ArticlePDF Available

Continuous Third Phase Fruit Monitoring in Olive with Regulated Deficit Irrigation to Set a Quantitative Index of Water Stress

Authors:

Abstract and Figures

The transversal fruit diameter (FD) was monitored continuously by automatic extensimeters (fruit gauges) in order to monitor fruit growth dynamics under deficit irrigation treatments. The daily diameter fluctuation (ΔD, mm), the daily growth (ΔG, mm), the cumulative fruit growth (CFG, mm), and the fruit relative growth rate (RGR, mm mm−1 h−1) of four olive cultivars (Ascolana dura, Piantone di Falerone, Arbequina, and Lea) were studied during the third phase of fruit growth. Two regulated deficit irrigation treatments DI-20 (20% of ETc) and DI-10 (10% of ETc) were applied. The daily hysteretic pattern of FD versus the environmental variable of vapor pressure deficit (VPD) was evaluated using the data of a local weather station. The assessment of fruit growth parameters showed cultivar-specific response to water stress. For instance, after performing deficit irrigation, minimum RGR in different cultivars downsized with various slopes which suggested a very different response of the cultivars to dehydration. On the other hand, the daily hysteretic pattern of FD versus VPD was detected in all the studied cultivars, and a quantitative index (height of hysteresis curves) used for explanation of hysteresis magnitude’s changed according to the deficit irrigation treatments. The results showed a significant reduction of height of hysteresis curves by irrigation treatments which were not cultivar-specific. The quantitative index for hysteresis curve magnitude’s change in the four olive cultivars of Ascolana dura, Piantone di Falerone, Arbequina and Lea can efficiently estimate the plant water response to irrigation treatment in olive orchards. However, further investigation needs to be done to implement precise irrigation systems.
Content may be subject to copyright.
Horticulturae2022,8,1221.https://doi.org/10.3390/horticulturae8121221www.mdpi.com/journal/horticulturae
Article
ContinuousThirdPhaseFruitMonitoringinOlivewith
RegulatedDeficitIrrigation
toSetaQuantitativeIndexof
WaterStress
ArashKhosravi
1
,MatteoZucchini
1
,AdrianoMancini
2
andDavideNeri
1,
*
1
DepartmentofAgricultural,FoodandEnvironmentalSciences,MarchePolytechnicUniversity,
60131Ancona,Italy
2
DepartmentofInformationEngineering,MarchePolytechnicUniversity,60131Ancona,Italy
*Correspondence:d.neri@staff.univpm.it
Abstract:Thetransversalfruitdiameter(FD)wasmonitoredcontinuouslybyautomaticextensim
eters(fruitgauges)inordertomonitorfruitgrowthdynamicsunderdeficitirrigationtreatments.
Thedailydiameterfluctuation(ΔD,mm),thedailygrowth(ΔG,mm),thecumulativefruitgrowth
(CFG,mm),andthefruitrelativegrowthrate(RGR,mmmm
1
h
1
)offourolivecultivars(Ascolana
dura,PiantonediFalerone,Arbequina,andLea)werestudiedduringthethirdphaseoffruit
growth.TworegulateddeficitirrigationtreatmentsDI20(20%ofET
c
)andDI10(10%ofET
c
)were
applied.ThedailyhystereticpatternofFDversustheenvironmentalvariableofvaporpressure
deficit(VPD)wasevaluatedusingthedataofalocalweatherstation.Theassessmentoffruitgrowth
parametersshowedcultivarspecificresponsetowaterstress.Forinstance,afterperformingdeficit
irrigation,minimumRGRindifferentcultivarsdownsizedwithvariousslopeswhichsuggesteda
verydifferentresponseofthecultivarstodehydration.Ontheotherhand,thedailyhystereticpat
ternofFDversusVPDwasdetectedinallthestudiedcultivars,andaquantitativeindex(heightof
hysteresiscurves)usedforexplanationofhysteresismagnitude’schangedaccordingtothedeficit
irrigationtreatments.Theresultsshowedasignificantreductionofheightofhysteresiscurvesby
irrigationtreatmentswhichwerenotcultivarspecific.Thequantitativeindexforhysteresiscurve
magnitude’schangeinthefourolivecultivarsofAscolanadura,PiantonediFalerone,Arbequina
andLeacanefficientlyestimatetheplantwaterresponsetoirrigationtreatmentinoliveorchards.
However,furtherinvestigationneedstobedonetoimplementpreciseirrigationsystems.
Keywords:OleaeuropaeaL.;fruitdiameter;hysteresis;deficitirrigation;vaporpressuredeficit
(VPD);waterstressindex;continuousfruitbasedindex;extensimeter(fruitgauge)
1.Introduction
Theimportanceofolive(OleaeuropaeaL.)asessentialforhumandietandlandscape
managementisundeniableinareaswithMediterraneanclimate.Oliveproductionhas
beenaffectedbyincreasingglobaldemand(tableoliveandoliveoil),whichhasimposed
agreaterneedforagriculturalinputsasweaddressresourcescarcityandclimatechange
[1–3].Oneofthekeyinputsofoliveproductioniswater.Around70%oftheworldsurface
ofolivegrovesisirrigated[4],therefore,thedevelopmentofappropriatemethodsand
strategiesofsustainablewateruseinolivegrovesisfundamental[5].Themostcommon
techniqueforoptimizingwaterefficiencyisRegulatedDeficitIrrigation(RDI),inwhich
waterdeficitsareimposedduringphenologicalperiodswhenthetreeismostinsensitive
towaterstress[6–8],andcomplementaryirrigation[9,10].Furthermore,theresultsof
Goldhamer[11]andGómezdelCampo[12]showedthatRDIstrategiesresultedinasav
ingofabout20%ofthetotalamountofwaterappliedwithoutreducingtheyield,fruit
andoilcontent.Moreover,numerousstudiesshowthatdeficitirrigationavoidsor
Citation:Khosravi,A.;Zucchini,M.;
Mancini,A.;Neri,D.Continuous
ThirdPhaseFruitMonitoringin
OlivewithRegulatedDeficit
IrrigationtoSetaQuantitativeIndex
ofWaterStress.Horticulturae2022,8,
1221.https://doi.org/10.3390/
horticulturae8121221
AcademicEditors:AlessioScalisi,
MarkGlennO’ConnellandIan
Goodwin
Received:21September2022
Accepted:15December2022
Published:19December2022
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2022bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(https://cre
ativecommons.org/licenses/by/4.0/).
Horticulturae2022,8,12212of28
minimizesthenegativeimpactofirrigationonerosion,inparticularbyreducingsurface
runoffandcontributinglesstotheinfiltrationofpollutants(herbicidesandpesticides)
intogroundwater[13].Intheclassicalmethod,thecalculationofirrigationamountis
basedonmultiplyingreferenceevapotranspiration(ET0)bygrassreferencebasedcrop
specificcoefficients(Kc).Nevertheless,thetraditionalmethodofestimationofKcforolive
orchardscouldbeinaccurate.Kcisaffectedbysomeaspectssuchascanopyarchitecture,
groundcover,andtheinteractionsofclimaticconditions,soiltype,cultivars,andirriga
tionmanagementpractices[6].
