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Abstract
How biotic interactions contribute to structuring deep-sea communities remains poorly known. An example of exploitation competi-
tion, in which over time one species dominates a habitat to preclude its use by competitors, is highlighted here. Sunken wood is the
obligate habitat of deep-sea wood borers of the Xylophagaidae Purchon, 1941 which eat wood and, with symbiotic bacteria, digest it.
Enigmatically, some wood falls remain robust despite xylophagaid boring. Xylophagaids bore other wood falls so heavily that they
crumble after just a few months. We perform a meta-analysis of experimental wood deployments and view the results from a
phylogenetic perspective. Of 15 deployments recovered after 5 to 25 months from 200 to 3232 m deep, seven were so heavily bored
to be crushable by hand. Eight were bored but remained robust. The groups did not significantly differ in wood size, type, temperature,
depth, or duration. Members of the Xylophaga dorsalis (Turton, 1819) clade, reported in two studies to recruit and bore faster than
confamilials, bored all seven crushable deployments; seven of the eight intact deployments were bored by other xylophagaids. Fecal
chimneys line and thus narrow the boreholes of this clade; fluid flow is impeded, a clear liability. The lignin-rich fecal chimneys may,
however, cue larval settlement and at resultant high population densities, lower oxygen availability. Members of the X. dorsalis clade,
being hypoxia-tolerant, thrive but other xylophagaids appear to suffer, perhaps due to interference competition. The shared derived
characters that unite this clade allow them to exploit low-oxygen wood that is intolerable for competitors.
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Introduction

Competitive interactions in the deep sea remain little-known
but are likely to be important in structuring communities. We
present a study that reveals, we argue, exploitation competi-
tion, in which individuals of one species monopolize limiting
resources. Our focus is on sunken wood that forms deep-sea

wood falls. Although ephemeral and stochastically distribut-
ed, wood falls can sustain high levels of alpha biodiversity if
colonized by obligate wood-boring bivalves of the
Xylophagaidae Purchon, 1941, with seven named genera
and about 61 named species.

Xylophagaids bore into wood and generate slightly elon-
gate, non-overlapping boreholes that differ subtly by species
(Amon et al. 2015a). They eat the wood they remove,
digesting cellulose with the aid of symbiotic bacteria, which
also fix nitrogen (Distel and Roberts 1997). These actions
sustain biodiversity on deep-sea wood falls, in some cases
over years (e.g., McClain and Barry 2014). If xylophagaids
are absent, few other animals recruit to sunken wood (Gracia
et al. 2019; Young et al. 2022). Because their boreholes gen-
erate space and the animals and their bacteria convert wood
into digestible food available to non-xylophages,
xylophagaids have been deemed ecosystem engineers (e.g.,
McClain and Barry 2014; Harbour et al. 2021).

The study of deep-sea wood falls and their borers has been
accelerated by the use of experimental deployments that
mimic natural wood falls. Turner (1973) used these to
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document the very existence of deep-sea wood borers; the
deployments have since secured macrofauna and microbial
specimens for study of wood fall biodiversity (Turner 1978;
Sandström et al. 2005; Voight 2007; Romano et al. 2013;
Yücel et al. 2013; Judge and Barry 2016; Kalenitchenko
et al. 2018), and they have been used to return complete eco-
systems for analysis (e.g., McClain et al. 2016). Short-term ex-
perimental deployments, however, reveal an enigma (Fig. 1).
Xylophagaid-bored wood sometimes forms long-lived biodiver-
sity hot spots, but other times, the xylophagaid borers reduce
deployed wood to a minimal skeleton, crushable by hand, in as
little as a few months (Haderlie 1983; Voight 2007; Romano
et al. 2013; Amon et al. 2015b).

