Article

Virtual Screening and In Vitro Experiments Highlight Cannabidiol as a Drug‐like Phosphodiesterase 9 Inhibitor

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The growing interest on the therapeutic potential against neurodegeneration of Cannabis sativa extracts, and of phytocannabinoids in particular, is paralleled by a limited understanding of the undergoing biochemical pathways in which these natural compounds may be involved. Computational tools are nowadays commonly enrolled in the drug discovery workflow and can guide the investigation of macromolecular targets for such molecules. In this contribution, in silico techniques have been applied to the study of C. sativa constituents at various extents, and a total of 7 phytocannabinoids and 4 terpenes were considered. On the side of ligand‐based virtual screening, physico‐chemical descriptors were computed and evaluated, highlighting the phytocannabinoids possessing suitable drug‐like properties to potentially target the central nervous system. Our previous findings and literature data prompted us to investigate the interaction of these molecules with phosphodiesterases (PDEs), a family of enzymes being studied for the development of therapeutic agents against neurodegeneration. Among the compounds, structure‐based techniques such as docking and molecular dynamics (MD), highlighted cannabidiol (CBD) as a potential and selective PDE9 ligand, since a promising calculated binding energy value (‐9.1 kcal/mol) and a stable interaction in the MD simulation timeframe were predicted. Additionally, PDE9 inhibition assay confirmed the computational results, and showed that CBD inhibits the enzyme in the nanomolar range in vitro, paving the way for further development of this phytocannabinoid as a therapeutic option against neurodegeneration.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Very interestingly, in several neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and progressive forms of multiple sclerosis, sharing some common physio pathological mechanisms including mitochondrial dysfunction and oxidative stress [42,64,[152][153][154], the use of phosphodiesterase inhibitors that increase cAMP level is strongly under investigation [22,[155][156][157]. ...
Article
Full-text available
In mammals during aging, reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, cause oxidative damage of macromolecules leading to respiratory chain dysfunction, which in turn increases ROS mitochondrial production. Many efforts have been made to understand the role of oxidative stress in aging and age-related diseases. The complex I of the mitochondrial respiratory chain is the major source of ROS production and its dysfunctions have been associated with several forms of neurodegeneration, other common human diseases and aging. Complex I-ROS production and complex I content have been proposed as the major determinants for longevity. The cAMP signal has a role in the regulation of complex I activity and the decrease of ROS production. In the last years, an increasing number of studies have attempted to activate cAMP signaling to treat age-related diseases associated with mitochondrial dysfunctions and ROS production. This idea comes from a long-line of studies showing a main role of cAMP signal in the memory consolidation mechanism and in the regulation of mitochondrial functions. Here, we discuss several evidences on the possible connection between complex I and cAMP pathway in the aging process.
... A relevant part of the drug discovery and development approach is traditionally based on the identification of compounds from plant sources, as nature can provide an unmatched variety of complex molecular structures endowed with biological activities [248][249][250][251][252][253][254][255]. However, fully understanding the underlying molecular mechanisms through which such compounds exert their pharmacological role is not trivial. ...
Article
Full-text available
The need to identify effective therapies for the treatment of psychiatric disorders is a particularly important issue in modern societies. In addition, difficulties in finding new drugs have led pharmacologists to review and re-evaluate some past molecules, including psychedelics. For several years there has been growing interest among psychotherapists in psilocybin or lysergic acid diethylamide for the treatment of obsessive-compulsive disorder, of depression, or of post-traumatic stress disorder, although results are not always clear and definitive. In fact, the mechanisms of action of psychedelics are not yet fully understood and some molecular aspects have yet to be well defined. Thus, this review aims to summarize the ethnobotanical uses of the best-known psychedelic plants and the pharmacological mechanisms of the main active ingredients they contain. Furthermore, an up-to-date overview of structural and computational studies performed to evaluate the affinity and binding modes to biologically relevant receptors of ibogaine, mescaline, N,N-dimethyltryptamine, psilocin, and lysergic acid diethylamide is presented. Finally, the most recent clinical studies evaluating the efficacy of psychedelic molecules in some psychiatric disorders are discussed and compared with drugs already used in therapy.
Article
Full-text available
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980–2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Article
Full-text available
(1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy. (3) Results: Incubation with the Bedrocan extract or THC exacerbated, whereas incubation with the FM2 extract or cannabidiol attenuated CA1 injury induced by OGD. Δ9-THC toxicity was prevented by CB1 receptor antagonists, the neuroprotective effect of cannabidiol was blocked by TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD, but not THC, had a significant protective effect toward neuronal damage and tissue disorganization caused by OGD in organotypic hippocampal slices. (4) Conclusions: Our results suggest that cannabinoids play different roles in the mechanisms of post-ischemic neuronal death. In particular, appropriate concentrations of CBD or CBD/THC ratios may represent a valid therapeutic intervention in the treatment of post-ischemic neuronal death.
Article
Full-text available
“Medicinal cannabis” is defined as the use of cannabis-based products for the treatment of an illness. Investigations of cannabis compounds in psychiatric and neurological illnesses primarily focus on the major cannabinoids, cannabidiol (CBD) and Δ ⁹ -tetrahydrocannabinol (Δ ⁹ -THC), which are hypothesised to benefit multiple illnesses manifesting cognitive impairment, neurodegeneration and neuro-inflammation, as well as chronic pain, epilepsy and post-traumatic stress disorder, respectively. The cannabis plant contains >500 compounds, including terpenes responsible for the flavour and fragrance profiles of plants. Recently, research has begun providing evidence on the potential use of certain plant-derived terpenes in modern medicine, demonstrating anti-oxidant, anti-inflammatory, and neuroprotective effects of these compounds. This review examined the effects of two key terpenes, pinene and linalool, on parameters relevant to neurological and psychiatric disorders, highlighting gaps in the literature and recommendations for future research into terpene therapeutics. Overall, evidence is mostly limited to preclinical studies and well-designed clinical trials are lacking. Nevertheless, existing data suggests that pinene and linalool are relevant candidates for further investigation as novel medicines for illnesses, including stroke, ischemia, inflammatory and neuropathic pain (including migraine), cognitive impairment (relevant to Alzheimer's disease and ageing), insomnia, anxiety, and depression. Linalool and pinene influence multiple neurotransmitter, inflammatory and neurotrophic signals as well as behaviour, demonstrating psycho-activity (albeit non-intoxicating). Optimising the phytochemical profile of cannabis chemovars to yield therapeutic levels of beneficial terpenes and cannabinoids, such as linalool, pinene and CBD, could present a unique opportunity to discover novel medicines to treat psychiatric and neurological illnesses; however, further research is needed.