Toachievepreciseirrigationresults,somerecentresearchsuggestedcontinuousas
sessmentofplantwaterstatusindices[14–17].Infact,inSoilPlantAtmosphereContin
uum(SPAC),plantplaysaninterfacerolebetweensoilandtheenvironment,anditsphys
iologicalresponseisacombinationofresults[14,18,19].Furthermore,thecontinuous
measurementofplantwaterstatusindiceswouldprovideasolidbaseforprecisionirri
gationmanagement,byrealtimeresponsetowaterstress.However,theolivespecies
(Oleaeuropaea)hasaverywidegeneticpool,whichcanrespondtodroughtusingdifferent
leafandfruitphysiologicalandmorphologicalmechanisms[14,20].Itincludesgenotypes
thatcanrespondtodroughtusingdifferenttolerancestoleafdehydrationandmorpho
logicalandstructuraladaptationsoftheleaves[14].LoBiancoandScalisi[20]founda
differentleafstomatalregulationamongtheolivecultivars.Duetothisdifficulty,thecor
rectchoiceofthewaterstatusindexoftheplantisessential.Themostcommonsuggested
indicesaremiddaystemwaterpotential(stem),trunkdiametervariation(TDV),sapflow
(SF),leafturgorpressure(LTP),aswellasfruitdiameter(FD),whichcanbeusedaloneor
incombination.Acombinationofindices(sensors)couldproviderobustdata,however,
increasedthecomplexity.Moreover,consideringthedifficultyofreplicatingcontinuous
measurementsonalargenumberoftrees,theneedtoobtainanaccurateindexhasbecome
moreessential.Themiddaystemwaterpotential(stem)isaccurateandreliable,however,
notonlyitisadestructivemethod,butalsonotsuitableforcontinuousmeasurement
[14,21,22].Thestem/trunkdiametervariation(bytrunkdendrometer)isanotheruseful
index.However,thetrunkdiameterfluctuationsareaffectedbyplantageandsize,crop
load,environmentalvariables,andgrowthpatterns[19].Thesapflow(SF)methodsare
particularlydemandingintermsofinstallation;mostoftheSFmethodssuitableforfruit
treesareinvasive,suchthatsensorsmustbeinstalledwithinthetrunkofthetrees[5].
Moreover,thesapflowratedemonstratestranspirationdynamicsthatdependonsto
matalactivityandenvironmentalvariables[22].Theleafturgorpressure(LTP)measure
mentmethodiscarriedoutbyprobewhichisacheapandhandymethodbutdoesnot
allowforcontinuousmeasurement[23].TheadvancedLTPmeasurementmethodem
ployedleafpatchclamppressure(LPCP)probesisabletocontinuouslymonitorthepres
sure,butthedifferentinitialconditionoftheleafrelatedtoage(especiallyinevergreen
species)andexposuretolightinsidethecanopyleadstoobtainingpartialinformation
fromLPCP[15,22].Inaddition,findingsbyJones[24]suggestedthatLTPintheisohydric
speciesisnotveryusefulintheearlydetectionofplantwaterdeficiency.Theotherinno
vativeplantwaterstatusindexisfruitdiameter(FD).Thedailyfruitgrowthdynamics
canbeexpoundedaschangesinflowsofwaterintoandoutofthefruit,ratherthancarbon
gains;thus,thedailyfruitdiametervariationrespondstowaterdeficit[15,25–27].Fruits
representtheactualgoalofproductionbutfruitgrowthistheresultofseveralgenetic,
metabolic,hormonal,andenvironmentalinteractions[28],therefore,optimalfruitgrowth
canbedeterminedonlybytheefficientphysiologicalmanipulationoftheconditiontree
[23].Intheolivetree,therootresponsetolocalizedapplicationsystemsoforganicresi
dues,nutrients,andwaterrevealanenormousplasticityoftherootsystem[29–31]which
cancompensateforlocalstress.Althougholivetreerootsystemsarehighlycapableand
couldsupplyaconstantwaterflow,fruitdailygrowthtrendisdescribedbyperiodsof
shrinkageandthenafterexpansion,whichusuallyleadtoincreaseinfruitsizeattheend
oftheday[23,27].DuetotheresearchofFernandesetal.[26]andMarinoetal.[15],the
dailyvariationsinfruittransversaldiameterscanbeexpoundedaschangesinflowsof
Horticulturae2022,8,12213of28
waterintoandoutofthefruithence,thesecanbeconnectedtovaporpressuredeficit
(VPD)andtreewaterstatus.Furthermore,Scalisietal.[14]explainedthatfruitgrowth
(measuredbyFD)isstrictlyrelatedtosoilwateravailabilityandplantwaterstatus,itis
alsoinfluencedbyenvironmentalvariables,cropload,geneticfactors,andphenology.
Consequently,fruitgrowthmonitoring(byFD)couldrepresentasensitiveindicatorof
plantwaterandphysiologicalstatusofthetrees,especiallyduringcellexpansionphase,
whenfruitgrowthrateisconstantandtrulydecisiveforproductiveperformances[23,32].
FDmonitoringhasbeeninvestigatedinseveralstudiesbyresearcherstomeasuredaily
fluctuationinthevolumeofselectedfruits,includingpears[33],sweetcherry[34–36],
mango[37],apple[23],nectarine[22],orange[38],andolive[14,15,26,27].Thecontinuous
FDmonitoringprovidesrobustdatabutwatermanagementprotocolsbasedonFDmeas
urementsneedfurtherstudytodevelopfieldapplicablemodels[15,23,27].Acommon
challengewithtreebasedsensorsistoadjusttheiroutputtophysiologicallymeaningful
parametersinaconsistentmanner[19,27,36].
Inordertotranslateoutputsofplantbasedsensors,thephenomenonofhysteresis
shouldbefurtherconsidered.Explainingthecausesofhystereticphenomenonappears
fraughtwithcomplexinteractionsbetweenexogenousandendogenousfactorstothe
plantsystem[39].TherootofthewordhysteresisisGreekandmeansto“lagbehind”
[27,40].Hysteresisisnonlinearlooplikebehaviorthathasbeenknowninplantsystems
foralongtime[40,41].Inhysteresis,whenthetimeargumentofaninputfunctionis
stretchedorcompressed,thecorrespondingoutputfunctionisnotstretchedinthesame
way,sothehysteresisdoesnotshowaffinesimilaritywithrespecttotime[40,42,43].For
example,adiurnalhysteresisbetweenevapotranspiration(ET)(ortranspiration)andva
porpressuredeficit(VPD)hasbeenstudied[40];hysteresisasarelationshipbetweenen
vironmentalfactor(e.g.,meteorologicalfactors)andsapflow[40,44,45];hysteresiswas
foundalsointherelationshipbetweencanopyconductanceandtemperature[46];hyste
resisbetweenfruitdiameterandleafpressureontwodifferentolivecultivars[14].Fur
thermore,inthecherryfruitgrowthrelationshipwithVPD,completehysteresiswas
foundonlyduringthematurationphasewhileduringfruitextensionphasethehysteresis
wasnullorpartial[36].RecentlyKhosravietal.[27]examinedthe“Frantoio”oliveculti
varandexplainedthedifferenthysteresiscurvesofthediameterversustheVPDduring
thesecond,third,andfourthphasesofolivefruitdevelopment.Accordingtothisresearch,
monitoringhystereticloopsanddetectingthemagnitudechangecouldbeusedasa
methodfordetectingthegrowthphases.Inthisresearch,theform,magnitude,androta
tionalpatternofhysteresiscurve(loop)oftransversaldiameterversusVPDwereinvesti
gated.IthasbeenshownthatVPDisespeciallyimportantinwoodyplants,whereitisthe
mainvariableaffectingtheirdiurnalevolutionoftranspiration[47].
Theaimofthisworkwastodescribethirdphaseofolivefruitdevelopmentbycon
tinuousmonitoringwithextensimeterunderregulateddeficitirrigationregimes.Further
more,wehypothesizedthepresenceofhysteresiscurvesbyexaminingtheolivefruitdi
ameter(FD)comparedtoVPD.Weintendedtoprovidesomeindexesforsmartirrigation
inrelationtotheregulateddeficitirrigationinakeyphenologicalstageofthefruit.
2.MaterialsandMethods
2.1.SiteDescriptionandPhenology
Theexperimentwascarriedoutin2021attheexperimentalfarmofthePolytechnic
UniversityofMarche,locatedinAgugliano(Marche,Italy)(latitude43°54′N,longitude
13°36′E,altitude85m),inahighdensityoliveorchardinfourselfrootedolive(Oleaeu
ropaeaL.)cultivarsofAscolanadura,PiantonediFalerone,ArbequinaandLea.Thetrees
wereplanted4×2m(1250treeha1)inMay2012,about9yearsoldatthetimeofexperi
ment.Eachcultivarwasdisplayedinaseparaterow.Theolivetreeswereinitiallytrained
asacentralleader,thetreecanopywasafterwardsflattenedaccordingtoahedgerow,
removinglongbranchestowardtheinterrow[48].Integratedagriculturalmethodswere
Horticulturae2022,8,12214of28
adoptedfortheagriculturaloperations,pestcontrol,andfertilizationpracticesaccording
toregionalguidelines[49].Theirrigationwaslocalizedandusedtoperformdifferentir
rigationtreatmentsduringexperiment(seeSection2.2.Irrigation).Thesoilwasmanaged
withpermanentgrasscoverintheinterrowalley,withmowing3–4timesduringthe
growingseasonandwithtillagealongtherow[27].
2.2.Irrigation
Theolivetreeswereirrigatedbyadripirrigationsystemwithaflowof8(Lh1)per
tree.Twodeficitirrigationlevelswereperformedandthehigherdose(DI20)wassup
pliedtobigfruitvarietieswhilethelowerdose(DI10)wassuppliedtomediumsmall
fruitvarieties.DI20had20%oftheamountofETcandwassuppliedtoAscolanadura
andPiantonediFaleronetrees,whileDI10had10%oftheamountofETcandwassup
pliedtoLeaandArbequinatrees.ThecropevapotranspirationETcwasestimatedaccord
ingtoFAO56equationwhichis:
(ETc=ET0×Kc)(1)
wheretheevapotranspiration(ET0)wascalculatedbythelocalweatherstationautomati
callyviaFAOPenman–MonteithequationandKcwasthecropcoefficient[6].Moreover,
effectiverainfall(R)wascalculatedas:
R=(Pp−5)×0.75(2)
wherePp=rainfallobtainedfromthelocalweatherstation[6].Theirrigationtreatment
wasperformedaccordingtotherandomizedblockwiththreereplications,andeachblock
consistedofatleastfiveadjacenttreesonthesamerow.Theirrigationwasdonethree
timesduringtheexperimentperiod,17thAugust(DayoftheYear,DOY,229),19thAu
gust(DOY231),and16thSeptember(DOY259).TheDI20irrigatedcultivarsreceived62
mmofwaterduringallfruitgrowthphaseswhich17.5mmwasduringthethirdgrowth
phase.FortheDI10irrigatedcultivarstheamountofreceivedwaterduringallfruit
growthphasesandthirdgrowthphasewere31and8.75mm,respectively.Forbigfruit
varietiesofAscolanaduraandPiantonediFalerone,thenoirrigatedfruit(DI0)wascon
sideredasareferencepointfordetectingtheeffectofthedeficitirrigationtreatmenton
fruitgrowth.TherationalebehindusingDI0againstfullyirrigatedtreatmentcomesfrom
theideaofanalyzingtheeffectofdeficitirrigationonfruitgrowth(dailyandperiodical
growth)whichshouldbediscoveredincomparisonwithnormalgrowthconditions(with
outirrigation).Thechangesinthedailyolivefruitgrowthpatternbyirrigationhasbeen
explainedbysomeresearchpreviously[14,15].
2.3.FruitMaturationMonitoring
From19thSeptember(DOY262)to26thOctober(DOY299)thefruits,whichwere
placedinsidetheextensimeter,werephotographedbyCanonEOS1100DCamera(Canon
Inc.,Tokyo,Japan)weekly.Inthecaseofadverseweatherconditions,takingimageswas
postponedtothenextpossibleday.Theripeningstatusofeacholivefruitwasassessed
accordingtothefirstfive(0–4)classesofJaenindex[50](Table1).UptoDOY276,fruits
insidetheextensimeterwereinthethirdphaseoffruitdevelopment,andmaturityindex
rangedfrom0to2.Consequently,DOY276wasconsideredtheendingdayofthethird
phaseoffruitdevelopment.
Table1.Dataofripeningindexforthefruits,whichweremountedontheextensimeters.Data
werecollectedweeklyfrom262to299daysoftheyear(DOY).Maturationindexeswereper
formedaccordingtothefirstfive(0to4)categoriesoftheJaenindex.Arb1(DI10)andArb2(DI10)
representfruit1and2of“Arbequina”at10%deficitirrigation,respectively.Lea1(DI10)and
Lea2(DI10)representfruit1and2of“Lea”at10%deficitirrigation,respectively.Asc1(DI20)and
Asc2(DI20)representfruit1and2of“Ascolanadura”at20%deficitirrigation,respectively.
Asc3(DI0)representsfruit3ofnonirrigated“Ascolanadura”.Fal1(DI20)andFal2(DI20)
Horticulturae2022,8,12215of28
representfruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.Fal4(DI0)
representsfruit4ofnonirrigated“PiantonediFalerone”.
DO
Y
Arb1(DI
10)
Arb2(DI
10)
Lea1(DI
10)
Lea2(DI
10)
Asc1(DI
20)
Asc2(DI
20)
Asc3(DI
0)
Fal1(DI
20)
Fal2(DI
20)
Fal4(DI
0)
2620000000000
2690001000002
2760002000212
2840013111322
2911113111333
2991124322433
2.4.FruitMeasurementandExperimentalDesign
Thefruittransversaldiameter(synonymtoequatorialdiameter)oftenfruitswere
monitoredbyautomaticextensimeters(synonymtofruitgauge)from12thAugust(DOY
224)to3rdOctober(DOY276)in2021.Weusedtwokindsofextensimeters;onemodel
wasWinet(Winets.r.l.Cesena,Italy)andanothermodelwasDEX20(DynamaxInc.,Hou
ston,TX,USA).TheWinetexperimentalextensimeterconsistedofavariablelinearre
sistancetransducersensor(modelMM(R)1012)(MegatronElektronikGmbH&Co.,Mu
nich,Germany)supportedbyastainlesssteelframe.Theextensimeterswereconnected
tothewirelessdataloggersystem(Winets.r.l.Cesena,Italy)whichcollecteddataat10
minintervals.Datahasbeensentthroughthewirelessnodestoacentralnetworknode,
whichtransmitsinformationviageneralpacketradioservice(GPRS)modemtotheserver.
Secondmodelofextensimeter(DEX20)wasacaliperstyledevicewithafullbridgestrain
gageattachedtoaflexiblearm;datawererecordedbyCR1000Xdatalogger(Campbell
scientific,Inc.,Logan,UT,USA)everyhourandsenttoourowncloudservicebasedon
AmazonWebService(AWS)twiceperday.Bothmodelsofextensimeterswereexamined
andshowedaccuratefunctionality[27,51].
ThefullbloomdayoccurredforArbequinaandAscolanaduraonthe24thand28th
ofMay,andforPiantonediFaleroneandLeaonthe31stofMay.So,theexperiment
startedalmost11weeksafterfullbloom(WAFB).Moreover,theBBCHscalewasem
ployedtoobtainaphenologicalphase.Inthisscale,theendofthesecondphaseoffruit
development(pithardening)wasdeterminedwhenitwasnolongerpossibletocutthe
fruit[6].Foreachcultivar,15fruitsweresampledrandomly.Samplingwasrepeatedevery
10daysandpitresistancetocuttingwereexaminedbyblade.Theendingdayofthesec
ondphaseoffruitdevelopmentwasobservedonthe13thofAugust(DOY225).Conse
quently,ourexperimentperiodstartedfromthethirdphase(cellexpansion)offruitde
velopment.
