Article

Neural circuits underlying bilingual language control and modality control in consecutive bilingual production and comprehension: An fMRI study

Authors:
  • Liaoning Normal University
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Human communication not only involves the need to switch between the modalities of speaking and listening, but for bilinguals, it can also involve switching between languages. It is unknown as to whether modality and language switching share underlying control mechanisms or whether one type of switching affects control processes involved in the other. The present study uses behavioral and fMRI measures to examine neural circuits of control during communicative situations that required Chinese-English bilinguals to switch between modalities and their two languages according to associated color cues. The results showed that for both language and modality control, similar brain regions were recruited during speech production and comprehension. For modality control, the specific control processes partly depended on the corresponding modality. Finally, switching between modalities appears to exert more influence on language control in production compared to comprehension. These findings offer a first detailed characterization of the neural bases involved in control mechanisms in bilingual communication.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Preprint
Full-text available
It is intriguing to learn how language interacts with our cognitive control system. The phenomena of bilingual language control provide us with a perfect window to scrutinize this research topic. Studies on cognitive mechanisms of bilingual language control from 1998 to 2023 were systematically reviewed. Experiment paradigms, hypotheses, behavioral markers, and the relationships between language and non-language control mechanisms were discussed. Nevertheless, several issues remain to be solved in the future. The relationship between reactive and proactive bilingual language control mechanisms is largely unclear. Supera-lexicon level (i.e., phrasal) language control was overlooked by previous studies. “Language control” per se should be re-defined through a more precise comparison with non-language control.
Article
Alzheimer’s disease (AD) is an age-related neurocognitive disorder that is epidemic in the elderly population. Currently, there are limited pharmacological interventions, and this has heightened the urgency to identify potential preventable or modifiable risk factors that promote resilience to the neuropathological effects of AD. The regular use of two or more languages is one such factor that may increases cognitive reserve through the long-standing executive control involved in managing multiple languages in the brain. There is also evidence that bilingualism is associated with increased brain reserve or maintenance, particularly in frontal-executive structures and networks. This review examines the current, sometimes conflicting literature on bi/multilingualism and AD. These studies have confounding variations in the assessment of age of second language onset, language proficiency, language usage, and whether determining incidence of AD or age of symptom onset. Despite these limitations, most publications support the presence of increased frontal-executive reserve that compensates for the development of AD neuropathology and, thereby, delays the emergence of clinical symptoms of dementia by about 4-5 years. Although regularly speaking more than one language does not protect against AD neuropathology, the delay in its clinical expression has a potentially significant impact on the lifelong morbidity from this age-related disease. Learning other languages may be an important modifiable factor for delaying the clinical expression of AD in later life.
Article
Full-text available
For bilinguals, speaking and listening are assisted by complex control processes including conf lict monitoring and inhibition. However, the extent to which these processes adapt to linguistic and situational needs has been examined separately for language production and comprehension. In the present study, we use a dual-EEG to record the carry-over effects of language control on general cognitive control in three language contexts (single-first language [L1], single-second language [L2], and mixed). Chinese learners of English were placed in dyads in which one participant was asked to name pictures while the other listened. Interleaved after each naming/listening trial were f lanker trials. The results from picture naming and listening revealed higher delta and theta synchronization in the single-L2 and mixed contexts compared with the single-L1 context and higher theta synchronization in the mixed context compared with the single-L2 and single-L1 contexts. The results from the interleaved f lanker trials demonstrated that inhibition was adaptively generalized in the single-L2 and mixed contexts. Altogether, the findings support the natural adaptation of language control to cognitive control and underscore the importance of linguistic context. We argue that these adaptive patterns have the potential to affect corresponding control processes across language and cognitive control tasks.
Article
Full-text available
Implicit learning refers to the incidental acquisition and expression of knowledge that is not accompanied by full awareness of its contents. Implicit sequence learning (ISL) represents one of the most useful paradigms to investigate these processes. In this paradigm, participants are usually instructed to respond to the location of a target that moves regularly through a set of possible locations. Although participants are not informed about the existence of a sequence, they eventually learn it implicitly, as attested by the costs observed when this sequence is violated in a reduced set of control trials. Interestingly, the expression of this learning decreases immediately after a control trial, in a way that resembles the adjustments triggered in response to incongruent trials in interference tasks. These effects have been attributed to a control network involving dorsolateral prefrontal cortex (DLPFC) and cingulate (ACC) structures. In the present work, we reviewed a group of recent studies which had inhibited DLPFC top-down control by means of non-invasive brain stimulation to increase the acquisition of ISL. In addition, as no previous study has investigated the effect of inhibiting top-down control on releasing the automatic expression of ISL, we present a pre-registered – yet exploratory – study in which an inhibitory continuous theta burst stimulation protocol was applied over an anterior-ventral portion of the dorsolateral prefrontal cortex (DLPFC) highly interconnected with the ACC, and whose activity has been specifically linked to motor control (i.e., Right DLPFC, n=10 or the Left DLPFC, n=10), compared to active Vertex stimulation (n=10). Contrary to our hypotheses, the results did not show evidence for the involvement of such region in the expression of ISL. We discussed the results in the context of the set of contradictory findings reported in the systematic review.
