Available via license: CC BY
Content may be subject to copyright.
Coatings2022,12,1753.https://doi.org/10.3390/coatings12111753www.mdpi.com/journal/coatings
Article
AnnealingEffectontheStructural,Magnetic,Electrical,Optic
Property,Nanomechanical,andAdhesiveCharacteristicsof
Co
60
Fe
20
Yb
20
ThinFilmsonGlassSubstrate
Wen‐JenLiu
1
,Yung‐HuangChang
2
,Yuan‐TsungChen
3,
*,Po‐ChunChiu
3
,Yu‐ZhiWang
3
,Shih‐HungLin
4
and
Po‐WeiChi
5
1
DepartmentofMaterialsScienceandEngineering,I‐ShouUniversity,
Kaohsiung840,Taiwan
2
BachelorPrograminInterdisciplinaryStudies,NationalYunlinUniversityofScienceandTechnology,123
UniversityRoad,Section3,Douliou64002,Taiwan
3
GraduateSchoolofMaterialsScience,NationalYunlinUniversityofScienceandTechnology,
123UniversityRoad,Section3,Douliou64002,Taiwan
4
DepartmentofElectronicEngineering,NationalYunlinUniversityofScienceandTechnology,
123UniversityRoad,Section3,Douliou64002,Taiwan
5
InstituteofPhysics,AcademiaSinica,Nankang,Taipei11529,Taiwan
*Correspondence:ytchen@yuntech.edu.tw;Tel.:+886‐5‐534‐2601
Abstract:Inthisstudy,X‐raydiffraction(XRD)analysisshowedtheamorphousnatureofthe
Co
60
Fe
20
Yb
20
filmsdepositedatroomtemperature(RT),100°C,and200°C.Thebody‐centeredcubic
(BCC)CoFe(110)characteristicpeakwasvisibleat44.7°afterannealingfilmsof40nmand50nm
at300°C.Thehighestalternatingcurrentmagneticsusceptibility(χ
ac
)valuewas0.21at50Hzina
50nm,andthelowestresistivityvaluewas1.02(10
−2
Ω.cm)ina50nm.Intermsofnano‐indication
measurement,thehighestvalueofhardnesswas9.29GPaat300°Cina50nm.Whenthethickness
increasedfrom10nmto50nm,thehardnessandYoung’smodulusoftheCo
60
Fe
20
Yb
20
filmalso
showedasaturationtrend.The
Co
60
Fe
20
Yb
20
filmhadthemaximumsurfaceenergyat50nmafter
300°Cannealing.ThetransmittanceofCo
60
Fe
20
Yb
20
filmsdecreasedwhenthethicknesswasin‐
creasedbecausethethicknesseffectsuppressesthephotonsignal.Duetohighχ
ac
,lowelectrical
performance,strongnano‐mechanicalproperties,andhighadhesion,itwasdiscoveredinthiswork
that50nmwithannealingat300°Cwastheidealconditionforthemagneticandadhesivecapabil‐
itiesofCo
60
Fe
20
Yb
20
film.Moreimportantly,replacingtheCoFeBseedorbufferlayerwithathin
CoFeYbfilmimprovedthethermalstability,makingCoFeYbfilmsattractiveforpracticalmagnetic
tunneljunction(MTJ)applications.Furthermore,thespecificpropertiesofCo
60
Fe
20
Yb
20
filmswere
comparedtothoseofCo
60
Fe
20
Y
20
films,demonstratingthatthespecificpropertiesofthesetwoma‐
terialsmaybecompared.
Keywords:annealedCo
60
Fe
20
Yb
20
thinfilms;X‐raydiffraction(XRD);low‐frequencyalternating
currentmagneticsusceptibility(χ
ac
);optimalresonancefrequency(f
res
);surfaceenergy;adhesion;
magnetictunneljunction(MTJ);electricalproperties;nanomechanicalproperties;transmittance
1.Introduction
Nowadays,thetechnologyiswelldevelopedandisusedinsomecommonlyseen
devices,suchasgenerators,semiconductorcomponents,andmagneticrecordingmedia.
Highperformancepermanentmagnetsmadeofoneormorerareearthelementsareused
inthesedevices.Thepriceofrareearthmaterialswasroughly10timeshigherfrom2010
to2011levels,sparkinginvestigationonsubstitutepermanentmagnetsdevoidofrare
earthelements.Permanentmagnetsmusthaveahighmagnetization,ahighcurietem‐
perature(Tc),ahighmagneticanisotropy,andahighcoercivity(Hc)[1–5].AddingBto
Citation:Liu,W.‐J.;Chang,Y.‐H.;
Chen,Y.‐T.;Chiu,P.‐C.;Wang,Y.‐Z.;
Lin,S.‐H.;Chi,P.‐W.Annealing
EffectontheStructural,Magnetic,
Electrical,OpticProperty,
Nanomechanical,andAdhesive
CharacteristicsofCo60Fe20Yb20Thin
FilmsonGlassSubstrate.