EightfruitsweremountedonWinetextensimeterwhichconsistedofthreefruitsof
Ascolanadura(twowithDI20andoneDI0(withoutirrigation)thatfromherecalled
Asc1(DI20),Asc2(DI20)andAsc3(DI0),threefruitsofPiantonediFalerone(twowith
DI20andoneDI0(withoutirrigation)thatfromherecalledFal1(DI20),Fal2(DI20)and
Fal3(DI0)andtwofruitsofLeawithDI10irrigationlevelthatfromherecalledLea1(DI
10)andLea2(DI10).InthemiddleoftheexperimentthefruitofFal3(DI0)feltdownand
wassubstitutedwithFal4(DI0).TwofruitsofArbequinawithDI10irrigationlevelwere
mountedonDEX20extensimeter(Arb1(DI10)andArb2(DI10)).Therepresentative
treesaccordingtoirrigationlevelwereselectedinthecenteroftheexperimentalblockto
avoidbordereffect.Moreover,allextensimetersofthesamecultivarirrigationlevelwere
installedtogetherononerepresentativetree.
Accordingtotheimportanceandphysiologicaleffectofdaylightonfruitgrowthand
itsroleinphotosynthesis,thegraphicrepresentationofdailyfruitgrowthanditsfluctu
ationswerereportedfromthetimeofsunrise[14,27].Infact,thedaystartedfromsunrise
Horticulturae2022,8,12216of28
andcontinuedfor24h.Basedondatafromourweatherstation,sunrisetimefrom12thof
Augustto5thofSeptember(DOY224to248)wasestimatedat6AM,from6thofSeptem
berto3rdofOctober(DOY249to276)wasestimatedat7AM.
2.5.FruitGrowthParameters
Incorrespondencewiththedaysinwhichirrigationtreatment(DI20andDI10)
wereperformed(DOYs229,231and259),6dayintervalswereselectedforassessmentof
deficitirrigationeffectonfruitgrowth.Thementionedwindow(6days)consistedofthe
2daysbeforeirrigationupto3daysafterirrigationday.Theparameterscalculatedfor
eachintervalswere:(1)dailydiameterfluctuation(ΔD,mm)whichwascalculatedasthe
maximumdiameterminustheminimumdiameterofsameday,(2)dailygrowth(ΔG,
mm)whichwascalculatedasthediameterofendingpointofdayminusthediameterof
startingpointofsameday,(3)cumulativefruitgrowth(CFG,mm)asthemaximumdaily
diameterofthefruitsubtractedfrommaximumdiameterofthepreviousday[26],(4)fruit
relativegrowthrate(RGR,mmmm1h1)wascalculatedusingthefollowingequation:
RGR=[(lnD2−lnD1)/(t2−t1)](3)
whereD1andD2arefruitdiametersattimest1andt2,respectively[14,15].Andthedaily
rangeofRGR(RGRrange,mmmm1h1)wascalculatedasthedifferencebetweenthemini
mumvalueandthemaximumvalueofRGRinoneday.
Inaddition,unitless(standardized)datahavebeenusedtoallowcomparisons
amongfruitswithdifferentinitialdiameterwhenextensimeterswereinstalled.Thedata
ofsensorswasstandardizedforeachdaybyusing:
x′=x/x0(4)
wherex′isthestandardizedvalue,xisthevalueoftheexistingdata,andx0istheinitial
valuesofthedataatstartingpointofsameday.
2.6.MeteorologicalData
AccordingtoKöppen–Geigerclimateclassification,AguglianoisclassifiedintheCfa
categoryandthisischaracterizedbywarmtemperature,highlyhumidandwarmsummer
[52]butinrecentyearstheclassificationismovingtowardCsa(hotsummerMediterra
nean).MeteorologicaldatawererecordedwithaMeteoSense4.0weatherstation(Net
senseS.r.lFlorence,Italy)locatedintheoliveorchard.Forthecalculationofvaporpres
suredeficit(VPD),airtemperature(T),andrelativehumidity(RH)datawerecollected
fromourweatherstation.Vaporpressuredeficitwascalculatedas:
VPD=(1−(RH/100))×SVPandSVP(Pascals)=610.7×10(7.5T/(237.3+T))(5)
TheVPDformulawasrecommendedbyMonteithandUnsworth[53];whereRHis
therelativehumidity,SVPissaturatedvaporpressure,andTistemperature(°C).Our
instrumentwassettolegalRometime.
2.7.HysteresisCurves
Toexplorethecircadianpatternofhysteresiscurve(loop),hourlycollecteddataof
transversalfruitdiameter(FD)versusVPDwereconsidered.Fordescriptionofthehyste
resisrotationalpattern,thetermsofclockwiseandanticlockwisecurvewereemployed.
Furthermore,forcharacterizationofhysteresisform,threeconceptsofpartial,incomplete,
andcompletewereused.Whenthehysteresiscurveappearedinsomepartofthedayand
wasnotrepresentativeofthewholeday,itwascalledpartial.Whentheendingpointof
thehysteresisloopreachedthesamelevelofthestartingpointoftheloop,itwasdefined
ascomplete.Lastly,whentheendingpointofthehysteresisloopdidnotreachthesame
levelofthestartingpointoftheloop,sotheloopwasnotcompletelyclosed,itwascalled
incompletehysteresiscurve.Fordetectionofincompleteclockwisehysteresis,normalized
Horticulturae2022,8,12217of28
dataofdiameterwereemployed.Hysteresisloopswereconsideredincompletewhenthe
loop“opening”wasmorethan0.05units.Inthecaseofloopopening,lessthan0.05is
consideredascomplete[27].
ThemeasureddailydatawerenormalizedbyMinMaxmethodthroughtheequa
tion:
x′=0.9×((x−xmin)/xmax−xmin)+0.05(6)
wherex′isthenormalizedvalue,xisthevalueoftheexistingdata,andxminandxmaxare
theminimumandmaximumvaluesofthedata,respectively[27,36].
2.8.DataAnalysisandPresentation
Onewayrepeatedmeasuresanalysisofvariance(ANOVA)wasperformedforas
sessingsignificantdifferences.Thesignificantdifferencesamongthetreatmentswereas
sessedusingStudent–Newman–Keuls’stest(p<0.05).Alldataanalysesandgraphdesign
wereperformedusingSigmaplot14.5(SystatSoftware,Inc.,SanJose,CA,USA).
3.Results
3.1.EnvironmentalDataAnalysisandVPDEvolution
Figure1showsthedataofVPD,temperature(T),ET0,andrainfallduringtheexper
iment(DOY224toDOY276).ThehighestmeasuredhourlyVPDwas5.4(kPa)on16thof
August(DOY228)andthelowestwas0.05(kPa)on23rdand24thofAugust(DOYs235
and236).ThehighestdailyaverageofVPDwas3.0(kPa)onthe16thofAugust(DOY228)
andthelowestwas0.12(kPa)onthe27thofSeptember(DOY270).ThedailymeanofVPD
duringtheexperimentwas0.91±0.56(kPa).Thedailymeanoftemperatureduringex
perimentwas21.30±3.43(°C),withaminimumdailytemperatureof15.76(°C)onthe1st
ofOctober(DOY274)andmaximumdailytemperatureof32.26(°C)reachedon17thof
August(DOY229).Themaximumandminimumhourlytemperatureswere39.0and9.5
(°C)whichreachedon16thofAugust(DOY228)and1stofOctober(DOY274),respec
tively.ThetotalreferenceET0was173.9(mm)fortheexperimentperiod.Themaximum
andminimumdailyET0was6.3(mmday1)on16thofAugust(DOY228)and0.6(mm
day1)on27thofSeptember(DOY270),respectively.ThemaximumhourlyET0was0.7
(mmhour1)whichreachedon14th,15th,16thofAugust(DOYs226,227,and228).During
theexperimentperiod,theaccumulatedrainfallwas96.1(mm),withmaximumhourly
anddailyof17.6(mmhour1)and39.5(mmday1)reachedon23rdofAugust(DOY235).