The heavy boring that results in the deployments being
crushable by hand has been attributed to the proximity of
unseen wood falls that serve as larval sources, to continual
high larval availability, to an absence of predators, to long
observation periods, to the bivalves’ specialization to their
ephemeral habitat, to warmer temperatures, and/or to proper-
ties of the wood (e.g., Metaxas and Kelly 2010; Amon et al.
2015a). Despite the fact that a given piece of wood is a finite
resource that xylophagaids must consume to survive, biotic
interactions among borers within a wood fall have been large-
ly ignored. If one species, or a group of related species, can
dominate a wood fall by means such as higher fecundity,
increased larval availability, or mixotrophy, the contrast be-
tween long-lived, robust, and short-lived, heavily bored wood
falls might be simply explained.

Here we use a meta-analysis including multiple xylophagaid-
bored deployments from around the world to compare the taxo-
nomic composition of borers inwood that remained largely intact
to those in wood that was crushable by hand (or heavily bored)
on recovery.We assign the xylophagaids removed fromwood of

contrasting condition to their respective clades defined by ante-
rior adductor cover and siphon morphology and molecular char-
acters (Voight et al. 2019).We findmembers of a single clade are
associated with every heavily bored deployment in our analysis.
We then consider aspects of their biology that may contribute to
their competitive superiority.

Material and methods

To assess the importance of taxon membership in determining
the fate of wood falls, we undertook a two-part study. First we
performed a meta-analysis based on literature reports of exper-
imental wood deployments, including ten deployments from
the northeast Pacific, two from both the Indian Ocean and
Mediterranean Sea, and one from a Norwegian fjord; the
depths are from 200 to 3232 m. Inclusion of diverse datasets
is among the primary advantages of a meta-analysis, especially
given the costs of deep-sea research. Other advantages are that
the increased sample size allowsmore powerful statistical anal-
yses and that the odds of a given random event impacting every
study included and generating a bias are greatly reduced; the
deployments considered here were made from 1979 to 2017,
during 7 months of the year. We excluded deployments less
than 2 cm in smallest dimension as overly vulnerable.

Deployments considered to be heavily bored were those
the authors reported were crushable by hand at recovery.
Deployments considered to be largely intact were those the
authors noted to be solid or intact or to require use of a ham-
mer and chisel to sample the xylophagaids. We quote the
published description of the recovered wood in Table 1 with
the page reference; we also re-examined the preserved wood
(deposited at the Field Museum collections) from which the

Fig. 1 Two deployments of
Douglas fir recovered after 24
months at depth a from 2701 m
depth, bored by Xylonora corona
(Voight, 2007). The distance from
the top to the bottom of the wood
is 10.16 cm; b from 2211 m depth
bored by Xylophaga oregona
Bartsch, 1921, a member of the
X. dorsalis (Turton, 1819) clade
(from Voight 2007)
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species Voight (2007) reported were removed, terming it
crushable or intact (Fig. 1).

The locality, depth, temperature, wood type and treatment
history, deployment month and duration, surface area, and the
most common xylophagaid species that bored each of the
deployments considered are reported on Table 1 with the
group ranges and medians. Temperatures were reported in
the original reports, although an equipment malfunction
forced the 10-month deployments reported by Voight (2007)
from over 2200 m to be estimated at 2°C. Because the data
include Northern and Southern Hemispheres, for statistical
analysis we assign 1 to the summer solstice month (July in
the North, December in the South) and number other months
sequentially. In two instances, deployment weights rather than
surface areas were reported (Amon et al. 2015a), forcing us to
calculate and compare the medians of the weights in an ana-
lysis separate from the surface area comparison.We compared
environmental variables between the heavily bored and large-
ly intact deployment groups with Mann-Whitney U tests. If
temperatures were reported as a range (Romano et al. 2013),
we used the mean value in the test. Test statistics and proba-
bilities are reported in Table 1, as is whether softwood (pine or
fir) or hardwood (mango) formed the deployment. These
types of wood differ in their density, anatomy, and chemical
composition (Pereira et al. 2003).

Xylophagaid species names cited in the original works
were accepted; JRV examined specimens from the studies
indicated in Table 1. Amon et al. (2015b) accessed the types
at the Natural History Museum (D. Amon, pers. comm.); the
species cited by Haderlie (1983) and Harbour et al. (2021) are
the only xylophagaids known in their study areas. Because the
genus Xylophaga Turton, 1822 is paraphyletic (Voight et al.,
2019), species assigned to that genus but not members of the
clade containing X. dorsalis (Turton, 1819), the type species
of the genus, are indicated by “s.l.”