Coatings2022,12,1753.
https://doi.org/10.3390/
coatings12111753
AcademicEditor:AndreyV.Osipov
Received:22October2022
Accepted:13November2022
Published:15November2022
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2022bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(https://cre‐
ativecommons.org/licenses/by/4.0/).
Coatings2022,12,17532of11
theCoFealloymatrixanddepositingtheferromagneticCoFeBalloyonthemagnetictun‐
neljunction(MTJ)structure,resultinginafreeorpinnedlayer,istypicalmethodforcre‐
atingCoFeBalloy[6–8].Co60Fe20Yb20wasanewsubstanceintherealmofmagneticmate‐
rialsinthisstudy.CoFeYbfilmcanbeusedtoreplacetheCoFeBalloylayerintheMTJ
structure.ByaddingYb,thecrystallinityisimproved,anditsheatresistanceisincreased.
Althoughdynamicrandomaccessmemory(DRAM)andflashmemorystillmaintainthe
dominantpositioninthecurrentmarketinthenextfewyears,intheeraofrapidtechno‐
logicaldevelopment,drivenbythedemandforartificialintelligence(AI),Internetof
Things(loT),fifthgenerationwirelesssystems(5G),andemergingmemorymagnetore‐
sistancerandomaccessmemory(MRAM)willdeveloprapidlyinthenextfewyears,and
graduallybecomeamainstreamproduct.MRAMusesmagneticforcetostoredata[9–15].
Whenthecomputeristurnedoff,themagneticforceofitsmemorychipstillexists,soit
stillretainsthedatainthememory.TherareearthelementYbhasphysicochemicalprop‐
ertiescomparabletoCa.BothYbandCa,forexample,aredivalentionswithidentical
atomicsizesandelasticmoduli.Theyaremisciblenotonlyinliquids,butalsoincrystals
andsolids.CorrosionresistanceishigherinYb‐containingMg‐basedamorphousalloys
thaninCa‐containingmagnesium‐basedamorphousalloys[16–18].Becausetheaddition
ofYbnotonlyimprovestheplasticityofthealloyanditalsoimprovesitsthermalstability,
theclassicamorphousalloyMg‐Zn‐CaisreplacedbyrareearthYb[19,20].Co60Fe20B20thin
filmiscommonlyusedinMTJstructureasafreeorpinnedlayer,andcanachieveahigh
tunnelingmagnetoresistance(TMR)ratio.ThisstudyprimarilyusedthesameYb/Bratio
toformCoFeYbfilmsinordertoinvestigatesomespecificproperties.Thenoveltyofthis
researchistoinvestigatethestructureandmagneticpropertiesofCoFeYbthinfilmsasa
functionofthickness,aswellastoinvestigateannealedCoFeYbthinfilmstoseeifthey
willchangeinhightemperatureenvironments.However,followingaseriesofsample
testingandanalysis,itwasdiscoveredthatincreasingtheannealingtemperaturedidnot
causeanydamagetothesample.Thestructure,magneticproperties,electricalproperties,
mechanicalproperties,contactangleadhesionefficiency,andopticalcharacteristicsof
Co60Fe20Yb20thinfilmswithvaryingthicknessesandheattreatmentswereallmeasuredin
thiswork.Inpreviousresearch,theas‐depositedandpost‐annealingCo60Fe20Y20films
werecomparedwithCo60Fe20Yb20filmsfortheirmagnetic,optic,andadhesiveproperties,
asmentionedinTable1[21].
Table1.SignificantpropertiesforCo60Fe20Y20andCo60Fe20Yb20materials.
TypeofFilmMaximumχac
(a.u.)