Horticulturae2022,8,12218of28
Figure1.Trendofhourlyanddailytemperature(T),vaporpressuredeficit(VPD),referenceevap
otranspiration(ET0)andrainfall,duringtheexperimentperiod(from224to276daysoftheyear
(DOY),obtainedbyMeteoSense4.0weatherstation.
Horticulturae2022,8,12219of28
3.2.FruitGrowth
Figure2reportsthehourlytransversaldiameteroffruitsforthefourdifferentculti
varsfromDOY224toDOY276.Thetypicalthirdphaseofthefruitgrowthwasobservable
inallfourcultivars(Lea,Figure2A;Arbequina,Figure2B;PiantonediFalerone,Figure
2C;AscolanaduraFigure2D);however,withdissimilargrowthslopeamongdifferent
cultivarsandafinalrelentlesstowardmaturation(4thphase).Thefruitgrowthshoweda
diameterincreasewithdiurnalfluctuation.Thediurnalfluctuationofolivefruitwasde
tectedasashrinkageoffruitdiameterfrommidmorningtoearlyafternoonfollowedby
expansionoffruitdiameterfromlateafternoontoearlymorning(FigureS1A).Attheend
oftheday,thefruitsreachedasizelargerthantheinitialpointofthesameday.Infact,
Arbequina(DI10)in60.4%ofcases(64outof106),Lea(DI10)in82.89%ofcases(63out
of76),Ascolanadura(DI0)in77.5%ofcases(38outof49),Ascolanadura(DI20)in72.4%
ofcases(55outof76),PiantonediFalerone(DI0)in82.5%ofcases(32outof39)and
PiantonediFalerone(DI20)in87.7%ofcases(86outof98)reachedasizesimilarorlarger
thantheinitialpointofsameday.
Figure2.Continuousmeasurementsofdiameterofolivefruitsduringtheexperimentperiod
(from224to276daysoftheyear(DOY):(A)fruit1and2of“Lea”at10%deficitirrigation
(Lea1(DI10)andLea2(DI10),respectively);(B)fruit1and2of“Arbequina”at10%deficitirriga
tion(Arb1(DI10)andArb2(DI10),respectively);(C)fruit1and2of“PiantonediFalerone”at20%
deficitirrigation(Fal1(DI20)andFal2(DI20),respectively)andfruit3and4ofnonirrigated“Pi
antonediFalerone”(Fal3(DI0)andFal4(DI0),respectively);(D)fruit1and2of“Ascolanadura”
at20%deficitirrigation(Asc1(DI20)andAsc2(DI20),respectively)andfruit3ofnonirrigated
“Ascolanadura”(Asc3(DI0)).MissingdataFrom224to249dayoftheyear(DOY)forLea2(DI
10)andAsc1(DI20)andfrom246to249dayoftheyear(DOY)forpanel(A,C,D).
Theduration,frombeginningtofinishingdailyfruitshrinkageandexpansion,did
notshowsimilarityamongcultivarirrigationlevel(TableS1).Inaddition,therewere
someexceptionaldayswhichshoweddifferentgrowthpatterns(FigureS1B).Therewas
nouniquepatternforexplanationofdiameter(fruitgrowth)fluctuationofthesedays.
3.3.IrrigationResponse
Monitoringthedailyvariationoffruitdiameter at6days’window(fromDOY227to
234)incorrespondencewithfirstandsecondirrigationdaysshowedthatdiameterofArb1
Horticulturae2022,8,122110of28
(DI10)downsizedfrom9.91mmto9.81mm,whereasforArb2(DI10)downsizedfrom
8.76mmto8.65mm,butforLea1(DI10)startedfrom10.7mmandincreasedto11.1mm.
Atthesameperiod,diameterofAsc2(DI20)startedfrom20.4mmupto20.9mm,Fal1
(DI20)startedfrom13.7mmupto14.4mm,andFal2(DI20)startedfrom13.0mmand
reached13.8mm,whereastransversaldiameterofAsc3(DI0)andFal3(DI0)startedfrom
15.6mmand15.4mmupto15.7mmand15.4mm,respectively(FigureS2A–D).Itshowed
diameterincreaseforbothcultivarwithandwithoutirrigationtreatment,nevertheless,
standardizeddiameter(Table2)showeddifferentratio ofdiametergrowth. Forirrigated
AscolanaduraandPiantonediFalerone,theratioofdiametergrowthwashigherthan
nonirrigatedtreatment.
Table2.Standardizeddataofdiameterforperiodof227to234dayoftheyear(DOY)and257to
262dayoftheyear(DOY).DataofDOY227and257isrelatedtothestartingpointofdayandfor
DOY234and262isrelatedtotheendingpointofday.Arb1(DI10)andArb2(DI10)represent
fruit1and2of“Arbequina”at10%deficitirrigation,respectively.Lea1(DI10)andLea2(DI10)
representfruit1and2of“Lea”at10%deficitirrigation,respectively.Asc1(DI20)andAsc2(DI20)
representfruit1and2of“Ascolanadura”at20%deficitirrigation,respectively.Asc3(DI0)repre
sentsfruit3ofnonirrigated“Ascolanadura”.Fal1(DI20)andFal2(DI20)representfruit1and2
of“PiantonediFalerone”at20%deficitirrigation,respectively.Fal3(DI0)andFal4(DI0)repre
sentfruit3and4ofnonirrigated“PiantonediFalerone”,respectively.Fal3(DI0)felldownand
hasbeensubstitutedwithFal4(DI0)for257to262dayoftheyear(DOY).Missingdatafrom227
to234dayoftheyear(DOY)forLea2(DI10)andAsc1(DI20).
DOYArb1(DI
10)
Arb2(DI
10)
Lea1(DI
10)
Lea2(DI
10)
Asc1(DI
20)
Asc2(DI
20)
Asc3(DI
0)
Fal1(DI
20)
Fal2(DI
20)
Fal3(DI
0)
Fal4(DI
0)
 Firstandsecondirrigationtreatment(DOYs229
&231)     
2270.40.460.29‐ ‐ 0.410.620.340.320.72‐
2340.130.150.79‐ ‐ 0.910.90.950.950.89‐
 Thirdirrigationtreatment(DOY259)    ‐ 
2570.190.20.230.240.380.950.10.170.08‐ 0.81
2620.950.910.950.830.890.950.950.920.92‐ 0.95
Incorrespondencewiththethirdirrigationday(fromDOY257to262),diameterofArb1
(DI10)startedat10.2mmreached10.8mm,andforArb2(DI10)startedfrom9.0mmupto
9.6mm.DiameterofLea1(DI10)startedfrom12.7mmandreachedto13.3mm,andforLea2
(DI10)startedfrom11.3mmupto11.7mm.AboutAsc1(DI20)diameterstartedfrom20.3
mmandreached20.7mmandforAsc2(DI20)startedfrom21.3mmandremainedthesame
size.AboutFal1(DI20),diameterstartedfrom15.7mmandreached16.3,andFal2(DI20)
startedfrom15.0mmandreached15.5mm.Inthenonirrigatedfruits,thediameterofAsc3
andFal4startedfrom18.77mmand11.4mmupto19.3mmand11.6mm,respectively(Figure
S2E–H).Datashoweddiameterincreaseforallthefourcultivarswithdifferentirrigationlevels
andfortwocultivars(AscolanaduraandPiantonediFalerone)withoutirrigationtreatment.