To test whether heavily bored and largely intact deploy-
ments were bored by different species groups, we compared
three groups. First was the species of Xylophaga s.l. and
Xylonora Romano, 2020 in Romano et al. (2020). The calcar-
eous mesoplax plates of these species serve as a putative syn-
apomorphy; they are currently separated only by whether or
not they have been sequenced (Romano et al. 2020). We as-
sume they are a clade, but acknowledge they may be
paraphyletic. Second, we include species of Abditoconus
Voight, 2019, which have unusual nitrogen isotopes that are
comparable to those of species of the clade of Xylophaga
dorsalis (Voight et al. 2020). Third were species in the clade
of Xylophaga dorsalis. In these species, the excurrent siphon
is shorter than the incurrent siphon; it opens and thus releases
most fecal pellets, inside the borehole. The pellets are
compacted and accumulate around the siphon, typically ex-
tending beyond the wood-water interface to form a “chimney”
(Purchon, 1941; Turner, 2002; Romano et al. 2014). The clade

includes, among others, X. oregona Voight, 2007;
X. washingtona Bartsch, 1921; and X. indica E. A. Smith,
1904, following Turner (2002). We tested whether the above
three groups were more frequent in the heavily bored com-
pared to the largely intact deployments using Fisher’s exact
test. We also compiled published rates of boring and
population densities of xylophagaids, focusing on heavily
boring taxa.

The second part of our study considers characters shared
among heavily boring xylophagaids to assess whether these
characters may contribute to their more aggressive boring.

Although Voight et al. (2020) found no isotopic evidence
of chemosynthetic input in xylophagaids, chemosynthetic
bacteria could occur in the borehole, where sulfide is hypoth-
esized to be oxidized (Kalenitchenko et al. 2018). If so, pre-
cipitated elements such as sulfur or calcium should be abun-
dant in the borehole and especially in the fecal chimney. A
chemical microanalysis with an Oxford Instruments XMax50
Energy Dispersive X-ray Spectroscopy (EDS) system at-
tached to a Zeiss Evo 60 scanning electron microscope tested
this prediction. To reveal their elemental composition, we an-
alyzed fecal chimneys of X. dorsalis that had been preserved
in ethanol after having been removed 6 months before from a
wild wood fall that also had bacterial mats and pogonophoran
tubes; we also analyzed fecal chimneys of X. oregona that had
been preserved in situ in the wood of Douglas fir for 10 years.
Considering the chimneys of two species allowed us to assess
the generality of our results, despite the more anoxic substrate
of the X. dorsalis. Micro-Raman spectroscopy with a WITec
alpha 300R 532 nm laser Raman system was applied to the
chimneys to confirm results. The chimneys had been longitu-
dinally split and air-dried for at least 72 h prior to analysis.

Results

Our meta-analysis revealed that crushable deployments were
significantly more often bored by species of the clade of
Xylophaga dorsalis than were the intact deployments (p =
0.048). Of 15 deployments analyzed, seven were crushable
by hand, all of which were bored by members of the
Xylophaga dorsalis clade; seven of the eight intact deploy-
ments were bored by members of other xylophagaid clades.
Mann-Whitney U tests found no significant differences in the
environmental and deployment variables considered between
the groups (Table 1), although temperature very nearly signif-
icantly differed (p = 0.0505). Most deployments in both
groups were composed of softwoods; each group had one
hardwood. Haderlie (1983) did not specify the wood de-
ployed. All wood for which treatment history was reported
was either green or untreated (Table 1). Amon et al.’s
(2015b) deployments had essentially equal median weights
(4.8 and 4.9 kg).
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The second part of our analysis focused on the fecal chim-
ney, a character that unites the heavily boring members of the
X. dorsalis clade. The chimney lines the borehole and extends
beyond the wood-water interface. The inner lining of longitu-
dinally sectioned, air-dried fecal chimneys had a distinct
sheen, consistent with Purchon’s (1941) report of a mucus
lining. Our EDS analyses found organic matter composed
over 90% of the fecal chimneys of X. dorsalis and
X. oregona (Fig. 1); major components of seawater were also
abundant (Table 2, full data in Online Resource Table 1). The
fecal chimney of X. dorsalis had considerably more sulfur, a
major component of seawater, than did that of X. oregona,
consistent with the evidence noted above that the wood of
the former had previously supported chemosynthetic animals.
The inner chimney of X. oregona had less sulfur than did the
outer (Table 2).