Article
Full-text available
We examined whether and how language produced by others influences self-language processes. This study addressed this issue by looking at effects of comprehension on language switching in cued and voluntary switching contexts. During voluntary language switching, Chinese-English bilinguals were more likely to repeat the language they previously used themselves than to repeat the language produced by others. Furthermore, during both voluntary and cued language switching, bilinguals showed larger switch costs when switching between languages themselves than when switching after hearing another language. This suggests that cross-language interference may primarily stem from the self-language system rather than from language produced by others.
Article
Full-text available
The neural mechanisms underlying one's own language production and the comprehension of language produced by other speakers in daily communication remain elusive. Here, we assessed how self‐language production and other‐language comprehension interact within a language switching context using event‐related functional Magnetic Resonance Imaging (er‐fMRI) in 32 unbalanced Chinese‐English bilinguals. We assessed within‐modality language interference during language production and comprehension as well as cross‐modality interference when switching from production to comprehension and vice versa. Results revealed that the overall effect of production (across switch and repeat trials) was larger in the cross‐modality than within‐modality condition in a series of attentional control areas, namely the left dorsolateral prefrontal cortex, anterior cingulate cortex and left precuneus. Furthermore, the left precuneus was recruited more strongly in switch trials compared to repeat trials (i.e., switching costs) in within‐production conditions but not in the cross‐modality condition. These findings suggest that switching from production to comprehension recruits cognitive control areas to successfully implement switches between modalities. However, cross‐language interference (in the form of language switching costs) mainly stems from the self‐language production system.
Article
Full-text available
Human action control relies on representations that integrate perception and action, but the relevant research is scattered over various experimental paradigms and the theorizing is overly paradigm-specific. To overcome this obstacle we propose BRAC (binding and retrieval in action control), an overarching, integrative framework that accounts for a wide range of seemingly unrelated findings by assuming ‘two core processes: feature binding and retrieval’. In contrast to previous approaches, we define binding and retrieval as functionally different and separable processes that independently contribute to the observed effects. Furthermore, both processes are independently modulated by top-down and/or bottom-up processes. BRAC organizes the literature on action control in novel ways, and relates diverse independently investigated action-related phenomena from different research fields to each other.
Article
Full-text available
Recent evidence suggests that the human hippocampus (HC) is not only involved in the processing of motivationally relevant approach-avoidance conflicts but is also engaged in the resolution of more general response conflicts as measured in the Stroop paradigm. Here we investigated whether neural activity in the HC is necessary for successful response conflict resolution. We compared hippocampal recruitment during an auditory Stroop paradigm in 20 patients with mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis and 20 age-matched healthy controls using functional magnetic resonance imaging (fMRI). We analyzed hippocampal activation and behavioral performance in conflict trials relative to non-conflict trials. Moreover, functional connectivity (FC) analyses of the left and right HC were performed. Subjects’ regional gray matter volumes were analyzed based on high-resolution T2-weighted MRI scans. The current study replicated previous results showing increased activation in left HC during the processing of conflict trials in healthy subjects. By contrast, MTLE patients showed higher behavioral costs of response conflict resolution and reduced conflict-related HC activation. In patients with left MTLE, left HC activation was predictive of faster conflict-related response times (RT). By contrast, right HC activation was related to RT slowing, suggestive of a maladaptive compensation attempt in MTLE patients. Our results provide evidence that left hippocampal activation is required for the successful resolution of response conflicts.
Article
Full-text available
While converging sources of evidence point to the possibility of a large‐scale distributed network for semantic cognition, a consensus regarding the underlying subregions and their specific function in this network has not been reached. In the current study, we combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) methodology to investigate the neural basis of semantic cognition in Mandarin Chinese. In the fMRI experiment, strong activations were observed in left inferior frontal gyrus (IFG) and left middle temporal gyrus (MTG) for semantic judgment task. Moreover, functional connectivity was found from seed region left IFG to left MTG. Meanwhile, negative correlation between performance and extracted parameter estimates from left IFG to left MTG was detected in semantic task. Subsequent TMS stimulation over left IFG resulted in performance deficits in semantic judgment task, in contrast to other three sites: left MTG, right intraparietal sulcus (IPS) and a control site. We concluded that the neural basis of semantic processing for Mandarin Chinese closely resembled that for alphabetic languages such as English, supporting a language‐universal view on semantic cognition.