DataofstandardizeddiameterexplainedthatdiametergrowthratioinirrigatedAscolana
durawaslowerthannonirrigatedandforirrigatedPiantonediFaleronewashigherthannon
irrigated(Table2).
Thedailygrowth(ΔG)(Table3)providedmoreinformationrelatedtodiameterchange
incorrespondencewithirrigationdays.Onthefirstirrigationday(DOY229),forbothculti
varswithDI20,notonlyΔGwaspositive,butitwashigherthanΔGofthepreviousday.At
thesametime,ΔGfornonirrigatedfruitsdidnotshowanygrowthincomparisonwiththe
previousday.Infact,ΔGofAscolanadura(DI0)waspositiveandthesameastheprevious
dayandforPiantonediFalerone(DI0)wasnegativeandlowerthanpreviousday.About
cultivarswithDI10,ΔGwashigherthanthepreviousdaybutforLeaitwaspositiveandfor
Arbequinaitwasnegative.Inallfourirrigatedcultivars(withDI10orDI20),inthedayafter
irrigationΔGincreasedincomparisonwiththedaybefore.ThetrendofΔGinthenon
Horticulturae2022,8,122111of28
irrigatedfruitsatthedayafterIrrigationforAscolanadurawasdownward,andforPiantone
diFaleronedidnotshowanychanges.
Table3.Standardizeddataofdailyfruitgrowth(ΔG)incorrespondencewithirrigationdays.
Datawasrelatedtothe6dayswindow(2daysbeforeand3daysafterirrigationday).Arb1(DI10)
andArb2(DI10)representfruit1and2of“Arbequina”at10%deficitirrigation,respectively.
Lea1(DI10)andLea2(DI10)representfruit1and2of“Lea”at10%deficitirrigation,respectively.
Asc1(DI20)andAsc2(DI20)representfruit1and2of“Ascolanadura”at20%deficitirrigation,
respectively.Asc3(DI0)representsfruit3ofnonirrigated“Ascolanadura”.Fal1(DI20)and
Fal2(DI20)representfruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.
Fal3(DI0)andFal4(DI0)representfruit3and4ofnonirrigated“PiantonediFalerone”,respec
tively.Fal3(DI0)felldownandhasbeensubstitutedwithFal4(DI0)for257to262dayofthe
year(DOY).Missingdatafrom227to234dayoftheyear(DOY)forLea2(DI10)andAsc1(DI20).
DOYArb1(DI
10)
Arb2(DI
10)
Lea1(DI
10)
Lea2(DI
10)
Asc1(DI
20)
Asc2(DI
10)
Asc3(DI
0)
Fal1(DI
20)
Fal2(DI
20)
Fal3(DI
0)
Fal4(DI
0)
2270.00040.00210.0019‐ ‐ 0.0029 0.0006 0.0029 0.00310.0000‐
228 0.00050.00210.0028‐ ‐ 0.00000.0013 0.0044 0.00540.0006‐
229 0.0050 0.00860.0102‐ ‐ 0.00540.00130.01020.0139 0.0013‐
230 0.0076 0.00660.0119‐ ‐ 0.0063 0.00130.01160.0144 0.0013‐
231 0.0034 0.00290.0073‐ ‐ 0.0048 0.00060.00860.00970.0000‐
2320.01580.01770.0027‐ ‐ 0.00340.00060.00640.00740.0006‐
2330.01340.0113 0.0018‐ ‐ 0.00290.00060.00490.00440.0006‐
2340.00290.0029 0.0090‐ ‐ 0.00100.00000.00210.00220.0000‐
2570.00430.00590.0000 0.0044 0.00890.0000 0.0011 0.00320.0000‐ 0.0236
2580.00300.0041 0.00630.0018 0.0045 0.00420.0011 0.0019 0.0007‐ 0.0170
2590.0008 0.00170.01740.01160.0145 0.00050.00480.00890.0100‐ 0.0009
260 0.0395 0.04080.01940.01590.0108 0.00240.00580.00630.0072‐ 0.0027
261 0.0177 0.02040.00760.02010.00150.00000.00740.00880.0098‐ 0.0154
262 0.00220.00200.00530.00090.00680.00710.00840.01370.0052‐ 0.0294
Onthesecondirrigationday(DOY231),ΔGforbothcultivarswithDI20wasposi
tive,however,itwaslowerthanΔGofthepreviousday.Concurrently,ΔGofnonirri
gatedfruitswashigherthanthepreviousday.Although,ΔGofAscolanadura(DI0)was
negativeandforPiantonediFalerone(DI0)waszero.AboutcultivarswithDI10,for
ArbequinaΔGwasgreaterthanthepreviousdayandwithanegativeamountandforLea
itwaslowerthanthepreviousdaywithapositiveamount.Inbothirrigatedcultivarswith
DI20,inthedayafterirrigation,ΔGdecreasedincomparisonwiththedaybefore,
whereasΔGofnonirrigatedfruitsforbothcultivarsincreased.AboutcultivarswithDI
10,inthedayafterirrigation,forArbequinaΔGincreasedandforLeaΔGdecreasedin
comparisonwiththepreviousday.
Onthethirdirrigationday(DOY259),ΔGforbothcultivarsofAscolanaduraand
PiantonediFalerone(irrigated(DI20)andnonirrigated(DI0))washigherthanthepre
viousday.AboutcultivarswithDI10,ΔGofArbequinawaslowerthanthepreviousday
butforLeawashigher.Onthedayafterirrigation,ΔGforbothcultivarswithDI20was
lowerthantheirrigationday,whereasΔGofnonirrigated(DI0)cultivarswashigher
thantheirrigationday.AboutcultivarswithDI10,inthedayafterirrigation,forArbe
quinaΔGreducedandforLeaΔGenlargedincomparisonwiththepreviousday(Table
3).
Thedailydiameterfluctuation(ΔD)inthefirstirrigationdaywasreducedinboth
cultivarswithDI20andreductioncontinueduntilthedayafterirrigation,whereasin
bothcultivarswithDI10,ΔDincreasedandthedayafterdecreased.Inthesecondirriga
tionday,ΔDinbothcultivarswithDI20wasalmostthesameasthepreviousday,andin
thedayafterirrigation,followedbyslightincreaseforcultivarPiantonediFaleroneand
Horticulturae2022,8,122112of28
stabilityforAscolanadura.Inthesecondirrigationday,ΔDforcultivarwithDI10fol
lowedtheoppositetrend,whichwasareductionforArbequinaandanincreaseforLea;
however,inthedayafterirrigationΔDforbothDI10cultivarsincreased.Inthethird
irrigationday,ΔDforPiantonediFaleroneDI20increasedandinthedayafterdecreased.
FortheAscolanaduraDI20,onefruitshoweddecreasingofΔDfollowedbyincreasing
inthedayafter,andotherfruitshowedincreasingofΔDfollowedbydecreasinginthe
dayafter.AboutcultivarwithDI10,ΔDshowedadifferenttrend.Indeed,forArbequina
ΔDdecreasedandinthedayafterirrigationincreased,butforLeaΔDincreasedandin
thedayafterirrigationonefruitshowedΔDreductionandotheroneshowedΔDincrease
(FigureS3A–D).