Raman spectroscopy revealed the major components of the
X. dorsalis chimney to be lignin, cellulose, and hemicellulose,
specifically xylan (Fig. 2). It also identified the white spots on
the siphon of X. dorsalis as calcite and the shell’s beak and
mesoplax to be aragonite (Online Resource Table 2).

Discussion

Among the reports considered here, regardless of deployment
location, depth, temperature, or wood size or type, only mem-
bers of the Xylophaga dorsalis clade bored wood so heavily
that it could be crushed by hand; wood bored by other
xylophagaids for the same duration remained largely intact.
Although we do not assert that this pattern is invariant, no
longer are ad hoc explanations, such as the proximity of an
unseen larval source, required to explain heavily bored wood
falls. Two reports that did not meet our minimal size deserve
mention. A 20 × 8 × 2 cm deployment bored by Xylonora
atlantica (Richards, 1942) crumbled after 8 to 10 months at
100 m depth in 17.5° C (Romey et al. 1994); Xylophaga

washingtona bored a comparable 22.8 × 10 × 1.9 cm deploy-
ment at 200 m depth until it was spongy (with 255 boreholes/
cm2) after 2.4 months at 7°C (Tipper 1968; temperature
estimated from Meseca 1967). Because X. washingtona, a
member of the X. dorsalis clade, bored for a shorter time in
colder temperatures, these observations support the hypothe-
sis of heavy boring by members of that clade. The one report-
ed deployment that was bored by X. dorsalis but was not
crushable by hand “would have degraded to the point of col-
lapse” if it had spent longer than 10 months on the bottom
(Harbour et al. 2021, p. 87).

Incomplete knowledge of the xylophagaids cautions us
against making absolute statements, but available data indi-
cate that the clade of X. dorsalis is exceptional. Member spe-
cies of the X. dorsalis clade, termed Groups 5 and 6 by Turner
(2002) and Voight (2008), have a pooled depth range of 10 to
4626 m, overlapping with but on average significantly shal-
lower than that of other xylophagaids (Voight 2008). Their
elevated nitrogen isotopic values are consistent with opportu-
nistic filter feeding (Voight et al. 2020). The species
X. dorsalis (as Xylophaga sp. A) recruits in greater numbers,
and grows faster than do the xylophagaids Abditoconus brava
(Romano, Pérez-Portela & Martin, 2014 in Romano et al.
2014) reported as Xylophaga sp. B by Romano et al. (2013)
and Xylonora atlantica reported by Romey et al. (1994).
Xylophaga indica of the same clade (following Turner 2002)
recruits faster and grows slightly faster than does X. s. l.
murrayi Knudsen, 1967 in comparable deployments; these
differences were attributed to warmer temperatures (4.3 versus
10.1°C), differences in predation, and/or larval supply that
affected population densities (Amon et al. 2015b). Using a
micro-CT scans, Amon et al. (2015a) calculated that
Xylophaga depalmai Turner, 2002 and X. indica, members
of the X. dorsalis clade, bore more (0.438 to 0.606 cm3/year)
than does X. s. l. murrayi (0.235 cm3/year). We suggest phy-
logeny plays a significant role, but the lack of data concerning
fecundity and the timing of larval competence from across the

Table 2 Elemental analysis in
mean %weight ± relative 10%
(2σ) of fecal chimneys of
Xylophaga dorsalis and
X. oregona (inner and outer).
Major components of seawater
(*) and clay (**) indicated