MaximumSur‐
faceEnergy
(mJ/mm2)
Transmittance
(%)
Glass/Co60Fe20Y20[21]0.2331.8458
Glass/Co60Fe20Yb20
10–50nmatas‐depositedandan‐
nealedconditions
(Currentresearch)
0.2131.354
2.MaterialsandMethods
CoFeYbthinfilmswiththicknessesrangingfrom10to50nmwerecreatedonglass
substratesusingdirect‐current(DC)magnetronsputtering.Thefilmswerecreatedinfour
differentways:(a)atroomtemperature(RT),(b)annealedforanhourat100°C,(c)an‐
nealedforanhourat200°C,and(d)annealedforanhourat300°C.Theoperatingpres‐
sureforArwas3×10−3Torr,basepressurewas3×10−7Torr,andex‐situannealedpressure
was2.5×10−3TorrinparticularArgas.ThetargetcompositionofCoFeYballoyis60%Co,
20%Fe,and20%Yb.Additionally,grazingincidenceX‐raydiffraction(GIXRD)patterns
producedwithCuKα1(PANanalyticalX’pertPROMRD,MalvernPanalyticalLtd.,Cam‐
bridge,U.K.)andalowanglediffractionincidenceatatwo‐degreeanglewereusedto
Coatings2022,12,17533of11
analyzethestructureoftheCoFeYbfilms.Alow‐frequencyalternate‐currentmagnetic
susceptibility(χac)instrument(XacQuan,MagQuCo.Ltd.NewTaipei,Taiwan)with
measuredfrequencyrangesof10to25,000HzwasusedtostudyCo60Fe20Yb20thinfilms.
Theresistivityandsheetresistance(Rs)valuesofCo60Fe20Yb20filmsweremeasuredusing
astandardfour‐pointapproachforelectricalproperties.ThehardnessandYoung’smod‐
ulusweremeasuredusingtheMTSNanoIndenterXPwithaBerkovichtip(MTS,Minne‐
apolis,StateofMinnesota,USA)andcontinuousstiffnessmeasurement(CSM)methodol‐
ogy.Theloadingwasthendecreasedto10%ofthemaximumloadbeforetheindenter
wasgraduallyremovedfromthesurface.Theindentertookmeasurementsforeachsam‐
pleat10differentpoints.Thedepthoftheindentationwasmeasuredateachofthe40
stepsthatincreasedtheindentationload.Sixindentationsineachsamplewereexamined,
andthestandarddeviationwasaveragedtogeneratemoretrustworthyresults.Thecon‐
tactanglewasdeterminedusingdeionized(DI)waterandglycerol(CAM‐110,Creating
NanoTechnologies,Tainan,Taiwan).Whenthesamplewasremoved,thecontactangle
wasmeasured.Finally,thesurfaceenergywascalculatedusingthecontactangle[22–24].
TheopticalcharacteristicswereassessedusingaSpectroSmartAnalyzer(Collimage,Tai‐
pei,Taiwan)withvisiblelightwithawavelengthrangeof500–800nm.
3.Results
3.1.X‐rayDiffraction
XRDpatternsofas‐depositedandannealedCoFeYbthinfilmswiththicknessesvar‐
yingfrom10to50nmareshowninFigure1a–d.Figure1aexhibitsas‐depositedthinfilm
patterns,whereasthosegeneratedafterannealingat100°C,200°C,and300°Careillus‐
tratedinFigure1b–d.Figure1a–cindicatethatCoFeYbfilmsdepositedatRTandpost‐
annealedat100°Cand200°Careamorphousstatus.However,Figure1dshowsthatwhen
CoFeYbthinfilmsare40nmand50nmat300°C,thecharacteristicpeakCoFe(110)ap‐
pearsat44.7°,whichincreaseswiththethickness.Itscharacteristicpeakintensityhasa
tendencytoincrease.Fromtheaboveresults,itcanbespeculatedthattheCoFeYbthin
filmneedstobeannealedatatemperatureofatleast300°Candathicknessof40nmor
morebeforecrystallizationoccurs.
(a)(b)
Coatings2022,12,17534of11
(c)(d)
Figure1.ThinfilmsofCoFeYbwithXRDpatterns.(a)RT,(b)followingannealingat100°C,(c)
followingannealingat200°C,and(d)followingannealingat300°C.
3.2.MagneticProperty
Figure2a–dshowtheχacforfourdistinctpreparationcircumstances,withthicknesses
rangingfrom10to50nmatRTandannealedtemperaturesof100°C,200°C,and300°C,
respectively.Inthelow‐frequencyrangeof50–100Hz,thevalueofχacdecreaseswithfre‐
quency.Theoutcomesalsodemonstratethatthecorrespondingχacvalueriseswhenthick‐
nessisbetween10nmand50nm.ThesefindingsshowthatallCoFeYbsamplesexhibit
magneto–nanocrystallineanisotropyandthethicknesseffect.Agreaterannealingtemper‐
atureresultedinahigherχ
acvaluethanalowerannealingtemperature.Ingeneral,
strongercrystallizationandgraindevelopmentweregeneratedbythehigherannealing
temperatureandthickerthickness.Magneto–nanocrystallineanisotropycausedtheχ
ac
valueofCoFeYbtorise[25,26].