Article
Full-text available
Dominantly inherited Alzheimer’s disease (DIAD) causes predictable biological changes decades before the onset of clinical symptoms, enabling testing of interventions in the asymptomatic and symptomatic stages to delay or slow disease progression. We conducted a randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages. Mutation carriers were assigned 3:1 to either drug or placebo and received treatment for 4–7 years. The primary outcome was a cognitive end point; secondary outcomes included clinical, cognitive, imaging and fluid biomarker measures. Fifty-two participants carrying a mutation were assigned to receive gantenerumab, 52 solanezumab and 40 placebo. Both drugs engaged their Aβ targets but neither demonstrated a beneficial effect on cognitive measures compared to controls. The solanezumab-treated group showed a greater cognitive decline on some measures and did not show benefits on downstream biomarkers. Gantenerumab significantly reduced amyloid plaques, cerebrospinal fluid total tau, and phospho-tau181 and attenuated increases of neurofilament light chain. Amyloid-related imaging abnormalities edema was observed in 19.2% (3 out of 11 were mildly symptomatic) of the gantenerumab group, 2.5% of the placebo group and 0% of the solanezumab group. Gantenerumab and solanezumab did not slow cognitive decline in symptomatic DIAD. The asymptomatic groups showed no cognitive decline; symptomatic participants had declined before reaching the target doses.
Article
Full-text available
Alzheimer’s disease is a memory-related neurodegenerative condition leading to cognitive impairment. Cholinergic deficit, together with other underlying mechanisms, leads the to onset and progression of the disease. Consequently, acetylcholinesterase inhibitors are used for the symptomatic treatment of dementia, even if limited efficacy is observed. More recently, some specific phosphodiesterase isoforms emerged as promising, alternative targets for developing inhibitors to contrast neurodegeneration. Phosphodiesterase isoforms 4,5 and 9 were found to be expressed in brain regions that are relevant for cognition. Given the complex nature of Alzheimer’s disease and the combination of involved biochemical mechanisms, the development of polypharmacological agents acting on more than one pathway is desirable. This review provides an overview of recent reports focused on natural and Nature-inspired small molecules, or plant extracts, acting as dual cholinesterase and phosphodiesterase inhibitors. In the context of the multi-target directed ligand approach, such molecules would pave the way for the development of novel agents against neurodegeneration. More precisely, according to the literature data, xanthines, other alkaloids, flavonoids, coumarins and polyphenolic acids represent promising scaffolds for future optimization.
Article
Full-text available
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Article
Full-text available
Coronavirus (SARS-CoV-2), the causative agent of the Covid-19 pandemic has proved itself as the deadliest pathogen. A major portion of the population has become susceptible to this strain. Scientists are pushing their limits to formulate a vaccine against Covid-19 with the least side effects. Although the recent discoveries of vaccines have shown some relief from the covid infection rate, however, physical fatigue, mental abnormalities, inflammation and other multiple organ damages are arising as post-Covid symptoms. The long-term effects of these symptoms are massive. Patients with such symptoms are known as long-haulers and treatment strategy against this condition is still unknown. In this study, we tried to explore a strategy to deal with the post-Covid symptoms. We targeted three human proteins namely ACE2, Interleukin-6, Transmembrane serine protease and NRP1 which are already reported to be damaged via Covid-19 proteins and upregulated in the post-Covid stage. Our target plant in this study is Cannabis (popularly known as ‘Ganja’ in India). The molecular docking and simulation studies revealed that Cannabidiol (CBD) and Cannabivarin (CVN) obtained from Cannabis can bind to post-Covid symptoms related central nervous system (CNS) proteins and downregulate them which can be beneficial in post-covid symptoms treatment strategy. Thus we propose Cannabis as an important therapeutic plant against post-Covid symptoms. Communicated by Ramaswamy H. Sarma
Article
Full-text available
An ever‐increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 h before and 3, 24, and 48 h after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5‐HT1A (WAY‐100635, 10 mg/kg) or PPAR‐γ (GW9662, 3 mg/kg) receptor antagonists 0.5 h prior to each injection of CBD. The animals were evaluated using a multi‐task testing battery that included the open field (OF), elevated zero maze (EZM), Y‐maze (YM), and forced swim test (FST). CBD prevented anxiety‐like behavior, memory impairments, and despair‐like behaviors induced by BCCAO in mice. The anxiolytic‐like effects of CBD in BCCAO mice were attenuated by CB1, CB2, 5‐HT1A, and PPAR‐γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1, CB2, 5‐HT1A, and PPAR‐γ receptors in the functional recovery induced by CBD in BCCAO mice.
Article
Full-text available
As life expectancy increases, dementia affects a growing number of people worldwide. Besides current treatments, phosphodiesterase 9 (PDE9) represents an alternative target for developing innovative small molecules to contrast neurodegeneration. PDE inhibition promotes neurotransmitter release, amelioration of microvascular dysfunction, and neuronal plasticity. This review will provide an update on natural and nature-inspired PDE9 inhibitors, with a focus on the structural features of PDE9 that encourage the development of isoform-selective ligands. The expression in the brain, the presence within its structure of a peculiar accessory pocket, the asymmetry between the two subunits composing the protein dimer, and the selectivity towards chiral species make PDE9 a suitable target to develop specific inhibitors. Additionally, the world of natural compounds is an ideal source for identifying novel, possibly asymmetric, scaffolds, and xanthines, flavonoids, neolignans, and their derivatives are currently being studied. In this review, the available literature data were interpreted and clarified, from a structural point of view, taking advantage of molecular modeling: 3D structures of ligand-target complexes were retrieved, or built, and discussed.