Element X. dorsalis, n =10 X. oregona inner, n = 7 X. oregona outer, n = 4

C 58.7 ± 12.1 65.9 ± 20.6 60.6 ± 8.5

O 31.7 ± 8.7 32.8 ± 20.2 34.8 ± 11.9

C+O 90.4 ± 5.7 98.7 ± 1.4 95.4 ± 3.5

Cl* 1.8 ± 1.1 <0.1 ± 0.04 0.1 ± 0.2

Na* 2.0 ± 0.6 0.2 ± 0.1 0.3 ± 0.3

S* 2.3 ± 2.0 0.2 ± 0.2 0.5 ± 0.9

Mg* 0.5 ± 0.3 0.2 ± 0.1 0.2 ± 0.3

Ca* 1.4 ± 3.0 0.4 ± 0.7 1.9 ± 2.8

K* 0.1 ± 0.2 <0.1 ± 0.04 <0.1 ± 0.04

Si** 0.2 ± 0.3 0.2 ± 0.3 0.1 ± 0.07

Other Cu 1.0 ± 0.8 Al** 0.1 ± 0.1; Fe 0.1 ± 0.2 Fe 0.5 ± 1.0
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family limits our understanding of how and cannot support or
refute the existence of a phylogenetic pattern.

The higher rates of recruitment, boring, and growth demon-
strated in two species of the X. dorsalis clade (Romano et al.
2013; Amon et al. 2015a, 2015b) suggest that species of this
clade act as exploitation competitors, consuming the limiting
resource, wood, before competitors can do so. The fecal chimney
may heighten their impact. This structure appears to us to impose
two hydrodynamic disadvantages. First, the energy required for
pumping the exhalant flow is apt to be increased because the
chimney partially constricts the borehole and thus likely in-
creases back pressure (Jørgensen and Riisgård 1988). Second,
due to its poor separation from the inhalant flow, the excurrent
flow risks refiltration of oxygen-depleted and dissolved CO2-
enriched water (Du Clos and Jiang 2018), unless the inhalant
siphon is fully extended. In situ photos show this to be the case
in this clade (Purchon 1941; Bernardino et al. 2010, Fig. 2B;
Romano et al. 2014, Fig. 2). Siphonal extension had been
thought to increase the animals’ access to well-oxygenated sea-
water (Purchon 1941) or to facilitate opportunistic filter feeding
(Voight et al. 2020); its role in minimizing refiltration
(Monismith et al. 1990) had not been considered.

Given these liabilities, the fecal chimney must convey some
benefit. Potentially it relates to the high concentrations of sul-
fide emitted by the sunken wood, at least early in deployments
(Sandström et al. 2005; Yücel et al. 2013; Kalenitchenko et al.
2018). The siphons in the X. dorsalis clade lack calcium car-
bonate or periostracal protection as is common in other
xylophagaids (Voight et al. 2019); they may risk sulfide poi-
soning (Goffredi 2017). Kalenitchenko et al. (2018) found sul-
fide concentrations to be lower in boreholes than in the sur-
roundingwood, leading them to suggest that sulfide is oxidized
in the borehole. However, our elemental analysis found no
significant concentrations of electron receptors in the chimneys
which would be predicted if this hypothesis were supported.
Instead, we suggest the excurrent flow, by ventilating the bore-
hole, rids it of sulfide, especially near the animal’s vulnerable
siphon. The fecal chimney’s mucus lining may also minimize
sulfide exposure and enhance bivalve survival by minimizing
the inward diffusion of sulfide as do mucus linings in infaunal
burrows (Aller 1983; Hannides et al. 2005; Zorn et al. 2006).