Article
Full-text available
There is currently a lively debate in the literature whether bilingualism leads to enhanced cognitive control or not. Recent evidence suggests that knowledge of more than one language does not always suffice for the manifestation of a bilingual cognitive control advantage. As a result, ongoing research has focused on modalities of bilingual language use that may interact with the bilingual advantage. In this study, we explored the cognitive control performance of simultaneous interpreters. These highly proficient bilinguals comprehend information in one language while producing in the other language, which is a complex skill requiring high levels of language control. In a first experiment, we compared professional interpreters to monolinguals. Data were collected on interference suppression (flanker task), prepotent response inhibition (Simon task), and short-term memory (digit span task). The results showed that the professional interpreters performed similarly to the monolinguals on all measures. In Experiment 2, we compared professional interpreters to monolinguals and second language teachers. Data were collected on interference suppression (advanced flanker task), prepotent response inhibition (advanced flanker task), attention (advanced flanker task), short-term memory (Hebb repetition paradigm), and updating (n-back task). We found converging evidence for our finding that experience in interpreting may not lead to superior interference suppression, prepotent response inhibition, and short-term memory. In fact, our results showed that the professional interpreters performed similarly to both the monolinguals and the second language teachers on all tested cognitive control measures. We did, however, find anecdotal evidence for a (small) advantage in short-term memory for interpreters relative to monolinguals when analyzing composite scores of both experiments together. Taken together, the results of the current study suggest that interpreter experience does not necessarily lead to general cognitive control advantages. However, there may be small interpreter advantages in short-term memory, suggesting that this might be an important cognitive control aspect of simultaneous interpreting. The results are discussed in the light of ongoing debates about bilingual cognitive control advantages.
Article
Full-text available
Significance Bilingual individuals have the ability to switch between two languages, which requires engaging cognitive control processes to simultaneously “turn off” (disengage) one language and “turn on” (engage) their other language. The unique ability of American Sign Language (ASL)–English bilinguals to simultaneously produce a word and a sign (a code-blend) allows us to unpack these two processes (e.g., switching into a code-blend involves only turning on a language). Magnetoencephalography (MEG) evidence indicates that activating a new language does not recruit brain regions involved in cognitive control, but having to disengage from the previous language does. Additionally, this study reveals that, without motor constraints, simultaneously retrieving two words in different languages is less cognitively effortful than having to inhibit the production of the dominant language.
Article
Full-text available
Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information.
Article
Full-text available
A neglected question regarding cognitive control is how control processes might detect situations calling for their involvement. The authors propose here that the demand for control may be evaluated in part by monitoring for conflicts in information processing. This hypothesis is supported by data concerning the anterior cingulate cortex, a brain area involved in cognitive control, which also appears to respond to the occurrence of conflict. The present article reports two computational modeling studies, serving to articulate the conflict monitoring hypothesis and examine its implications. The first study tests the sufficiency of the hypothesis to account for brain activation data, applying a measure of conflict to existing models of tasks shown to engage the anterior cingulate. The second study implements a feedback loop connecting conflict monitoring to cognitive control, using this to simulate a number of important behavioral phenomena.
Article
Full-text available
For a bilingual human, every utterance requires a choice about which language to use. This choice is commonly regarded as part of general executive control, engaging prefrontal and anterior cingulate cortices similarly to many types of effortful task switching. However, although language control within artificial switching paradigms has been heavily studied, the neurobiology of natural switching within socially cued situations has not been characterized. Additionally, although theoretical models address how language control mechanisms adapt to the distinct demands of different interactional contexts, these predictions have not been empirically tested. We used MEG (RRID: NIFINV:nlx_inv_090918) to investigate language switching in multiple contexts ranging from completely artificial to the comprehension of a fully natural bilingual conversation recorded “in the wild.” Our results showed less anterior cingulate and prefrontal cortex involvement for more natural switching. In production, voluntary switching did not engage the prefrontal cortex or elicit behavioral switch costs. In comprehension, while laboratory switches recruited executive control areas, fully natural switching within a conversation only engaged auditory cortices. Multivariate pattern analyses revealed that, in production, interlocutor identity was represented in a sustained fashion throughout the different stages of language planning until speech onset. In comprehension, however, a biphasic pattern was observed: interlocutor identity was first represented at the presentation of the interlocutor and then again at the presentation of the auditory word. In all, our findings underscore the importance of ecologically valid experimental paradigms and offer the first neurophysiological characterization of language control in a range of situations simulating real life to various degrees.
Article
Full-text available
Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.
