Access to this full-text is provided by Wiley.
Content available from Journal of Geophysical Research: Planets
This content is subject to copyright. Terms and conditions apply.
1. Introduction
The theory of plate tectonics describes how a planet's lithosphere is divided into a global network of multiple
rigid blocks (plates) that move relative to each other, accommodating deformation primarily in narrow zones
around the edges of the plates. Earth is the only planetary body known to operate under a plate tectonic system.
Other terrestrial planets lack fully developed, present day plate tectonics, though Venus may demonstrate local-
ized subduction-like behavior (Davaille etal.,2017) and Mars may have experienced plate tectonic-like behavior
in its early history (e.g., Nimmo & Stevenson,2000). Analyses of plate-like motions on Jupiter's moon Europa
have provided insight into the formation and evolution of specific feature types and provided a means of testing
processes and assumptions based on terrestrial plate tectonics (Schenk & McKinnon, 1989). The sequential
reconstruction of Europa's surface in northern Falga Regio by Kattenhorn and Prockter(2014) raised the possi-
bility of a full plate tectonic system operating on Europa. If true, Europa would be the only known world besides
Earth to have plate tectonics. This result is of interest for studies of comparative planetology, and raises questions
Abstract A nearly pole-to-pole survey near 140°E longitude on Europa revealed many areas that
exhibit past lateral surface motions, and these areas were examined to determine whether the motions can be
described by systems of rigid plates moving across Europa's surface. Three areas showing plate-like behavior
were examined in detail to determine the sequence of events that deformed the surface. All three areas were
reconstructed to reveal the original pre-plate motion surfaces by performing multi-stage rotations of plates
in spherical coordinates. Several motions observed along single plate boundaries were also noted in previous
works, but this work links together isolated observations of lateral offsets into integrated systems of moving
plates. Not all of the surveyed surface could be described by systems of rigid plates. There is evidence that
the plate motions did not all happen at the same time, and that they are not happening today. We conclude that
plate tectonic-like behavior on Europa occurs episodically, in limited regions, with less than 100km of lateral
motion accommodated along any particular boundary before plate motions cease. Europa may represent a world
perched on the theoretical boundary between stagnant and mobile lid convective behavior, or it may represent
an additional example of the wide variations in possible planetary convective regimes. Differences in observed
strike-slip sense and plate rotation directions between the northern and southern hemispheres raise the question
of whether tidal forces may influence plate motions.
Plain Language Summary The theory of plate tectonics describes how the Earth's surface is
divided into moving plates, explaining the distribution of earthquakes, volcanoes, mountains, and ocean basins
on our planet. The icy surface of Jupiter's moon Europa is the only other place in our solar system where there
is evidence for surface motions like plate tectonics. This paper describes three areas on Europa where it appears
that plate motions have occurred, and reconstructs what these areas looked like before the plates moved. Unlike
the Earth, plate motions on Europa only happen in regional patches instead of covering the entire globe, and it
appears that parts of Europa do not have plates. Also unlike the Earth, plate motions on Europa start and stop,
and the plates only travel distances of less than a hundred kilometers before they come to a halt. Plate motions
on Europa may be caused by heat-driven motions in the warm ice below Europa's surface, possibly combined
with daily tidal squeezing from its orbit around Jupiter.
COLLINS ETAL.
© 2022 The Authors.
This is an open access article under
the terms of the Creative Commons
Attribution-NonCommercial License,
which permits use, distribution and
reproduction in any medium, provided the
original work is properly cited and is not
used for commercial purposes.
Episodic Plate Tectonics on Europa: Evidence for Widespread
Patches of Mobile-Lid Behavior in the Antijovian Hemisphere
Geoffrey C. Collins1 , G. Wesley Patterson2, Charlene E. Detelich2,3 , Louise M. Prockter2 ,
Simon A. Kattenhorn4 , Catherine M. Cooper5, Alyssa R. Rhoden6 ,
Benjamin B. Cutler1,7, Samantha R. Oldrid1,8, Reid P. Perkins2,9, and Craig A. Rezza1
1Wheaton College, Norton, MA, USA, 2Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA, 3Now at
Cornell University, Ithaca, NY, USA, 4University of Alaska Anchorage, Anchorage, AK, USA, 5Washington State University,
Pullman, WA, USA, 6Southwest Research Institute, Boulder, CO, USA, 7Now at DataRobot, Boston, MA, USA, 8Now at
Alpha Analytical, Mansfield, MA, USA, 9Now at Western University, London, ON, Canada
Key Points:
• Several regions on Europa can be
reconstructed as systems of rigid
plates
• Plate motions on Europa are confined
to regional patches and limited time
periods
• Motions along plate boundaries are
limited to less than 100km and appear
to be currently inactive
Supporting Information:
Supporting Information may be found in
the online version of this article.
Correspondence to:
G. C. Collins,
gcollins@wheatoncollege.edu
Citation:
Collins, G. C., Patterson, G. W., Detelich,
C. E., Prockter, L. M., Kattenhorn, S. A.,
Cooper, C. M., etal. (2022). Episodic
plate tectonics on Europa: Evidence
for widespread patches of mobile-lid
behavior in the antijovian hemisphere.
Journal of Geophysical Research:
Planets, 127, e2022JE007492. https://doi.
org/10.1029/2022JE007492
Received 19 JUL 2022
Accepted 1 NOV 2022
Author Contributions:
Conceptualization: Geoffrey C. Collins,
G. Wesley Patterson, Louise M. Prockter,
Simon A. Kattenhorn, Catherine M.
Cooper, Alyssa R. Rhoden
Data curation: Geoffrey C. Collins, G.
Wesley Patterson, Charlene E. Detelich,
Samantha R. Oldrid
Formal analysis: G. Wesley Patterson,
Reid P. Perkins
Funding acquisition: Geoffrey C.
Collins, G. Wesley Patterson, Louise M.
Prockter, Simon A. Kattenhorn, Catherine
M. Cooper, Alyssa R. Rhoden
10.1029/2022JE007492
RESEARCH ARTICLE
1 of 30
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
2 of 30
about how the convective systems on Earth and Europa that underlie their plate tectonic behavior are similar, even
though the material differences (silicate vs. ice) are vast. Quantifying the direction, age, and magnitude of plate
motion is important for constraining models of Europa's ice shell and for understanding resurfacing mechanisms
responsible for Europa's anomalously young surface age (∼40–90Myr, Bierhaus etal.,2009). Plate motions on
Europa also have astrobiological importance, since subsumed surface material could drive the flow of nutrients to
Europa's subsurface ocean. In this paper, we describe further observations of apparent plate motions on Europa,
highlighting the ways in which the behavior of Europa's plate tectonic system is Earth-like and the ways in which
it is decidedly not.
1.1. Previous Observations of Lateral Motions on Europa
Evidence for lateral motion of Europa's surface ice comes from images obtained by the Voyager missions in 1979
and the Galileo mission in the late 1990s. Images show that most of Europa's surface is covered by ridges and
bands (Kattenhorn & Hurford,2009; Prockter & Patterson,2009), occasionally interrupted by various forms of
chaotic terrain (Collins & Nimmo,2009). The ridges and bands form a complex, overlapping network of linear
tectonic features. In this network, older linear features can be used as “piercing points” when they are crosscut
and offset by deformation associated with a younger tectonic feature. Careful attention to the sequence of tectonic
events and realignment of piercing points are the keys to reconstructing the history of tectonics on Europa's
surface using available imagery.
The first plate-like reconstruction of Europa's surface was performed by Schenk and McKinnon(1989) in a
region of wedge-shaped bands observed in Voyager images. They showed that offset surface features (or piercing
points, as defined above) can be reconstructed by closing a particular set of relatively younger wedge-shaped
bands. Their reconstruction implied 25km of lateral motion between adjacent blocks of Europa's ice shell due to
the opening of the bands, and provided the first hints of mobile lid behavior on Europa.
Pappalardo and Sullivan(1996) used Voyager 2 imagery to reconstruct a single 900-km-long band named Thynia
Linea. They identified 12 piercing points and showed how the band can be reconstructed with minimal gaps by
moving the two edges back together. Because Thynia is so long relative to the radius of Europa, its deformation
is best analyzed using a spherical approach. Pappalardo and Sullivan(1996) found that the opening of Thynia
can be modeled as a plate-like motion around a best-fit rotation pole near the southern end of the band, but that
variations in the amount of opening indicate non-rigid behavior of the plates at the scale of Thynia. Sullivan
etal.(1998) reconstructed a small area surrounding Yelland Linea dominated by wedge-shaped dark bands. They
divided the area into 20 plates and found that closing the bands on a flat plane brought the plates back together,
with a small gap left in one area where surface material was apparently consumed. Tufts etal.(2000) performed
a stepwise reconstruction in the same area around Yelland, showing that the plate motions occurred in a few
stages. They also reconstructed the dark band Acacallis Linea (which they call “the sickle”) by pushing the edges
back together, showing that pure dilation is a good explanation for the east-west trending portion of this feature.
Several mapping and reconstruction studies have identified areas of surface convergence, where material has
been lost (e.g., Prockter & Pappalardo,2000; Sarid etal.,2002). Convergence is more challenging to iden-
tify than spreading or strike-slip because the loss of terrain removes pre-existing ridges, and thus, the informa-
tion generally used to reconstruct past motions, but it does occur on Europa. For example, a detailed study of
rigid plate motions in the Castalia Macula region, which focused on reconstructing strike-slip offsets using a
pole-of-rotation approach appropriate for plates moving on a sphere, revealed large-scale zones of convergence
(Patterson etal.,2006). Convergence had been noted in the area in previous work (Sarid etal.,2002). Conver-
gence zones are band-like in morphology but lack the symmetrical lineations typical of dilational bands and
generally do not exhibit mutually parallel sides (Greenberg,2004; Kattenhorn & Hurford,2009; Prockter &
Patterson,2009; Sarid etal.,2002).
Kattenhorn and Prockter(2014) took the next step in plate reconstructions by examining a large area of Europa
as a system of interacting plate boundaries, and reconstructing surface motions in multiple stages. Taking this
approach revealed that large amounts of surface convergence were necessary to explain the motions and rotations
in the system of plates, as discussed in more detail below in Section3.1. The study presented here extends the
approach of Kattenhorn and Prockter to include more areas, more plates, and a spherical geometry, as described
in Section2.
Investigation: Geoffrey C. Collins, G.
Wesley Patterson, Charlene E. Detelich,
Benjamin B. Cutler, Samantha R. Oldrid,
Reid P. Perkins, Craig A. Rezza
Methodology: Geoffrey C. Collins, G.
Wesley Patterson, Benjamin B. Cutler
Project Administration: Geoffrey C.
Collins, G. Wesley Patterson, Louise M.
Prockter
Resources: Geoffrey C. Collins, G.
Wesley Patterson
Supervision: Geoffrey C. Collins, G.
Wesley Patterson, Louise M. Prockter,
Simon A. Kattenhorn
Validation: Geoffrey C. Collins, G.
Wesley Patterson, Charlene E. Detelich,
Simon A. Kattenhorn, Samantha R.
Oldrid, Craig A. Rezza
Visualization: Geoffrey C. Collins,
Charlene E. Detelich
Writing – original draft: Geoffrey C.
Collins, G. Wesley Patterson, Charlene E.
Detelich, Catherine M. Cooper
Writing – review & editing: Geoffrey C.
Collins, G. Wesley Patterson, Louise M.
Prockter, Simon A. Kattenhorn, Catherine
M. Cooper, Alyssa R. Rhoden
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
3 of 30
1.2. Approach to Using Terrestrial Plate Tectonic Ideas on Europa
Key to reconstructing plate motions on Europa and relating them to the terrestrial plate tectonics paradigm, is the
adoption of two central assumptions: plate boundaries are narrow, and plates behave rigidly (i.e., all deformation
associated with the motions of a plate is accommodated at the boundaries of the plate; McKenzie & Parker,1967;
Morgan,1968). Numerous planar reconstructions of Europa's tectonically disrupted surface have been performed
implicitly assuming plate rigidity (e.g., Prockter etal.,2002; Sarid etal.,2002; Tufts etal., 1999). Bands and
ridges generally delineate plate boundaries in those reconstructions and they are narrow, in a relative sense, with
respect to the plates they define. Previous work reconstructing plate motions on Europa using a spherical geome-
try has indicated that non-rigid plate behavior could accommodate some inconsistencies associated with specific
boundaries or boundary types (Pappalardo & Sullivan,1996; Patterson etal.,2006). However, more recent work
that explicitly tests the assumption of plate rigidity on Europa using the kinematic analysis of triple junctions
indicates rigid behavior should be considered the norm, at least for plate boundaries that accommodate extension
or strike-slip motion (Patterson & Head,2007). The reconstructions presented in this paper are founded on the
central assumptions behind plate tectonics, so we must keep these assumptions in mind as we evaluate how well
the plate tectonic paradigm serves to describe motions on Europa.
2. General Methodology
There are two approaches that could be used as a basis for plate reconstructions on Europa: an observational
fitting method that subjectively balances the geology of the plate boundary material with a visual interpretation of
best fit, or a statistical approach that is agnostic about the material of the plate boundaries and tries to optimize the
alignment of predefined piercing points. As outlined below, this study adopts an observational approach to plate
reconstruction on Europa similar to Kattenhorn and Prockter(2014), with the important addition of performing
all plate motions in spherical geometry. In Section3, we describe the application of this methodology to three
areas in the antijovian hemisphere, stretching from 70°N to 70°S near longitude 145°E. For the Castalia area
(Section3.2) we compare our approach for reconstructing plate motions to the statistically-based inverse mode-
ling approach used by Patterson etal.(2006).
2.1. Image Data
We performed the plate definition, mapping, and reconstructions on an image mosaic (Figure1) constructed
using all of the available contiguous, high incidence angle, regional-scale imagery on the antijovian hemisphere
from the Galileo Solid State Imaging experiment. Input Galileo image sequences important for the plate recon-
structions are listed in Table1. The mosaic was prepared in ISIS3 software, registered to the USGS global image
mosaic for Europa for geographic control points, layered to place highest resolution images on top, and resampled
to a pixel scale of 165m. The ISIS-formatted mosaic can be downloaded from the data repository associated with
this article at Collins etal.(2022).
2.2. Definition of Plates and Plate Boundaries
The first step in each of the study areas is to define the boundaries of the moving plates. Plates represent blocks of
crustal material that have translated rigidly across the surface, and we set the criteria for defining a plate accord-
ing to this principle. For illustration purposes, Figure2 shows a hypothetical section of Europa's surface that has
been deformed by a series of rigid offsets, interpretable as plate motions.
To begin to define a plate, we find an area in which surface features are continuous. On Europa, the typical contin-
uous surface features are ridges, though in some cases older pits, bands, or background plains textures may show
the continuity of terrain. A ridge may curve, change direction, or may be overlapped by a newer ridge or chaos
area, but a continuous ridge can always be interpolated along its trend when a newer feature interrupts it. If the
interpolated line between the two ends of an interrupted feature is locally parallel to the trend of that feature, we
consider the feature to be continuous. In Figure2a, features Y and Z are both continuous across the entire scene;
even though Z cuts across Y, the trend of Y may be followed without interruption where it crosses underneath Z.
As an example of a discontinuous feature, feature S in Figure2a is continuous from the left side until it becomes
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
4 of 30
discontinuous when it meets feature W. Likewise, feature W is continuous from the top and from the bottom until
it meets feature X in the center.
Once an area of continuous surface features is identified, we work outward in all directions until we find discon-
tinuities in the surface. Often a more recent tectonic feature such as a ridge or a band will interrupt all of the
preexisting features, and will exhibit a discontinuity that offsets all of the preexisting features. Such a feature is a
prime candidate for a plate boundary. For example, working from the upper left corner of Figure2a, features S, T,
and U all become discontinuous when they meet features W and X, making W and X candidate plate boundaries.
Feature V appears to be continuous under feature X, but this does not necessarily contradict the observations
about S, T, and U, depending on the direction of motion; we will return to this point in Section2.4.
To be flagged as a potential plate boundary, it is not enough just to crosscut a pre-existing feature, there must be
measurable offset. Feature V in Figure2a crosscuts S and U, but there is no offset so this is not a plate boundary.
Similarly, feature Z is the most recent feature, cutting across everything, but the crosscut features are continu-
ous, so it exhibits no offset, so it is not a plate boundary. If we can find a set of candidate plate boundaries that
completely surround a given area, we define that area to be a plate. Figure2b shows the six plates that would be
defined in the hypothetical example.
Figure 1. (a) Image mosaic used for this study. The three study areas discussed in Section3 are highlighted in pink. (b) Pixel
scale of input images, on a linear gradient from 150 to 500m. The area labeled as >500m is composed of images with pixel
scales of approximately 1.5km (“background images” in Table1). (c) Solar incidence angle for input images. Note that most
of the study areas outlined in (a) are covered by near-terminator imaging. (d) Emission angle to the spacecraft camera for the
input images. Note that the Libya and Northern Falga study areas are only covered by images with oblique viewing angles.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
5 of 30
2.3. Time Sequence of Plate Boundaries
Once plate margins and the structures that function as plate boundaries have been identified, the next step is
to determine the time sequence of plate boundary structure activity. Plate boundaries at the younger end of the
sequence will crosscut and offset plate boundaries at the older end of the sequence. Figure3a shows an older band
crosscut and offset by two parallel younger plate boundaries. Some intersecting plate boundaries are active at
the same time, forming triple junctions. Figure3b shows an example of intersecting spreading bands that appear
to have been active at the same time, forming triangular triple junction areas where the bands meet. A potential
complication is that some plate boundary structures may be active early in the sequence and then reactivated later
in the sequence.
We use the time sequence of plate boundaries to determine the minimum number of time steps necessary for the
reconstruction. During each time step, multiple boundaries may be active. Non-intersecting boundaries may or
may not be active in the same time step, boundaries that meet at a triple junction must be active in the same time
step, but crosscutting boundaries must be active in separate time steps.
2.4. Sequential Reconstruction Along Plate Boundaries
Reconstruction of plate motions is performed by sequentially undoing the deformation along the plate bounda-
ries, starting with the most recent boundaries and working backward in time to the earliest boundary structures.
During each time step, the goal is to bring piercing points (older features seen on either side of the plate bound-
ary) back into alignment. For spreading boundaries or strike-slip boundaries, this is a fairly straightforward task
of moving the plates so as to minimize the distance between all of the matching piercing points. On a strike-slip
boundary, the plates are moved parallel to the boundary until the piercing points are aligned (Figure4a). On a
divergent boundary, the plates are moved so as to move their edges with their piercing points as close together as
possible (Figure4b). For contractional boundaries, it is not possible to minimize the distance between piercing
points, since some of the pre-existing terrain has been destroyed. Instead, the structures that serve as pierc-
ing points should be brought into alignment so that linear features can be extrapolated across the gap and meet
with their matching features on the other side (Figure4c). A firm rule is that plates cannot overlap during the
course of these sequential motions, because that would indicate that two pieces of existing terrain occupied the
same place at the same time; a logical impossibility.
Galileo mosaic Latitude range Pixel scale (m) Incidence angle Emission angle
11ESREGMAP01 20.2°S–9.2°N 219–222 70.8°–85.5° 12.1°–36.6°
15ESREGMAP01 18.4°N–61.3°N 228–235 69.3°–87.6° 19.1°–64.1°
17ESNERTRM01 47.6°S–6.4°N 210–212 76.1°–84.9° 7.8°–41.3°
17ESREGMAP01 70.4°S–20°N 222–228 50.8°–85.6° 0°–68.5°
19ESNORLAT01 49.2°N–84.9°N 202 73.6°–88.6° 53.0°–90°
19ESNORPLN01 57.1°N–76.9°N 166–171 74.4°–85.5° 60.7°–90°
19ESREGMAP01 11.7°N–20.1°N 201–203 73.8°–90° 13.6°–29.7°
Other images in mosaic that are not used in plate reconstructions in this study
C3ESWEDGES01 18.9°S–10.2°S 421 71.8°–81.5° 13.0°–25.9°
14ESWEDGES01 36.7°S–12.5°S 230–238 34.1°–63.5° 24.2°–55.0°
17ESAGENOR01 44.4°S–38.7°S 187–206 50.6°–71.2° 34.2°–51.1°
Background images used in mosaic
G1ESGLOBAL01 50°S–85°N 1,570–1,582 0°–90° 0°–77°
14ESGLOCOL01 82°S–22°N 1,439–1,456 7°–90° 0°–90°
Note. This mosaic has been utilized in the community beyond our plate reconstruction project, and is sometimes referred to
in conference abstracts as the “Supermosaic” (Laura & Beyer,2021).
Table 1
Input Galileo Image Sequences Used for Constructing the High-Resolution Base Mosaic
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
6 of 30
To explain the reconstruction process in a more concrete manner, let us return
to the hypothetical Europa surface depicted in Figure2 Figure5 shows how
this hypothetical surface would be depicted if it were one of the real target
areas discussed in Section3, by defining the major reconstructable features as
well as the features to be ignored (Figure5a). Crosscutting relationships are
used to put the plate boundaries into a time sequence (Figure5b) that will
define the number of steps necessary to reconstruct the original surface.
Figure6 illustrates the steps of the sequential reconstruction for this hypothet-
ical area, showing the appropriate reconstruction for each type of boundary.
Figure6a shows the features and plates defined from the example in Figure2,
note that feature Z has now been removed from consideration because it
postdates all plate boundaries and exhibits no offsets of older features. The
most recent plate boundary is feature Y, which shows inconsistent amounts
of lateral offset of older features. Feature Y offsets features S, U, and X in a
right-lateral sense, but feature T appears to be offset in a left-lateral sense.
Feature S appears to be offset less than U and X. The cycloidal feature R
shows no apparent offset, but the cycloidal arc cut by Y appears slightly
shorter than the others in the chain. All of these variations in apparent offset
can be explained if motion along feature Y is dominated by contraction (e.g.,
Vetter,2005; Kattenhorn & Hurford,2009). Figure6b shows the realignment
of features T, S, X, U, and R if plates 5 and 6 are moved to the right and
slightly up relative to all the other plates, and the missing pieces of the older
features are interpolated across the zone of contraction. This reconstructive
motion of plates 5 and 6 is exactly the reverse of the actual motions those
plates took going forward in time. Note that because features S, X, and U
trend in very similar directions, there would be considerable uncertainty in
the magnitude of contraction if it were not for feature T (trending about 45°
CCW of the other features) to provide a hard constraint on the magnitude
and direction of plate motion. Working backward through the sequence, the
next plate boundary is feature X. Like the previous boundary, the crosscut
features show inconsistent apparent offsets: feature V does not show offset,
feature T shows apparent left-lateral offset, and features U and W show
different amounts of right-lateral offset. This can be explained if feature X is
dominated by extension. Figure6c shows precise realignment of the piercing
Figure 2. (a) Sketch of a hypothetical area on Europa with typical
cross-cutting tectonic features, created as an example to illustrate the details
of plate definition and reconstruction. See text for discussion of lettered
features. (b) Plates that would be defined based on this set of features. During
any particular time step, the moving plate consists of one or more of these
plates acting together. Only features W, X, and Y offset pre-existing features,
and so they define the edges of the moving plates, colored in purple. Feature
Z is ignored for further analysis because it does not offset any features and
postdates all plate boundaries.
Figure 3. Time sequence examples for plate boundaries on Europa, initially defined by Sarid etal.(2002) and Patterson
etal.(2006). Both examples are located near Castalia Macula, north is up.(a) Two parallel N-S trending boundaries crosscut
an older NE-SW trending dark band that also forms a plate boundary. Plate motions occurred along the band first, and then
along the two N-S boundaries. (b) A NE-SW trending dark band in the center of the image merges at either end at triple
junctions with adjacent NW-SE trending dark bands. All the bands form plate boundaries that were active at the same time.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
7 of 30
points if plates 2, 4, and 6 are moved up and slightly to the right (again, the reverse of the actual motion forward
in time). The oldest plate boundary is feature W, which exhibits consistent amounts of right-lateral offset of the
older features S, U, T, and R. The reconstruction shown in Figure6d realigns the piercing points through a simple
left-lateral motion along feature W, moving plates 3 through 6 up and slightly to the left. The remaining features
in Figure6d do not show any offsets, and thus represent the original surface before the initiation of plate motion.
Studies such as Sullivan etal.(1998) and Kattenhorn and Prockter(2014) identified plate boundaries and then
sequentially moved the identified plates on the flat plane of a map projected image mosaic to align piercing points
and thus reconstruct plate motions through time. Patterson etal. (2006) and Patterson and Ernst(2011) took a
Figure 4. Examples of plate boundaries located near Castalia Macula on Europa, showing three different types of relative
motion. The left column shows the original Galileo image. The center column annotates the image with the plate boundary
material (brown), prominent reconstructable features (blue), and in the bottom row, a feature postdating the plate boundary
that should be ignored (yellow). The right column shows a flat-plane reconstruction, with associated direction and magnitude
of the relative motion of the plates that can be inferred going forward in time. (a) Boundary with right lateral offset. (b)
Boundary with divergent offset. In this case the divergence is oblique with a right lateral offset. (c) Boundary with convergent
offset. In this case the convergence is oblique with a right lateral offset.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
8 of 30
more mathematically rigorous approach, using a spherical geometry and testing locations and rotation values of
Euler poles between plates to find a statistical best alignment of piercing points on adjacent plates. A strength
of that approach is its ability to quantify the goodness of fit for a given two-plate rotation. However it is not well
suited for more complex, multi-stage reconstructions and does not explicitly prevent plate overlap, as discussed
in more detail in Section3.2.
In this study, we use GPlates software (Müller etal.,2018; Williams etal.,2012) to interactively test plate recon-
structions within a spherical coordinate system, and to build a sequence of “good” fit rotations around Euler poles
to reconstruct an area of preexisting terrain on Europa that has been broken up by plate motions. While GPlates
Figure 5. Hypothetical Europa sketch from Figure2 presented in the same color-coded scheme as is used to present the areas
in Section3. (a) The surface today, with features to be reconstructed highlighted in blue and features to be ignored (because
they post-date plate motions) highlighted in yellow. Plate boundary edges are highlighted in purple. (b) Time sequence of
the plate boundaries. Working backward through the time sequence, the “Step 3” boundary is the last to move, and so is
reconstructed first to arrive at the Step 2 reconstruction (Figure6b), then the “Step 2” boundary is reconstructed (Figure6c),
and finally the “Step 1” boundary brings the plates back to the original reconstructed surface (Figure6d).
Figure 6. Sequential reconstruction of hypothetical sketch area from Figure2, illustrating criteria for goodness of fit. (a)
Plates defined in Figure2b, with ignored feature Z removed. This is the final step of the reconstruction sequence, and the
other panels go back in time to the original surface. (b) Reconstruction of convergence along feature Y by moving a plate
consisting of 5 and 6 to the right; inferred material of older features lost during convergence is shown in gray outlines.
(c) Reconstruction of divergence along feature X by moving a plate consisting of 2, 4, and 6 up; complete closure of this
boundary brings older features back into alignment. (d) Reconstruction of right-lateral slip along feature W by moving a plate
consisting of 3–6 up; the original surface before plate motion is now reconstructed. Note that the left-lateral arrows on this
panel to reconstruct backward in time are undoing the right-lateral slip that must have occurred forward in time.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
9 of 30
includes a methodology for quantifying best-fit poles of rotation based on Hellinger(1981), its application is not
straightforward for the work described here because, as will be described in Section3, Europa's plate systems
include numerous small plates and current imaging data limits the number of measurable piercing points per
plate. Instead, we rely on the interactive nature of the software to test a variety of potential solutions for a pole
of rotation that tightly aligns piercing points on plates without causing overlap violations. Comparisons between
the observational fitting method used here and a statistical best fit method are presented in Section3.2. A good
fit is also exemplified by plate boundaries that exhibit similar relative motions for all of the plates moving along
that boundary. This is especially important if the boundary appears to be morphologically uniform, as it does not
invoke multiple amounts or directions of strain to form the same tectonic feature.
3. Application and Results
We surveyed the entire near-terminator mosaic of Galileo images on the antijovian hemisphere discussed in
Section2.1, and located several candidate regions for plate reconstructions. Of these, we focused the bulk of our
analysis on three target areas: Northern Falga, Castalia, and Libya (Figure1) because these areas showed the
clearest evidence for plate-like behavior. The setting and reconstruction of each target area is discussed separately
in Sections3.1–3.3, through along with the rationale for where the boundaries of the target areas were set. The
time sequence of the reconstructions is presented forward in time - that is, the first step in each reconstruction
represents a hypothesized initial configuration of the plates and the last step shows their current positions. All
of the GPlates reconstruction files for these three target areas are described in Supporting InformationS1 and
are available for download from this article's data archive at Collins etal. (2022). In Section 3.4 we discuss
preliminary observations of the other areas covered by high resolution imagery that lie between our three target
areas. Though some tectonic features in these intermediate areas exhibit lateral motions, we did not perform plate
reconstructions in them; see Section3.4 for details.
3.1. Northern Falga Regio
The Northern Falga target area (Figure7a) is the northernmost target area in our study region (roughly 40°N to
75°N, see Figure1), and encompasses the area examined by Kattenhorn and Prockter(2014) (hereafter abbre-
viated as KP14), plus additional area to the south of their study. The Northern Falga area is relatively free of
chaos terrain, and is dominated by fragments of old, low-albedo, complex ridge structures trending roughly N-S
(some of them highlighted in green in Figure7b), intermediate age bands trending NE-SW, and young ridges in
a variety of orientations (prominent examples highlighted in yellow in Figure7). The network of intermediate
age bands and associated contemporaneous ridge structures form a network of plate boundaries. Figure7b shows
the mapped plate boundaries as thin purple lines, and subsequent Figures8–10 divide the target area along those
plate boundaries. We mapped 46 plates of pre-existing terrain between the plate boundaries. For the purposes of
reconstruction, the young ridges are ignored for the remainder of this section, since they postdate plate motions
in Northern Falga.
The major plate boundaries in this region are visible in Galileo color data as being distinctly whiter than other
features. Geissler etal.(1998) examined the colors and cross-cutting relationships of major tectonic features in
this region, based on four-color imaging at a pixel scale of 1.5km, and classified them into three categories. The
Northern Falga plate boundaries that can be discerned in the Geissler et al. data are contained in the “ancient
bands and bright wedges” color category. The data set examined in the Geissler etal. analysis does not reach the
other two target areas discussed in Sections3.2 and3.3.
The reconstructed original surface shown in Figure8 is primarily based on the realignment of five N-S trending
complex ridge features, three smaller NW-SE trending complex ridges and bands, and a prominent cycloidal
ridge trending NE-SW. Three of the N-S complex ridges and one of the NW-SE complex ridges are the same as
those used by KP14 as the primary basis of their reconstruction.
Examining crosscutting relationships in the plate boundaries, we find that the younger motions are concentrated
in the southern portions of the target area, and the oldest plate motions are concentrated in the north (Figure9).
The major plate boundary in the north, labeled NF1 (Northern Falga 1) on Figure9, is a complex set of ridges.
Upon careful examination of boundary NF1, it can be discerned that several “islands” of older ridges (shown in
purple) are cross-cut by a central core of ridges, with several orthogonal branches (shown in blue), and at the
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
10 of 30
southern end this central core is crosscut by younger ridges (shown in green). This sequence of crosscutting
ridges internal to boundary NF1 serve as an important guide for the sequential reconstruction of the northern half
of this target area. Another important set of boundaries are the youngest features NF2, NF3, and NF4 in Figure9.
The western portions of NF2 and NF3 are often narrow and have a morphology like broken rubble, with subtle
strike-slip indicators pointed out by KP14. The eastern portion of NF3 and all of boundary NF4 are the northern
and southern “subsumption zones” identified by KP14. The eastern portion of NF3 appears to have a few gener-
ations of crosscutting activity, as shown by the different boundary ages in Figure9, though the generally smooth
morphology of this band makes it difficult to clearly discern all of the crosscutting indicators.
Figure10 shows the sequence of plate motions derived from our study of northern Falga Regio. An animation
of this sequence can be found in Supporting Information MovieS1. The original reconstructed surface shown in
Figure8, which realigns the prominent old bands, is the starting point in Figure10. Two prominent motions bring
the original surface to Step 1. Left lateral motion of ∼20km along boundary NF1 (Figure9) opens a releasing
bend on its western side, and convergence along boundary NF3 brings unrelated pieces of terrain close together.
The uncertainty in the original positions of the plates in area 1 makes it difficult to quantify the partitioning of
convergence between NF3 and NF4 in this and later steps.
The transition to Step 2 continues the left lateral motion along boundary NF1 by an additional ∼55km, but this
is accompanied by many more left-lateral motions in the range of 10–25km, primarily along faults on the north
side of the boundary that are approximately perpendicular to boundary NF1. The combined motion of these
intersecting left lateral boundaries accomplished minor clockwise rotations of several small blocks to the north
of boundary NF1 and in the southwestern portion of the study area. Boundary NF1 ceases activity at the end of
Figure 7. Northern Falga Regio study area. (a) The base mosaic of images from higher-resolution Galileo observations is
shown on top of lower resolution global-scale images. (b) Only the high-resolution area is shown, with interpretation of plate
boundaries represented as thin purple lines (compare to subsequent figures). The colors in (b) denote prominent features that
are younger than the plate boundaries in yellow (which are ignored in the reconstruction process), and prominent features
older than the plate boundaries in blue. Images are shown in orthographic projection centered at 60°N, 140°E; north is
up.The scale bar is shown in (a), and coordinates for graticules are shown in (b).
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
11 of 30
Step 2, and it is worth noting that a previous study of strike-slip offsets on Europa identified boundary NF1 as
the largest measured left lateral offset on Europa (Sarid etal.,2002). A long, narrow band opens during Step 2,
parallel to and just south of boundary NF1, accommodating less than 5km of extension.
The transition to Step 3 is dominated by ∼35km of left lateral motion along the eastern portion of boundary NF2
and opening along its western portion. This is accompanied by the beginning of clockwise rotations of the blocks
sandwiched between boundaries NF2 and NF3. At the same time, 10–15km of divergent motion opens narrow
bands to the north of boundary NF2, and motion begins along boundary NF5.
The transition to Step 4 is dominated by the blocks between boundaries NF2 and NF3 sliding to the east. This
motion is accomplished by the western portion of boundary NF2 undergoing ∼30km of left lateral motion, while
the eastern portion of NF2 becomes a convergent zone accommodating this motion. The last clockwise rotations
of the small blocks between boundaries NF2 and NF3 occur at this same time, and after this stage the blocks are
fused together. The motions also necessitate minor convergence along boundary NF4. Boundary NF5 completes
its motion during this stage, with its western portion oriented NE-SW experiencing <15km of extension and
left lateral slip, while the eastern portion, which bends to the SE, accommodates ∼10km of convergence while
slipping in a left lateral direction. The final transition from Step 4 to today's surface is dominated by convergence
of at least 80km along boundary NF4, and ∼40km of left lateral motion along boundaries NF2 and NF3.
There are no features that can be aligned with any degree of certainty on either side of boundary NF4. This
could be due to large amounts of surface convergence bringing distant surface terrain together, and/or strike-slip
motions moving one of the matching sides outside of the available imaging data. Because of this uncertainty,
there is no constraint on the maximum amount of convergence on boundary NF4, nor is there a constraint on
strike-slip motions along boundary NF4. To find the minimum amount of motion accommodated by boundary
NF4, the reconstruction presented here assumes no strike-slip motions along the boundary, and the reconstruction
moves the material on either side of the boundary a minimum distance to prevent material overlap during the
preceding plate motions. In the reconstruction presented above, the minimum amount of surface convergence
accommodated by the widest portion in the center of boundary NF4 is ∼80km.
The reconstruction presented here is broadly similar to the reconstruction presented in KP14 in that we found
abundant left-lateral motions, and that boundary NF4 accommodated almost 100km of convergence (>80km in
Figure 8. Reconstruction of the Northern Falga area. (a) Reconstruction of original surface before plate motions. The material of the plate boundaries has been
removed. The majority of the plates, to the north of the circled areas, reconstruct very well to bring pre-existing features back into alignment. The plates circled by a
thick red dashed line in area 1 share similar morphology but do not match the terrain to the north or south, so their final position and rotation is relatively unconstrained.
The plates circled in area 2 have been rotated to align similar background morphology with the plates to the north, but their final position relative to the northern plates
is not well constrained. See text for details. The thin dotted red rectangle shows the position of part (b). (b) Obliquely zoomed cut-out of part (a), showing the details of
original features (blue) brought back into alignment through reconstruction.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
12 of 30
this work, 99km in KP14). Several details of the reconstruction are different.
One important difference is the recognition that the area north of bound-
ary NF1 and the block between boundaries NF2 and NF3 are composed of
several smaller sub-plates, which causes this block to change shape as the
reconstruction progresses. By using a larger number of plates in this recon-
struction, we generate a tighter fit of the pre-existing terrain features than
the reconstruction presented in KP14. Another important difference is that
we used a mosaic of images covering a larger area than was used in KP14.
In particular, our mosaic extends further to the south, and includes more
coverage of convergent boundary NF4. This extended coverage shows that a
literal interpretation of the reconstruction in KP14 leads to significant over-
lap of moving plates in the southwestern corner of the study area. Most of
this overlap problem is solved through our recognition that the area between
boundaries NF2 and NF3 is composed of several blocks that have rotated
clockwise through time, and this shape change prevents the plates from
overlapping as they would in the KP14 reconstruction. Some of the overlap
problem is also solved by recognizing that the convergence along boundary
NF4 is non-uniform; our reconstruction shows twice as much convergence is
required at the eastern end of boundary NF4 as there is along the western end
of boundary NF4.
Exact measurement of the amount of convergence in boundaries NF3 and
NF4 is hampered by the non-unique solution to the placement of the plates
circled in areas 1 and 2 in Figure8a. The plates in area 1 exhibit no surface
features in common with any of the other plates, and so it is impossible to
determine their original position with any confidence. This means that the
partitioning of strain between boundaries NF3 and NF4 in our reconstruction
is uncertain. We took a conservative approach by moving them as little as
possible from their final positions, letting these plates “ride along” with their
neighboring plates for most of the reconstruction. The plates in area 2 have a
surface texture of evenly spaced ridges that is very similar to the plates found
immediately to the north on the other side of boundary NF3, with the trend
of the ridges in this texture rotated almost 30° CCW. However, the evenly
spaced ridges in the background texture allow several piercing point solutions of approximately equal quality,
with the area 2 plates possibly sliding 50km east or west of the reconstructed position shown in Figure8. The
position adopted for the reconstruction has the greatest number of plausible aligned piercing points.
Another unknown quantity is the amount of strike-slip motion across boundary NF4. Because there are no
features in common in the plates across this boundary, we cannot know its exact beginning location. Low resolu-
tion images from Galileo (e.g., Geissler etal.,1998) show that this boundary extends for long distances (100s of
km) to either side of the target area shown here, but these images are of insufficient quality to identify piercing
points outside the target area that could constrain strike-slip motions. These low resolution images also show that
it is not possible to eliminate the convergence seen in this reconstruction by rotation of the southernmost plate,
because that would cause areas adjacent to the target area to spatially overlap.For our reconstruction, we adopted
the approach of minimizing the amount of total motion of the plate south of boundary NF4, with the understand-
ing that there could be additional strike-slip motion not shown in the reconstruction.
3.2. Castalia Region
The Castalia region (Figure11) is near Europa's equator, covering latitudes from 15°N to 16°S, and longitudes
from 116°E to 142°E. The eastern and western boundaries of the study area are defined by the extent of Galileo
imaging coverage at sufficient resolution. The northern boundary extends just beyond the northernmost plate
boundary identified in this area, while the southern boundary is arbitrarily cut off where the pre-existing plates
become very small and difficult to characterize in the Galileo data. The area is named after the prominent dark
spot Castalia Macula, which lies near 1.5°S, 134.5°E. Just south of Castalia Macula is a prominent dark band,
Figure 9. Time sequence of final motion along plate boundaries in northern
Falga Regio. Mapped material of plate boundaries are colored from oldest to
youngest in a green to blue to purple color scale. The “step” scale shows the
latest reconstruction step during which the boundaries of that color were still
active; refer to Figure10for more detail. Note that young plate boundaries
may also be active in earlier stages. Map is in orthographic projection centered
at 60°N, 140°E.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
13 of 30
named Acacallis Linea (also referred to by the unofficial name of Phaidra Linea in previous works), which cuts
east-west across the entire study area, and terminates in a sickle-shaped curve at its western end (labeled on
Figure12). Another prominent dark band cuts east-west across the study area between 10° and 11°S, named
Arachne Linea (labeled on Figure12). South of Arachne, in the southeastern corner of the study area, there is a
collection of dark band fragments with variable orientations mostly trending NE-SW. The north-central portion
of the study area is dominated by an irregularly shaped amalgamation of pits, domes, and chaos areas approxi-
mately 200–300km in diameter.
Portions of this region have been examined in previous works. Tufts etal.(2000) reconstructed the westernmost
part of Acacallis Linea and the small band that projects from its southern edge, showing that they formed via
Figure 10. Steps in reconstructing the original surface to the surface observed today in northern Falga Regio (see also Supporting Information MovieS1). Black
polygons are plates, gray polygons are plate boundaries that are no longer active, according to the crosscutting relationships. Arrows show the relative motions
necessary to bring the plates to their positions in the next step (cf. Figure4): red denotes contraction, yellow denotes left-lateral strike-slip, and blue denotes extension.
Activity generally migrated from north to south over time. Minor extension occurs along several boundaries, mostly early in time. Most of the contraction is along the
southern boundary, late in time. Left lateral strike slip in many orientations dominates the reconstruction. Maps are in orthographic projection centered at 60°N, 140°E,
and the southernmost plate is held fixed.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
14 of 30
dilation. Sarid etal.(2002) examined the plate boundaries marked CM4 and CM5 in Figure12, and showed that a
coherent plate 400km in size had translated laterally by 8km to form these features. They argued for the existence
of a convergent boundary in eastern Arachne Linea to accommodate this motion. Patterson etal.(2006) split the
northeastern quadrant of this study area into seven plates and used statistical methods to find the best-fit poles of
rotation to align features that predated the plate boundaries. Melton(2018) performed a detailed plate reconstruc-
tion of the southeasternmost corner of the study area, near 15°S, 140°E, highlighting the role of counterclock-
wise rotations in this area. Patterson and Head(2007) performed kinematic analysis of a triple junction in the
westernmost part of Acacallis Linea and demonstrated that the assumption of plate rigidity is valid for the region.
From Arachne Linea to the northern edge of the study area, the identified plate boundaries are composed of bands
trending east-west and ridges or ridge complexes trending north-south. We mapped 88 plates of pre-existing
terrain between the boundaries. Most of the north-south trending plate boundaries north of Arachne form a
cluster centered around 132°E (features labeled CM2, CM3, and CM4 in Figure12). South of Arachne and
west of 132°E, the pattern of plate boundaries is similar to the northern area, including a prominent east-west
trending band (labeled CM1 in Figure12). South of Arachne and east of 132°E, the plate boundaries are much
more complex and closely spaced. In this southeastern corner of the study area, there are several generations of
intersecting bands with different orientations. The largest and most prominent of these band fragments lie along
a trend labeled CM9 in Figure12. One unusual feature centered near 13°S, 139°E is a collection of small plates
surrounded by an elliptical set of dark bands (labeled as “Ellipse” in Figure12). In the southwestern corner of
the study area, there is a gap in high-resolution Galileo imaging, resulting in some ambiguity as to whether the
image to the west of the gap has geometric fidelity with the rest of the mosaic, or whether there are plate bound-
aries hidden in the gap.Because of this ambiguity, we split the plates to the north and south of CM1 along a
north-south line near 129°E, following the center of the gap.In general, the identified plates are smaller in the
southern portion of the study area as compared to the northern portion. We did not map plate boundaries in detail
beyond the southern boundary of the Castalia study area, but a preliminary examination showed the plates to be
yet smaller in that direction.
Figure 11. Castalia study area. (a) The base mosaic of images is shown with higher-resolution Galileo observations on top of lower resolution global-scale images. (b)
Only the high-resolution area is shown with interpretation of plate boundaries represented as thin purple lines (compare to subsequent figures). The colors in (b) denote
prominent features that are younger than the plate boundaries in yellow (which are ignored in the reconstruction process), and prominent features older than the plate
boundaries in blue. Images are shown in orthographic projection centered at 0°N, 130°E; north is up.The scale bar and coordinates for graticules are shown in (b).
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
15 of 30
The time sequence of plate boundary activity is displayed in Figure12. Cross-
cutting relationships among the plate boundaries show that motion along
the band CM1 is the most recent event. The next most recent event (Step 5)
created the central band of Arachne Linea, the ridge complex CM2 branching
to the north from central Arachne, and a curved (concave to the east) ridge/
band complex running through the middle of the ellipse, labeled CM3. The
next event going back in time (Step 4) created the ridge/band complex CM4,
as well as several small bands that branch between Arachne Linea and CM1.
Boundaries active until Step 3 include the peripheral portions of Arachne,
two roughly parallel ridges branching north from Arachne labeled CM5, a
“C” shaped set of bands and ridges (concave to the east) labeled CM6, and a
curved (concave to the west) ridge/band complex running through the middle
of the ellipse labeled CM7. Boundaries active until Step 2 include the two
eastern branches of Acacallis Linea, a central band running through western
Acacallis, several side branching ridges and small bands running north and
south from Acacallis, the network of bands surrounding the ellipse, and an
unusual isolated band fragment labeled CM8. The oldest plate boundaries
include the outer portions of western Acacallis and a collection of dark band
fragments lying along the trend line labeled CM9.
Reconstruction of the original surface (Figure13) aligns a variety of older
ridges and ridge complexes (blue). Prominent reconstructed features include
two ridges trending ENE-WSW across the entire area (Figure 13b) that
constrain the motions along CM2, CM4, and CM5, and many north-south
ridges that cross several plates and constrain the motions of CM4, Acacallis,
Arachne, and CM1. Four groups of plates in the southeastern corner of the
study area (labeled in Figure13b as 1, 2, and two groups in 3) were not well
constrained in their final reconstructed placement.
In Group 1, two prominent NE-SW trending pre-existing ridges, along with
several smaller features, give us high confidence that the plates within this
group are properly reconstructed. The only exception is the southeasternmost plate, which does not share promi-
nent reconstructable features with the other plates. Though the reconstruction within Group 1 is convincing, there
are no features shared with the plates on the other side of CM9 to the north of Group 1 that provide convincing
Figure 12. Time sequence of final motion along plate boundaries in the
Castalia Macula area. Mapped material of plate boundaries are colored from
oldest to youngest in a green to blue to purple color scale. The “step” scale
shows the latest reconstruction step during which the boundaries of that color
were still active; refer to Figure14 for the detailed steps. Note that young
plate boundaries may also be active in earlier stages. Projection is the same as
Figure11.
Figure 13. Reconstruction of the Castalia area. (a) Reconstruction of original surface before plate motions. The material of the plate boundaries has been removed.
Note tight alignment of pre-existing features marked in blue. Projection is the same as Figure11. (b) Detail of the southern section of part (a), showing the details of
original features (blue) brought back into alignment through reconstruction. Areas circled with dashed red lines indicate groups of plates for which the final placement
is uncertain. Each of these groups exhibits an internally consistent reconstruction, but the final placement of each group relative to the surrounding plates is only based
on one weakly constrained piercing point. See text for details.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
16 of 30
evidence of where Group 1 connects. We took the approach of moving Group 1 to the north to close band CM9,
giving it a slight clockwise rotation to align the pattern of background ridges with the terrain to the north. Its final
position in the reconstruction is based on one ridge possibly shared across the boundary, but this fit is not unique
and other ridges to the east or west could also fit. We conservatively used the fit for Group 1 that involved the
least amount of strike-slip motion.
The plates in Group 2 are found today to be adjacent to the isolated band fragment CM8. Their position in the
reconstruction is based on observations of the stages of motion of the surrounding plates and plate boundary
fragments. The justification for the rotation of the plates is based on aligning CM8 with surrounding bands when
it opened. The justification for the position of the plates is based on the old boundary material on the northern
side of CM8 being very similar in appearance to the old boundary material found where CM5 and CM9 come
together. The prominent ridge that gives Group 2 its internal reconstruction consistency may be an extension of a
similar ridge found near the southern terminus of CM2. Our hypothesis is that these ridge fragments are pieces of
the same feature, and this constrains Group 2 to its final position and orientation. There are other possible ridges
that could match if Group 2 experienced significant strike-slip motion to bring it west from its original position,
but our conservative assumption is that Group 2 only rotated and moved south as Arachne opened.
The two groups of plates in Group 3 are the least constrained parts of the reconstruction, and the ones for which
we have the least confidence in their original positions. Each cluster of plates in Group 3 is only reconstructed to
the rest of the study area with a single ridge.
The first plate motions to break up the reconstructed surface opened two major bands (Figure14, original surface
to Step 1). North-south extension occurred in western Acacallis Linea and a smaller branch of the band to the
south. The amount of extension varies from 43km in the west to 15 km in the east, as the pole of rotation is
located just to the east of Acacallis. Left-lateral strike-slip motion through the center of the study area linked
extension in Acacallis to extension occurring in eastern Arachne Linea and band CM9. Faults oriented NW-SE
around the “ellipse” began to break up surrounding plates through right-lateral strike-slip, including a 20 km
offset of the plates at the northern tip of this group.
The next stage (Figure14, Step 1 to Step 2) continues north-south extension through the center of the area, with
5km of extension continuing in western Acacallis and 20km of extension distributed among two parallel bands,
where eastern Acacallis splits and then rejoins in a triple junction at the eastern edge of the study area. The
greater extension in the east is accommodated by right-lateral strike-slip through the center of the study area.
Minor east-west contraction of 1–2km occurs at the northern end of the strike-slip zone to accommodate the
plate motions. In between the two eastern branches of Acacallis, a right-lateral strike-slip zone transfers unequal
amounts of extension from the southern branch to the northern branch. In the southeast corner of the study area,
eastern Arachne and band CM8 undergo north-south extension, accommodated by right-lateral strike-slip motion
along a fault branching southward from the center of Arachne, offsetting the two halves of band CM9. The
“ellipse” rotates counterclockwise by 29°, accommodated by right-lateral strike-slip motions around its entire
margin.
Moving from Step 2 to Step 3, the central block trapped between the ridges of CM5 moves south by 1–2km rela-
tive to the surrounding plates. The southern end of CM5 is offset by left-lateral strike-slip. The block containing
CM8 rotates counterclockwise, as does a large semi-elliptical block bounded by the curved ridge/band CM6
which exhibits 10km of right-lateral motion. The curved ridge CM7 offsets the western part of the “ellipse” via
8km of right-lateral motion, opening a small band where CM7 curves at its southern extent. All of Arachne Linea
begins minor extension ranging 4–8km in a north-south direction, with the exact amount depending on minor
strike-slip offsets in the plates between Arachne and CM1.
The transition from Step 3 to Step 4 is dominated by the small counterclockwise rotation of a large block compris-
ing much of the eastern part of the study area, accommodated by a mixture of extension, right-lateral strike slip,
and contraction along the cycloidal boundary CM4. Oblique convergence and right-lateral strike-slip totaling
11km is taken up in eastern Arachne to accommodate the motion along CM4. Convergence of 5km occurs along
the northern boundary of central CM9 as the southeasternmost group of plates rotates slightly counterclockwise.
Right-lateral motion near the southern boundary of the study area opens a small tear in the center of CM1.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
17 of 30
Figure 14. Steps in reconstructing the original surface to the surface observed today in Castalia Macula (see also Supporting Information MovieS2). Black polygons
are plates, gray polygons are plate boundaries that are no longer active, according to the crosscutting relationships. Arrows show the relative motions necessary to bring
the plates to their positions in the next step (cf. Figure4): red denotes contraction, blue denotes extension, and yellow and orange denote left-lateral and right-lateral
strike-slip, respectively. Early stages are dominated by band extension in the center of the study area, while later stages have minor band extension in the south. Both
left-lateral and right-lateral strike-slip motions occur, but right-lateral motions dominate during most stages. Coupled right-lateral motions lead to counterclockwise
rotations of blocks during several stages. Projection is the same as Figure11, and the largest plate (the center of the northern section) is held fixed.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
18 of 30
From step 4 to step 5, the boundary CM2 extends by just over 1km along its northern margin, accommodated by
right-lateral strike-slip and oblique spreading along the north-south portion of the boundary. The motion along
CM2 appears to be a continuation of the CM4 motion from the previous step, along a slightly different boundary.
At its southern end, CM2 merges with the central band of western Arachne, which has extended north-south by
4km during this stage. The curved boundary CM3 shifts the eastern portion of the “ellipse” southward by 3km,
opening a band at its northern margin.
The final transition to today's surface is accommodated by motion along CM1, which extends by 3km in a
north-south direction, exhibiting right-lateral transtension in its central dogleg portion. An animation of the
reconstruction sequence can be found in Supporting Information MovieS2.
Our reconstruction of western Acacallis Linea is very similar to that presented in Tufts etal. (2000), but we
recognize two distinct episodes in the opening of the band, as represented by the older outer portion of the band
linked with structures to the south, and the smoother, straighter inner portion of the band linked with structures
to the northwest and linked with the two branches of Acacallis to the east. Our reconstruction from step 3 to 4
of the motion along the cycloidal boundary CM4 agrees with the rotation found by Sarid etal.(2002) and later
works. That study found 8km of pure convergence along eastern Arachne Linea, while we find 11km of oblique
convergence because we recognize the simultaneous rotation of plates to the south of Arachne. Our reconstruc-
tion of the area surrounding the “ellipse” agrees with the work by Melton(2018) in terms of the major motions
that occurred, though our work places it into the larger context of extension and right-lateral motions in the
surrounding region.
Patterson etal.(2006) examined the motions along CM2, CM4, and CM5 using a statistical technique to find
best-fit poles of rotation for seven plates. They concluded that some non-rigid plate behavior present, and that
Arachne Linea formed via multiple episodes of extension and strike-slip motion. A later study using the same
technique to examine Acacallis (Patterson & Ernst,2011) also concluded that non-rigid plate behavior was pres-
ent. We tested the statistical pole of rotation technique by using GPlates to recreate the plates mapped in these
two studies, and then manually entering their published best-fit poles of rotation. We found that the statistical
fits largely agreed with the plate motions that we found, but they allowed for materials on adjacent plates to pass
through each other on the way to their reconstructed destinations. This is clearly nonphysical, and points to the
importance of performing and visualizing multi-stage reconstructions. The other main difference with our work
is that we broke the surface down into many more plates. By breaking plates down and accounting for small
motions within regions that were considered to be single plates in previous works, we avoid the overlap problem
Figure 15. Libya Linea study area. (a) The base mosaic of images constructed from higher-resolution Galileo observations
on top of lower resolution global-scale images. (b) Only the high-resolution areas shown, with interpretation of plate
boundaries as thin purple lines. The colors in (b) denote prominent features that are younger than the plate boundaries in
yellow (which are ignored in the reconstruction process), and prominent features older than the plate boundaries in blue.
Images are shown in orthographic projection centered at 59°S, 167°E, scale bar is shown in (a), and coordinates for graticules
are shown in both.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
19 of 30
and find that the nonrigidity in the previous works appears best explained by motions in a greater number of
smaller plates.
3.3. Libya Linea Region
The Libya Linea target area (Figure15a) is the southernmost target area in our study region (roughly 45°S to
70°S), and encompasses Libya Linea (LL), Astypalea Linea (AL), and Cyclades Macula, three features that have
been previously classified as pull-apart or smooth bands (Tufts etal.,1999,2000). Generally, these bands are
thought to form via emplacement of material via separation of the satellite's lithosphere (Tufts etal.,1999). LL
trends ENE-WSW, and is non-uniform in width suggesting multiple types of strain accommodation. LL consists
of an intertwining network of bands that are morphologically complex, similar to Arachne Linea (Section3.2;
Sarid et al.,2002), further implying multiple episodes of deformation. AL trends NNE-SSW and consists of
several N-S trending ridge segments that are aligned in a right-stepping, en échelon pattern (Kattenhorn,2004).
The ridge segments define the boundaries of at least four rhomboidal pull-apart features and the orientations
of parallel lineations within these pull-aparts suggest that AL opened at a highly oblique angle. One of these
rhomboidal features, Cyclades Macula, includes two sets of unique en echelon features trending NNW where
each feature is approximately 10 km in length and spaced 10 km apart from one another. The Libya Linea area is
relatively free of chaos terrain.
Figure15b shows the mapped plate boundaries as thin purple lines, and subsequent figures divide up this image
along these boundaries. For the purposes of reconstruction, young cycloidal ridges that overprint LL, AL, and
Cyclades Macula (highlighted in yellow in Figure15b) are ignored for the remainder of this section since they
postdate plate motions. Features that are highlighted blue in Figure15b are older than plate motions in the Libya
Linea area and were used to guide our reconstruction. Reconstruction results suggest a series of plate motions that
closes AL and Cyclades Macula and partially closes LL and results in a more linear structure than is observed in
the present day (Figure16).
To characterize the geologic history of the region that encompasses LL, AL, and Cyclades Macula, we examined
crosscutting relationships among ∼70 tectonic features and established a stratigraphic framework (Figure17).
Bands discussed in the subsequent text labeled LA1-LA5 are annotated in this figure. The stratigraphic frame-
work we developed was then used to define ∼300 plates in the region. Cross-cutting and offset features associated
Figure 16. Reconstruction of the Libya Linea area. (a) Reconstruction of original surface before plate motions. The material
of the plate boundaries has been removed. The majority of the plates to the northwest of the boxed areas experience minimal
plate motions to fit together. Overall, plates rotated counterclockwise to create plate boundaries that form the present day
Libya Linea area in Figure15b. Yellow and blue highlighted features have the same meaning as in Figure15b. (b) Zoomed
in portion of the Libya Linea reconstruction, highlighting the missing terrain that remains after reconstruction of the western
portion of Libya Linea and parallel bands to the north, as discussed in the text. (c) Zoomed in image of the eastern portion of
Libya Linea and Ancaeus Linea after reconstruction, showing the tight fit of the plates bordering Ancaeus.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
20 of 30
with the boundaries of the plates were identified and are being used to recon-
struct the geologic history of this prominent and complex area of Europa's
anti-Jovian, southern hemisphere.
An animation of the Libya area reconstruction can be found in Supporting
Information MovieS3. The initial stage of plate motion (Step 1, Figure18) is
defined by ∼20km of right lateral shearing trending NE-SW and ∼6km of
right lateral transtension trending NNE-SSW associated with the formation
of the first stage of LL. In this first stage, shearing is concentrated along
plates southwest of LL and transtension is distributed across the central and
northeastern portions of LL. An opposite sense of shearing is observed in the
western (right lateral) and eastern portion (left lateral) of LL, although this is
likely due to the image gap in the north central portion of the basemap.While
plates fit together well in the western portion of LL and in the regions labeled
LA6 and LA7 in Figure17, there are few constraints that tie the western and
eastern portion of LL that would allow for a more accurate reconstruction.
A second stage of plate motion (Step 2, Figure18) is defined by ∼20km of
N-S oriented transtension of LL and Castalia Macula and ∼35km of right
lateral transtension along Astypalea's N-S oriented en echelon fractures
(LA3). During this stage, the opening of Libya, Castalia, and Astypalea are
linked through a N-S trending fracture approximately one km wide. This
second stage results in a second phase of Libya opening (LA3), where open-
ing is concentrated in the central and northeastern portions of LA3, and a
concurrent first phase of Cyclades and Astypalea open. A sub-stage of this
second stage of plate motions occurs when the formation of Ancaeus Linea
ends (LA4). Ancaeus Linea trends NNE-SSW and resembles AL, albeit on
a smaller scale, and dilates by 22km to the N-S, accommodated by potential
convergence of bands located to the south. After LA4 finishes dilating, the
continued opening of Libya, Cyclades, and Astypalea are accommodated by
counterclockwise rotation of plates to the south of all LA3.
A third stage of plate motion (Step 3, Figure18) is defined by ∼6km of
N-S oriented dilation of band LA5 in Figure17. The majority of the dilation
is concentrated in the western portion of LA5 resulting in a rotation pole
located near the eastern extent of the band. During this stage, a counterclock-
wise rotation of plates between the LA5 and LA2 results in a third phase of LL forming via ∼25km of N-S
orientated dilation concentrated in the eastern portion of Libya. Along with the formation of the third stage of
Libya (LA2), the final phase of Cyclades and Astypalea open (LA2) with the same mechanics as their second
opening phase as described in the previous paragraph, including the linkage with Libya along a N-S oriented,
approximately one km wide band. This final opening stage results in an offset of ∼15km.
The final stage of plate motions (Step 4, Figure18) are defined by overall slight counterclockwise rotation of
plates south of the LA5 resulting in the final opening phase of Libya Linea (LA1) defined by an approximately
10 km wide NE-SW oriented dilational band and only 2km of lateral offset. Additional minor clockwise plate
rotations along with a combination of convergence, divergence, and shearing concentrated in the northwestern
portion of the study site result in the present day terrain (today, Figure18).
The final reconstruction of the Libya Linea Region results in complete reconstruction of AL, Cyclades, Macula,
and Ancaeus Linea. The final reconstruction of LL itself, however, does not result in a perfect fit. In the final
reconstruction, there is an approximately ∼50km wide, ∼1,500 long linear gap spanning 6,000km
2 potentially
implying that LL is reworked surface material that has taken advantage of a pre-existing linear weakness in the
crust, destroying crustal material that could have been used to aid reconstruction of this region. This hypothesis
is further supported by the lack of matchable features on either side of LL, especially in the western portion (see
lack of continuous blue shaded features in Figure16b). Another possibility for this gap in our reconstruction is
that we have yet to account for all deformation on either side of LL, thus each side is not in its correct geometrical
shape that would allow for a perfect reconstruction.
Figure 17. Time sequence of final motion along plate boundaries in the Libya
Linea area. Mapped material of plate boundaries are colored from oldest to
youngest in a green to blue to purple color scale. The “step” scale shows the
latest reconstruction step during which the boundaries of that color were still
active; refer to Figure18 for more detail. Note that young plate boundaries
may also be active in earlier stages. Map is in orthographic projection centered
at 59°S, 167°E.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
21 of 30
While LL has not previously been reconstructed, the reconstruction of AL and Cyclades Macula has been inves-
tigated by Tufts etal.(1999), Kattenhorn(2004), and Mével and Mercier(2005). Our reconstruction of Astyp-
alaea Linea and Cyclades Macula differ from the reconstructions by Tufts etal. (1999) where they reconstruct
Astypalaea and Cyclades under one stage. We find that the two sides of Astypalaea and Cyclades (southern
portion of LA2 and LA3 in Figure17) fit better when considering two stages of opening as seen in Steps 3 and
4 of Figure18. However, in both our work and Tufts etal.(1999), we both observe that right lateral motions in
the same orientation are responsible for the opening of Astypalaea and Cyclades (Kattenhorn,2004). also recon-
structs Astypalaea Linea under one stage of right lateral shearing resulting in dilation along the right stepping
en echelon fractures. They also hypothesize that while undergoing right lateral shearing, each individual fault
segment developed tail cracks and continued shearing took advantage of those tailcrack to dilate them into the
band segments seen today. The resulting reconstruction shows that AL is not a strictly linear band, similar to
Agenor Linea or Katreus Linea, but instead has a cycloidal geometry (although this is not to be confused with
band dilation along a cycloidal ridge as seen in the Castalia Macula region). Kattenhorn(2004) does not include
Cyclades Macula in their reconstruction due to image availability. The most recent reconstruction of Astypalaea
Linea by Mével and Mercier(2005) reconstructed AL and portions of Cyclades Macula using several more
plates than the two previous studies mentioned. While Tufts etal.(1999) and Kattenhorn(2004) treat Astypalea
as a singular plate boundary with one plate on either side, Mével and Mercier(2005) present a reconstruction
Figure 18. Steps in reconstructing the original surface to the surface observed today in Libya Linea region (see also Supporting Information MovieS3). Black
polygons are plates, gray polygons are plate boundaries that are no longer active, according to the crosscutting relationships. Arrows show the relative motions
necessary to bring the plates to their positions in the next step (cf. Figure4): red denotes contraction, yellow denotes left-lateral strike-slip, orange denotes right-lateral
strike-slip, and blue denotes extension. Major activity generally consists of clockwise plate rotations, dilation along LL, AL, and Cyclades Macula, and right-lateral
strike slip motions. Features in the northwestern portion of the study region do not crosscut features closer to LL, AL, and Cyclades Macula thus are stratigraphically
unconstrained with the major bands of the region. The motions in the northwestern portion consist of minor dilations, convergence, and right-lateral strike-slips. Maps
are in orthographic projection centered at 59°S, 167°E, and the plate directly above band LA5 is held fixed.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
22 of 30
more similar to what we present here where the surface is broken up beyond
two plates which allows for a better fit (see the set of plates labeled LA7
in Figure17). However, Mével and Mercier(2005) still treat Astypalea and
Cyclades as bands that open in one phase and their additional plate bound-
aries are drawn along nearby ridges and bands that intersect with Astypalea
and Cyclades, which differ from where we drew our additional plate bounda-
ries. This is likely because the images they used for their reconstruction were
of higher resolution than the images used for our reconstruction. Considering
that our reconstruction covered a larger swath of Europa's surface than Mével
and Mercier(2005), we aimed to use imagery with a consistent resolution
to prevent biases, which resulted in selecting a lower resolution data set that
covered a larger area.
3.4. Observations of Other Regions in the Mosaic
Numerous offsets along tectonic features have been observed across Europa,
but they are not always part of an organized system of rigid plates. In this
section, we share observations about the regions lying between our three
study areas. Each of these regions offers insight into the range of tectonic
behavior on Europa. The observations in this section complete the nearly
pole-to-pole survey of high resolution imaging in the region of Europa shown
in Figure1.
To the north of the Castalia Macula study area, plate-like motions are
observed in another region (Figure19). Because this region is adjacent to
Belus Linea, we refer to it below as the Belus region. Relative motions in
the Belus region have been noted in previous works, most notably in Sarid
etal.(2002) where an asymmetric band was found to accommodate 8km of
contraction. Our initial survey of the Belus region identified dozens of poten-
tial plates, but a full multi-stage reconstruction of this area is challenging due
to the density of crosscutting features, and is beyond the scope of our current
work. We performed three independent initial surveys of potential plates in
the Belus region, and though the surveys differed on the details of where the
plate boundaries lie, the agreement on the total area potentially affected by
plate-like motions is outlined by a red dashed line in Figure19. Also shown
in the figure is a ridge outlined in green that crosscuts all of the potential
plate boundaries in the Belus region. The green ridge is, in turn, crosscut by
another prominent ridge, outlined in blue in Figure19. The Blue Ridge can
be traced across most of the Castalia Macula study area (Section3.2) where
it is crosscut by all ages of plate boundaries in that area. Following the logic
of crosscutting relationships, all of the plate boundaries in the Belus region
must predate all of the plate boundaries in the Castalia Macula region, with
two generations of ridges formed in between. These two neighboring areas
thus represent two distinct episodes of plate-like behavior in Europa's history.
South of the Northern Falga study area, there are several linear features that exhibit apparent left-lateral strike-slip
offsets of 1–3km (Figure20). These features can only be traced for a few tens of kilometers before disappear-
ing into the background. No accommodation structures can be found linking these features together to form an
organized system of plates. There are three possible explanations for this observation. One explanation is that the
offsets and features are too small to be observed given the available images. However, similar scale strike-slip
offsets have been confidently linked to plate boundaries in the other study areas. Another explanation is that
these features are too far down in the stratigraphic column, and too many newer features have overprinted the
accommodation structures. The final explanation is that this is an area where Europa's surface is truly behaving
nonrigidly, and the motions along these segments are being accommodated by distributed deformation in the
intervening ice.
Figure 19. An area exhibiting plate-like motions north of Belus Linea
is outlined by a red dashed line. The purple lines in the south are plate
boundaries CM2 and CM4 from the Castalia Macula reconstruction (see
Figure12). The blue line shows a ridge that is crosscut by CM2 and CM4, and
extends all the way south to be crosscut by Acacallis Linea (off the southern
edge of this figure). The Blue Ridge crosscuts the green ridge, which crosscuts
all of the candidate plate boundaries in the area north of Belus. This shows
that all of the plate-like activity in the area north of Belus is older than the
activity in the Castalia Macula study area. Orthographic projection centered at
15°N, 135°E.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
23 of 30
In Section3.2 we noted that plate-like motions continue to the south of the Castalia Macula area, but the plates
become numerous, small, and difficult to confidently reconstruct. Between the Castalia and Libya study areas,
specifically within Argadnel Regio, the terrain is generally divided into plates by two sets of orthogonally inter-
secting bands. These intersecting bands appear to have formed from two separate episodes of diffuse, broad scale
lateral shearing that initially formed a set of NW-SE oriented bands via right-lateral shearing, and later formed a
set of sigmoidal bands oriented NE-SW via left-lateral shearing. Two episodes of opposite-sense shearing may
also be observed in Agenor Linea (Hoyer etal., 2014), just to the north of the Libya study area. As the more
recent episode of broad scale left-lateral shearing continued, the plates have rotated counter-clockwise, similar
to plate motions within the southern portion of the Castalia Macula area and observed by Melton(2018) and
Detelich and Kattenhorn(2022). The counter-clockwise rotation of these plates has caused them to disintegrate
into circular blocks, similar to what occurs at a much smaller scale in cataclasis, where angular grains in the
core of a fault zone will erode into rounded grains as shearing progresses. While the disaggregation between the
Castalia Macula and Libya Linea regions appear plate-like, they are dissimilar from the plates in this study which
appear to move independently. Instead, the disaggregation between Castalia Macula and Libya Linea is broadly
distributed and appears to be edge driven by east-west oriented shearing on the northern and southern boundaries
of Argadnel Regio and Agenor Linea.
4. Discussion
Before discussing the broader implications of our observations, we offer some observations of the reconstruction
process. As discussed in the introduction, many previous works examining lateral motions on Europa have taken
the simplified approach of reconstructing features on a flat plane. The reconstructions presented in this work
cover regions large enough in latitude and longitude that map projection errors would affect the results if the
reconstructions were done in that manner. Present work is limited to areas covered by available high-resolution
Galileo image data, but future reconstructions of an entire plate system on Europa based on expanded imaging
data would cover an even larger area. Once more imaging data of Europa is available, future plate reconstructions
must be done in a spherical framework.
Many previous works have tended to propose one-step reconstructions of multi-plate systems (amounting to a
singular rotation). While this is often a necessary simplification when performing an initial survey, the many
small motions/accommodations observed in the reconstructions of the Northern Falga, Castalia Macula, and
Libya Linea regions make it clear that the kinematic details revealing how strain is accommodated by observed
surface features can only be seen by taking a multi-stage approach. Performing a single step reconstruction on a
Figure 20. The area to the south of the Northern Falga study area exhibits strike-slip offsets on disconnected faults but no
organized system of plates. The red dashed line shows the southern edge of the subsumption band at the southern margin of
the Northern Falga reconstruction. The blue lines denote sections of faults with apparent strike-slip offsets. Orthographic
projection centered at 45°N, 140°E.
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
24 of 30
system of multiple plates and boundaries can also lead to nonsensical behavior, such as plates passing through
each other.
Finally, many of the improvements we were able to realize in the reconstructions presented here were only possi-
ble by breaking the obvious plates into smaller pieces along less obvious accommodation structures. What may
have appeared to be nonrigid behavior in previous reconstructions may instead be an overestimate of the size of
the rigid plates. The Northern Falga reconstruction presented in Section3.1 achieved a tighter fit than Kattenhorn
and Prockter(2014) by breaking some large plates into smaller pieces along subtle internal boundaries, thus
allowing the plates to change shape as the reconstruction progressed. The Castalia reconstruction also achieved
better fits without the overlaps suffered by previous statistical-based reconstructions in this area (Patterson &
Ernst,2011; Patterson etal.,2006) by considering many smaller plates instead of a few large ones. The drawback
of considering many more plates is that it becomes impractical to use a statistical approach when the number of
plate pairs to examine is vastly increased.
4.1. Implications for Tectonics on Europa
Based on our observations, we conclude that plate tectonic-like behavior on Europa is widespread, but it occurs
in limited areas, for limited amounts of time, and with limited amounts of motion.
4.1.1. Plate Tectonic-Like Behavior Is Widespread but Patchy on Europa
We examined a large swath of Europa stretching almost from pole to pole, and found three areas that repre-
sent good examples of plate tectonic-like behavior. The study areas were spread out in latitude, covering the
high northern and southern latitudes as well as the equatorial region. As discussed in the introduction, hints
of plate tectonic-like behavior have been found in other regions of Europa (e.g., Greenberg,2004; Pappalardo
& Sullivan,1996; Sullivan etal.,1998) but lack of wide-area imaging data at sufficient resolution has thus far
hampered a fully global investigation. We are confident based on this work that many more areas with plate-like
motions will be discovered when better imaging data of Europa is available.
However, widespread is not the same as global. There are limits to the extent of plate tectonic-like behavior in
each of the study areas, and some areas do not exhibit organized systems of plates, as far as we can determine.
Unlike the Earth, which has a globally integrated system of plates, Europa's plate motions are regionally confined
and thus may reflect a more regional or local process.
4.1.2. Plate Tectonic-Like Behavior Is Episodic and Not Currently Active
In all of the study areas, young ridges and ridge complexes overprint the plate boundaries. The young ridges do
not accommodate offsets like those seen in the plate boundaries. Thus, whatever process was driving the plate
motions came to an end, and is not actively driving plate motions today in any of the areas studied. The rela-
tionship between the Castalia Macula study area and the older Belus area to its north discussed in Section3.4
demonstrates that the plate tectonic-like behavior on Europa did not occur all at the same time. Combined with
the previous conclusion, we develop the view that plate tectonic-like behavior on Europa occurs in regional
patches and turns on and off at different times in different places.
4.1.3. Upper Limit on the Magnitude of Plate Motions
On the Earth, plate tectonics provides no hard upper limit to the distance of motion that can be accommodated along
plate boundaries. It is normal on Earth to see material created at a spreading ridge be later subducted. On Europa,
there are no examples of material being formed at a spreading band, traveling to an adjacent convergent margin, and
being subsumed. Most of the offsets accommodated along plate boundaries observed in our three study areas were
of order 10km, and no boundaries were observed that accommodated lateral motion of 100km or more. Together
with the observations of the regional, episodic nature of plate tectonic-like behavior on Europa, this limit on accom-
modated motion suggests that there is some self-limiting factor that brings plate motions on Europa to a halt. Is
this limitation due to the material of the plates themselves, or due to the driving mechanism behind plate motions?
It is interesting to note that while all of the study areas had convergent plate boundaries accommodating several
kilometers of motion, neither the Castalia nor the Libya reconstructions showed the magnitude of convergence
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
25 of 30
(several tens of kilometers) seen at the southern edge of the Northern Falga reconstruction. We can think of
three possibilities to explain this. Perhaps the tectonic behavior in the Northern Falga region is special, and it
is a unique region of Europa where an unusual amount of convergence happened. Another possibility is related
to the gap in boundary materials seen across the reconstructed position of Libya Linea (Section 3.3). If we
underestimated the reconstructed distance between the two sides of Libya, there could be additional convergence
hidden there. A final possibility for all of the regions is that motions take place in the reconstructions which
necessitate convergence somewhere outside the available imaging coverage. Once more imaging coverage is
available and such edge effects are accounted for, we will have better constraints on the amount of convergence.
4.2. Missing Information and Future Work
There are two pieces of observational data that would be helpful in making progress on understanding the driving
mechanism of plate tectonic-like behavior on Europa. The first is an inventory of the sizes of rigid plates that
are active at any particular time step in the reconstructions. This is not as simple as determining the areas of the
mapped plates, because many of the plate motions involve groups of plates and adjacent inactive boundaries
moving together. There are also edge effects from the limited imaging coverage that will affect the results of such
a study. Nevertheless, a study could be done in the future using the data from our reconstructions to place bounds
on the distribution of plate sizes.
The second piece of missing information that would constrain plate dynamics is the velocity of plate motions.
Unfortunately we do not currently have a way of determining the absolute ages of individual features on Europa.
All we can say is that all of the plate motions happened in a period of time less than the surface age of Europa,
which is less than 100 million years (Bierhaus etal.,2009).
Future work stemming from our study could also include an inventory of morphological differences among plate
boundaries on Europa, as a function of the type and magnitude of plate motion accommodated by the boundary.
The GPlates reconstruction files linked in the open research statement and in Supporting Information S1 for
this article can serve as a starting point for such future work. Reconstruction of the Belus region discussed in
Section3.4 is another important area for future work, to compare an earlier episode of plate motions to the later
motions in Castalia. In Section3.1 it was observed that the color maps of Geissler etal. (1998) show the plate
boundaries in Northern Falga as being a distinct color unit. Future work is also warranted to characterize the color
differences of plate boundaries in the other two target areas, though there is limited color data currently available
in those regions.
4.3. Thoughts on Driving Mechanisms for Plate Tectonic-Like Behavior
As we contemplate the similarities and differences between modern plate tectonics on the Earth and the plate
tectonic-like behavior exhibited by Europa, we should remember several factors affecting tectonic driving mech-
anisms that are different between the two worlds. For example, temperature-driven buoyancy changes between
the surface and interior of the ice shell are insufficient to drive subduction (Johnson etal.,2017). In addition,
Europa's surface is predominantly water ice, and thus will not undergo the eclogitization process that increases
the density of subducting slabs on Earth. Though higher density water ice phases exist, the pressure in Europa's
water ice layer is never high enough to initiate a change in the solid phase. Compositional changes driven by
salt content and porosity, however, may provide the necessary negative buoyancy to aid in shallow subduction
(Johnson etal.,2017). Yet, in places where convergence is observed on Europa, there is no strong evidence for
the directionality of convergence (i.e., one plate subducting beneath the other), and it is possible that material loss
in convergent zones on Europa could be fed from both sides unlike what is observed on modern Earth. In other
words, the conditions on Europa differ significantly from the global system of plate tectonics on Earth. While
there is evidence and modeling to support the idea that the ice beneath Europa's lithosphere is convecting (e.g.,
Pappalardo etal.,1998; Pappalardo & Barr,2004), there is also abundant evidence that tidal forces play a strong
role in shaping Europa tectonics (e.g., Kattenhorn & Hurford,2009). With this in mind, what mechanisms or
combination of mechanisms could plausibly drive global or regional plate-like motions on Europa?
One possibly productive line of reasoning would be to compare Europa plate behavior to early tectonic regimes
on the Earth, during the Hadean to Archean when the conditions may not have been favorable for subduction
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
26 of 30
or global plate tectonics. A warmer Hadean/Archean mantle (post Magma Ocean) would hamper the develop-
ment of plate tectonics in multiple compounding ways. For example, hotter mantle temperatures could increase
the buoyancy of the oceanic lithosphere to the extent that it can no longer subduct even with eclogitization
(e.g., Davies,1992). Hotter mantle temperatures also reduce mantle viscosity and, correspondingly, convective
stresses (Cooper etal.,2006; Sandu etal.,2011) such that the yield strength of the lithosphere may not be met
further inhibiting subduction (Moresi & Solomatov,1998). Yet, some simulations of early Earth dynamics
demonstrate that subduction may still be possible within these limited conditions, but it is weak, intermittent,
and likely not long-lived (van Hunen & Moyen,2012). In other words, though the early Earth was suboptimal
for a global network of well-developed, long-lasting subduction zones (a.k.a. plate tectonics), episodic surface
removal and compression driven by weak subduction that could mimic characteristics of plate tectonics was
still possible, which suggests that this possibility may also exist for the suboptimal conditions for subduction
on Europa.
The apparent limits to the magnitude and lateral extent of plate motions on Europa suggests that there may
be self-limiting behavior, either within the plates or the driving mechanism, that inhibits the development of
long-lived plate motions. On Earth, plate motion can become “congested” upon the advent of subducting buoyant
material (e.g., Mueller & Phillips,1991). Moresi etal.(2014) modeled this congestion showing that the motion
of the subducting plate stalls during the accretion of buoyant material onto the overriding plate. This stalling
then leads to a development of a diffuse plate boundary which remains in operation until the migration of the
subduction zone and plate motion resumes. The timing of this process from congestion to re-establishment of the
subduction zone and return to stable plate motion is dependent on the strength of the overriding plate (Moresi
etal.,2014). This mechanism could explain how variations in buoyancy driven by composition and/or tempera-
ture within the ice could lead to temporary, but repeating bursts of lateral plate motions.
Our observations can help place Europa in a tectonic regime context for compLithgow-Bertelloni & Richards,
1998arative planetology. However, this exercise must be done with careful attention to the variability in tectonic
regimes as well as the non-unique nature of dynamic systems (Weller & Lenardic,2012). Stagnant lid and mobile
(or “active”) lid regimes are often used to bracket the end members of global tectonic settings delineating between
a single lithospheric plate with no discernible lateral motion and multiple plates moving and interacting (e.g.,
Moresi & Solomatov,1998). The episodic regime is classically described as a transient state between periods of
mobile and stagnant lid tectonics (Moresi & Solomatov,1998). Yet geodynamic models within parameter sweep
investigations of tectonic regimes produce varied behavior beyond those three regimes (e.g., Lenardic,2018).
Several of the non-end-member regimes may be applicable to Europa. For example, “sluggish” lid describes
behavior that sits between mobile and stagnant lid, where lateral surface motion persists, but at velocities lower
than those in the actively convecting region below (Lenardic,2018). In the sluggish lid regime, which can occur
globally or regionally, surface motion is driven by traction forces at the base of the lid (e.g., Phillips, 1990;
Lenardic, 2018). Phillips (1990) argued that a tectonic regime driven by traction forces explains large-scale
deformation on Venus. Rozel etal.(2015) demonstrated a ridge-only regime wherein deformation is centralized
around ridge within a more resistant, stagnant lithosphere. While the ridge-only regime may not be applicable to
the observations of deformation and plate motion on Europa, it does highlight the variability of tectonic regimes
between mobile and stagnant lid. In addition, the process of transitioning between tectonic regimes, such as from
heat-pipe/stagnant lid to mobile lid introduces short-lived bursts of lithospheric deformation and motion not
solely reflective of a single end-member regime (e.g., Beall etal.,2018). The observations of plate-like motions
on Europa presented in this study can provide tests for geodynamic studies exploring a wider range of tectonic
regimes, as well as the transitions between them.
Another way to view plate motions on Europa is to examine the positions of the Euler poles relative to the plates
that they describe. This allows us to observe how much of the motion is poloidal, meaning the poles are far from
the plates and all parts of a small plate are moving in roughly the same direction, versus toroidal, meaning the
poles are next to the plates and much of the plate motion can be described as spinning in place. In terrestrial plate
tectonics, the distribution of poloidal versus toroidal plate motions can have implications for the driving forces
of plate motion (Lithgow-Bertelloni & Richards,1998) and plate-mantle coupling (Bercovici & Wessel,1994).
Figure21 shows plots of the total reconstruction poles calculated by GPlates from the beginning to end of each
reconstruction, relative to the fixed plate in each study area. Comparison of the distribution of pole positions to
the study area outlines (in which all the plates are located) shows a scatter of distant poles in each study area, with
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
27 of 30
a large number of close-in poles that are dominantly clockwise in Northern Falga and counter-clockwise in the
other two study areas. While a detailed analysis of pole distributions and their implications is beyond the scope
of our current study, Figure21 points out an interesting avenue for future work.
The dominance of left lateral displacements and clockwise plate rotations in the northern Falga study area (cf.
Figure 10), and right lateral displacements and counterclockwise plate rotations in the other study areas (cf.
Figures14 and18) may offer a clue to other processes beyond convection for driving Europa plate motions. Over
time, fractures on Europa may develop strike-slip offsets as a result of periodic opening, closing, and shearing
stresses caused by tides (e.g., Greenberg etal.,1998; Kattenhorn & Hurford,2009). Models of tidal deforma-
tion predict that tidally-driven offsets will follow spatial patterns. Specifically, in the far north, most faults will
develop left-lateral offsets while faults in the far south will develop right-lateral offsets. Between these zones,
both left-lateral and right-lateral offsets can develop, with the direction of motion determined by the orienta-
tion of the fault (Greenberg etal.,1998; Sarid et al.,2002). If Europa's spin pole were precisely perpendicular
to its orbit plane (i.e., zero obliquity), the boundaries of the mixed offset zone would be symmetric north and
south of the equator and located at the same latitudes at all longitudes. However, there is substantial evidence
that Europa's spin pole is slightly titled (<1°), and the direction in which the spin pole is pointing changes over
time (Bills etal.,2009; Rhoden etal.,2010). Europa's non-zero obliquity breaks the symmetry in the tidal stress
field, causing the region of mixed right and left lateral offsets to shift off the equator and makes the pattern
longitude-dependent (Rhoden etal.,2012).
Much of the strike-slip motion we recorded follows the general pattern of mostly left-lateral offsets in the north,
associated with clockwise plate rotation, and mostly right-lateral offsets in the south, which develop from
counter-clockwise plate rotation. The pattern suggests that tidal stress may play a role in the development of
offsets, but how (and whether) tides would drive plate rotations is not yet understood. Furthermore, our results
indicate that rigid plate motions occurred in Europa's past, which means that Europa's spin pole likely pointed in
a different (and unknown) direction when plates were active. The relationships between offset direction, crack
orientation, and location on Europa's surface are sensitive to the spin pole direction. Hence, it is not trivial to
link tides with plate motions. An interesting avenue for future study would be to conduct a detailed comparison
between the offsets associated with plate rotations and the history of obliquity-driven tidal stresses to determine
the importance of tides relative to other potential drivers of plate motion. A related question is whether tidal
stress acts in concert with convective stress to drive plate motions, or whether a shift in convective regime from
stagnant to mobile lid behavior simply acts to weaken and detach the stiff surface ice, so that tidal stress can take
over to mobilize the plates. Detached plates could be mobilized by edge-driven tidal shear forces, and perhaps
some or all of the extension and contraction observed in these plate systems is passively accommodating these
shear motions. Some aspects of plate behavior on Europa may resemble the behavior of terrestrial microplates
(see discussion in Melton,2018 and references therein) where small rigid plates are jostling to accommodate
large-scale regional strain.
Figure 21. Plots of Euler pole postions describing the total motion (beginning to end) of all plates in each study area, relative to the fixed plate in that area. Pink
outlines show the locations of the study areas. Orange and blue dots represent poles with clockwise and counter-clockwise rotations, respectively. Plotted poles are
constrained to being within 90° longitude of 140°E (the center of the base mosaic).
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
28 of 30
5. Conclusion
Surveying a large swath of Europa's surface, at least three regions were found where the tectonic behavior is best
described by motions along narrow boundaries in a system of rigid plates—in other words, plate tectonic-like
behavior. Multi-stage reconstructions of these areas show divergent, strike-slip, and convergent motions are
accommodated along various boundaries, just like the system of plate boundaries on the Earth. However, the
plate tectonic-like behavior on Europa shows clear differences from the current behavior of plate tectonics on
Earth. Unlike the Earth, Europa's plate systems are regionally confined and do not appear to be active at the same
time. Not all of the surface surveyed was best described by plate tectonic-like behavior. None of the areas of plate
tectonic-like behavior have been active in the recent past (as defined by when the most recent ridges formed), thus
something has caused plate motions to cease.
Our observations lead to a fascinating variety of open questions. What is the role of convection versus tidal forces
in driving plate motions on Europa? What do the scale of plates and the magnitude of plate motions tell us about
the driving mechanisms for plate motions on Europa? What makes the plate behavior turn on and off, and how
long does it last? How much material from Europa's lower crust or ocean is exposed during plate motions, and
how much surface material is subsumed into Europa's ice shell? This last question is important for understand-
ing Europa's habitability. When Europa Clipper returns a much more complete high resolution image mosaic of
Europa's surface in the early 2030s, we can look forward to performing more detailed and complete reconstruc-
tions of plate motions, and perhaps make significant progress on these open questions.
Conflict of Interest
The authors declare no conflicts of interest relevant to this study.
Data Availability Statement
The Supporting InformationS1 for this article contains descriptions and links to all of the GPlates data files
used in the reconstructions. All of the data files and the ISIS-formatted base mosaic can be downloaded from
the JHU-APL data repository for this article at Collins etal.(2022). GPlates software (Müller etal.,2018) is an
open source project located at http://gplates.org. The software may be downloaded from the GPlates website at
https://www.gplates.org/download or from the project's GitHub page at https://github.com/GPlates. For future
compatibility purposes, the GPlates project plans to make older versions of GPlates available on EarthByte at
https://www.earthbyte.org/. Mac and Windows installers of GPlates version 2.3, current as of the date of submis-
sion of this manuscript and known to work with the archived data files, are included in this article's JHU-APL
data repository in case of future incompatibility Collins etal. (2022).
References
Beall, A. P., Moresi, L., & Cooper, C. M. (2018). Formation of cratonic lithosphere during the initiation of plate tectonics. Geology, 46(6),
487–490. https://doi.org/10.1130/G39943.1
Bercovici, D., & Wessel, P. (1994). A continuous kinematic model of plate-tectonic motions. Geophysical Journal International, 119(2),
595–610. https://doi.org/10.1111/j.1365-246X.1994.tb00144.x
Bierhaus, E. B., Zahnle, K., & Chapman, C. R. (2009). Europa’s crater distribution and surface ages. In R. T. Pappalardo, W. B. McKinnon, & K.
Khurana (Eds.), Europa (pp.161–180). University of Arizona Press.
Bills, B. G., Nimmo, F., Karatekin, O., Van Hoolst, T., Rambaux, N., Levrard, B., & Laskar, J. (2009). Rotational dynamics of Europa. In R. T.
Pappalardo, W. B. McKinnon, & K. Khurana (Eds.), Europa (pp.119–134). University of Arizona Press.
Collins, G. C., Detelich, C. E., Patterson, G. W., Oldrid, S. R., & Rezza, C. A. (2022). Episodic plate tectonics on Europa: Evidence for wide-
spread patches of mobile-lid behavior in the antijovian hemisphere [Dataset]. Johns Hopkins University Applied Physics Laboratory Data
Archive. https://doi.org/10.48732/7EDB-WY07
Collins, G. C., & Nimmo, F. (2009). Chaotic terrain on Europa. In R. T. Pappalardo, W. B. McKinnon, & K. Khurana (Eds.), Europa (pp.259–281).
University of Arizona Press.
Cooper, C. M., Lenardic, A., Levander, A., Moresi, L., & Benn, K. (2006). Creation and preservation of cratonic lithosphere: Seismic constraints
and geodynamic models. Geophysical Monograph-American Geophysical Union, 164, 75.
Davaille, A., Smrekar, S. E., & Tomlinson, S. (2017). Experimental and observational evidence for plume-induced subduction on Venus. Nature
Geoscience, 10(5), 349–355. https://doi.org/10.1038/ngeo2928
Davies, G. F. (1992). On the emergence of plate tectonics. Geology, 20(11), 963. https://doi.org/10.1130/0091-7613(1992)020<0963:oteopt>
2.3.co;2
Detelich, C. E., & Kattenhorn, S. A. (2022). Global-scale tidal forcing and plate tectonics have both shaped the tectonic evolution of Europa. (#
2135). In 53rd lunar and planetary science conference.
Acknowledgments
The base mosaic used in this study was
constructed by Jose Pablo Brenes Coto
at Wheaton College. Thanks to Heather
Meyer and Chad Melton for insightful
observations and discussions during the
course of this work. Additional thanks go
to other Wheaton undergraduate students
who participated in the search for plates
on Europa, including Claire Albright,
Francis Wood, Julia Walsh, Olivia White,
and Dami Olubusi, as well as Emily
Weintraub who worked on alternative
figure preparation. The authors also
thank Mat Domeier and an anonymous
reviewer, whose comments helped to
clarify the presentation of this article. The
work was funded by National Aeronaut-
ics and Space Administration (Grant
NNX15AH91G).
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
29 of 30
Geissler, P.E., Greenberg, R., Hoppa, G., Helfenstein, P., McEwen, A., Pappalardo, R., etal. (1998). Evidence for non-synchronous rotation of
Europa. Nature, 391(6665), 368–370. https://doi.org/10.1038/34869
Greenberg, R. (2004). The evil twin of agenor: Tectonic convergence on Europa. Icarus, 167(2), 313–319. https://doi.org/10.1016/j.
icarus.2003.09.025
Greenberg, R., Geissler, P., Hoppa, G., Tufts, B. R., Durda, D. D., Pappalardo, R., etal. (1998). Tectonic processes on Europa: Tidal stresses,
mechanical response, and visible features. Icarus, 135(1), 64–78. https://doi.org/10.1006/icar.1998.5986
Hellinger, S. J. (1981). The uncertainties of finite rotations in plate tectonics. Journal of Geophysical Research, 86(B10), 9312–9318. https://doi.
org/10.1029/jb086ib10p09312
Hoyer, L., Kattenhorn, S. A., & Watkeys, M. K. (2014). Multistage evolution and variable motion history of Agenor Linea, Europa. Icarus, 232,
60–80. https://doi.org/10.1016/j.icarus.2013.12.010
Johnson, B. C., Sheppard, R. Y., Pascuzzo, A. C., Fisher, E. A., & Wiggins, S. E. (2017). Porosity and salt content determine if subduction can
occur in Europa’s ice shell. Journal of Geophysical Research: Planets, 122(12), 2765–2778. https://doi.org/10.1002/2017JE005370
Kattenhorn, S. A. (2004). Strike-slip fault evolution on Europa: Evidence from tailcrack geometries. Icarus, 172(2), 582–602. https://doi.
org/10.1016/j.icarus.2004.07.005
Kattenhorn, S. A., & Hurford, T. (2009). Tectonics of Europa. In R. T. Pappalardo, W. B. McKinnon, & K. Khurana (Eds.), Europa (pp.199–236).
University of Arizona Press.
Kattenhorn, S. A., & Prockter, L. M. (2014). Evidence for subduction in the ice shell of Europa. Nature Geoscience, 7(10), 762–767. https://doi.
org/10.1038/ngeo2245
Laura, J. R., & Beyer, R. A. (2021). Knowledge inventory of foundational data products in planetary science. The Planetary Science Journal,
2(1), 18. https://doi.org/10.3847/PSJ/abcb94
Lenardic, A. (2018). The diversity of tectonic modes and thoughts about transitions between them. Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical & Engineering Sciences, 376(2132), 20170416. https://doi.org/10.1098/rsta.2017.0416
Lithgow-Bertelloni, C., & Richards, M. A. (1998). The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, 36(1), 27–78.
https://doi.org/10.1029/97rg02282
McKenzie, D. P., & Parker, R. L. (1967). The North Pacific: An example of tectonics on a sphere. Nature, 216(5122), 1276–1280. https://doi.
org/10.1038/2161276a0
Melton, C. A. (2018). Kinematics of plate rotation on Europa: Case study in Argadnel Regio (Master’s thesis). University of Tennessee.
Mével, L., & Mercier, E. (2005). Resorption process in Astypalaea Linea extensive region (Europa). Planetary and Space Science, 53(7),
771–779. https://doi.org/10.1016/j.pss.2004.12.005
Moresi, L., Betts, P.G., Miller, M. S., & Cayley, R. A. (2014). Dynamics of continental accretion. Nature, 508(7495), 245–248. https://doi.
org/10.1038/nature13033
Moresi, L., & Solomatov, V. (1998). Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus.
Geophysical Journal International, 133(3), 669–682. https://doi.org/10.1046/j.1365-246X.1998.00521.x
Morgan, W. J. (1968). Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73(6), 1959–1982. https://doi.
org/10.1029/JB073i006p01959
Mueller, S., & