Available via license: CC BY
Content may be subject to copyright.
Horticulturae2022,8,1221.https://doi.org/10.3390/horticulturae8121221www.mdpi.com/journal/horticulturae
Article
ContinuousThirdPhaseFruitMonitoringinOlivewith
RegulatedDeficitIrrigation
toSetaQuantitativeIndexof
WaterStress
ArashKhosravi
1
,MatteoZucchini
1
,AdrianoMancini
2
andDavideNeri
1,
*
1
DepartmentofAgricultural,FoodandEnvironmentalSciences,MarchePolytechnicUniversity,
60131Ancona,Italy
2
DepartmentofInformationEngineering,MarchePolytechnicUniversity,60131Ancona,Italy
*Correspondence:d.neri@staff.univpm.it
Abstract:Thetransversalfruitdiameter(FD)wasmonitoredcontinuouslybyautomaticextensim‐
eters(fruitgauges)inordertomonitorfruitgrowthdynamicsunderdeficitirrigationtreatments.
Thedailydiameterfluctuation(ΔD,mm),thedailygrowth(ΔG,mm),thecumulativefruitgrowth
(CFG,mm),andthefruitrelativegrowthrate(RGR,mmmm
−1
h
−1
)offourolivecultivars(Ascolana
dura,PiantonediFalerone,Arbequina,andLea)werestudiedduringthethirdphaseoffruit
growth.TworegulateddeficitirrigationtreatmentsDI‐20(20%ofET
c
)andDI‐10(10%ofET
c
)were
applied.ThedailyhystereticpatternofFDversustheenvironmentalvariableofvaporpressure
deficit(VPD)wasevaluatedusingthedataofalocalweatherstation.Theassessmentoffruitgrowth
parametersshowedcultivar‐specificresponsetowaterstress.Forinstance,afterperformingdeficit
irrigation,minimumRGRindifferentcultivarsdownsizedwithvariousslopeswhichsuggesteda
verydifferentresponseofthecultivarstodehydration.Ontheotherhand,thedailyhystereticpat‐
ternofFDversusVPDwasdetectedinallthestudiedcultivars,andaquantitativeindex(heightof
hysteresiscurves)usedforexplanationofhysteresismagnitude’schangedaccordingtothedeficit
irrigationtreatments.Theresultsshowedasignificantreductionofheightofhysteresiscurvesby
irrigationtreatmentswhichwerenotcultivar‐specific.Thequantitativeindexforhysteresiscurve
magnitude’schangeinthefourolivecultivarsofAscolanadura,PiantonediFalerone,Arbequina
andLeacanefficientlyestimatetheplantwaterresponsetoirrigationtreatmentinoliveorchards.
However,furtherinvestigationneedstobedonetoimplementpreciseirrigationsystems.
Keywords:OleaeuropaeaL.;fruitdiameter;hysteresis;deficitirrigation;vaporpressuredeficit
(VPD);waterstressindex;continuousfruit‐basedindex;extensimeter(fruitgauge)
1.Introduction
Theimportanceofolive(OleaeuropaeaL.)asessentialforhumandietandlandscape
managementisundeniableinareaswithMediterraneanclimate.Oliveproductionhas
beenaffectedbyincreasingglobaldemand(tableoliveandoliveoil),whichhasimposed
agreaterneedforagriculturalinputsasweaddressresourcescarcityandclimatechange
[1–3].Oneofthekeyinputsofoliveproductioniswater.Around70%oftheworldsurface
ofolivegrovesisirrigated[4],therefore,thedevelopmentofappropriatemethodsand
strategiesofsustainablewateruseinolivegrovesisfundamental[5].Themostcommon
techniqueforoptimizingwaterefficiencyisRegulatedDeficitIrrigation(RDI),inwhich
waterdeficitsareimposedduringphenologicalperiodswhenthetreeismostinsensitive
towaterstress[6–8],andcomplementaryirrigation[9,10].Furthermore,theresultsof
Goldhamer[11]andGómez‐delCampo[12]showedthatRDIstrategiesresultedinasav‐
ingofabout20%ofthetotalamountofwaterappliedwithoutreducingtheyield,fruit
andoilcontent.Moreover,numerousstudiesshowthatdeficitirrigationavoidsor
Citation:Khosravi,A.;Zucchini,M.;
Mancini,A.;Neri,D.Continuous
ThirdPhaseFruitMonitoringin
OlivewithRegulatedDeficit
IrrigationtoSetaQuantitativeIndex
ofWaterStress.Horticulturae2022,8,
1221.https://doi.org/10.3390/
horticulturae8121221
AcademicEditors:AlessioScalisi,
MarkGlennO’ConnellandIan
Goodwin
Received:21September2022
Accepted:15December2022
Published:19December2022
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2022bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(https://cre‐
ativecommons.org/licenses/by/4.0/).
Horticulturae2022,8,12212of28
minimizesthenegativeimpactofirrigationonerosion,inparticularbyreducingsurface
runoffandcontributinglesstotheinfiltrationofpollutants(herbicidesandpesticides)
intogroundwater[13].Intheclassicalmethod,thecalculationofirrigationamountis
basedonmultiplyingreferenceevapotranspiration(ET0)bygrass‐reference‐basedcrop‐
specificcoefficients(Kc).Nevertheless,thetraditionalmethodofestimationofKcforolive
orchardscouldbeinaccurate.Kcisaffectedbysomeaspectssuchascanopyarchitecture,
groundcover,andtheinteractionsofclimaticconditions,soiltype,cultivars,andirriga‐
tionmanagementpractices[6].
Toachievepreciseirrigationresults,somerecentresearchsuggestedcontinuousas‐
sessmentofplantwaterstatusindices[14–17].Infact,inSoilPlantAtmosphereContin‐
uum(SPAC),plantplaysaninterfacerolebetweensoilandtheenvironment,anditsphys‐
iologicalresponseisacombinationofresults[14,18,19].Furthermore,thecontinuous
measurementofplantwaterstatusindiceswouldprovideasolidbaseforprecisionirri‐
gationmanagement,byrealtimeresponsetowaterstress.However,theolivespecies
(Oleaeuropaea)hasaverywidegeneticpool,whichcanrespondtodroughtusingdifferent
leafandfruitphysiologicalandmorphologicalmechanisms[14,20].Itincludesgenotypes
thatcanrespondtodroughtusingdifferenttolerancestoleafdehydrationandmorpho‐
logicalandstructuraladaptationsoftheleaves[14].LoBiancoandScalisi[20]founda
differentleafstomatalregulationamongtheolivecultivars.Duetothisdifficulty,thecor‐
rectchoiceofthewaterstatusindexoftheplantisessential.Themostcommonsuggested
indicesaremiddaystemwaterpotential(ᴪstem),trunkdiametervariation(TDV),sapflow
(SF),leafturgorpressure(LTP),aswellasfruitdiameter(FD),whichcanbeusedaloneor
incombination.Acombinationofindices(sensors)couldproviderobustdata,however,
increasedthecomplexity.Moreover,consideringthedifficultyofreplicatingcontinuous
measurementsonalargenumberoftrees,theneedtoobtainanaccurateindexhasbecome
moreessential.Themiddaystemwaterpotential(ᴪstem)isaccurateandreliable,however,
notonlyitisadestructivemethod,butalsonotsuitableforcontinuousmeasurement
[14,21,22].Thestem/trunkdiametervariation(bytrunkdendrometer)isanotheruseful
index.However,thetrunkdiameterfluctuationsareaffectedbyplantageandsize,crop
load,environmentalvariables,andgrowthpatterns[19].Thesapflow(SF)methodsare
particularlydemandingintermsofinstallation;mostoftheSFmethodssuitableforfruit
treesareinvasive,suchthatsensorsmustbeinstalledwithinthetrunkofthetrees[5].