(a)(b)
Coatings2022,12,17535of11
(c)(d)
Figure2.Therelationshipbetweenthelow‐frequencyalternate‐currentmagneticsusceptibility(χac)
andfrequency,from50to25,000Hz.(a)RT,(b)followingannealingat100°C,(c)followinganneal‐
ingat200°C,and(d)followingannealingat300°C.
Figure3displaysthematchingmaximumχacfordifferentCoFeYbthicknessesunder
fourpreparationconditions.ThehighestχacofannealedCoFeYbthinfilmwasat300°C,
andatthattemperature,thethicknesswas50nm,whichismorethanitwasatotherin‐
vestigationalsettings.Thesefindingsclearlydemonstratedthethicknesseffectofχacin
CoFeYbfilms.Thethicknesseffectcausesariseinχacasthicknessincreases.Themaxi‐
mumχacofannealedCoFeYbthinfilmswaslargerthanthatatRT.Table2showsthe
maximumχacfortheidealresonancefrequency(fres)underfourdifferentsituations.The
greatestχachadthehighestspinsensitivityatthefres[27,28].Atdifferentthicknesses,fres
valuewaslessthan100Hz.Thefreswasdeterminedtobelessthan500Hz,makingit
suitableforusageintransformers,magneticcomponents,andlow‐frequencysensors.
Figure3.MaximumχacfortheCoFeYbthinfilms.
Table2.Theoptimalresonantfrequencyforvariousthicknesses.
ThicknessRTAnnealingat
100°C
Annealingat
200°C
Annealingat
300°C
10nm501005050
20nm50505050
30nm50505050
40nm50505050
Coatings2022,12,17536of11
50nm50505050
3.3.ElectricalProperties
Theresistivityandsheetresistance(Rs)withvariousthicknessesandtemperature
conditionsareshowninFigure4.Accordingtothefindingsofthisinvestigation,resistiv‐
ityandsheetresistance(Rs)bothreducedwithincreasingthicknessandannealedtem‐
peratures.Thesheetresistancedecreasedastheannealingtemperatureincreasedinterms
oftemperature.Itishypothesizedthatgrainaggregationinthefilmincreaseswithin‐
creasingannealingtemperature.Inthecaseoflargergrains,theconductivitywillalsobe
easier[29,30].
(a)(b)
Figure4.(a)TheresistivityofCoFeYbthinfilms,(b)thesheetresistanceofCoFeYbfilms.
3.4.Nano‐Indentation
ThehardnessandYoung’smodulusoftheCoFeYbthinfilmsareshowntoincrease
withthicknessinFigure5a,b.ThePharr–Olivermethodiswidelyusedtodeterminethe
hardnessofanano‐indentationbasedontheloadingandunloadingcurve,whichexposes
thecombinedhardnessoftheglasssubstrateandtheCoFeYbthinfilm[31].Because
CoFeYbthinfilmissothin,itisreasonabletoexpectasubstrateeffectinthenano‐inden‐
tationmeasurement.AccordingtoFigure5,thehardnessandYoung’smodulusoftheas‐
depositedCoFeYbthinfilmsincreasedfrom8.35GPato8.94GPaand89.3GPato100
GPa,respectively.ThehardnessandYoung’smodulusoftheannealed100°CCoFeYb
thinfilmsincreasedfrom8.52GPato8.84Gpaand90.2Gpato98.2Gpa,respectively.The
hardnessandYoung’smodulusoftheannealed200°CCoFeYbthinfilmsincreasedfrom
8.68Gpato9.08Gpaand94.1Gpato100.1Gpa,respectively.ThehardnessandYoung’s
modulusoftheannealed300°CCoFeYbthinfilmsincreasedfrom8.63GPato9.29GPa
and94.8GPato104.2GPa,respectively.Thefindingsoftheexperimentshowthatalt‐
houghtemperaturehaslittleimpactonhardnessandYoung’smodulus,thicknesshasa
majorimpact.Asthicknessincreased,bothhardnessandYoung’smodulussignificantly
increased[32,33].
Coatings2022,12,17537of11
(a)(b)
Figure5.Nano‐indentationofCoFeYbthinfilms.(a)Hardnessand(b)Young’smodulus.