Article
Full-text available
Terpenes are the primary constituents of essential oils and are responsible for the aroma characteristics of cannabis. Together with the cannabinoids, terpenes illustrate synergic and/or entourage effect and their interactions have only been speculated in for the last few decades. Hundreds of terpenes are identified that allude to cannabis sensory attributes, contributing largely to the consumer’s experiences and market price. They also enhance many therapeutic benefits, especially as aromatherapy. To shed light on the importance of terpenes in the cannabis industry, the purpose of this review is to morphologically describe sources of cannabis terpenes and to explain the biosynthesis and diversity of terpene profiles in different cannabis chemovars.
Article
Full-text available
Cannabis (Cannabis sativa L.) is a highly promising medicinal plant with well-documented effectiveness and growing use in the treatment of various medical conditions. Cannabis oils are mostly used in galenic preparations, due to their easy adjustment of the administration dose, together with the enhanced bioavailability of its active compounds. As stated by the Italian Law (9/11/2015, 279 Official Gazette), “to ensure the quality of the oil-based cannabis preparation, the titration of the active substance(s) should be carried out.” This study aims to represent the Italian panorama of cannabis oils, which were analyzed (8,201) to determine their cannabinoids content from 2017 to 2019. After application of the exclusion criteria, 4,774 standardized cannabis oils were included, which belong to different medicinal cannabis varieties and prepared according to different extraction methods. The concentration of the principal cannabinoids was taken into account dividing samples on the basis of the main extraction procedures and cannabis varieties. According to this analysis, the most substantial variations should be attributed to different cannabis varieties rather than to their extraction protocols. This study may be the starting point of preparatory pharmacists to assess the correct implementation of the preparation procedures and the quality of the extracts.
Article
Full-text available
In the last few years research into Cannabis and its constituent phytocannabinoids has burgeoned, particularly in the potential application of novel cannabis phytochemicals for the treatment of diverse illnesses related to neurodegeneration and dementia, including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s disease (HD). To date, these neurological diseases have mostly relied on symptomatological management. However, with an aging population globally, the search for more efficient and disease-modifying treatments that could delay or mitigate disease progression is imperative. In this context, this review aims to present a state of art in the research with cannabinoids and novel cannabinoid-based drug candidates that have been emerged as novel promising alternatives for drug development and innovation in the therapeutics of a number of diseases, especially those related to CNS-disturbance and impairment.
Article
Full-text available
Embase and Pubmed were systematically searched for articles addressing the neuroprotective properties of phytocannabinoids, aside from cannabidiol and Δ9‐tetrahydrocannabinol, including Δ9‐tetrahydrocannabinolic acid (Δ9‐THCA), Δ9‐tetrahydrocannabivarin (Δ9‐THCV), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabichromene (CBC), cannabichromenic acid (CBCA), cannabichromevarin (CBCV), cannabigerol (CBG), cannabigerolic acid (CBGA), cannabigerivarin (CBGV), cannabigerovarinic acid (CBGVA), cannabichromevarinic acid (CBCVA) cannabidivarinic acid (CBDVA) and cannabinol (CBN). Out of 2,341 studies, 31 articles met inclusion criteria. CBG (range 5 mg.kg‐1 to 20 mg.kg‐1) and CBDV (range 0.2 mg.kg‐1 to 400 mg.kg‐1) displayed efficacy in models of Huntington’s disease and epilepsy. CBC (10‐75 mg.kg‐1), Δ9‐THCA (20 mg.kg‐1) and Δ9‐THCV (range 0.025‐2.5 mg.kg‐1) showed promise in models of seizure and hypomobility, Huntington’s and Parkinson’s disease. Limited mechanistic data showed CBG, VCE.003, VCE.003.2 and Δ9‐THCA mediated some of their effects through PPARy, but no other receptors were probed. Further studies with these phytocannabinoids, and their combinations, are warranted across a range of neurodegenerative disorders.
Article
Full-text available
Increasing life expectancy prompts the development of novel remedies for cognitive decline: 44 million people worldwide are affected by dementia and this number is predicted to triple by 2050. Acetylcholinesterase (AChE) and N-methyl-D-aspartate (NMDA) receptors represent the targets of currently available drugs for Alzheimer’s disease (AD), that are anyway characterized by limited efficacy. Thus, the search for therapeutic agents with alternative or combined mechanisms of action is wide open. Since variations in cAMP, cGMP and/or NO levels interfere with downstream pathways involved in memory processes, evidences supporting the potential of phosphodiesterase (PDE) inhibitors in contrasting neurodegeneration should be critically considered. For the preparation of this review, more than 140 scientific papers were retrieved by searching PubMed and Scopus databases. A systematic approach was adopted when overviewing the different PDE isoforms, taking into account details on brain localization, downstream molecular mechanisms and inhibitors currently under study, according to available in vitro and in vivo data. In the context of drug repurposing, a section focusing on PDE5 was introduced. Original computational studies were performed to rationalize the emerging evidences that suggest the role of PDE5 inhibitors as multi-target agents against neurodegeneration. Moreover, since such compounds must cross the blood brain barrier (BBB) and reach inhibitory concentrations in CNS to exert their therapeutic activity, physicochemical parameters were analyzed and discussed. Taken together, literature and computational data suggest that some PDE5 inhibitors, such as tadalafil, represent promising candidates.
Article
Full-text available
Cannabis sativa, commonly known as marijuana, contains a pool of secondary plant metabolites with therapeutic effects. Besides Δ9-tetrahydrocannabinol that is the principal psychoactive constituent of Cannabis, cannabidiol (CBD) is the most abundant nonpsychoactive phytocannabinoid and may represent a prototype for anti-inflammatory drug development for human pathologies where both the inflammation and oxidative stress (OS) play an important role to their etiology and progression. To this regard, Alzheimer's disease (AD), Parkinson's disease (PD), the most common neurodegenerative disorders, are characterized by extensive oxidative damage to different biological substrates that can cause cell death by different pathways. Most cases of neurodegenerative diseases have a complex etiology with a variety of factors contributing to the progression of the neurodegenerative processes; therefore, promising treatment strategies should simultaneously target multiple substrates in order to stop and/or slow down the neurodegeneration. In this context, CBD, which interacts with the eCB system, but has also cannabinoid receptor-independent mechanism, might be a good candidate as a prototype for anti-oxidant drug development for the major neurodegenerative disorders, such as PD and AD. This review summarizes the multiple molecular pathways that underlie the positive effects of CBD, which may have a considerable impact on the progression of the major neurodegenerative disorders.
Article
Full-text available
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Article
Full-text available
In 1998, sildenafil was marketed as the first FDA-approved oral drug for the treatment of erectile dysfunction (ED). During the last two decades, the commercialization of other synthetic phosphodiesterase 5 (PDE5) inhibitors has been paralleled by the rise of remedies based on natural molecules from different chemical classes (flavonoids, polyphenols and alkaloids in general). In this work, a set of in silico tools were applied to study a panel of 30 natural compounds claimed to be effective against ED in the scientific literature or in folk medicine. First, pharmacokinetic properties were analysed to exclude the compounds lacking in specific drug-like features. Estimated binding energy for PDE5 and selectivity towards other PDE isoforms were then considered to highlight some promising molecules. Finally, a detailed structural investigation of the interaction pattern with PDE in comparison with sildenafil was conducted for the best performing compound of the set.
Article
Full-text available
Hemp seed oil is well known for its nutraceutical, cosmetic and pharmaceutical properties due to a perfectly balanced content of omega 3 and omega 6 polyunsaturated fatty acids. Its importance for human health is reflected by the success on the market of organic goods in recent years. However, it is of utmost importance to consider that its healthy properties are strictly related to its chemical composition, which varies depending not only on the manufacturing method, but also on the hemp variety employed. In the present work, we analyzed the chemical profile of ten commercially available organic hemp seed oils. Their cannabinoid profile was evaluated by a liquid chromatography method coupled to high-resolution mass spectrometry. Besides tetrahydrocannabinol and cannabidiol, other 30 cannabinoids were identified for the first time in hemp seed oil. The results obtained were processed according to an untargeted metabolomics approach. The multivariate statistical analysis showed highly significant differences in the chemical composition and, in particular, in the cannabinoid content of the hemp oils under investigation.
Article
Full-text available
In a high percentage (≥85%) of both sporadic and familial adenomatous polyposis forms of colorectal cancer (CRC), the inactivation of the APC tumor suppressor gene initiates tumor formation and modulates the Wnt/β-Catenin transduction pathways involved in the control of cell proliferation, adhesion and metastasis. Increasing evidence showed that the endocannabinoids control tumor growth and progression, both in vitro and in vivo. We evaluated the effect of Rimonabant, a Cannabinoid Receptor 1 (CB1) inverse agonist, on the Wnt/β-Catenin pathway in HCT116 and SW48 cell lines carrying the genetic profile of metastatic CRC poorly responsive to chemotherapies. In these models, Rimonabant inhibited the Wnt/β-Catenin canonical pathway and increased β-Catenin phosphorylation; in HCT116 cells, but not in SW48, the compound also triggered the Wnt/β-Catenin non canonical pathway activation through induction of Wnt5A and activation of CaMKII. The Rimonabant-induced downregulation of Wnt/β-Catenin target genes was partially ascribable to a direct inhibition of p300/KAT3B histone acetyltransferase, a coactivator of β-Catenin dependent gene regulation. Finally, in HCT116 xenografts, Rimonabant significantly reduced tumor growth and destabilized the nuclear localization of β-Catenin. Obtained data heavily supported the rationale for the use of cannabinoids in combined therapies for metastatic CRC harbouring activating mutations of β-Catenin.
Article
Full-text available
Introduction: Phosphodiesterase (PDE) inhibitors improve signaling pathways in brain circuits by increasing intracellular cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). In the last decade, the first clinical studies investigating selective PDE inhibitors in Alzheimer’s disease (AD) have been initiated, based on their positive effects on cognitive processes and neuroprotection in numerous animal studies. Areas covered: This article reviews the clinical studies investigating the pro-cognitive/neuroprotective effects of PDE inhibitors in patients with AD, as well as in age-associated memory impaired elderly and patients with mild cognitive impairment (MCI), the prodromal stage of AD. PDE inhibitors will also be discussed with respect to adverse effects including safety and tolerability. Expert opinion: The limited available data of clinical studies with PDE inhibitors tested in different populations of AD patients do not allow the drawing of any concrete conclusion yet. Currently, studies with a PDE3 (cilostazol) or PDE9 inhibitor (BI 409306) are still ongoing in patients with MCI or AD, respectively. Studies with PDE4 inhibitors (HT-0712, roflumilast and BPN14770) in healthy elderly and elderly with age-associated memory impairments indicate that the optimum dose and/or inhibiting the most relevant PDE isoform hold great promise when tested in the appropriate population of patients with MCI or AD eventually.
Article
Full-text available
To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.
Article
Full-text available
Phosphodiesterase (PDE) inhibitors are currently under evaluation as agents that may facilitate the improvement of cognitive impairment associated with Alzheimer's disease. Our aim was to determine whether inhibitors of PDEs 4,5 and 9 could alleviate the cytotoxic effects of amyloid beta 1–42 (Aβ1-42) via a mechanism involving the small heatshock protein HSP20. We show that inhibition of PDEs 4,5 and 9 but not 3 induces the phosphorylation of HSP20 which, in turn, increases the co-localisation between the chaperone and Aβ1-42 to significantly decrease the toxic effect of the peptide. We conclude that inhibition of PDE9 is most effective to combat Aβ1-42 cytotoxicity in our cell model.
Article
Full-text available
Apart from efficacy and toxicity, many drug development failures are imputable to poor pharmacokinetics and bioavailability. Gastrointestinal absorption and brain access are two pharmacokinetic behaviors crucial to estimate at various stages of the drug discovery processes. To this end, the Brain Or IntestinaL EstimateD permeation method (BOILED-Egg) is proposed as an accurate predictive model that works by computing the lipophilicity and polarity of small molecules. Concomitant predictions for both brain and intestinal permeation are obtained from the same two physicochemical descriptors and straightforwardly translated into molecular design, owing to the speed, accuracy, conceptual simplicity and clear graphical output of the model. The BOILED-Egg can be applied in a variety of settings, from the filtering of chemical libraries at the early steps of drug discovery, to the evaluation of drug candidates for development.
Article
Full-text available
Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric-oxide- and natriuretic-peptide-coupled signalling, stimulating phosphorylation changes by protein kinase G. Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation. Furthermore, although PDE5A regulates nitric-oxide-generated cGMP, nitric oxide signalling is often depressed by heart disease. PDEs controlling natriuretic-peptide-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A (refs 7, 8) is expressed in the mammalian heart, including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates natriuretic-peptide- rather than nitric-oxide-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neurohormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of nitric oxide synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phosphoproteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signalling independent of the nitric oxide pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target.
Article
Full-text available
Secondary compounds of the plant are indispensable to cope with its often hostile environment and the great chemical diversity and variability of intraspecific and interspecific secondary metabolism is the result of natural selection. Recognition of the biological properties of secondary compounds have increased their great utility for human uses; numerous compounds now are receiving particular attention from the pharmaceutical industry and are important sources of a wide variety of commercially useful base products. Medical and other effects of Cannabis sativa L. are due to concentration and balance of various active secondary metabolites, particularly the cannabinoids, but including also a wide range of terpenoids and flavonoids. A wide qualitative and quantitative variability in cannabinoids, terpenoids, and flavonoids contents in Cannabis species are apparent from reports in the literature. Terpenes are strongly inherited and little influenced by environmental factors and, therefore, have been widely used as biochemical marker in chemosystematic studies to characterize plant species, provenances, clones, and hybrids. This study investigated the variability of terpene profiles in C. sativa. The terpene composition in inflorescences of samples collected from progenies of 16 plants derived from different strains was analysed by GC/FID. The amount of each terpene (in sufficient quantities to be considered in statistical analysis) was expressed as a percentage of total terpenes. Results showed a large variation between different strains in the relative contents for several mono-terpenes (α-pinene, camphene, β-pinene, sabinene, Δ-3-carene, α-phellandrene, β-myrcene, α-terpinene, limonene, 1.8-cineole, γ-terpinene, cis-β-ocimene, trans-β-ocimene, α-terpinolene) and one sesquiterpene, β-caryophyllene. This variability in terpene composition can provide a potential tool for the characterization of Cannabis biotypes and warrant further research to evaluate the drug's medical value and, at the same time, to select less susceptible chemotypes to the attack of herbivores and diseases. INTRODUCTION The psychotropic effects of Cannabis, primarily due to the main psychotropic cannabinoid, Δ9-THC (delta9-tetrahydrocannabinol), have been intensely studied as pure compounds for medicinal activity. The pharmaceutical industry, however, is interested in the plant as a source of raw material and studying the variability and synergy among the various secondary metabolites. Other cannabinoids, terpenoids, and flavonoids may reduce Δ9-THC-induced anxiety, cholinergic deficit, and immunosuppression, while at the same time increase cerebral blood flow, enhance cortical activity, kill respiratory pathogens, and provide anti-inflammatory activity (McPartland and Russo, 2001). Terpenoids possess a broad range of biological properties, including cancer chemo-preventive effects, skin penetration enhancement, antimicrobial, antifungal, antiviral, anti-hyperglycemic, anti-inflammatory, and antiparasitic activities (Paduch et al., 2007). Plants exhibit dynamic biochemical changes when attacked by diseases and herbivores and in response to abiotic stresses, resulting in the induced production and Proc. XXVIII th IHC – IHC Seminar: A New Look at Medicinal and Aromatic Plants Eds.: Á. Máthé et al. Acta Hort. 925, ISHS 2011
Article
Alzheimer's disease (AD), one of the greatest threats to human health, is characterized by declined cognition and changed behavior. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) that play an important role in learning and memory are hydrolyzed by phosphodiesterases (PDEs). Most PDE isoforms are highly expressed in the brain, and the inhibition of PDEs is beneficial to counteract AD. Thus, targeting PDEs represents a therapeutic potential for this disease. So far, a variety of PDE inhibitors have been discovered with significant cognitive enhancement effects in animal models and more than ten agents have entered into clinical trials. In this review, we summarize PDE mediated cyclic nucleotide signaling pathways, PDE family members involved in AD and recent advance of PDE inhibitors in preclinical and clinical studies, trying to provide an outlook of PDE inhibitors for the treatment of AD in future.
Article
Anti-amyloid immunotherapies will provide the first disease-modifying therapeutics
Article
The rapid pattern of population ageing in recent years increases the risk of appearance of associated neurodegenerative diseases. Dementias are one of the most feared disorders, and although not necessarily all elderly people suffer from dementia, the number of people with this disease is increasing rapidly. The causes of dementia are multiple, and the diagnosis of the different types of dementia is complicated since most patients display mixed dementias, and symptoms overlapping. Personalized diagnosis and treatments would be desirable, but this requires a deep knowledge of each type of dementia where a multidisciplinary approach would be ideal. Thus, the aim of this review is to summarize the features of the main types of dementia as well as to compilate the more recent findings on this subject, ranging from genetic and molecular studies to animal models, including the use of omics platforms based on powerful hybrid instrumental techniques, and neuroimage techniques. On the other hand, we consider the aspects that can prevent these disorders and depend on modifiable factors, such as diet, among others. Finally, new technologies, such as nanotechnology, can provide novel strategies for the administration of effective treatments. In this regard, our purpose is to provide the most updated and complete overview of the state of the art characteristics of these disorders.
Article
In recent years, neurodegeneration has been recognized as a clinical condition that is characterized by neuronal death, dementia, and gradual diminish of cognitive function, poor body coordination and motor disorders. Several studies deciphering cellular and molecular mechanisms show a promising insight for several kinds of damages including neurodegeneration in central nervous system. In addition, there has been an inflammatory key mechanism involved in neurodegenerative disorders. There is a paucity of literature in both cellular‐ and molecular‐mediated targets in damaged neurons at both in vitro and in vivo research models. It has been notified that CNS has a very restricted magnitude of regeneration. Numerous key factors have also been studied and considered as possible culprit of neurodegeneration. Autophagy is a well‐known degradation process wherein vesicular machinery as autophagosome transports cytoplasmic contents to the lysosomes. In earlier reports, a bridging connection between autophagy and its associated mechanism has been established. Natural compounds as a neuro‐therapeutics have been recognized in neurodegeneration. In our review, we discuss the mechanisms for the onset and progression in neurodegeneration, via inflammation and autophagic machine available in cellular compartments in CNS. This review also discusses about the neuroprotective efficacy of natural compounds against neurodegeneration episodes displays in neuronal platform.
Article
Cannabidiol (CBD) is a non-psychotropic phytocannabinoid which represents one of the constituents of the “phytocomplex” of Cannabis sativa. This natural compound is attracting growing interest since when CBD-based remedies and commercial products were marketed. This review aims at exhaustively addressing the extractive and analytical approaches that have been developed for the isolation and quantification of CBD. Recent updates on cutting-edge technologies were critically examined in terms of yield, sensitivity, flexibility and performances in general, and are reviewed alongside original representative results. As an add-on to currently available contributions in the literature, the evolution of novel, efficient synthetic approaches for the preparation of CBD, a procedure which is appealing for the pharmaceutical industry, is also discussed. Moreover, given the increasing interest on the therapeutic potential of CBD and the limited understanding of the undergoing biochemical pathways, the reader will be updated about recent in silico studies on the molecular interactions of CBD towards several different targets attempting to fill this gap. Computational data retrieved from the literature have been integrated with novel in silico experiments, critically discussed to provide a comprehensive and updated overview on the undebatable potential of CBD and its therapeutic profile.
Article
N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) is an established cellular model underlying learning and memory, and involves intracellular signaling mediated by the second messenger cyclic guanosine monophosphate (cGMP). As phosphodiesterase (PDE)9A selectively hydrolyses cGMP in areas of the brain related to cognition, PDE9A inhibitors may improve cognitive function by enhancing NMDA receptor-dependent LTP. This study aimed to pharmacologically characterize BI 409306, a novel PDE9A inhibitor, using in vitro assays and in vivo determination of cGMP levels in the brain. Further, the effects of BI 409306 on synaptic plasticity evaluated by LTP in ex vivo hippocampal slices, and on cognitive performance in rodents were also investigated. In vitro assays demonstrated that BI 409306 is a potent and selective inhibitor of PDE9A with a mean (standard deviation) concentration at half-maximal inhibition (IC50) of 65 (11) nM. BI 409306 increased cGMP levels in rat prefrontal cortex and cerebrospinal fluid, and attenuated a reduction in mouse striatum cGMP induced by the NMDA receptor antagonist MK 801. In ex vivo rat brain slices, BI 409306 enhanced LTP induced by both weak and strong tetanic stimulation. Treatment of mice with BI 409306 reversed MK 801-induced working memory deficits in a T maze spontaneous alternation task, and improved long term memory in an object recognition task. These findings suggest that BI 409306 is a potent and selective inhibitor of PDE9A. BI 409306 shows target engagement by increasing cGMP levels in brain, facilitates synaptic plasticity as demonstrated by enhancement of hippocampal LTP, and improves episodic and working memory function in rodents. SIGNIFICANCE STATEMENT: This pre-clinical study demonstrates that BI 409306 is a potent and selective PDE9A inhibitor in rodents. Treatment with BI 409306 increased brain cGMP levels, promoted long-term potentiation, and improved episodic and working memory performance in rodents. These findings support a role for PDE9A in synaptic plasticity and cognition. The potential benefits of BI 409306 are currently being investigated in clinical trials.
Article
Fast and accurate molecular force field (FF) parameterization is still an unsolved problem. Accurate FFs are not generally available for all molecules, like novel drug-like molecules. While methods based on quantum mechanics (QM) exist to parameterize them with better accuracy, they are computationally expensive and slow, which limits applicability to a small number of molecules. Here, we present Parameterize, an automated FF parameterization method based on neural network potentials, which are trained to predict QM energies. We show, our method produces more accurate parameters than the general AMBER FF (GAFF2), while requiring just a fraction of time compared with an equivalent parameterization using QM calculations. We expect, our method to be of critical importance in computational structure-based drug discovery. Parameterize is available online at PlayMolecule (www.playmolecule.org).
Article
Medicinal plants have curative properties due to the presence of various complex chemical substances of different composition, which are found as secondary metabolites in one or more parts of the plant. The diverse secondary metabolites play an important role in the prevention and cure of various diseases including neurodegenerative diseases like Alzheimer’s disease. Naturally occurring compounds such as flavonoids, polyphenols, alkaloids, and glycosides found in various parts of the plant and/or marine sources may potentially protect neurodegeneration as well as improve memory and cognitive function. Many natural compounds show anti-Alzheimer activity through specific pharmacological mechanisms like targeting -amyloid, Beta-secretase 1 and Acetylcholinesterase. In this review, we have compiled more than 130 natural products with a broad diversity in the class of compounds were isolated from different sources showing anti-Alzheimer properties.
Article
BACE-1 is considered to be one of the targets for prevention and treatment of Alzheimer's disease (AD). We here report a novel class of semi-synthetic derivatives of prenylated isoflavones, obtained from the derivatization of natural flavonoids from Maclura pomifera. In vitro anti-AD effect of the synthesized compounds were evaluated via human recombinant BACE-1 inhibition assay. Compound 7, 8 and 13 were found to be the most active candidates which demonstrates good correlation between the computational docking and pharmacokinetic predictions. Moreover, cytotoxic studies demonstrated that the compounds are not toxic against normal and cancer cell lines. Among these three compounds, compound 7 enhance the activity of P-glycoprotein (P-gp) on A549 cancer cells and increases the activity of P-gp ATPase with a possible role on the efflux of amyloid-β across the blood- brain barrier. In conclusion, the present findings may pave the way for the discovery of a novel class of compounds to prevent and/or treat AD.
Article
Among the diseases affecting the Central Nervous System (CNS), neurodegenerations attract the interest of both the clinician and the medicinal chemist. The increasing average age of population, the growing number of patients and the lack of long-term effective remedies push ahead the quest for novel tools against this class of pathologies. We present a review on the state of the art of the molecules (or combination of molecules) of a natural origin which are currently under study against two well-defined pathologies: Parkinson’s Disease (PD) and Huntington’s Disease (HD). Nowadays, very few tools are available for preventing or counteracting the progression of such diseases. Two major parameters were considered for the preparation of this review: particular attention was reserved to these research works presenting well-defined molecular mechanisms for the studied compounds, and, where available, papers reporting in vivo data were preferred. A literature search for peer-reviewed articles using PubMed, Scopus and Reaxys databases was performed, exploiting different keywords and logical operators: 91 papers were considered (preferentially published after 2015). The review presents a brief overview on the aetiology of the studied neurodegenerations and the current treatments, followed by a detailed discussion of the natural and semi-synthetic compounds dividing them in different paragraphs considering their several mechanisms of action.
Article
Background: Dementias and all related neurodegenerative diseases of the Central Nervous System (CNS) are a current issue arousing a great deal of interest in the international scientific community. This is due to the increasing number of patients suffering from these diseases. These pathologies represent a serious problem, not only concerning the quality of life of the patient, but in addition, the enormous economic efforts that society has to do for their treatment. There are currently a few strategies that are available in order to prevent the progression or to mitigate symptoms of the aforementioned diseases.This consideration is particularly true if we consider the specific pathology of Alzheimer's Disease (AD). Methods: We performed a literature search for peer-reviewed articles using different databases, such as PubMed or Scopus, and exploiting different keywords and different logical operators. Results: ninety-eight papers were included in the review. Four papers give an overview of the background of the dementias all over the world. The remaining papers are focused on new possibilities of treatment with natural and semi-synthetic compounds for AD. Conclusion: The aim of this review is to give an overview of new and promising natural products and semi-synthetic compounds which could represent a source of "lead compounds" for the development of new potential drugs that could be a valid therapeutic strategy for the treatment of this pathology.
Article
Parkinson’s disease (PD) is a neurodegenerative disorder bearing motor and nonmotor symptoms. The treatment today is symptomatical rather than preventive or curative and this leaves the field open for the search of both novel molecular targets and drug candidates. Interference with α-synuclein fibrillation, monoamine oxidase (MAO) inhibition, modulation of adenosine receptors and the inhibition of specific phosphodiesterase (PDE) isoforms are some of the currently pursued strategies. We synthesised and studied some semi-synthetic berberine derivatives using a set of in silico tools. We evaluated their drug-likeness and tested the compounds against a set of target proteins involved in the onset or progression of PD, with a particular attention to MAO-B. Preliminary in vitro assay on MAO-B confirmed our in silico predictions.
Chapter
The CB1 and CB2 cannabinoid receptors (CB1R, CB2R) are members of the G protein-coupled receptor (GPCR) family that were identified over 20 years ago. CB1Rs and CB2Rs mediate the effects of Δ⁹-tetrahydrocannabinol (Δ⁹-THC), the principal psychoactive constituent of marijuana, and subsequently identified endogenous cannabinoids (endocannabinoids) anandamide and 2-arachidonoyl glycerol. CB1Rs and CB2Rs have both similarities and differences in their pharmacology. Both receptors recognize multiple classes of agonist and antagonist compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. This chapter will discuss their pharmacological characterization, distribution, phylogeny, and signaling pathways. In addition, the effects of extended agonist exposure and how that affects signaling and expression patterns of the receptors are considered.
Article
Protein preparation is a critical step in molecular simulations consisting in refining a protein PDB structure by assigning titration states and optimizing the hydrogen bonding network. In this application note, we describe ProteinPrepare, a web application designed to interactively support the preparation of protein structures. Users can upload a PDB file, choose the solvent pH value, and inspect the resulting protonated residues and H-bonding network within a 3D web interface. Protonation states are suggested automatically, but can be manually changed using the visual aid of the hydrogen bond network. Tables and diagrams provide estimated pKa values and charge states, with visual indication for cases where review is required. We expect the graphical interface to be a useful instrument to assess the validity of the preparation, nevertheless the script to execute the preparation offline with the High Throughput Molecular Dynamics (HTMD) environment is also provided for non-interactive operations.
Article
Background: Phosphodiesterase 5 inhibitors (PDE5-Is) sildenafil, vardenafil, tadalafil and the recently approved avanafil represent the first-line choice for both on-demand and chronic treatment of erectile dysfunction (ED). In addition to this, sildenafil and tadalafil, have also been approved for the treatment of pulmonary arterial hypertension. Due to its expression and localization in many tissues, PDE5 and its regulation has been reported to be involved in several other diseases. Objective: We aim to provide an updated overview of the emerging therapeutic applications of PDE5-Is besides ED, taking into account the latest ongoing research reports. Methods: We searched online databases (Pubmed, Reaxys, Scopus) to lay the bases for an accurate, quality criteria-based literature update. We focused our attention on most recent research reports, in particular when supported by pre-clinical and clinical data. Results: The regulation of PDE5 may influence pathological conditions such as, among the others, heart failure, cystic fibrosis, cancer, CNS-related diseases, diabetes and dysfunctions affecting male urinary/reproductive system. Conclusion: Sildenafil, vardenafil, tadalafil and the other chemical entities considered PDE5-Is showed overall positive results and significant improvements in the studied disease, thus some discordant results, in particular when comparing pre-clinical and clinical data, have to be pointed out, suggesting that further insights are needed especially to assess the exact molecular pathway underlying.
Article
(±)-Torreyunlignans A-D (1a/1b-4a/4b), four pairs of new 8-9' linked neolignan enantiomers featuring a rare (E)-2-styryl-1,3-dioxane moiety, were isolated from the trunk of Torreya yunnanensis. The structures were determined by combined spectroscopic and chemical methods, and the absolute configurations were elucidated by ECD calculations. The compounds were screened by using tritium-labeled adenosine 3',5'-cyclic monophosphate ([(3)H]-cGMP) as a substrate for inhibitory affinities against phosphodiesterase-9A (PDE9A), which is a potential target for the treatment of diabetes and Alzheimer's disease. All of the enantiomers exhibited inhibition against PDE9A with IC50 values ranging from 5.6 to 15.0 μM. This is the first report of PDE9A inhibitors from nature.
Article
Diseases such as Alzheimer's and Parkinson's are rising up the research agenda, partly because of ageing populations.