Moreover,thesapflowratedemonstratestranspirationdynamicsthatdependonsto‐
matalactivityandenvironmentalvariables[22].Theleafturgorpressure(LTP)measure‐
mentmethodiscarriedoutbyprobewhichisacheapandhandymethodbutdoesnot
allowforcontinuousmeasurement[23].TheadvancedLTPmeasurementmethodem‐
ployedleafpatchclamppressure(LPCP)probesisabletocontinuouslymonitorthepres‐
sure,butthedifferentinitialconditionoftheleafrelatedtoage(especiallyinevergreen
species)andexposuretolightinsidethecanopyleadstoobtainingpartialinformation
fromLPCP[15,22].Inaddition,findingsbyJones[24]suggestedthatLTPintheisohydric
speciesisnotveryusefulintheearlydetectionofplantwaterdeficiency.Theotherinno‐
vativeplantwaterstatusindexisfruitdiameter(FD).Thedailyfruitgrowthdynamics
canbeexpoundedaschangesinflowsofwaterintoandoutofthefruit,ratherthancarbon
gains;thus,thedailyfruitdiametervariationrespondstowaterdeficit[15,25–27].Fruits
representtheactualgoalofproductionbutfruitgrowthistheresultofseveralgenetic,
metabolic,hormonal,andenvironmentalinteractions[28],therefore,optimalfruitgrowth
canbedeterminedonlybytheefficientphysiologicalmanipulationoftheconditiontree
[23].Intheolivetree,therootresponsetolocalizedapplicationsystemsoforganicresi‐
dues,nutrients,andwaterrevealanenormousplasticityoftherootsystem[29–31]which
cancompensateforlocalstress.Althougholivetreerootsystemsarehighlycapableand
couldsupplyaconstantwaterflow,fruitdailygrowthtrendisdescribedbyperiodsof
shrinkageandthenafterexpansion,whichusuallyleadtoincreaseinfruitsizeattheend
oftheday[23,27].DuetotheresearchofFernandesetal.[26]andMarinoetal.[15],the
dailyvariationsinfruittransversaldiameterscanbeexpoundedaschangesinflowsof
Horticulturae2022,8,12213of28
waterintoandoutofthefruithence,thesecanbeconnectedtovaporpressuredeficit
(VPD)andtreewaterstatus.Furthermore,Scalisietal.[14]explainedthatfruitgrowth
(measuredbyFD)isstrictlyrelatedtosoilwateravailabilityandplantwaterstatus,itis
alsoinfluencedbyenvironmentalvariables,cropload,geneticfactors,andphenology.
Consequently,fruitgrowthmonitoring(byFD)couldrepresentasensitiveindicatorof
plantwaterandphysiologicalstatusofthetrees,especiallyduringcellexpansionphase,
whenfruitgrowthrateisconstantandtrulydecisiveforproductiveperformances[23,32].
FDmonitoringhasbeeninvestigatedinseveralstudiesbyresearcherstomeasuredaily
fluctuationinthevolumeofselectedfruits,includingpears[33],sweetcherry[34–36],
mango[37],apple[23],nectarine[22],orange[38],andolive[14,15,26,27].Thecontinuous
FDmonitoringprovidesrobustdatabutwatermanagementprotocolsbasedonFDmeas‐
urementsneedfurtherstudytodevelopfieldapplicablemodels[15,23,27].Acommon
challengewithtree‐basedsensorsistoadjusttheiroutputtophysiologicallymeaningful
parametersinaconsistentmanner[19,27,36].
Inordertotranslateoutputsofplant‐basedsensors,thephenomenonofhysteresis
shouldbefurtherconsidered.Explainingthecausesofhystereticphenomenonappears
fraughtwithcomplexinteractionsbetweenexogenousandendogenousfactorstothe
plantsystem[39].TherootofthewordhysteresisisGreekandmeansto“lagbehind”
[27,40].Hysteresisisnon‐linearloop‐likebehaviorthathasbeenknowninplantsystems
foralongtime[40,41].Inhysteresis,whenthetimeargumentofaninputfunctionis
stretchedorcompressed,thecorrespondingoutputfunctionisnotstretchedinthesame
way,sothehysteresisdoesnotshowaffinesimilaritywithrespecttotime[40,42,43].For
example,adiurnalhysteresisbetweenevapotranspiration(ET)(ortranspiration)andva‐
porpressuredeficit(VPD)hasbeenstudied[40];hysteresisasarelationshipbetweenen‐
vironmentalfactor(e.g.,meteorologicalfactors)andsapflow[40,44,45];hysteresiswas
foundalsointherelationshipbetweencanopyconductanceandtemperature[46];hyste‐
resisbetweenfruitdiameterandleafpressureontwodifferentolivecultivars[14].Fur‐
thermore,inthecherryfruitgrowthrelationshipwithVPD,completehysteresiswas
foundonlyduringthematurationphasewhileduringfruitextensionphasethehysteresis
wasnullorpartial[36].RecentlyKhosravietal.[27]examinedthe“Frantoio”oliveculti‐
varandexplainedthedifferenthysteresiscurvesofthediameterversustheVPDduring
thesecond,third,andfourthphasesofolivefruitdevelopment.Accordingtothisresearch,
monitoringhystereticloopsanddetectingthemagnitudechangecouldbeusedasa
methodfordetectingthegrowthphases.Inthisresearch,theform,magnitude,androta‐
tionalpatternofhysteresiscurve(loop)oftransversaldiameterversusVPDwereinvesti‐
gated.IthasbeenshownthatVPDisespeciallyimportantinwoodyplants,whereitisthe
mainvariableaffectingtheirdiurnalevolutionoftranspiration[47].
Theaimofthisworkwastodescribethirdphaseofolivefruitdevelopmentbycon‐
tinuousmonitoringwithextensimeterunderregulateddeficitirrigationregimes.Further‐
more,wehypothesizedthepresenceofhysteresiscurvesbyexaminingtheolivefruitdi‐
ameter(FD)comparedtoVPD.Weintendedtoprovidesomeindexesforsmartirrigation
inrelationtotheregulateddeficitirrigationinakeyphenologicalstageofthefruit.
2.MaterialsandMethods
2.1.SiteDescriptionandPhenology
Theexperimentwascarriedoutin2021attheexperimentalfarmofthePolytechnic
UniversityofMarche,locatedinAgugliano(Marche,Italy)(latitude43°54′N,longitude
13°36′E,altitude85m),inahigh‐densityoliveorchardinfourself‐rootedolive(Oleaeu‐
ropaeaL.)cultivarsofAscolanadura,PiantonediFalerone,ArbequinaandLea.Thetrees
wereplanted4×2m(1250treeha−1)inMay2012,about9yearsoldatthetimeofexperi‐
ment.Eachcultivarwasdisplayedinaseparaterow.Theolivetreeswereinitiallytrained
asacentralleader,thetreecanopywasafterwardsflattenedaccordingtoahedgerow,
removinglongbranchestowardtheinterrow[48].Integratedagriculturalmethodswere
Horticulturae2022,8,12214of28
adoptedfortheagriculturaloperations,pestcontrol,andfertilizationpracticesaccording
toregionalguidelines[49].Theirrigationwaslocalizedandusedtoperformdifferentir‐
rigationtreatmentsduringexperiment(seeSection2.2.Irrigation).Thesoilwasmanaged
withpermanentgrasscoverintheinter‐rowalley,withmowing3–4timesduringthe
growingseasonandwithtillagealongtherow[27].
2.2.Irrigation
Theolivetreeswereirrigatedbyadripirrigationsystemwithaflowof8(Lh−1)per
tree.Twodeficitirrigationlevelswereperformedandthehigherdose(DI‐20)wassup‐
pliedtobigfruitvarietieswhilethelowerdose(DI‐10)wassuppliedtomedium‐small
fruitvarieties.DI‐20had20%oftheamountofETcandwassuppliedtoAscolanadura
andPiantonediFaleronetrees,whileDI‐10had10%oftheamountofETcandwassup‐
pliedtoLeaandArbequinatrees.ThecropevapotranspirationETcwasestimatedaccord‐
ingtoFAO56equationwhichis:
(ETc=ET0×Kc)(1)
wheretheevapotranspiration(ET0)wascalculatedbythelocalweatherstationautomati‐
callyviaFAOPenman–MonteithequationandKcwasthecropcoefficient[6].Moreover,
effectiverainfall(R)wascalculatedas:
R=(Pp−5)×0.75(2)
wherePp=rainfallobtainedfromthelocalweatherstation[6].Theirrigationtreatment
wasperformedaccordingtotherandomizedblockwiththreereplications,andeachblock
consistedofatleastfiveadjacenttreesonthesamerow.Theirrigationwasdonethree
timesduringtheexperimentperiod,17thAugust(DayoftheYear,DOY,229),19thAu‐
gust(DOY231),and16thSeptember(DOY259).TheDI‐20irrigatedcultivarsreceived62
mmofwaterduringallfruitgrowthphaseswhich17.5mmwasduringthethirdgrowth
phase.FortheDI‐10irrigatedcultivarstheamountofreceivedwaterduringallfruit
growthphasesandthirdgrowthphasewere31and8.75mm,respectively.Forbigfruit
varietiesofAscolanaduraandPiantonediFalerone,thenoirrigatedfruit(DI‐0)wascon‐
sideredasareferencepointfordetectingtheeffectofthedeficitirrigationtreatmenton
fruitgrowth.TherationalebehindusingDI‐0againstfullyirrigatedtreatmentcomesfrom
theideaofanalyzingtheeffectofdeficitirrigationonfruitgrowth(dailyandperiodical
growth)whichshouldbediscoveredincomparisonwithnormalgrowthconditions(with‐
outirrigation).Thechangesinthedailyolivefruitgrowthpatternbyirrigationhasbeen
explainedbysomeresearchpreviously[14,15].
2.3.FruitMaturationMonitoring
From19thSeptember(DOY262)to26thOctober(DOY299)thefruits,whichwere
placedinsidetheextensimeter,werephotographedbyCanonEOS1100DCamera(Canon
Inc.,Tokyo,Japan)weekly.Inthecaseofadverseweatherconditions,takingimageswas
postponedtothenextpossibleday.Theripeningstatusofeacholivefruitwasassessed
accordingtothefirstfive(0–4)classesofJaenindex[50](Table1).UptoDOY276,fruits
insidetheextensimeterwereinthethirdphaseoffruitdevelopment,andmaturityindex
rangedfrom0to2.Consequently,DOY276wasconsideredtheendingdayofthethird
phaseoffruitdevelopment.
Table1.Dataofripeningindexforthefruits,whichweremountedontheextensimeters.Data
werecollectedweeklyfrom262to299daysoftheyear(DOY).Maturationindexeswereper‐
formedaccordingtothefirstfive(0to4)categoriesoftheJaenindex.Arb1(DI‐10)andArb2(DI‐10)
representfruit1and2of“Arbequina”at10%deficitirrigation,respectively.Lea1(DI‐10)and
Lea2(DI‐10)representfruit1and2of“Lea”at10%deficitirrigation,respectively.Asc1(DI‐20)and
Asc2(DI‐20)representfruit1and2of“Ascolanadura”at20%deficitirrigation,respectively.
Asc3(DI‐0)representsfruit3ofnon‐irrigated“Ascolanadura”.Fal1(DI‐20)andFal2(DI‐20)
Horticulturae2022,8,12215of28
representfruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.Fal4(DI‐0)
representsfruit4ofnon‐irrigated“PiantonediFalerone”.
DO
Y
Arb1(DI
‐10)
Arb2(DI
‐10)
Lea1(DI
‐10)
Lea2(DI
‐10)
Asc1(DI
‐20)
Asc2(DI
‐20)
Asc3(DI
‐0)
Fal1(DI
‐20)
Fal2(DI
‐20)
Fal4(DI
‐0)
2620000000000
2690001000002
2760002000212
2840013111322
2911113111333
2991124322433
2.4.FruitMeasurementandExperimentalDesign
Thefruittransversaldiameter(synonymtoequatorialdiameter)oftenfruitswere
monitoredbyautomaticextensimeters(synonymtofruitgauge)from12thAugust(DOY
224)to3rdOctober(DOY276)in2021.Weusedtwokindsofextensimeters;onemodel
wasWinet(Winets.r.l.Cesena,Italy)andanothermodelwasDEX20(DynamaxInc.,Hou‐
ston,TX,USA).TheWinetexperimentalextensimeterconsistedofavariablelinearre‐
sistancetransducersensor(modelMM(R)10‐12)(MegatronElektronikGmbH&Co.,Mu‐
nich,Germany)supportedbyastainlesssteelframe.Theextensimeterswereconnected
tothewirelessdata‐loggersystem(Winets.r.l.Cesena,Italy)whichcollecteddataat10
minintervals.Datahasbeensentthroughthewirelessnodestoacentralnetworknode,
whichtransmitsinformationviageneralpacketradioservice(GPRS)modemtotheserver.
Secondmodelofextensimeter(DEX20)wasacaliperstyledevicewithafullbridgestrain
gageattachedtoaflexiblearm;datawererecordedbyCR1000Xdatalogger(Campbell
scientific,Inc.,Logan,UT,USA)everyhourandsenttoourowncloudservicebasedon
AmazonWebService(AWS)twiceperday.Bothmodelsofextensimeterswereexamined
andshowedaccuratefunctionality[27,51].
ThefullbloomdayoccurredforArbequinaandAscolanaduraonthe24thand28th
ofMay,andforPiantonediFaleroneandLeaonthe31stofMay.So,theexperiment
startedalmost11weeksafterfullbloom(WAFB).Moreover,theBBCHscalewasem‐
ployedtoobtainaphenologicalphase.Inthisscale,theendofthesecondphaseoffruit
development(pit‐hardening)wasdeterminedwhenitwasnolongerpossibletocutthe
fruit[6].Foreachcultivar,15fruitsweresampledrandomly.Samplingwasrepeatedevery
10daysandpitresistancetocuttingwereexaminedbyblade.Theendingdayofthesec‐
ondphaseoffruitdevelopmentwasobservedonthe13thofAugust(DOY225).Conse‐
quently,ourexperimentperiodstartedfromthethirdphase(cellexpansion)offruitde‐
velopment.
EightfruitsweremountedonWi‐netextensimeterwhichconsistedofthreefruitsof
Ascolanadura(twowithDI‐20andoneDI‐0(withoutirrigation)thatfromherecalled
Asc1(DI‐20),Asc2(DI‐20)andAsc3(DI‐0),threefruitsofPiantonediFalerone(twowith
DI‐20andoneDI‐0(withoutirrigation)thatfromherecalledFal1(DI‐20),Fal2(DI‐20)and
Fal3(DI‐0)andtwofruitsofLeawithDI‐10irrigationlevelthatfromherecalledLea1(DI‐
10)andLea2(DI‐10).InthemiddleoftheexperimentthefruitofFal3(DI‐0)feltdownand
wassubstitutedwithFal4(DI‐0).TwofruitsofArbequinawithDI‐10irrigationlevelwere
mountedonDEX20extensimeter(Arb1(DI‐10)andArb2(DI‐10)).Therepresentative
treesaccordingtoirrigationlevelwereselectedinthecenteroftheexperimentalblockto
avoidbordereffect.Moreover,allextensimetersofthesamecultivar‐irrigationlevelwere
installedtogetherononerepresentativetree.
Accordingtotheimportanceandphysiologicaleffectofdaylightonfruitgrowthand
itsroleinphotosynthesis,thegraphicrepresentationofdailyfruitgrowthanditsfluctu‐
ationswerereportedfromthetimeofsunrise[14,27].Infact,thedaystartedfromsunrise
Horticulturae2022,8,12216of28
andcontinuedfor24h.Basedondatafromourweatherstation,sunrisetimefrom12thof
Augustto5thofSeptember(DOY224to248)wasestimatedat6AM,from6thofSeptem‐
berto3rdofOctober(DOY249to276)wasestimatedat7AM.
2.5.FruitGrowthParameters
Incorrespondencewiththedaysinwhichirrigationtreatment(DI‐20andDI‐10)
wereperformed(DOYs229,231and259),6dayintervalswereselectedforassessmentof
deficitirrigationeffectonfruitgrowth.Thementionedwindow(6days)consistedofthe
2daysbeforeirrigationupto3daysafterirrigationday.Theparameterscalculatedfor
eachintervalswere:(1)dailydiameterfluctuation(ΔD,mm)whichwascalculatedasthe
maximumdiameterminustheminimumdiameterofsameday,(2)dailygrowth(ΔG,
mm)whichwascalculatedasthediameterofendingpointofdayminusthediameterof
startingpointofsameday,(3)cumulativefruitgrowth(CFG,mm)asthemaximumdaily
diameterofthefruitsubtractedfrommaximumdiameterofthepreviousday[26],(4)fruit
relativegrowthrate(RGR,mmmm−1h−1)wascalculatedusingthefollowingequation:
RGR=[(lnD2−lnD1)/(t2−t1)](3)
whereD1andD2arefruitdiametersattimest1andt2,respectively[14,15].Andthedaily
rangeofRGR(RGRrange,mmmm−1h−1)wascalculatedasthedifferencebetweenthemini‐
mumvalueandthemaximumvalueofRGRinoneday.
Inaddition,unitless(standardized)datahavebeenusedtoallowcomparisons
amongfruitswithdifferentinitialdiameterwhenextensimeterswereinstalled.Thedata
ofsensorswasstandardizedforeachdaybyusing:
x′=x/x0(4)
wherex′isthestandardizedvalue,xisthevalueoftheexistingdata,andx0istheinitial
valuesofthedataatstartingpointofsameday.
2.6.MeteorologicalData
AccordingtoKöppen–Geigerclimateclassification,AguglianoisclassifiedintheCfa
categoryandthisischaracterizedbywarmtemperature,highlyhumidandwarmsummer
[52]butinrecentyearstheclassificationismovingtowardCsa(hotsummerMediterra‐
nean).MeteorologicaldatawererecordedwithaMeteoSense4.0weatherstation(Net‐
senseS.r.lFlorence,Italy)locatedintheoliveorchard.Forthecalculationofvaporpres‐
suredeficit(VPD),airtemperature(T),andrelativehumidity(RH)datawerecollected
fromourweatherstation.Vaporpressuredeficitwascalculatedas:
VPD=(1−(RH/100))×SVPandSVP(Pascals)=610.7×10(7.5T/(237.3+T))(5)
TheVPDformulawasrecommendedbyMonteithandUnsworth[53];whereRHis
therelativehumidity,SVPissaturatedvaporpressure,andTistemperature(°C).Our
instrumentwassettolegalRometime.
2.7.HysteresisCurves
Toexplorethecircadianpatternofhysteresiscurve(loop),hourlycollecteddataof
transversalfruitdiameter(FD)versusVPDwereconsidered.Fordescriptionofthehyste‐
resisrotationalpattern,thetermsofclockwiseandanticlockwisecurvewereemployed.
Furthermore,forcharacterizationofhysteresisform,threeconceptsofpartial,incomplete,
andcompletewereused.Whenthehysteresiscurveappearedinsomepartofthedayand
wasnotrepresentativeofthewholeday,itwascalledpartial.Whentheendingpointof
thehysteresisloopreachedthesamelevelofthestartingpointoftheloop,itwasdefined
ascomplete.Lastly,whentheendingpointofthehysteresisloopdidnotreachthesame
levelofthestartingpointoftheloop,sotheloopwasnotcompletelyclosed,itwascalled
incompletehysteresiscurve.Fordetectionofincompleteclockwisehysteresis,normalized
Horticulturae2022,8,12217of28
dataofdiameterwereemployed.Hysteresisloopswereconsideredincompletewhenthe
loop“opening”wasmorethan0.05units.Inthecaseofloopopening,lessthan0.05is
consideredascomplete[27].
ThemeasureddailydatawerenormalizedbyMin‐Maxmethodthroughtheequa‐
tion:
x′=0.9×((x−xmin)/xmax−xmin)+0.05(6)
wherex′isthenormalizedvalue,xisthevalueoftheexistingdata,andxminandxmaxare
theminimumandmaximumvaluesofthedata,respectively[27,36].
2.8.DataAnalysisandPresentation
One‐wayrepeatedmeasuresanalysisofvariance(ANOVA)wasperformedforas‐
sessingsignificantdifferences.Thesignificantdifferencesamongthetreatmentswereas‐
sessedusingStudent–Newman–Keuls’stest(p<0.05).Alldataanalysesandgraphdesign
wereperformedusingSigmaplot14.5(SystatSoftware,Inc.,SanJose,CA,USA).
3.Results
3.1.EnvironmentalDataAnalysisandVPDEvolution
Figure1showsthedataofVPD,temperature(T),ET0,andrainfallduringtheexper‐
iment(DOY224toDOY276).ThehighestmeasuredhourlyVPDwas5.4(kPa)on16thof
August(DOY228)andthelowestwas0.05(kPa)on23rdand24thofAugust(DOYs235
and236).ThehighestdailyaverageofVPDwas3.0(kPa)onthe16thofAugust(DOY228)
andthelowestwas0.12(kPa)onthe27thofSeptember(DOY270).ThedailymeanofVPD
duringtheexperimentwas0.91±0.56(kPa).Thedailymeanoftemperatureduringex‐
perimentwas21.30±3.43(°C),withaminimumdailytemperatureof15.76(°C)onthe1st
ofOctober(DOY274)andmaximumdailytemperatureof32.26(°C)reachedon17thof
August(DOY229).Themaximumandminimumhourlytemperatureswere39.0and9.5
(°C)whichreachedon16thofAugust(DOY228)and1stofOctober(DOY274),respec‐
tively.ThetotalreferenceET0was173.9(mm)fortheexperimentperiod.Themaximum
andminimumdailyET0was6.3(mmday−1)on16thofAugust(DOY228)and0.6(mm
day−1)on27thofSeptember(DOY270),respectively.ThemaximumhourlyET0was0.7
(mmhour−1)whichreachedon14th,15th,16thofAugust(DOYs226,227,and228).During
theexperimentperiod,theaccumulatedrainfallwas96.1(mm),withmaximumhourly
anddailyof17.6(mmhour−1)and39.5(mmday−1)reachedon23rdofAugust(DOY235).
Horticulturae2022,8,12218of28
Figure1.Trendofhourlyanddailytemperature(T),vaporpressuredeficit(VPD),referenceevap‐
otranspiration(ET0)andrainfall,duringtheexperimentperiod(from224to276daysoftheyear
(DOY),obtainedbyMeteoSense4.0weatherstation.
Horticulturae2022,8,12219of28
3.2.FruitGrowth
Figure2reportsthehourlytransversaldiameteroffruitsforthefourdifferentculti‐
varsfromDOY224toDOY276.Thetypicalthirdphaseofthefruitgrowthwasobservable
inallfourcultivars(Lea,Figure2A;Arbequina,Figure2B;PiantonediFalerone,Figure
2C;AscolanaduraFigure2D);however,withdissimilargrowthslopeamongdifferent
cultivarsandafinalrelentlesstowardmaturation(4thphase).Thefruitgrowthshoweda
diameterincreasewithdiurnalfluctuation.Thediurnalfluctuationofolivefruitwasde‐
tectedasashrinkageoffruitdiameterfrommid‐morningtoearlyafternoonfollowedby
expansionoffruitdiameterfromlateafternoontoearlymorning(FigureS1A).Attheend
oftheday,thefruitsreachedasizelargerthantheinitialpointofthesameday.Infact,
Arbequina(DI‐10)in60.4%ofcases(64outof106),Lea(DI‐10)in82.89%ofcases(63out
of76),Ascolanadura(DI‐0)in77.5%ofcases(38outof49),Ascolanadura(DI‐20)in72.4%
ofcases(55outof76),PiantonediFalerone(DI‐0)in82.5%ofcases(32outof39)and
PiantonediFalerone(DI‐20)in87.7%ofcases(86outof98)reachedasizesimilarorlarger
thantheinitialpointofsameday.
Figure2.Continuousmeasurementsofdiameterofolivefruitsduringtheexperimentperiod
(from224to276daysoftheyear(DOY):(A)fruit1and2of“Lea”at10%deficitirrigation
(Lea1(DI‐10)andLea2(DI‐10),respectively);(B)fruit1and2of“Arbequina”at10%deficitirriga‐
tion(Arb1(DI‐10)andArb2(DI‐10),respectively);(C)fruit1and2of“PiantonediFalerone”at20%
deficitirrigation(Fal1(DI‐20)andFal2(DI‐20),respectively)andfruit3and4ofnon‐irrigated“Pi‐
antonediFalerone”(Fal3(DI‐0)andFal4(DI‐0),respectively);(D)fruit1and2of“Ascolanadura”
at20%deficitirrigation(Asc1(DI‐20)andAsc2(DI‐20),respectively)andfruit3ofnon‐irrigated
“Ascolanadura”(Asc3(DI‐0)).MissingdataFrom224to249dayoftheyear(DOY)forLea2(DI‐
10)andAsc1(DI‐20)andfrom246to249dayoftheyear(DOY)forpanel(A,C,D).
Theduration,frombeginningtofinishingdailyfruitshrinkageandexpansion,did
notshowsimilarityamongcultivar‐irrigationlevel(TableS1).Inaddition,therewere
someexceptionaldayswhichshoweddifferentgrowthpatterns(FigureS1B).Therewas
nouniquepatternforexplanationofdiameter(fruitgrowth)fluctuationofthesedays.
3.3.IrrigationResponse
Monitoringthedailyvariationoffruitdiameter at6days’window(fromDOY227to
234)incorrespondencewithfirstandsecondirrigationdaysshowedthatdiameterofArb1
Horticulturae2022,8,122110of28
(DI‐10)downsizedfrom9.91mmto9.81mm,whereasforArb2(DI‐10)downsizedfrom
8.76mmto8.65mm,butforLea1(DI‐10)startedfrom10.7mmandincreasedto11.1mm.
Atthesameperiod,diameterofAsc2(DI‐20)startedfrom20.4mmupto20.9mm,Fal1
(DI‐20)startedfrom13.7mmupto14.4mm,andFal2(DI‐20)startedfrom13.0mmand
reached13.8mm,whereastransversaldiameterofAsc3(DI‐0)andFal3(DI‐0)startedfrom
15.6mmand15.4mmupto15.7mmand15.4mm,respectively(FigureS2A–D).Itshowed
diameterincreaseforbothcultivarwithandwithoutirrigationtreatment,nevertheless,
standardizeddiameter(Table2)showeddifferentratio ofdiametergrowth. Forirrigated
AscolanaduraandPiantonediFalerone,theratioofdiametergrowthwashigherthan
non‐irrigatedtreatment.
Table2.Standardizeddataofdiameterforperiodof227to234dayoftheyear(DOY)and257to
262dayoftheyear(DOY).DataofDOY227and257isrelatedtothestartingpointofdayandfor
DOY234and262isrelatedtotheendingpointofday.Arb1(DI‐10)andArb2(DI‐10)represent
fruit1and2of“Arbequina”at10%deficitirrigation,respectively.Lea1(DI‐10)andLea2(DI‐10)
representfruit1and2of“Lea”at10%deficitirrigation,respectively.Asc1(DI‐20)andAsc2(DI‐20)
representfruit1and2of“Ascolanadura”at20%deficitirrigation,respectively.Asc3(DI‐0)repre‐
sentsfruit3ofnon‐irrigated“Ascolanadura”.Fal1(DI‐20)andFal2(DI‐20)representfruit1and2
of“PiantonediFalerone”at20%deficitirrigation,respectively.Fal3(DI‐0)andFal4(DI‐0)repre‐
sentfruit3and4ofnon‐irrigated“PiantonediFalerone”,respectively.Fal3(DI‐0)felldownand
hasbeensubstitutedwithFal4(DI‐0)for257to262dayoftheyear(DOY).Missingdatafrom227
to234dayoftheyear(DOY)forLea2(DI‐10)andAsc1(DI‐20).
DOYArb1(DI‐
10)
Arb2(DI‐
10)
Lea1(DI‐
10)
Lea2(DI‐
10)
Asc1(DI‐
20)
Asc2(DI‐
20)
Asc3(DI‐
0)
Fal1(DI‐
20)
Fal2(DI‐
20)
Fal3(DI‐
0)
Fal4(DI‐
0)
Firstandsecondirrigationtreatment(DOYs229
&231)
2270.40.460.29‐ ‐ 0.410.620.340.320.72‐
2340.130.150.79‐ ‐ 0.910.90.950.950.89‐
Thirdirrigationtreatment(DOY259) ‐
2570.190.20.230.240.380.950.10.170.08‐ 0.81
2620.950.910.950.830.890.950.950.920.92‐ 0.95
Incorrespondencewiththethirdirrigationday(fromDOY257to262),diameterofArb1
(DI‐10)startedat10.2mmreached10.8mm,andforArb2(DI‐10)startedfrom9.0mmupto
9.6mm.DiameterofLea1(DI‐10)startedfrom12.7mmandreachedto13.3mm,andforLea2
(DI‐10)startedfrom11.3mmupto11.7mm.AboutAsc1(DI‐20)diameterstartedfrom20.3
mmandreached20.7mmandforAsc2(DI‐20)startedfrom21.3mmandremainedthesame
size.AboutFal1(DI‐20),diameterstartedfrom15.7mmandreached16.3,andFal2(DI‐20)
startedfrom15.0mmandreached15.5mm.Inthenon‐irrigatedfruits,thediameterofAsc3
andFal4startedfrom18.77mmand11.4mmupto19.3mmand11.6mm,respectively(Figure
S2E–H).Datashoweddiameterincreaseforallthefourcultivarswithdifferentirrigationlevels
andfortwocultivars(AscolanaduraandPiantonediFalerone)withoutirrigationtreatment.
DataofstandardizeddiameterexplainedthatdiametergrowthratioinirrigatedAscolana
durawaslowerthannon‐irrigatedandforirrigatedPiantonediFaleronewashigherthannon‐
irrigated(Table2).
Thedailygrowth(ΔG)(Table3)providedmoreinformationrelatedtodiameterchange
incorrespondencewithirrigationdays.Onthefirstirrigationday(DOY229),forbothculti‐
varswithDI‐20,notonlyΔGwaspositive,butitwashigherthanΔGofthepreviousday.At
thesametime,ΔGfornon‐irrigatedfruitsdidnotshowanygrowthincomparisonwiththe
previousday.Infact,ΔGofAscolanadura(DI‐0)waspositiveandthesameastheprevious
dayandforPiantonediFalerone(DI‐0)wasnegativeandlowerthanpreviousday.About
cultivarswithDI‐10,ΔGwashigherthanthepreviousdaybutforLeaitwaspositiveandfor
Arbequinaitwasnegative.Inallfourirrigatedcultivars(withDI‐10orDI‐20),inthedayafter
irrigationΔGincreasedincomparisonwiththedaybefore.ThetrendofΔGinthenon‐
Horticulturae2022,8,122111of28
irrigatedfruitsatthedayafterIrrigationforAscolanadurawasdownward,andforPiantone
diFaleronedidnotshowanychanges.
Table3.Standardizeddataofdailyfruitgrowth(ΔG)incorrespondencewithirrigationdays.
Datawasrelatedtothe6dayswindow(2daysbeforeand3daysafterirrigationday).Arb1(DI‐10)
andArb2(DI‐10)representfruit1and2of“Arbequina”at10%deficitirrigation,respectively.
Lea1(DI‐10)andLea2(DI‐10)representfruit1and2of“Lea”at10%deficitirrigation,respectively.
Asc1(DI‐20)andAsc2(DI‐20)representfruit1and2of“Ascolanadura”at20%deficitirrigation,
respectively.Asc3(DI‐0)representsfruit3ofnon‐irrigated“Ascolanadura”.Fal1(DI‐20)and
Fal2(DI‐20)representfruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.
Fal3(DI‐0)andFal4(DI‐0)representfruit3and4ofnon‐irrigated“PiantonediFalerone”,respec‐
tively.Fal3(DI‐0)felldownandhasbeensubstitutedwithFal4(DI‐0)for257to262dayofthe
year(DOY).Missingdatafrom227to234dayoftheyear(DOY)forLea2(DI‐10)andAsc1(DI‐20).
DOYArb1(DI‐
10)
Arb2(DI‐
10)
Lea1(DI‐
10)
Lea2(DI‐
10)
Asc1(DI‐
20)
Asc2(DI‐
10)
Asc3(DI‐
0)
Fal1(DI‐
20)
Fal2(DI‐
20)
Fal3(DI‐
0)
Fal4(DI‐
0)
2270.00040.00210.0019‐ ‐ −0.0029 −0.0006 −0.0029 −0.00310.0000‐
228 −0.00050.00210.0028‐ ‐ 0.00000.0013 −0.0044 −0.00540.0006‐
229 −0.0050 −0.00860.0102‐ ‐ 0.00540.00130.01020.0139 −0.0013‐
230 −0.0076 −0.00660.0119‐ ‐ 0.0063 −0.00130.01160.0144 −0.0013‐
231 −0.0034 −0.00290.0073‐ ‐ 0.0048 −0.00060.00860.00970.0000‐
2320.01580.01770.0027‐ ‐ 0.00340.00060.00640.00740.0006‐
2330.01340.0113 −0.0018‐ ‐ 0.00290.00060.00490.00440.0006‐
2340.00290.0029 −0.0090‐ ‐ −0.00100.00000.00210.00220.0000‐
2570.00430.00590.0000 −0.0044 −0.00890.0000 −0.0011 −0.00320.0000‐ −0.0236
2580.00300.0041 −0.00630.0018 −0.0045 −0.00420.0011 −0.0019 −0.0007‐ −0.0170
2590.0008 −0.00170.01740.01160.0145 −0.00050.00480.00890.0100‐ −0.0009
260 −0.0395 −0.04080.01940.01590.0108 −0.00240.00580.00630.0072‐ 0.0027
261 −0.0177 −0.02040.00760.02010.00150.00000.00740.00880.0098‐ 0.0154
262 −0.00220.00200.00530.00090.00680.00710.00840.01370.0052‐ 0.0294
Onthesecondirrigationday(DOY231),ΔGforbothcultivarswithDI‐20wasposi‐
tive,however,itwaslowerthanΔGofthepreviousday.Concurrently,ΔGofnon‐irri‐
gatedfruitswashigherthanthepreviousday.Although,ΔGofAscolanadura(DI‐0)was
negativeandforPiantonediFalerone(DI‐0)waszero.AboutcultivarswithDI‐10,for
ArbequinaΔGwasgreaterthanthepreviousdayandwithanegativeamountandforLea
itwaslowerthanthepreviousdaywithapositiveamount.Inbothirrigatedcultivarswith
DI‐20,inthedayafterirrigation,ΔGdecreasedincomparisonwiththedaybefore,
whereasΔGofnon‐irrigatedfruitsforbothcultivarsincreased.AboutcultivarswithDI‐
10,inthedayafterirrigation,forArbequinaΔGincreasedandforLeaΔGdecreasedin
comparisonwiththepreviousday.
Onthethirdirrigationday(DOY259),ΔGforbothcultivarsofAscolanaduraand
PiantonediFalerone(irrigated(DI‐20)andnon‐irrigated(DI‐0))washigherthanthepre‐
viousday.AboutcultivarswithDI‐10,ΔGofArbequinawaslowerthanthepreviousday
butforLeawashigher.Onthedayafterirrigation,ΔGforbothcultivarswithDI‐20was
lowerthantheirrigationday,whereasΔGofnon‐irrigated(DI‐0)cultivarswashigher
thantheirrigationday.AboutcultivarswithDI‐10,inthedayafterirrigation,forArbe‐
quinaΔGreducedandforLeaΔGenlargedincomparisonwiththepreviousday(Table
3).
Thedailydiameterfluctuation(ΔD)inthefirstirrigationdaywasreducedinboth
cultivarswithDI‐20andreductioncontinueduntilthedayafterirrigation,whereasin
bothcultivarswithDI‐10,ΔDincreasedandthedayafterdecreased.Inthesecondirriga‐
tionday,ΔDinbothcultivarswithDI‐20wasalmostthesameasthepreviousday,andin
thedayafterirrigation,followedbyslightincreaseforcultivarPiantonediFaleroneand
Horticulturae2022,8,122112of28
stabilityforAscolanadura.Inthesecondirrigationday,ΔDforcultivarwithDI‐10fol‐
lowedtheoppositetrend,whichwasareductionforArbequinaandanincreaseforLea;
however,inthedayafterirrigationΔDforbothDI‐10cultivarsincreased.Inthethird
irrigationday,ΔDforPiantonediFaleroneDI‐20increasedandinthedayafterdecreased.
FortheAscolanaduraDI‐20,onefruitshoweddecreasingofΔDfollowedbyincreasing
inthedayafter,andotherfruitshowedincreasingofΔDfollowedbydecreasinginthe
dayafter.AboutcultivarwithDI‐10,ΔDshowedadifferenttrend.Indeed,forArbequina
ΔDdecreasedandinthedayafterirrigationincreased,butforLeaΔDincreasedandin
thedayafterirrigationonefruitshowedΔDreductionandotheroneshowedΔDincrease
(FigureS3A–D).
Thecumulativefruitgrowth(CFG),forallirrigatedcultivars(DI‐20andDI‐10),in
correspondencewiththefirstirrigationdayincreasedandtheupwardtrendhascontin‐
uedinthedayafterirrigation(Figure3A,B).Innon‐irrigatedcultivars,asmallgrowthof
CFGwasobservedwhichwasfollowedbyareductioninthedayafterirrigation(Figure
3B).Inthesecondirrigationday,CFGforallirrigatedcultivars(DI‐20andDI‐10)de‐
creased,thedownwardtrendcontinuedinthedayafterirrigationbutwithaslightslope
(Figure3A,B).Inthesametime,CFGofDI‐0treatmentsdecreasedbutinthedayafter
irrigationitincreased(Figure3B).Onthethirdirrigationday,CFGforallirrigated(DI‐20
andDI‐10)andnon‐irrigatedcultivarsincreased(Figure3C,D).Theonlyexceptionwas
onefruitofAscolanadura(Asc2(DI‐20))whichCFGdecreased(Figure3D).Ontheday
afterirrigation,CFGofbothcultivarswithDI‐20wasthesameasirrigationdayanddid
notshowanychange(Figure3D),neverthelessCFGofbothcultivarswithDI‐10increased
(Figure3C).CFGforAscolanadura(DI‐0)wasthesameasthepreviousdayanddidnot
change,whereas,CFGofPiantonediFalerone(DI‐0)increased(Figure3D).
Figure3.Standardizedcumulativefruitgrowth(CFG).From227to234dayoftheyear(DOY)(in
correspondencewithfirstandsecondirrigationdays)fortheolivecultivarArbequinaandLea(A)
andfortheolivecultivarsAscolanaduraandPiantonediFalerone(B).From257to262dayofthe
year(DOY)(incorrespondencewiththirdirrigationday)fortheolivecultivarArbequinaandLea
(C)andfortheolivecultivarsAscolanaduraandPiantonediFalerone(D).Arb1(DI‐10)and
Arb2(DI‐10)representfruit1and2of“Arbequina”at10%deficitirrigation,respectively.Lea1(DI‐
10)andLea2(DI‐10)representfruit1and2of“Lea”at10%deficitirrigation,respectively.Asc1(DI‐
20)andAsc2(DI‐20)representfruit1and2of“Ascolanadura”at20%deficitirrigation,
Horticulturae2022,8,122113of28
respectively.Asc3(DI‐0)representsfruit3ofnon‐irrigated“Ascolanadura”.Fal1(DI‐20)and
Fal2(DI‐20)representfruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.
Fal3(DI‐0)andFal4(DI‐0)representfruit3and4ofnon‐irrigated“PiantonediFalerone”,respec‐
tively.
Afterthefirstandsecondirrigationday,dailyfruitrelativegrowthrate(RGR)
changedsignificantly(Figure4B–F).Afterthefirstirrigationdaytheminimumamountof
RGRwasnearzeroandthendecreasedcontinuously(dashedorangeline).Theminimum
ofRGRdownsizedwithdissimilarslopesindifferentirrigationlevels.Moreover,the
trendofminimumRGRreductionindifferentcultivarswiththesameirrigationlevelwas
diversetoo.ThemaximumamountofRGRforbothcultivarswithDI‐20increasedslightly
(dashedblacklineinFigure4B,D),whereascultivarswithDI‐10didnotshowanycon‐
sistentdecreasingorincreasingofmaximumRGR(Figure4E,F).Atthesametime,mini‐
mumRGRofPiantonediFalerone(DI‐0)andAscolanadura(DI‐0)showedconsistent
decrease(dashedorangelineinFigure4A,C).ThemaximumRGRforPiantonediFale‐
rone(DI‐0)didnotshowanyspecificpatterns,however,forAscolanadura(DI‐0)was
stable(dashedblacklineinFigure4C).
Horticulturae2022,8,122114of28
Figure4.Dailyfruitrelativegrowthrate(RGR)from227to234dayoftheyear(DOY)(incorre‐
spondencewithfirstandsecondirrigationdays.TheolivecultivarPiantonediFalerone(A,B);the
olivecultivarAscolanadura(C,D);theolivecultivarArbequina(E);theolivecultivarLea(F).
Fal3(DI‐0)representsfruit3ofnon‐irrigated“PiantonediFalerone”.Fal1(DI‐20)andFal2(DI‐20)
representfruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.Asc3(DI‐0)
representsfruit3ofnon‐irrigated“Ascolanadura”.Asc2(DI‐20)representsfruit2of“Ascolana
dura”at20%deficitirrigation.Arb1(DI‐10)andArb2(DI‐10)representfruit1and2of“Arbe‐
quina”at10%deficitirrigation,respectively.Lea1(DI‐10)representsfruit1of“Lea”at10%deficit
irrigation.
Afterirrigationwithholding,RGRrangeamountoftwocultivars(Ascolanaduraand
PiantonediFalerone)withDI‐20irrigationtreatmentincreased(Figure5B).TheRGRrange
enlargementhasbeenreportedbyotherresearchasawaterstresssignalinolive[14,15,26].
However,thereisnodefinedthresholdforRGRrangeasawaterstressindex.Thetrendof
RGRrangeinthecultivarswithDI‐10irrigationtreatmentwasnotsameaseachother.In‐
deed,thetrendforcultivarLeawasmoresimilartoDI‐20irrigationtreatedcultivars(Fig‐
ure5A),whereas,thetrendofArbequinauptothedayafterfirstirrigationtreatmentwas
closetoLeaandthenafterfolloweddissimilartrend(Figure5A).ThetrendofAsc3(DI‐
0)wasmismatchedwithFal3(DI‐0),besides,bothofthem(DI‐0s)showeddiversepattern
incomparisonwithrelatedirrigatedcultivar(Figure5C).
Horticulturae2022,8,122115of28
Figure5.Relativegrowthraterange(RGRrange)from227to234dayoftheyear(DOY)(incorre‐
spondencewithfirstandsecondirrigationdays:(A)fruit1and2of“Arbequina”at10%deficit
irrigation(Arb1(DI‐10)andArb2(DI‐10),respectively)andfruit1of“Lea”at10%deficitirrigation
(Lea1(DI‐10));(B)fruit1and2of“PiantonediFalerone”at20%deficitirrigation(Fal1(DI‐20)and
Fal2(DI‐20),respectively) andfruit2of“Ascolanadura”at20%deficitirrigation(Asc2(DI‐20));(C)
fruit3ofnon‐irrigated“Ascolanadura”(Asc3(DI‐0))andfruit3ofnon‐irrigated“Piantonedi
Falerone”(Fal3(DI‐0)).
Afterthirdirrigationtreatment,fruitRGRdynamicsdidnotshowsimilaritytofirst
andsecondirrigationtreatment(Figure6A–F).Moreover,thepatternofthefruitwiththe
samecultivar‐irrigationlevelwasdiversetoo.Forinstance,minimumRGRofPiantonedi
Falerone(DI‐20)foronefruit(Fal1)wasstableandalmostzero,butforotherfruit(Fal2)
followedoscillationandwasnegative,whereasmaximumRGRforbothPiantonediFale‐
rone(DI‐20)hadsametrendbutwithoutanyprogressivedecreaseorincrease(Figure6B).
MaximumRGRforAscolanadura(DI‐20)inonefruit(Asc1)showedconsistentreduction
butfortheotheronewasalmoststableandnearzero(Figure6D).
Horticulturae2022,8,122116of28
Figure6.Dailyfruitrelativegrowthrate(RGR)from257to262dayoftheyear(DOY)(incorre‐
spondencewiththethirdirrigationday).TheolivecultivarPiantonediFalerone(A,B);theolive
cultivarAscolanadura(C,D);theolivecultivarArbequina(E);theolivecultivarLea(F).Fal4(DI‐0)
representsfruit4ofnon‐irrigated“PiantonediFalerone”.Fal1(DI‐20)andFal2(DI‐20)represent
fruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.Asc3(DI‐0)represents
fruit3ofnon‐irrigated“Ascolanadura”.Asc1(DI‐20)andAsc2(DI‐20)representfruit1and2of
“Ascolanadura”at20%deficitirrigation,respectively.Arb1(DI‐10)andArb2(DI‐10)represent
fruit1and2of“Arbequina”at10%deficitirrigation,respectively.Lea1(DI‐10)andLea2(DI‐10)
representfruit1and2of“Lea”at10%deficitirrigation,respectively.
Horticulturae2022,8,122117of28
Afterirrigationwithholdinguptofirstrainyday(DOY260),RGRrangeamountofAs‐
colanadurawithDI‐20irrigationtreatmentincreased(Figure7B),whereas,inthePian‐
tonediFaleronewithDI‐20irrigationtreatment,RGRrangeamountintheonefruitin‐
creasedandinotheronedecreased(Figure7B).Inaddition,onthedayafterfirstrainthe
RGRrangeamountofAscolanadurawithDI‐20irrigationtreatmentdecreasedandforPi‐
antonediFaleroneincreased(Figure7B).Finally,theincreaseofRGRrangeinAscolanadura
andPiantonediFalerone(Figure7B)in2rainydays(DOYs260and262)wasincontrast
withourexpectation.Nevertheless,itresultedfromthetimeofrainfall.Datashowedthat
rainfallinDOY260and262startedat16:00and15:00,respectively.Consequently,the
fruitexperiencedwaterstressbeforerainfall,andRGRrangeincreased.RGRrangeofAsc3(DI‐
0)andFal4(DI‐0)incorrespondencewithtworainydaysshowedthesameresultsofDI‐
20treatedandconfirmedtheeffectoftimeofrainfallhappening(Figure7C).
Figure7.Relativegrowthraterange(RGRrange)from257to262dayoftheyear(DOY)(incorre‐
spondencethirdirrigationday):(A)fruit1and2of“Arbequina”at10%deficitirrigation
(Arb1(DI‐10)andArb2(DI‐10),respectively)andfruit1and2of“Lea”at10%deficitirrigation
(Lea1(DI‐10)andLea2(DI‐10),respectively);(B)fruit1and2of“Ascolanadura”at20%deficit
irrigation(Asc1(DI‐20)andAsc2(DI‐20),respectively)andfruit1and2of“PiantonediFalerone”
at20%deficitirrigation(Fal1(DI‐20)andFal2(DI‐20),respectively);(C)fruit3ofnon‐irrigated“As‐
colanadura”(Asc3(DI‐0))andfruit4ofnon‐irrigated“PiantonediFalerone”(Fal4(DI‐0)).
TheRGRrangeinthecultivarswithDI‐10irrigationtreatmentdidnotshowsimilarity
toeachother(Figure7A).Ontheirrigationday,theRGRrangeofArbequinaincreasedbut
forLeainLea1increasedandinLea2decreased(Figure7A).Fromirrigationdayupto
Horticulturae2022,8,122118of28
theendof6dayswindow(DOY262),theRGRrangetrendofArbequina(DI‐10)wassimilar
toAscolanadura(DI‐20)(includingpatternin2rainydays(DOYs260and262)).Whereas,
LeashoweddissimilartrendincomparisonwithArbequina.Inaddition,RGRrangetrend
ofLea1andLea2wasdiversetoo(Figure7A).
3.4.HysteresisCurvesofFruitGrowthversusVPD
Thehysteresisphenomenonisanindirectresponseofvegetationtodiurnalchanges
intheexternalenvironmentandthetimelagisamajorcharacteristicofhysteresis[54].In
ourcasehysteresisisformedbythetimelagbetweenVPDandfruitgrowth.Tobetter
capturethetimelagbetweendailydiameterandVPD,thenormalizeddataofdiameter
andVPDhavebeenused. Theblueboxshowedatimelagbetweensomeexamplefruits
diameterandVPD(Figure8).
Figure8.Normalizeddiameterofexamplefruitsversusnormalizedvaporpressuredeficit(VPD)
in228dayoftheyear(DOY).TheblueboxshowsdailytimelagbetweenVPDandfruitdiameter.
Intheblueboxdarknessofcolorshowsincreasingtimelag.Tobetterdemonstratetimelag,aneg‐
ativenormalizedamountofVPDhasbeenemployed.Lea1(DI‐10)representsfruit1of“Lea”at
10%deficitirrigation.Arb1(DI‐10)representsfruit1of“Arbequina”at10%deficitirrigation.
Fal1(DI‐20)representsfruit1of“PiantonediFalerone”at20%deficitirrigation.Fal3(DI‐0)repre‐
sentsfruit3ofnon‐irrigated“PiantonediFalerone”.Asc2(DI‐20)representsfruit2of“Ascolana
dura”at20%deficitirrigation.Asc3(DI‐0)representsfruit3ofnon‐irrigated“Ascolanadura”.
Inmostperiodsofexperiment,thedailygrowthoffruittransversaldiameterversus
VPDformedclockwisecurves.Thementionedcurves,accordingtotheirshape,wereex‐
plainableascompletehysteresis(Figure9A),incompletehysteresis(Figure9B),orpartial
hysteresis(Figure9C).Although,differentkindsofhysteresiscurveshaveappearedby
dissimilarfrequency,shape,andmagnitudeineachcultivar‐irrigationlevel(Table4).
Horticulturae2022,8,122119of28
Figure9.Hysteresisloopsofdiameterversusvaporpressuredeficit(VPD)inoneexampleday
(232dayoftheyear(DOY)).(A)Completeclockwisehysteresis;(B)incompleteclockwisehystere‐
sis;(C)partialclockwisehysteresis.Dottedblacklineshowstherotationalpatternandstarting
andendingpointofhysteresisloops.Arb1(DI‐10)andArb2(DI‐10)representfruit1and2of“Ar‐
bequina”at10%deficitirrigation,respectively.Lea1(DI‐10)representsfruit1of“Lea”at10%defi‐
citirrigation.Asc2(DI‐20)representsfruit2of“Ascolanadura”at20%deficitirrigation.Asc3(DI‐
0)representsfruit3ofnon‐irrigated“Ascolanadura”.Fal1(DI‐20)andFal2(DI‐20)representfruit1
and2of“PiantonediFalerone”at20%deficitirrigation,respectively.Fal3(DI‐0)representsfruit3
ofnon‐irrigated“PiantonediFalerone”.
Table4.Dataofpercentageofappearanceofdifferenthysteresiscurves.Invaliddatawereex‐
cludedfromthetable.Arb1(DI‐10)andArb2(DI‐10)representfruit1and2of“Arbequina”at10%
deficitirrigation,respectively.Lea1(DI‐10)andLea2(DI‐10)representfruit1and2of“Lea”at10%
deficitirrigation,respectively.Asc1(DI‐20)andAsc2(DI‐20)representfruit1and2of“Ascolana
dura”at20%deficitirrigation,respectively.Asc3(DI‐0)representsfruit3ofnon‐irrigated“As‐
colanadura”.Fal1(DI‐20)andFal2(DI‐20)representfruit1and2of“PiantonediFalerone”at20%
deficitirrigation,respectively.Fal3(DI‐0)andFal4(DI‐0)representfruit3and4ofnon‐irrigated
“PiantonediFalerone”,respectively.
Typeof
hysteresis
Arb1(DI‐
10)
Arb2(DI‐
10)
Lea1(DI‐
10)
Lea2(DI‐
10)
Asc1(DI‐
20)
Asc2(DI‐
20)
Asc3(DI‐
0)
Fal1(DI‐
20)
Fal2(DI‐
20)
Fal3(DI‐
0)
Fal4(DI‐
0)
Complete27.4515.6919.0512.5015.0012.8227.666.6710.2635.290.00
Incomplete41.1850.9823.8162.5050.0025.6419.1542.2215.3817.6533.33
Partial23.5325.4942.8616.6715.0030.7734.0426.6748.7223.5350.00
No
hysteresis7.847.8414.298.3320.0030.7719.1524.4425.6423.5316.67
Thetrendofhysteresiscurvesincorrespondencewithirrigationdayshasbeen
showninTable5.Inthefirstandsecondirrigationday,inallirrigatedcultivars(withDI‐
10andDI‐20),a