Article
Full-text available
Unlabelled: Of current interest is how variations in early language experience shape patterns of functional connectivity in the human brain. In the present study, we compared simultaneous (two languages from birth) and sequential (second language learned after age 5 years) bilinguals using a seed-based resting-state MRI approach. We focused on the inferior frontal gyrus (IFG) as our ROI, as recent studies have demonstrated both neurofunctional and neurostructural changes related to age of second language acquisition in bilinguals in this cortical area. Stronger functional connectivity was observed for simultaneous bilinguals between the left and right IFG, as well as between the inferior frontal gyrus and brain areas involved in language control, including the dorsolateral prefrontal cortex, inferior parietal lobule, and cerebellum. Functional connectivity between the left IFG and the right IFG and right inferior parietal lobule was also significantly correlated with age of acquisition for sequential bilinguals; the earlier the second language was acquired, the stronger was the functional connectivity. In addition, greater functional connectivity between homologous regions of the inferior frontal gyrus was associated with reduced neural activation in the left IFG during speech production. The increased connectivity at rest and reduced neural activation during task performance suggests enhanced neural efficiency in this important brain area involved in both speech production and domain-general cognitive processing. Together, our findings highlight how the brain's intrinsic functional patterns are influenced by the developmental timeline in which second language acquisition occurs. Significance statement: Of current interest is how early life experience leaves its footprint on brain structure and function. In this regard, bilingualism provides an optimal way to determine the effects of the timing of language learning because a second language can be learned from birth or later in life. We used resting-state fMRI to look at simultaneous and sequential bilinguals who differed only in age of acquisition, and found stronger connectivity between language and cognitive control regions in bilinguals who learned their two languages simultaneously, a pattern that was associated with more efficient brain activation during speech. Our findings highlight how functional connections in the brain differ depending upon when learning takes place.
Article
Full-text available
Unlabelled: For multilingual individuals, adaptive goal-directed behavior as enabled by cognitive control includes the management of two or more languages. This work used magnetoencephalography (MEG) to investigate the degree of neural overlap between language control and domain-general cognitive control both in action and perception. Highly proficient Arabic-English bilingual individuals participated in maximally parallel language-switching tasks in production and comprehension as well as in analogous tasks in which, instead of the used language, the semantic category of the comprehended/produced word changed. Our results indicated a clear dissociation of language control mechanisms in production versus comprehension. Language-switching in production recruited dorsolateral prefrontal regions bilaterally and, importantly, these regions were similarly recruited by category-switching. Conversely, effects of language-switching in comprehension were observed in the anterior cingulate cortex and were not shared by category-switching. These results suggest that bilingual individuals rely on adaptive language control strategies and that the neural involvement during language-switching could be extensively influenced by whether the switch is active (e.g., in production) or passive (e.g., in comprehension). In addition, these results support that humans require high-level cognitive control to switch languages in production, but the comprehension of language switches recruits a distinct neural circuitry. The use of MEG enabled us to obtain the first characterization of the spatiotemporal profile of these effects, establishing that switching processes begin ∼ 400 ms after stimulus presentation. Significance statement: This research addresses the neural mechanisms underlying multilingual individuals' ability to successfully manage two or more languages, critically targeting whether language control is uniform across linguistic domains (production and comprehension) and whether it is a subdomain of general cognitive control. The results showed that language production and comprehension rely on different networks: whereas language control in production recruited domain-general networks, the brain bases of switching during comprehension seemed language specific. Therefore, the crucial assumption of the bilingual advantage hypothesis, that there is a close relationship between language control and general cognitive control, seems to only hold during production.
Article
Full-text available
Unlabelled: Semantic retrieval involves both (1) automatic spreading activation between highly related concepts and (2) executive control processes that tailor this activation to suit the current context or goals. Two structures in left temporoparietal cortex, angular gyrus (AG) and posterior middle temporal gyrus (pMTG), are thought to be crucial to semantic retrieval and are often recruited together during semantic tasks; however, they show strikingly different patterns of functional connectivity at rest (coupling with the "default mode network" and "frontoparietal control system," respectively). Here, transcranial magnetic stimulation (TMS) was used to establish a causal yet dissociable role for these sites in semantic cognition in human volunteers. TMS to AG disrupted thematic judgments particularly when the link between probe and target was strong (e.g., a picture of an Alsatian with a bone), and impaired the identification of objects at a specific but not a superordinate level (for the verbal label "Alsatian" not "animal"). In contrast, TMS to pMTG disrupted thematic judgments for weak but not strong associations (e.g., a picture of an Alsatian with razor wire), and impaired identity matching for both superordinate and specific-level labels. Thus, stimulation to AG interfered with the automatic retrieval of specific concepts from the semantic store while stimulation of pMTG impaired semantic cognition when there was a requirement to flexibly shape conceptual activation in line with the task requirements. These results demonstrate that AG and pMTG make a dissociable contribution to automatic and controlled aspects of semantic retrieval. Significance statement: We demonstrate a novel functional dissociation between the angular gyrus (AG) and posterior middle temporal gyrus (pMTG) in conceptual processing. These sites are often coactivated during neuroimaging studies using semantic tasks, but their individual contributions are unclear. Using transcranial magnetic stimulation and tasks designed to assess different aspects of semantics (item identity and thematic matching), we tested two alternative theoretical accounts. Neither site showed the pattern expected for a "thematic hub" (i.e., a site storing associations between concepts) since stimulation disrupted both tasks. Instead, the data indicated that pMTG contributes to the controlled retrieval of conceptual knowledge, while AG is critical for the efficient automatic retrieval of specific semantic information.