Thecumulativefruitgrowth(CFG),forallirrigatedcultivars(DI20andDI10),in
correspondencewiththefirstirrigationdayincreasedandtheupwardtrendhascontin
uedinthedayafterirrigation(Figure3A,B).Innonirrigatedcultivars,asmallgrowthof
CFGwasobservedwhichwasfollowedbyareductioninthedayafterirrigation(Figure
3B).Inthesecondirrigationday,CFGforallirrigatedcultivars(DI20andDI10)de
creased,thedownwardtrendcontinuedinthedayafterirrigationbutwithaslightslope
(Figure3A,B).Inthesametime,CFGofDI0treatmentsdecreasedbutinthedayafter
irrigationitincreased(Figure3B).Onthethirdirrigationday,CFGforallirrigated(DI20
andDI10)andnonirrigatedcultivarsincreased(Figure3C,D).Theonlyexceptionwas
onefruitofAscolanadura(Asc2(DI20))whichCFGdecreased(Figure3D).Ontheday
afterirrigation,CFGofbothcultivarswithDI20wasthesameasirrigationdayanddid
notshowanychange(Figure3D),neverthelessCFGofbothcultivarswithDI10increased
(Figure3C).CFGforAscolanadura(DI0)wasthesameasthepreviousdayanddidnot
change,whereas,CFGofPiantonediFalerone(DI0)increased(Figure3D).
Figure3.Standardizedcumulativefruitgrowth(CFG).From227to234dayoftheyear(DOY)(in
correspondencewithfirstandsecondirrigationdays)fortheolivecultivarArbequinaandLea(A)
andfortheolivecultivarsAscolanaduraandPiantonediFalerone(B).From257to262dayofthe
year(DOY)(incorrespondencewiththirdirrigationday)fortheolivecultivarArbequinaandLea
(C)andfortheolivecultivarsAscolanaduraandPiantonediFalerone(D).Arb1(DI10)and
Arb2(DI10)representfruit1and2of“Arbequina”at10%deficitirrigation,respectively.Lea1(DI
10)andLea2(DI10)representfruit1and2of“Lea”at10%deficitirrigation,respectively.Asc1(DI
20)andAsc2(DI20)representfruit1and2of“Ascolanadura”at20%deficitirrigation,
Horticulturae2022,8,122113of28
respectively.Asc3(DI0)representsfruit3ofnonirrigated“Ascolanadura”.Fal1(DI20)and
Fal2(DI20)representfruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.
Fal3(DI0)andFal4(DI0)representfruit3and4ofnonirrigated“PiantonediFalerone”,respec
tively.
Afterthefirstandsecondirrigationday,dailyfruitrelativegrowthrate(RGR)
changedsignificantly(Figure4B–F).Afterthefirstirrigationdaytheminimumamountof
RGRwasnearzeroandthendecreasedcontinuously(dashedorangeline).Theminimum
ofRGRdownsizedwithdissimilarslopesindifferentirrigationlevels.Moreover,the
trendofminimumRGRreductionindifferentcultivarswiththesameirrigationlevelwas
diversetoo.ThemaximumamountofRGRforbothcultivarswithDI20increasedslightly
(dashedblacklineinFigure4B,D),whereascultivarswithDI10didnotshowanycon
sistentdecreasingorincreasingofmaximumRGR(Figure4E,F).Atthesametime,mini
mumRGRofPiantonediFalerone(DI0)andAscolanadura(DI0)showedconsistent
decrease(dashedorangelineinFigure4A,C).ThemaximumRGRforPiantonediFale
rone(DI0)didnotshowanyspecificpatterns,however,forAscolanadura(DI0)was
stable(dashedblacklineinFigure4C).
Horticulturae2022,8,122114of28
Figure4.Dailyfruitrelativegrowthrate(RGR)from227to234dayoftheyear(DOY)(incorre
spondencewithfirstandsecondirrigationdays.TheolivecultivarPiantonediFalerone(A,B);the
olivecultivarAscolanadura(C,D);theolivecultivarArbequina(E);theolivecultivarLea(F).
Fal3(DI0)representsfruit3ofnonirrigated“PiantonediFalerone”.Fal1(DI20)andFal2(DI20)
representfruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.Asc3(DI0)
representsfruit3ofnonirrigated“Ascolanadura”.Asc2(DI20)representsfruit2of“Ascolana
dura”at20%deficitirrigation.Arb1(DI10)andArb2(DI10)representfruit1and2of“Arbe
quina”at10%deficitirrigation,respectively.Lea1(DI10)representsfruit1of“Lea”at10%deficit
irrigation.
Afterirrigationwithholding,RGRrangeamountoftwocultivars(Ascolanaduraand
PiantonediFalerone)withDI20irrigationtreatmentincreased(Figure5B).TheRGRrange
enlargementhasbeenreportedbyotherresearchasawaterstresssignalinolive[14,15,26].
However,thereisnodefinedthresholdforRGRrangeasawaterstressindex.Thetrendof
RGRrangeinthecultivarswithDI10irrigationtreatmentwasnotsameaseachother.In
deed,thetrendforcultivarLeawasmoresimilartoDI20irrigationtreatedcultivars(Fig
ure5A),whereas,thetrendofArbequinauptothedayafterfirstirrigationtreatmentwas
closetoLeaandthenafterfolloweddissimilartrend(Figure5A).ThetrendofAsc3(DI
0)wasmismatchedwithFal3(DI0),besides,bothofthem(DI0s)showeddiversepattern
incomparisonwithrelatedirrigatedcultivar(Figure5C).
Horticulturae2022,8,122115of28
Figure5.Relativegrowthraterange(RGRrange)from227to234dayoftheyear(DOY)(incorre
spondencewithfirstandsecondirrigationdays:(A)fruit1and2of“Arbequina”at10%deficit
irrigation(Arb1(DI10)andArb2(DI10),respectively)andfruit1of“Lea”at10%deficitirrigation
(Lea1(DI10));(B)fruit1and2of“PiantonediFalerone”at20%deficitirrigation(Fal1(DI20)and
Fal2(DI20),respectively) andfruit2of“Ascolanadura”at20%deficitirrigation(Asc2(DI20));(C)
fruit3ofnonirrigated“Ascolanadura”(Asc3(DI0))andfruit3ofnonirrigated“Piantonedi
Falerone”(Fal3(DI0)).
Afterthirdirrigationtreatment,fruitRGRdynamicsdidnotshowsimilaritytofirst
andsecondirrigationtreatment(Figure6A–F).Moreover,thepatternofthefruitwiththe
samecultivarirrigationlevelwasdiversetoo.Forinstance,minimumRGRofPiantonedi
Falerone(DI20)foronefruit(Fal1)wasstableandalmostzero,butforotherfruit(Fal2)
followedoscillationandwasnegative,whereasmaximumRGRforbothPiantonediFale
rone(DI20)hadsametrendbutwithoutanyprogressivedecreaseorincrease(Figure6B).
MaximumRGRforAscolanadura(DI20)inonefruit(Asc1)showedconsistentreduction
butfortheotheronewasalmoststableandnearzero(Figure6D).
Horticulturae2022,8,122116of28
Figure6.Dailyfruitrelativegrowthrate(RGR)from257to262dayoftheyear(DOY)(incorre
spondencewiththethirdirrigationday).TheolivecultivarPiantonediFalerone(A,B);theolive
cultivarAscolanadura(C,D);theolivecultivarArbequina(E);theolivecultivarLea(F).Fal4(DI0)
representsfruit4ofnonirrigated“PiantonediFalerone”.Fal1(DI20)andFal2(DI20)represent
fruit1and2of“PiantonediFalerone”at20%deficitirrigation,respectively.Asc3(DI0)represents
fruit3ofnonirrigated“Ascolanadura”.Asc1(DI20)andAsc2(DI20)representfruit1and2of
“Ascolanadura”at20%deficitirrigation,respectively.Arb1(DI10)andArb2(DI10)represent
fruit1and2of“Arbequina”at10%deficitirrigation,respectively.Lea1(DI10)andLea2(DI10)
representfruit1and2of“Lea”at10%deficitirrigation,respectively.