Article
AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user.
Article
Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described. In the discovery setting `the rule of 5' predicts that poor absorption or permeation is more likely when there are more than 5 H-bond donors, 10 H-bond acceptors, the molecular weight (MWT) is greater than 500 and the calculated Log P (CLogP) is greater than 5 (or MlogP>4.15). Computational methodology for the rule-based Moriguchi Log P (MLogP) calculation is described. Turbidimetric solubility measurement is described and applied to known drugs. High throughput screening (HTS) leads tend to have higher MWT and Log P and lower turbidimetric solubility than leads in the pre-HTS era. In the development setting, solubility calculations focus on exact value prediction and are difficult because of polymorphism. Recent work on linear free energy relationships and Log P approaches are critically reviewed. Useful predictions are possible in closely related analog series when coupled with experimental thermodynamic solubility measurements.
Article
Nerve signals from the hippocampus to the nucleus accumbens (NAc) are transmitted through a glutamatergic pathway via the fornix/fimbria fibres. The aim of the present study was to investigate whether cholinergic neurons are activated by this projection and whether the nitric oxide (NO) system is also involved in the signal transduction within this nucleus. For this purpose, the NAc of urethane-anaesthetized rats was superfused, by the push-pull technique, with compounds that influence the NO system while the fornix/fimbria was electrically stimulated for short periods. The amount of acetylcholine (ACh) released in the superfusate was then determined. Electrical stimulation of the fornix/fimbria increased the ACh output in the NAc. This effect was abolished by superfusion with tetrodotoxin and decreased by superfusion with the glutamate receptor antagonists AP-5 and DNQX indicating the involvement of action potentials and glutamate. Superfusion with the inhibitor of neuronal NO synthase, NS 2028 also diminished stimulation-evoked ACh release. The NO donor PAPA/NO increased basal release. Simultaneous application of PAPA/NO and electrical stimulation led to an over-additive increase of ACh release. The effect of PAPA/NO on stimulation-evoked release was also abolished by NS 2028. The selective inhibitor of phosphodiesterase type 5 (PDE 5), 5-[2-ethoxy-5-(morpholinylacetyl)phenyl]-1,6-dihydro-1-methyl-3-propyl-7H-pyrazolo[4,3-d]pyrimidin-7-one methanesulphanate monohydrate also enhanced stimulation-induced release of ACh. Our findings indicate, that action potentials propagated by the fornix/fimbria to the NAc release glutamate which increases ACh release predominantly via NMDA receptors. In addition, nitrergic neurons are activated to enhance NO synthesis. The released NO seems to exert, via cGMP, a potent facilitatory role in the transduction and processing of signals from the hippocampus within the NAc, while the PDE 5 decreases the effects of NO.
Article
Inhibition of phosphodiesterase 9 (PDE9) has been reported to enhance rodent cognitive function and may represent a potential novel approach to improving cognitive dysfunction in Alzheimer's disease. PF-04447943, (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one), a recently described PDE9 inhibitor, was found to have high affinity (Ki of 2.8, 4.5 and 18 nM) for human, rhesus and rat recombinant PDE9 respectively and high selectivity for PDE9 versus PDEs1-8 and 10-11. PF-04447943 significantly increased neurite outgrowth and synapse formation (as indicated by increased synapsin 1 expression) in cultured hippocampal neurons at low (30-100 nM) but not high (300-1000 nM) concentrations. PF-04447943 significantly facilitated hippocampal slice LTP evoked by a weak tetanic stimulus at a concentration of 100 nM but failed to affect response to the weak tetanus at either 30 or 300 nM, or the LTP produced by a theta burst stimulus. Systemic administration of PF-04447943 (1-30 mg/kg p.o.) dose-dependently increased cGMP in the cerebrospinal fluid 30 min after administration indicating target engagement in the CNS of rats. PF-04447943 (1-3 mg/kg p.o.) significantly improved cognitive performance in three rodent cognition assays (mouse Y maze spatial recognition memory model of natural forgetting, mouse social recognition memory model of natural forgetting and rat novel object recognition with a scopolamine deficit). When administered at a dose of 3 mg/kg p.o., which improved performance in novel object recognition, PF-04447943 significantly increased phosphorylated but not total GluR1 expression in rat hippocampal membranes. Collectively these data indicate that PF-04447943 is a potent, selective brain penetrant PDE9 inhibitor that increased indicators of hippocampal synaptic plasticity and improved cognitive function in a variety of cognition models in both rats and mice. Results with PF-04447943 are consistent with previously published findings using a structurally diverse PDE9 inhibitor, BAY73-6199, and further support the suggestion that PDE9 inhibition may represent a novel approach to the palliative remediation of cognitive dysfunction.
Article
Cyclic nucleotide-specific phosphodiesterases (PDEs) play a critical role in signal transduction by regulating the level of adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) in cells. The gene expression pattern of a PDE provides important information regarding its role in physiological and pathological processes. In this study, we have established the mRNA expression profile all PDE isoenzymes (PDE1A/B/C, 2A, 3A/B, 4A/B/C/D, 5A, 6A/B/C, 7A/B, 8A/B, 9A, 10A, 11A) in a human cDNA collection consisting of 10 brain regions (parietal, frontal, temporal cortex, hippocampus, striatum, thalamus, hypothalamus, substantia nigra, nucleus accumbens, cerebellum), spinal cord, dorsal root ganglia and 12 peripheral tissues (skeletal muscle, heart, thyroid, adrenal gland, pancreas, bladder, kidney, liver, lung, small intestine, spleen, and stomach). Using quantitative real-time polymerase chain reaction and parallel analysis of a carefully selected group of reference genes, we have determined the relative expression of each PDE isoenzyme across the 24 selected tissues, and also compared the expression of selected PDEs to each other within a given tissue type. Several PDEs show strikingly selective expression (e.g. PDE10A and PDE1B mRNA levels in the caudate nucleus are 20-fold higher than in most other tissues; PDE1C and PDE3A are highly expressed in the heart and PDE8B is expressed very strongly in the thyroid gland). This comprehensive approach provides a coherent and quantitative view of the mRNA expression of the PDE gene family and enables an integration of data obtained with other non-quantitative methods.