Article
Full-text available
Presents a standardized set of 260 pictures for use in experiments investigating differences and similarities in the processing of pictures and words. The pictures are black-and-white line drawings executed according to a set of rules that provide consistency of pictorial representation. They have been standardized on 4 variables of central relevance to memory and cognitive processing: name agreement, image agreement, familiarity, and visual complexity. The intercorrelations among the 4 measures were low, suggesting that they are indices of different attributes of the pictures. The concepts were selected to provide exemplars from several widely studied semantic categories. Sources of naming variance, and mean familiarity and complexity of the exemplars, differed significantly across the set of categories investigated. The potential significance of each of the normative variables to a number of semantic and episodic memory tasks is discussed. (34 ref) (PsycINFO Database Record (c) 2006 APA, all rights reserved).
Article
Full-text available
Language control refers to the cognitive mechanism that allows bilinguals to correctly speak in one language avoiding interference from the nontarget language. Bilinguals achieve this feat by engaging brain areas closely related to cognitive control. However, 2 questions still await resolution: whether this network is differently engaged when controlling nonlinguistic representations, and whether this network is differently engaged when control is exerted upon a restricted set of lexical representations that were previously used (i.e., local control) as opposed to control of the entire language system (i.e., global control). In the present event-related functional magnetic resonance imaging study, we investigated these 2 questions by employing linguistic and nonlinguistic blocked switching tasks in the same bilingual participants. We first report that the left prefrontal cortex is driven similarly for control of linguistic and nonlinguistic representations, suggesting its domain-general role in the implementation of response selection. Second, we propose that language control in bilinguals is hierarchically organized with the dorsal anterior cingulate cortex/presupplementary motor area acting as the supervisory attentional system, recruited for increased monitoring demands such as local control in the second language. On the other hand, prefrontal, inferior parietal areas and the caudate would act as the response selection system, tailored for language selection for both local and global control. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Article
Full-text available
In two picture-naming experiments we examined whether bilinguals co-activate the non-target language during word production in the target language. The pictures were presented out-of-context (Experiment 1) or in visually presented sentence contexts (Experiment 2). In both experiments different participant groups performed the task in Dutch, their native language (L1), or in English, their second language (L2). The pictures’ names were Dutch–English cognates or non-cognates, the cognate effect serving as the marker of activation of the non-target language. In Experiment 2 we also examined the effect of sentence constraint. In both experiments a cognate effect occurred, but it was modulated by language and sentence constraint: The effect was larger in L2 than in L1, larger with low-constraint sentences than with high-constraint sentences, and disappeared in the high-constraint L1 condition. These results extend earlier bilingual word-recognition and out-of-context production studies, suggesting that also during word production in context, co-activation of the non-target language occurs.
Article
Full-text available
U n c o r r e c t e d p r o o f s - J o h n B e n j a m i n s P u b l i s h i n g C o m p a n y A large body of empirical research, accumulated over the last twenty years, has set the foundations for a generic model of word comprehension in relatively flu-ent bilinguals (the bilingual interactive-activation (BIA) model). This approach combines an initial language non-selective access process with inhibitory con-trol mechanisms in order to limit cross-language interference. However, it is still not clear how such an architecture could emerge during the learning of a second language. The present chapter briefly summarizes the key results in favor of the original BIA-model and describes the research agenda that hopefully will help fill in the "missing link" – that is, a developmental investigation of second language vocabulary acquisition. We present a theoretical framework (the de-velopmental BIA-model, BIA-d) designed to guide future research in this area.
Article
Full-text available
People can rapidly form arbitrary associations between stimuli and the responses they make in the presence of those stimuli. Such stimulus-response (S-R) bindings, when retrieved, affect the way that people respond to the same, or related, stimuli. Only recently, however, has the flexibility and ubiquity of these S-R bindings been appreciated, particularly in the context of priming paradigms. This is important for the many cognitive theories that appeal to evidence from priming. It is also important for the control of action generally. An S-R binding is more than a gradually learned association between a specific stimulus and a specific response; instead, it captures the full, context-dependent behavioral potential of a stimulus.
Article
Full-text available
Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared with rest) between the precuneus and the right frontoparietal network, whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.
Article
Full-text available
Individuals who develop bilingually typically outperform monolinguals on tests of executive functions. This advantage likely reflects enhanced prefrontal function, but the mechanisms that underlie this improvement are still poorly understood. This article describes a theory on the nature of the neural underpinnings of improved executive function in bilinguals. Specifically, we propose that growing up in a bilingual environment trains a gating system in the striatum that flexibly routes information to the prefrontal cortex. This article is divided into three sections. Firstly, literature establishing a three-way connection between bilingualism, executive function, and fronto-striatal loops is summarized. Secondly, a computational model of information processing in the basal ganglia is described, illustrating how the striatal nuclei function to transfer information between cortical regions under prerequisite conditions. Finally, this model is extended to describe how bilingualism may “train the brain,” enabling improved performance under conditions of competitive information selection during information transfer. Theoretical implications and predictions of this theory are discussed.