Horticulturae2022,8,122117of28
Afterirrigationwithholdinguptofirstrainyday(DOY260),RGRrangeamountofAs
colanadurawithDI20irrigationtreatmentincreased(Figure7B),whereas,inthePian
tonediFaleronewithDI20irrigationtreatment,RGRrangeamountintheonefruitin
creasedandinotheronedecreased(Figure7B).Inaddition,onthedayafterfirstrainthe
RGRrangeamountofAscolanadurawithDI20irrigationtreatmentdecreasedandforPi
antonediFaleroneincreased(Figure7B).Finally,theincreaseofRGRrangeinAscolanadura
andPiantonediFalerone(Figure7B)in2rainydays(DOYs260and262)wasincontrast
withourexpectation.Nevertheless,itresultedfromthetimeofrainfall.Datashowedthat
rainfallinDOY260and262startedat16:00and15:00,respectively.Consequently,the
fruitexperiencedwaterstressbeforerainfall,andRGRrangeincreased.RGRrangeofAsc3(DI
0)andFal4(DI0)incorrespondencewithtworainydaysshowedthesameresultsofDI
20treatedandconfirmedtheeffectoftimeofrainfallhappening(Figure7C).
Figure7.Relativegrowthraterange(RGRrange)from257to262dayoftheyear(DOY)(incorre
spondencethirdirrigationday):(A)fruit1and2of“Arbequina”at10%deficitirrigation
(Arb1(DI10)andArb2(DI10),respectively)andfruit1and2of“Lea”at10%deficitirrigation
(Lea1(DI10)andLea2(DI10),respectively);(B)fruit1and2of“Ascolanadura”at20%deficit
irrigation(Asc1(DI20)andAsc2(DI20),respectively)andfruit1and2of“PiantonediFalerone”
at20%deficitirrigation(Fal1(DI20)andFal2(DI20),respectively);(C)fruit3ofnonirrigated“As
colanadura”(Asc3(DI0))andfruit4ofnonirrigated“PiantonediFalerone”(Fal4(DI0)).
TheRGRrangeinthecultivarswithDI10irrigationtreatmentdidnotshowsimilarity
toeachother(Figure7A).Ontheirrigationday,theRGRrangeofArbequinaincreasedbut
forLeainLea1increasedandinLea2decreased(Figure7A).Fromirrigationdayupto
Horticulturae2022,8,122118of28
theendof6dayswindow(DOY262),theRGRrangetrendofArbequina(DI10)wassimilar
toAscolanadura(DI20)(includingpatternin2rainydays(DOYs260and262)).Whereas,
LeashoweddissimilartrendincomparisonwithArbequina.Inaddition,RGRrangetrend
ofLea1andLea2wasdiversetoo(Figure7A).
3.4.HysteresisCurvesofFruitGrowthversusVPD
Thehysteresisphenomenonisanindirectresponseofvegetationtodiurnalchanges
intheexternalenvironmentandthetimelagisamajorcharacteristicofhysteresis[54].In
ourcasehysteresisisformedbythetimelagbetweenVPDandfruitgrowth.Tobetter
capturethetimelagbetweendailydiameterandVPD,thenormalizeddataofdiameter
andVPDhavebeenused. Theblueboxshowedatimelagbetweensomeexamplefruits
diameterandVPD(Figure8).
Figure8.Normalizeddiameterofexamplefruitsversusnormalizedvaporpressuredeficit(VPD)
in228dayoftheyear(DOY).TheblueboxshowsdailytimelagbetweenVPDandfruitdiameter.
Intheblueboxdarknessofcolorshowsincreasingtimelag.Tobetterdemonstratetimelag,aneg
ativenormalizedamountofVPDhasbeenemployed.Lea1(DI10)representsfruit1of“Lea”at
10%deficitirrigation.Arb1(DI10)representsfruit1of“Arbequina”at10%deficitirrigation.
Fal1(DI20)representsfruit1of“PiantonediFalerone”at20%deficitirrigation.Fal3(DI0)repre
sentsfruit3ofnonirrigated“PiantonediFalerone”.Asc2(DI20)representsfruit2of“Ascolana
dura”at20%deficitirrigation.Asc3(DI0)representsfruit3ofnonirrigated“Ascolanadura”.
Inmostperiodsofexperiment,thedailygrowthoffruittransversaldiameterversus
VPDformedclockwisecurves.Thementionedcurves,accordingtotheirshape,wereex
plainableascompletehysteresis(Figure9A),incompletehysteresis(Figure9B),orpartial
hysteresis(Figure9C).Although,differentkindsofhysteresiscurveshaveappearedby
dissimilarfrequency,shape,andmagnitudeineachcultivarirrigationlevel(Table4).
Horticulturae2022,8,122119of28
Figure9.Hysteresisloopsofdiameterversusvaporpressuredeficit(VPD)inoneexampleday
(232dayoftheyear(DOY)).(A)Completeclockwisehysteresis;(B)incompleteclockwisehystere
sis;(C)partialclockwisehysteresis.Dottedblacklineshowstherotationalpatternandstarting
andendingpointofhysteresisloops.Arb1(DI10)andArb2(DI10)representfruit1and2of“Ar
bequina”at10%deficitirrigation,respectively.Lea1(DI10)representsfruit1of“Lea”at10%defi
citirrigation.Asc2(DI20)representsfruit2of“Ascolanadura”at20%deficitirrigation.Asc3(DI
0)representsfruit3ofnonirrigated“Ascolanadura”.Fal1(DI20)andFal2(DI20)representfruit1
and2of“PiantonediFalerone”at20%deficitirrigation,respectively.Fal3(DI0)representsfruit3
ofnonirrigated“PiantonediFalerone”.
Table4.Dataofpercentageofappearanceofdifferenthysteresiscurves.Invaliddatawereex
cludedfromthetable.Arb1(DI10)andArb2(DI10)representfruit1and2of“Arbequina”at10%
deficitirrigation,respectively.Lea1(DI10)andLea2(DI10)representfruit1and2of“Lea”at10%
deficitirrigation,respectively.Asc1(DI20)andAsc2(DI20)representfruit1and2of“Ascolana
dura”at20%deficitirrigation,respectively.Asc3(DI0)representsfruit3ofnonirrigated“As
colanadura”.Fal1(DI20)andFal2(DI20)representfruit1and2of“PiantonediFalerone”at20%
deficitirrigation,respectively.Fal3(DI0)andFal4(DI0)representfruit3and4ofnonirrigated
“PiantonediFalerone”,respectively.
Typeof
hysteresis
Arb1(DI
10)
Arb2(DI
10)
Lea1(DI
10)
Lea2(DI
10)
Asc1(DI
20)
Asc2(DI
20)
Asc3(DI
0)
Fal1(DI
20)
Fal2(DI
20)
Fal3(DI
0)
Fal4(DI
0)
Complete27.4515.6919.0512.5015.0012.8227.666.6710.2635.290.00
Incomplete41.1850.9823.8162.5050.0025.6419.1542.2215.3817.6533.33
Partial23.5325.4942.8616.6715.0030.7734.0426.6748.7223.5350.00
No
hysteresis7.847.8414.298.3320.0030.7719.1524.4425.6423.5316.67
Thetrendofhysteresiscurvesincorrespondencewithirrigationdayshasbeen
showninTable5.Inthefirstandsecondirrigationday,inallirrigatedcultivars(withDI
10andDI20),a