corneal injury without affecting other organs. Translational Relavence: Our study provides preclinical data for topical application of Serp-1 to treat corneal wounds.
Article
Full-text available
Glucose induces corneal epithelial dysfunctions characterized by delayed wound repair. Nuclear erythroid 2-related factor 2 (Nrf2) mediates cell protection mechanisms even through the Heme oxygenase-1 (HO-1) up-regulation. Here, we synthesized new HO-1 inducers by modifying dimethyl fumarate (DMF) and used docking studies to select VP13/126 as a promising compound with the best binding energy to Kelch-like ECH-associated protein 1 (keap1), which is the the regulator of Nrf2 nuclear translocation. We verified if VP13/126 protects SIRC cells from hyperglycemia compared to DMF. SIRC were cultured in normal (5 mM) or high glucose (25 mM, HG) in presence of DMF (1–25 μM) or VP13/126 (0.1–5 μM) with or without ERK1/2 inhibitor PD98059 (15 μM). VP13/126 was more effective than DMF in the prevention of HG-induced reduction of cell viability and proliferation. Reduction of wound closure induced by HG was similarly counteracted by 1 μM VP13/126 and 10 μM DMF. VP13/126 strongly increased phospho/total ERK1/2 and restored HO-1 protein in HG-treated SIRC; these effects are completely counteracted by PD98059. Moreover, high-content screening analysis showed a higher rate of Nrf2 nuclear translocation induced by VP13/126 than DMF in HG-stimulated SIRC. These data indicate that VP13/126 exerts remarkable pro-survival properties in HG-stimulated SIRC, promoting the Nrf2/HO-1 axis.
Article
Full-text available
Induced pluripotent stem cells and mesenchymal stem cells are pluripotent stem cells that represent promising therapies for treating various tissue injuries and wound healing. Exosomes are nanosized extracellular vesicles that have been identified as important mediators of therapeutic functions, which are performed via cell communication. In this study, we compared the efficacy of induced pluripotent stem cells-derived exosomes (iPSCs-Exos) and mesenchymal stem cells-derived exosomes (MSCs-Exos) in treating corneal epithelial defects. The characteristics of the two types of exosomes were not significantly different. Compared to MSCs-Exos, iPSCs-Exos had a better in vitro effect on the proliferation, migration, cell cycle promotion and apoptosis inhibition of human corneal epithelial cells. iPSCs/MSCs-Exos promoted cell regeneration by upregulating cyclin A and CDK2 to drive HCECs to enter the S phase from the G0/G1 phase. In vivo results from a corneal epithelial defect model showed that both iPSCs-Exos and MSCs-Exos accelerated corneal epithelium defect healing while the effects of iPSCs-Exos were much stronger than those of MSCs-Exos. This study demonstrated that iPSCs-Exos had a better therapeutic effect on corneal epithelial defect healing. Thus, a novel potential nanotherapeutic strategy for treating corneal epithelial defects and even more ocular surface disease could be undertaken by using iPSCs-Exos dissolved in eye drops.
Article
Full-text available
Purpose: This review highlights the roles of fibrocytes-their origin, markers, regulation and functions-including contributions to corneal wound healing and fibrosis. Methods: Literature review. Results: Peripheral blood fibroblast-like cells, called fibrocytes, are primarily generated as mature collagen-producing cells in the bone marrow. They are likely derived from the myeloid lineage, although the exact precursor remains unknown. Fibrocytes are identified by a combination of expressed markers, such as simultaneous expression of CD34 or CD45 or CD11b and collagen type I or collagen type III. Fibrocytes migrate into the wound from the blood where they participate in pathogen clearance, tissue regeneration, wound closure and angiogenesis. Transforming growth factor beta 1 (TGF-β1) and adiponectin induce expression of α-smooth muscle actin and extracellular matrix proteins through activation of Smad3 and adenosine monophosphate-activated protein kinase pathways, respectively. Fibrocytes are important contributors to the cornea wound healing response and there are several mechanisms through which fibrocytes contribute to fibrosis in the cornea and other organs, such as their differentiation into myofibroblasts, production of matrix metalloproteinase, secretion of tissue inhibitor of metalloproteinase, and release of TGF-β1. In some tissues, fibrocytes may also contribute to the basement membrane regeneration and to the resolution of fibrosis. Conclusions: New methods that block fibrocyte generation, fibrocyte migration, and their differentiation into myofibroblasts, as well as their production of matrix metalloproteinases, tissue inhibitor of metalloproteinase, and TGF-β1, have therapeutic potential to reduce the accumulation of collagens, maintain tissue integrity and retard or prevent the development of fibrosis.
Article
Full-text available
With the immunoregulation potential, mesenchymal stem cells (MSCs) have been used for tissue regeneration by relieving inflammation in the injured tissues. When this repair process is interfered by immune disorders or pathological angiogenesis, the delays in corneal epithelial wound healing can lead to a persistent epithelial defect. Stem cell-derived extracellular vesicles (EVs), which carry abundant bioactive molecules from stem cells, have provided an alternative to regeneration therapy. In this study, we aimed to investigate if EVs from human placenta-derived MSCs (hP-MSCs) could ameliorate alkali injury of the cornea in the mouse model. 33.33 μg/μL EVs in 10 μL PBS were applied to the cornea. Repeat application three times, and 100 μg EVs (in 30 μL PBS) in total were administrated per day for two weeks. Our results revealed that EVs from hP-MSCs had preferable functions including enhancing proliferation and anti-inflammation and suppressing apoptosis of corneal epithelial cells. Furthermore, hP-MSC-derived EVs ameliorated mouse corneal wound healing by inhibiting angiogenesis and inflammation. Taken together, our current data suggested that hP-MSC-derived EVs have the beneficial effects of corneal wound healing, which provide alternative cell-free therapy with great practical value.
Article
Purpose: This study aimed to determine the effect of thymosin beta 4 (Tβ4) on human corneal epithelial cell migration and the downstream signaling pathways. Tβ4 has a role in tissue development, cell migration, inflammation, and wound healing. A previous study showed that Tβ4 directly binds to F0-F1 ATP synthase. Other studies reported the role of extracellular ATP and purinergic receptors in cell migration with several cell types. Despite advancing to the clinical stage for treatment of eye disorders, the effect of Tβ4 on human corneal epithelial cell (HCEC) migration and proliferation and the precise downstream signaling pathway(s) have not been identified. Methods: Various concentrations of Tβ4 were tested in vitro on human corneal epithelial cell proliferation using the CCK-8 Kit and on cell migration using the gap closure migration assay. Additionally, ATP levels at various time points were determined using the ATP Lite One-Step Kit. The Fluo 8 NO Wash Calcium Assay Kit was used to measure the intracellular Ca²⁺ concentration after treatment with various concentrations of Tβ4. P2X7 inhibitors were tested on ATP signaling and migration. Total- and phospho-ERK1/2 levels were determined in western blot. Results: Tβ4 enhanced HCEC proliferation and migration in a dose- and time-dependent manner. Moreover, these functions were related to increased extracellular ATP levels, intracellular Ca²⁺ influx, and ERK1/2 phosphorylation. Tβ4-mediated HCEC migration was inhibited by specific P2X7 purinergic receptor antagonists suggesting the role of this receptor in Tβ4-mediated human corneal epithelial cell migration. Conclusions: These results suggest that Tβ4-mediated HCEC proliferation and migration are associated with increased ATP levels, P2X7R-mediated Ca²⁺ influx, and the ERK1/2 signaling pathway. This study begins to describe the mechanisms for Tβ4-mediated corneal healing and regeneration.