Article
Full-text available
Whether motor and linguistic representations of actions share common neural structures has recently been the focus of an animated debate in cognitive neuroscience. Group studies with brain-damaged patients reported association patterns of praxic and linguistic deficits whereas single case studies documented double dissociations between the correct execution of gestures and their comprehension in verbal contexts. When the relationship between language and imitation was investigated, each ability was analysed as a unique process without distinguishing between possible subprocesses. However, recent cognitive models can be successfully used to account for these inconsistencies in the extant literature. In the present study, in 57 patients with left brain damage, we tested whether a deficit at imitating either meaningful or meaningless gestures differentially impinges on three distinct linguistic abilities (comprehension, naming and repetition). Based on the dual-pathway models, we predicted that praxic and linguistic performance would be associated when meaningful gestures are processed, and would dissociate for meaningless gestures. We used partial correlations to assess the association between patients' scores while accounting for potential confounding effects of aspecific factors such age, education and lesion size. We found that imitation of meaningful gestures significantly correlated with patients' performance on naming and repetition (but not on comprehension). This was not the case for the imitation of meaningless gestures. Moreover, voxel-based lesion-symptom mapping analysis revealed that damage to the angular gyrus specifically affected imitation of meaningless gestures, independent of patients' performance on linguistic tests. Instead, damage to the supramarginal gyrus affected not only imitation of meaningful gestures, but also patients' performance on naming and repetition. Our findings clarify the apparent conflict between associations and dissociations patterns previously observed in neuropsychological studies, and suggest that motor experience and language can interact when the two domains conceptually overlap.
Article
Full-text available
The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic information and the IFG in unification operations that maintain, select, and integrate multiple sources of information over time. In the present investigation, we tested for causal evidence of this dissociation by modulating activity in IFG and MTG using an offline TMS procedure: continuous theta-burst stimulation. Lexical–syntactic retrieval was manipulated by using sentences with and without a temporarily word-class (noun/verb) ambiguity (e.g., run). In one group of participants, TMS was applied to the IFG and MTG, and in a control group, no TMS was applied. Eye movements were recorded and quantified at two critical sentence regions: a temporarily ambiguous region and a disambiguating region. Results show that stimulation of the IFG led to a modulation of the ambiguity effect (ambiguous–unambiguous) at the disambiguating sentence region in three measures: first fixation durations, total reading times, and regressive eye movements into the region. Both IFG and MTG stimulation modulated the ambiguity effect for total reading times in the temporarily ambiguous sentence region relative to the control group. The current results demonstrate that an offline repetitive TMS protocol can have influences at a different point in time during online processing and provide causal evidence for IFG involvement in unification operations during sentence comprehension.
Article
Full-text available
Speech comprehension and production are governed by control processes. We explore their nature and dynamics in bilingual speakers with a focus on speech production. Prior research indicates that individuals increase cognitive control in order to achieve a desired goal. In the adaptive control hypothesis we propose a stronger hypothesis: Language control processes themselves adapt to the recurrent demands placed on them by the interactional context. Adapting a control process means changing a parameter or parameters about the way it works (its neural capacity or efficiency) or the way it works in concert, or in cascade, with other control processes (e.g., its connectedness). We distinguish eight control processes (goal maintenance, conflict monitoring, interference suppression, salient cue detection, selective response inhibition, task disengagement, task engagement, opportunistic planning). We consider the demands on these processes imposed by three interactional contexts (single language, dual language, and dense code-switching). We predict adaptive changes in the neural regions and circuits associated with specific control processes. A dual-language context, for example, is predicted to lead to the adaptation of a circuit mediating a cascade of control processes that circumvents a control dilemma. Effective test of the adaptive control hypothesis requires behavioural and neuroimaging work that assesses language control in a range of tasks within the same individual.
Article
There is currently no agreement on which factor modulates most effectively and enduringly brain plasticity in bilingual individuals. Grouping heterogeneous linguistic profiles under a dichotomous condition (bilingualism versus monolingualism) may obscure critical aspects of language experience underlying neural changes, thus leading to variable and often conflicting findings. In the present study, we overcome these limitations by analyzing the individual and joint contribution of L2 AoA, proficiency and usage - all measured as continuous variables - on the resting-state functional connectivity of the brain networks mediating the specific demands of bilingual language processing: the language network and the executive control network. Our results indicate that bilingual experience - defined as a continuous and multifaceted phenomenon - impacts brain plasticity by modulating the functional connectivity both within and between language and control networks. Each experience-related factor considered played a role in changing the connectivity of these regions. Moreover, the effect of AoA was modulated by proficiency and usage. These findings shed new light on the importance of modeling bilingualism as a gradient measure rather than an all-or-none phenomenon.