Composed primarily of lignin, the fecal chimney, perhaps
with metabolites added by the bivalve’s digestive system, could
serve as a larval settlement cue and accelerate recruitment.
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Fig 2 Typical Raman spectra on
fecal matter of X. dorsalis where
the presence of lignin (L),
cellulose (C), and hemicelluloses
(H), specifically xylan (X), was
detected. Compounds were
identified using Raman band
assignments in Zeng et al. (2016)
and Zhang et al. (2017). Spectra
were acquired with a 532 nm laser
at 10 mW with 30 s integration at
10× magnification and a 600
g/mm grating with a WITec alpha
300 R Raman system
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Larvae of xylophagaid’s sister taxon, the Teredinidae, respond
to chemical cues (Toth et al. 2015), including sawdust extract,
malic acid, and other humic substances (Harington 1921). Fungi
convert lignin to humic substances in terrestrial and freshwater
systems (e.g., Khatami 2020). Although deep-sea fungi remain
poorly known, they exist on sunken wood (Nagano et al. 2019).
If fecal chimneys, perhaps chemically enhanced, cue
xylophagaid larvae settlement, more chimneys and greater sig-
nal would result, up to a point. Because larvae explore the sub-
strate before committing tometamorphose (Haderlie 1983), they
may sense overcrowding and opt to avoid it.

As the population densities of members of the X. dorsalis
clade increase in a given wood fall, the volume of fecal chim-
neys increases, and oxygen availability must decrease. As
xylophagaids bore across the grain of the wood, the wood’s
vessel elements or tracheids may enhance the spread of hyp-
oxia. Only animals tolerant of hypoxia, including species of
the X. dorsalis clade, could survive in the habitat. The foot of
X. dorsalis contains hemoglobin (Ansell and Nair 1968), and
the larvae of X. washingtona, potentially the most sensitive
phase of the life cycle, successfully recruit in oxygen concen-
trations of 0.42 mL/L (Muraoka 1965), considerably below
that typical for marine invertebrates (Vaquer-Sunyer and
Duarte 2008). Tolerance of hypoxia is unknown and untested
in other xylophagaids, but none shows evidence of hemoglo-
bin (JRV, pers. obs.).

Diversity in recovered wood deployments colonized by
members of the X. dorsalis clade tends to be limited. Amon
et al. (2015b) reported that of 7155 animals on a deployment
bored by X. indica, 6850 were members of X. indica. Young
et al. (2022) found five species formed 98% of the animals in a
deployment bored by X. oregona; that xylophagaid species
and the polychaete Ophryotrocha langstrumpae Wiklund
et al., 2012, also known from whale falls (Wiklund et al.
2012), formed 80.9% of the species. Voight (2007) recovered
a 10-month-old replicate deployment in which X. oregona
composed 25% of the xylophagaids; 14 months later, 80%
of the xylophagaids in the second replicate deployment were
X. oregona. The limited biodiversity certainly reflects fewer
predators, which likely increases xylophagaid survival. Why
microsympatric xylophagaids were reduced is unknown, but
oxygen limitation is recognized as a means of competition
(Ferguson et al. 2013).

In exploitation competition, individuals interact indirectly as
they compete for a limited resource. Among wood borers, the
higher population densities and faster boring and growth rates
known in the X. dorsalis clade are evidence that at least some of
its members are adept exploitation competitors, using the finite
and, to them, obligate resource wood faster than do other taxa.
They lower oxygen availability to poison the habitat in the most
base way, by retaining fecal pellets in their boreholes.

This study outlines evidence for exploitative competition in
the deep sea. We hypothesize one xylophagaid clade evolved

into a super competitor, recruiting, growing, and consuming
the limiting resource more quickly than others can. Moreover,
the fecal chimney, although appearing to be a liability to ex-
current flow, may not only protect against the environmental
toxin sulfide, but it may cue larval settlement. The resultant
low-oxygen habitat may deter competitors intolerant of hyp-
oxia. The significantly shallower average depth of species of
the Xylophaga dorsalis clade (Voight 2008) places them
where wood is predicted to be more abundant (Voight
2015), supporting the risky strategy used by these species.
Largely immobile adults rapidly consume their habitat, and
rapidly generate larvae that find and colonize other wood falls.
Sympatric xylophagaids may seek refuge in other, stochasti-
cally distributed wood falls that are yet to be discovered by the
X. dorsalis clade.
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