3.5.SurfaceEnergyandAdhesionAnalysis
Figure6a–ddepictthecontactangles(θ)ofCo60Fe20Yb20thinfilmsunderfourdiffer‐
entconditionswhileutilizingDIwaterandglycerol.Inparticular,Co60Fe20Yb20thinfilms
werefoundtohavecontactanglesthatwereconsistentlylessthan90degreesanddrops
thatwerealmostspherical,showingthatthefilmsexhibitedgoodhydrophilicityandwet‐
tability.Asaresult,itispossibletoconcludethatthecontactangledecreasesasthean‐
nealedtemperaturerises.Thisismostlyduetotheheattreatmentincreasingthesizeof
thegrainsinthefilm.Highergrainsizeleadstoadecreaseinthesupportforcebetween
thegrains.SurfaceenergyandadhesionareimportantfactorsforCoFeYbfilmsinceitcan
beusedasaseedorbufferlayer.Liquidabsorptionisstrongandthecontactangleismin‐
imalwhenthesurfaceenergyislarge.Surfaceenergyiscalculatedusingthecontactangle
andYoung’sequation[22–24].
(A)(B)
Coatings2022,12,17538of11
(C)(D)
Figure6.Contactanglesoffourconditions:(A)RT,(B)followingannealingat100°C,(C)following
annealingat200°C,and(D)followingannealingat300°C.DIwater:(a)10nm,(b)20nm,(c)30
nm,(d)40nm,and(e)50nm.Glycerol:(f)10nm,(g)20nm,(h)30nm,(i)40nm,and(j)50nm.
Figure7showsthesurfaceenergyofCoFeYbfilmsunderallconditions,including
thethicknessincreasefrom10nmto50nmatRTafterannealingat100°C,200°C,and
300°C.Thesurfaceenergyrangedfrom22.3to31.3mJ/mm2,withpost‐annealedfilms
havingahighersurfaceenergythantheas‐depositedfilms.Inthisexperiment,thesurface
energyofthe50nmfilmafter300°Cannealingwasthehighest.Becauseofthecrystalli‐
zationeffect,theannealingtemperaturerises,increasingsurfaceenergyandadhesion.
Thecapacityofthesurfacetoabsorbliquidincreasedassurfacefreeenergyincreased.The
contactanglewouldalsobereducedasasizeableportionoftheliquidwouldbeabsorbed
[34].Weakadhesionandlowsurfaceenergyareassociatedwiththis[35].Whenthefilms’
surfaceenergieswerehigher,theadhesionwasstrongest.Theseresultsimplythatitis
easiertocombinewiththelayeroftheMTJstructure.
Figure7.SurfaceenergyofCoFeYbthinfilms.
3.6.AnalysisofOpticalProperty
Figure8a–dshowthetransmittance(%)forCoFeYbthinfilmsatvisiblewavelengths
rangingfrom500nmto800nm(d).Figure8aindicatesthatwhenthethicknessincreased
from10to50nmatRT,thetransmittance(%)decreasedfrom48%to14%.Figure8bshows
thatfollowing100°Cannealing,thetransmittance(%)decreasedfrom54%to14%asthe
thicknesschangedfrom10to50nm.Figure8cindicatesthatasthethicknessincreased
Coatings2022,12,17539of11
from10to50nm,thetransmittance(%)decreasedfrom52%to11%followingannealing
at200°C.Figure8ddemonstratesthatfollowingannealingat300°C,thetransmittance
(%)decreasedfrom54%to14%asthicknessvariedfrom10to50nm.Thefindingsdemon‐
stratethatthethicknessandinterfaceeffectsattenuatethephotonsignal,decreasingtrans‐
mittanceandhavinganimpactontheoverallfilmoptictransmittanceproperties[36,37].
(a)(b)
(c)(d)
Figure8.TransmittanceofCoFeYbthinfilms.(a)RT,(b)followingannealingat100°C,(c)following
annealingat200°C,and(d)followingannealingat300°C.
4.Conclusions
Thisstudyfocusedonthestructure,magneticproperties,electricalproperties,nano‐
mechanicalcharacteristics,adhesionefficiency,andopticalpropertiesofCo60Fe20Yb20thin
films.XRDanalysisrevealedthattheCo60Fe20Yb20filmsdepositedatRT,100°C,and200
°Cwereamorphous.However,40nmand50nmCoFeYbthinfilmsat300°Cexhibited
thecharacteristicpeakCoFe(110)at44.7°,whichincreasedwiththethickness.Themag‐
neticcharacteristicsexhibitedathicknesseffect:asthethicknessincreased,theinduced
saturationmagnetizationofχacincreased.Theelectricalpropertiesrevealedthatasthick‐
nessandannealedtemperaturesincreased,resistivityandsheetresistance(Rs)decreased.
Thenano‐mechanicalcharacteristicsroseinhardnessandYoung’smodulusasthethick‐
nessoftheCoFeYbfilmincreased,andtherewasasubstrateeffectinthenano‐indentation
test.ThesurfaceenergyoftheannealedCoFeYbthinfilmswasgreaterthanthatoftheas‐
depositedfilm.Intermsofopticalqualities,asthicknessincreased,transmittancefell,
whilethethicknesseffectandtheinterfaceeffectsuppressedthephotonsignal,causing
Coatings2022,12,175310of11
thetransmittancetodecrease.Asaresultofthisresearch,thefilmisappropriateforusage
asafreelayerofMTJandcanbeusedinMRAMandrecordingheads.
AuthorContributions:Conceptualization,W.‐J.L.,Y.‐H.C.,andY.‐T.C.;methodology,Y.‐T.C.,P.‐
C.C.,andY.‐Z.W.;validation,Y.‐T.C.;formalanalysis,Y.‐T.C.andP.‐W.C.;investigation,Y.‐T.C.
andW.‐J.L.;resources,Y.‐T.C.;writing—originaldraft,Y.‐T.C.andW.‐J.L.;writing—reviewand
editing,Y.‐T.C.;supervision,Y.‐T.C.andY.‐H.C.;projectadministration,Y.‐T.C.;fundingacquisi‐
tion,W.‐J.L.,Y.‐H.C.,andS.‐H.L.Allauthorshavereadandagreedtothepublishedversionofthe
manuscript.
Funding:ThisworkwassupportedbytheMinistryofScienceandTechnology(GrantNos.
MOST108‐2221‐E‐224‐015‐MY3andMOST105‐2112‐M‐224‐001),andtheNationalYunlinUniversity
ofScienceandTechnology(GrantNo.112T01).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
Acknowledgments:ThisworkwassupportedbytheMinistryofScienceandTechnology,under
GrantNo.MOST108‐2221‐E‐224‐015‐MY3,MOST105‐2112‐M‐224‐001,andNationalYunlinUniver‐
sityofScienceandTechnology,underGrantNo.112T01.
ConflictsofInterest:Theauthorsdeclarethatthereisnoconflictofinterestsregardingthepublica‐
tionofthispaper.
References
1. Ebert,H.;Zeller,R.;Drittler,B.;Dederichs,P.H.Fullyrelativisticcalculationofthehyperfinefieldsof5d‐impurityatomsin
ferromagneticFe.J.Appl.Phys.1990,67,4576–4578.
2. Li,M.;Wang,S.;Zhang,S.;Fang,S.;Feng,G.;Cao,X.;Zhang,P.;Wang,B.;Yu,G.Theeffectofinterfacialoxygenmigrationon
thePMAandthermalstabilityinMTJwithdoubleMgOlayers.Appl.Surf.Sci.2019,488,30–35.
3. Iihama,S.;Mizukami,S.;Naganuma,H.;Oogane,M.;Ando,Y.;Miyazaki,T.GilbertdampingconstantsofTa/CoFeB/MgO(Ta)
thinfilmsmeasuredbyopticaldetectionofprecessionalmagnetizationdynamicsPhys.Rev.B2014,89,174416.
4. Shankhari,P.;Janka,O.;Pöttgen,R.;Fokwa,B.P.T.Rare‐Earth‐FreeMagnets:EnhancingMagneticAnisotropyandSpinEx‐
changeTowardHigh‐TCHf2MIr5B2(M=Mn,Fe).J.Am.Chem.Soc.2021,143,114205‐4212.
5. Lv,H.;Fidalgo,J.;Silva,A.V.;Leitao,D.C.;Kampfe,T.;Riedel,S.;Langer,J.;Wrona,J.;Ocker,B.;Freitas,P.P.;etal.Assessment
ofconductionmechanismsthroughMgOultrathinbarriersinCoFeB/MgO/CoFeBperpendicularmagnetictunneljunctions.
Appl.Phys.Lett.2019,114,102402.
6. Cuchet,L.;Rodmacq,B.;Auffret,S.;Sousa,R.C.;Prejbeanu,I.L.;Dieny,B.Perpendicularmagnetictunneljunctionswitha
syntheticstorageorreferencelayer:AnewroutetowardsPt‐andPd‐freejunctions.Sci.Rep.2016,6,21246.
7. Kaidatzis,A.;Bran,C.;Psycharis,V.;Vázquez,M.;Martín,J.M.G.;Niarchos,D.Tailoringthemagneticanisotropyof
CoFeB/MgOstacksontoWwithaTabufferlayer.Appl.Phys.Lett.2015,106,262401.
8. Ghaferi,Z.;Sharafi,S.;Bahrololoom,M.E.TheroleofelectrolytepHonphaseevolutionandmagneticpropertiesofCoFeW
codepositedfilms.Appl.Surf.Sci.2016,375,35–41.
9. Harms,J.M.I.;Jan,G.;Guisan,S.S.;Thomas,L.;Liu,H.;Zhu,J.;Lee,Y.J.;Le,S.;Tong,R.Y.;Patel,S.;etal.Ultrathinperpendicular
magneticanisotropyCoFeBfreelayersforhighlyefficient,highspeedwritinginspin‐transfer‐torquemagneticrandomaccess
memory.Sci.Rep.2019,9,19407.
10. Ramazanov,M.A.;Maharramov,A.M.;Sultanova,C.R.MagnetoresistanceeffectinPP+Febasednanocompositesystem.Integr.
Ferroelectr.2018,192,141–145.
11. Manos,O.;Bougiatioti,P.;Dyck,D.;Huebner,T.;Rott,K.;Schmalhorst,J.M.;Reiss,G.Correlationoftunnelmagnetoresistance
withthemagneticpropertiesinperpendicularCoFeB‐basedjunctionswithexchangebias.J.Appl.Phys.2019,125,023905.
12. Sun,J.Z.;Trouilloud,P.L.;Lauer,G.P.;Hashemi,P.BiasdependentconductanceinCoFeB‐MgO‐CoFeBmagnetictunneljunc‐
tionsasanindicatorforelectrodemagneticconditionatbarrierinterfaces.AIPAdv.2019,9,015002.
13. Ota1,S.;Ono,M.;Matsumoto,H.;Ando,A.;Sekitani,T.;Kohno,R.;Iguchi,S.;Koyama,T.;Chiba,D.CoFeB/MgO‐basedmag‐
netictunneljunctiondirectlyformedonaflexiblesubstrate.Appl.Phys.Express2019,12,053001.
14. Lee,D.Y.;Jong,S.H.;Lee,S.E.;Park,J.G.Dependencyoftunneling‐magnetoresistanceratioonnanoscalespacerthicknessand
materialfordoubleMgObasedperpendicular‐magnetic‐tunneling‐junction.Sci.Rep.2016,6,38125.
15. Rylkov,V.V.;Nikolaev,S.N.;Demin,V.A.;Emelyanov,A.V.;Sitnikov,A.V.;Nikiruy,K.E.;Levanov,V.A.;Presnyakov,M.Y.;
Taldenkov,A.N.;Vasiliev,A.L.;etal.Transport,magnetic,andmemristivepropertiesofananogranular(CoFeB)x
(LiNbOy)100–xcompositematerial.J.Exp.Theor.Phys.2018,126,353–367.
Coatings2022,12,175311of11
16. Lu,W.;He,M.;Yu,D.;Xie,X.;Wang,H.;Wang,S.;Yuan,C.;Chen,A.Ductilebehaviorandexcellentcorrosionresistanceof
Mg‐Zn‐Yb‐Agmetallicglasses.Mater.Des.2021,210,110027.
17. Chong,X.Y.;Palma,J.P.S.;Wang,Y.;Shang,S.L.;Drymiots,F.;Ravi,V.A.;Star,K.E.;Fleurial,J.P.;Liu,Z.K.Thermodynamic
propertiesoftheYb‐Sbsystempredictedfromfirst‐principlescalculations.ActaMater.2021,217,117169.
18. Liu,G.;Xu,D.;Sun,S.;Jia,B.;Guan,X.;Chen,W.;Gao,Y.;Lu,P.ElectronicandopticalpropertiesofYb/Al/Pco‐dopedsilica
opticalfiber.J.Lumin.2022,241,118513.
19. Li,L.;Zhang,C.;Lv,H.;Liu,C.;Wen,Z.;Jiang,J.TexturedevelopmentandtensilepropertiesofMg–Ybbinaryalloysduring
hotextrusionandsubsequentannealing.J.Magnes.Alloys2021,10,249–265.
20. Szyba,D.;Bajorek,A.;Babilas,D.;Temleitner,L.;Lukowiec,D.;Babilas,R.NewresorbableCa‐Mg‐Zn‐Yb‐B‐Aualloys:Struc‐
turalandcorrosionresistancecharacterization.Mater.Des.2022,213,110327.
21. Liu,W.J.;Chang,Y.H.;Fern,C.L.;Chen,Y.T.;Tsai,D.Y.;Lin,C.C.;Lin,S.H.;Wu,T.H.;Chi,P.W.;Lin,K.W.Yttriumaddition
andannealingeffectonthestructural,magnetic,adhesive,andopticalpropertiesofCoFeYthinfilmsonGlasssubstrate.Optik
2022,251,168406.
22. Ma,K.;Chung,T.S.;Good,R.J.Surfaceenergyofthermotropicliquidcrystallinepolyestersandpolyesteramide.J.Polym.Sci.
1998,36,2327–2337.
23. Owens,D.K.;Wendt,R.C.Estimationofthesurfacefreeenergyofpolymers.J.Appl.Polym.Sci.1969,13,1741–1747.
24. Kaelble,D.H.;Uy,K.C.AReinterpretationofOrganicLiquid‐PolytetrafluoroethyleneSurfaceInteractions.J.Adhens.1970,2,
50–60.
25. Budde,T.;Gatzen,H.H.MagneticpropertiesofanSmCo/NiFesystemformagneticmicroactuators.J.Magn.Magn.Mater.2004,
272,2027–2028.
26. Wen,D.;Li,J.;Gan,G.;Yang,Y.;Zhang,H.;Liu,Y.DoublepeaksofthepermeabilityspectraofobliquelysputteredCoFeB
amorphousfilms.Mater.Res.Bull.2019,110,107–111.
27. Chen,Y.T.;Xie,S.M.;Jheng,H.Y.Thelow‐frequencyalternative‐currentmagneticsusceptibilityandelectricalpropertiesof
Si(100)/Fe40Pd40B20(XÅ)/ZnO(500Å)andSi(100)/ZnO(500Å)/Fe40Pd40B20(YÅ)systems.J.Appl.Phys.2013,113,17B303.
28. Kong,S.H.;Okamoto,T.;Nakagawa,S.[Ni‐Fe/Si]doubleseedlayerwithlowsurfaceenergyforFe‐Co‐Bsoftmagneticunder‐
layerwithhighHkforperpendicularmagneticrecordingmedia.IEEETrans.Magn.2004,40,2389–2391.
29. Jassim,S.A.J.;Zumaila,A.A.R.A.;Waly,G.A.A.A.Influenceofsubstratetemperatureonthestructural,opticalandelectrical
propertiesofCdSthinfilmsdepositedbythermalevaporation.Res.Phys.2013,3,173–178.
30. Redjdal,N.;Salah,H.;Hauet,T.;Menari,H.;Chérif,S.M.;Gabouze,N.;Azzaz,M.Microstructural,electricalandmagnetic
propertiesofFe35Co65thinfilmsgrownbythermalevaporationfrommechanicallyalloyedpowders.ThinSolidFilm.2014,552,
164–169.
31. Oliver,W.C.;Pharr,G.M.Animprovedtechniquefordetermininghardnessandelasticmodulususingloadanddisplacement
sensingindentationexperiments.J.Mater.Res.1992,7,1564–1583.
32. Zhu,J.;Han,J.;Liu,A.;Meng,S.;Jiang,C.MechanicalpropertiesandRamancharacterizationofamorphousdiamondfilmsas
afunctionoffilmthickness.Surf.Coat.Technol.2007,201,6667–6669.
33. Liu,W.J.;Chang,Y.H.;Fern,C.L.;Chen,Y.T.;Jhou,T.Y.;Chiu,P.C.;Lin,S.H.;Lin,K.W.;Wu,T.H.AnnealingEffectonthe
contactangle,surfaceenergy,electricproperty,andnanomechanicalcharacteristicsofCo40Fe40W20thinfilms.Coatings2021,11,
1268.
34. Chen,Y.T.;Chen,C.W.;Wu,T.H.TheStructureandSurfaceEnergyofNi80Fe20Thinfilms.Appl.Sur.Sci.2015,351,946–949.
35. Porter,D.A.;Easterling,K.E.PhaseTransformationsinMetalsandAlloy,2nded.;CRCPress:London,UK,1992.
36. Tavakoli,M.M.;Dastjerdi,H.T.;Zhao,J.;Shulenberger,K.E.;Carbonera,C.;Po,R.;Cominetti,A.;Bianchi,G.;Klein,N.D.;
Bawendi,M.G.;Gradecak,S.;Kong,J.LightmanagementinorganicphotovoltaicsprocessedinambientconditionsusingZnO
nanowireandantireflectionlayerwithnanoconearray.Small2019,15,1900508.
37. Erdem,T.;Yang,L.;Xu,P.;Altintas,Y.;O’Neil,T.;Caciagli,A.;Ducati,C.;Mutlugun,E.;Scherman,O.A.;Eiser,E.Transpar‐
entfilmsmadeofhighlyscatteringparticles.Langmuir2020,36,911–918.