Article
An influential model of executive control suggests that it comprises three dissociable processes: working memory, inhibition, and task switching. Multiple studies have investigated how these processes are individually implemented in the human brain. However, few have directly investigated this question using a common task architecture and a within-subject design. Here, healthy adult humans (N = 22) performed a novel executive control task during fMRI scanning. The paradigm independently manipulated working memory updating, inhibition, and task switching demands, while keeping all other task features constant. Direct contrasts of each executive task with a closely matched control condition revealed a differentiated pattern of recruitment across control tasks: working memory was associated with activity in dorsolateral prefrontal, lateral parietal and insular cortices bilaterally; Inhibition engaged right lateral and superior medial prefrontal cortex, inferior parietal lobules bilaterally, right middle and inferior temporal cortex, and ventral visual processing regions; Task switching was associated with bilateral activity in medial prefrontal cortex, posterior cingulate cortex and precuneus, as well as left inferior parietal lobule, lateral temporal cortex and right thalamus. A conjunction of all executive versus control task activations revealed common areas of activation overlapping regions of canonical frontoparietal control and dorsal attention networks. Further, multivariate analyses suggest that working memory may be a putative common factor supporting executive functioning. Taken together, these results are consistent with a hybrid model of executive control in the human brain.
Article
For bilinguals, language control is needed for selecting the target language during language production. Numerous studies have examined the neural correlates of language control and shown a close relationship between language control and domain-general cognitive control. However, it remains unknown how these brain regions coordinate with each other when bilinguals exert cognitive control over linguistic and nonlinguistic representations. We addressed this gap using an extended unified structural equation modeling (euSEM) approach. Sixty-five Chinese-English bilinguals performed language switching and nonverbal switching tasks during functional magnetic resonance imaging (fMRI) scanning. The results showed that language control was served by a cooperative brain network, including the frontal lobe, the parietal cortex, subcortical areas, and the cerebellum. More importantly, we found that language control recruited more subcortical areas and connections from frontal to subcortical areas compared with domain-general cognitive control, demonstrating a reconfigurable brain network. In addition, the reconfiguration efficiency of the brain network was mainly determined by general cognitive ability but was also mediated by second language (L2) proficiency. These findings provide the first data-driven connectivity model that specifies the brain network for language control in bilinguals and also shed light on the relationship between language control and domain-general cognitive control.
Article
High levels of negative, and low levels of positive parenting behaviors can increase the risk of internalizing symptoms in children, but the mechanisms underlying this association are still unclear. One possibility is that parenting behaviors affect the neural correlates of emotion processing in children. Further, genetic variants relevant to the function of the hypothalamic–pituitary–adrenal (HPA)axis are thought to moderate the effect of early experiences on the brain circuits underlying emotion processing, particularly those involving the amygdala. However, no studies have investigated the interactive effect of parenting behaviors and HPA axis-related genes on amygdala activity and connectivity during emotion processing, and in turn internalizing symptoms in children. Participants comprised 80 children (46 females, mean age = 10.0 years)from the community. Observational measures of maternal behavior were collected during mother-child interactions. Children underwent functional magnetic resonance imaging while performing an implicit emotion-processing task, and mothers and children completed measures of child internalizing symptoms. Genetic risk was calculated using an HPA genetic risk score. HPA genetic risk score was indirectly associated with greater child self-reported depressive symptoms via increased amygdala-precuneus connectivity during the emotion-processing task, and interacted with negative maternal parenting behavior to predict increased connectivity between amygdala and superior frontal gyrus, anterior cingulate cortex and parietal cortex. HPA-related genetic variation appears to moderate the effect of negative maternal parenting behavior on the neural underpinnings of emotion processing in children, and may confer risk for depressive symptoms via modulation of amygdala connectivity.
Article
Learning and using an additional language is shown to have an impact on the structure and function of the brain, including in regions involved in cognitive control and the connections between them. However, the available evidence remains variable in terms of the localization, extent, and trajectory of these effects. Variability likely stems from the fact that bilingualism has been routinely operationalized as a categorical variable (bilingual/monolingual), whereas it is a complex and dynamic experience with a number of potentially deterministic factors affecting neural plasticity. Here we present a study investigating the combined effects of experience-based factors (EBFs) in bilingual language use on brain structure and functional connectivity. EBFs include an array of measures of everyday usage of a second language in different types of immersive settings (e.g., amount of use in social settings). Analyses reveal specific adaptations in the brain, both structural and functional, correlated to individual EBFs and their combined effects. Taken together, the data show that the brain adapts to be maximally efficient in the processing and control of two languages, although modulated ultimately by individual language experience.
Article
Research on the neural bases of bilingual language control has largely overlooked the role of preparatory processes, which are central to cognitive control. Additionally, little is known about how the process involved in global language selection may differ from those involved in the selection of words and morpho-syntactic rules for manipulating them. These processes were examined separately in an fMRI experiment, with an emphasis on understanding how and when general cognitive control regions become activated. Results of region-of-interest analyses on 23 early Spanish-English bilinguals showed that the anterior cingulate cortex (ACC) was primarily engaged during the language preparation phase of the task, whereas the left prefrontal (DLPFC) and pre-supplementary motor areas showed increasing activation from preparation to execution. Activation in the basal ganglia (BG), left middle temporal lobe, and right precentral cortical regions did not significantly differ throughout the task. These results suggest that three core cognitive control regions, the ACC, DLPFC, and BG, which have been previously implicated in bilingual language control, engage in distinct neurocognitive processes. Specifically, the results are consistent with the view that the BG "keep track" of the target language in use throughout various levels of language selection, that the ACC is particularly important for top-down target language preparation, and that the left prefrontal cortex is increasingly involved in selection processes from preparation through task execution.
Article
Semantic dementia (SD) and Alzheimer's disease (AD) are both disorders in which early pathology affects the temporal lobe yet they produce distinct syndromes of declarative memory impairment—loss of established semantic knowledge with relatively preserved episodic memory in the former and the converse in the latter. Groups with mild SD and mild AD who showed a double dissociation in these two aspects of declarative memory were studied—the SD group's episodic memory and the AD group's semantic knowledge each being comparable to controls. Positron emission tomography and volumetric magnetic resonance imaging were used to map deficits in regional cerebral metabolic rate and mesial temporal lobe (MTL) atrophy, respectively. Episodic memory impairment in AD was associated with dysfunction of an integrated network (mesial temporal lobe, mamillary bodies, dorso-mesial thalamus and posterior cingulate). Semantic memory impairment in SD was associated with bilateral rostral temporal lobe hypometabolism. The SD group had comparable MTL atrophy and hypometabolism to that found in AD but the remainder of their limbic – diencephalic network was preserved suggesting that the latter explains their ability to acquire new episodic memories. The results challenge the view that amnesia in early AD can be explained by the degree of MTL damage alone while showing that semantic impairment can occur with damage restricted to the rostral temporal lobes. D
Article
Speaking more than one language demands a language control system that allows bilinguals to correctly use the intended language adjusting for possible interference from the non-target language. Understanding how the brain orchestrates the control of language has been a major focus of neuroimaging research on bilingualism and was central to our original neurocognitive language control model (Abutalebi & Green, 2007). We updated the network of language control (Green & Abutalebi, 2013) and here review the many new exciting findings based on functional and structural data that substantiate its core components. We discuss the language control network within the framework of the adaptive control hypothesis (Green & Abutalebi, 2013) that predicts adaptive changes specific to the control demands of the interactional contexts of language use. Adapting to such demands leads, we propose, to a neural reserve in the human brain.
Article
We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.
Article
Despite significant advances, the neural correlates and neurochemical mechanisms involved in performance monitoring and behavioral adaptation are still a matter for debate. Here, we used a modified Eriksen-Flanker task in a magnetic resonance imaging (MRI) study that required the participants to derive the correct stimulus-response association based on a feedback given after each flanker stimulus. Participants had to continuously monitor and adapt their performance as the stimulus-response association switched after a jittered time interval without notice. After every switch an increase of reaction times was observed. At the neural level, the feedback indicating the need to switch was associated with activation of the precuneus, the cingulate cortex, the insula and a brainstem region tentatively identified as the locus coeruleus. This brainstem system appears to interact with this cortical network and seems to be essential for performance monitoring and behavioral adaptation. In contrast, the cerebellum crus and prefrontal areas are activated during error feedback processing. Furthermore we found activations of the hippocampus and parahippocampal gyrus bilaterally after a correct feedback in learnable stimulus-response associations. These results highlight the contribution of brainstem nuclei to performance adaptation. Copyright © 2014. Published by Elsevier Ltd.
Article
Bilingual listeners comprehend speech-in-noise better in their native than non-native language. This native-language benefit is thought to arise from greater use of top-down linguistic information to assist degraded speech comprehension. Using functional magnetic resonance imaging, we recently showed that left angular gyrus activation is modulated when semantic context is used to assist native language speech-in-noise comprehension (Golestani, Hervais-Adelman, Obleser, & Scott, 2013). Here, we extend the previous work, by reanalyzing the previous data alongside the results obtained in the non-native language of the same late bilingual participants. We found a behavioral benefit of semantic context in processing speech-in-noise in the native language only, and the imaging results also revealed a native language context effect in the left angular gyrus. We also find a complementary role of lower-level auditory regions during stimulus-driven processing. Our findings help to elucidate the neural basis of the established native language behavioral benefit of speech-in-noise processing.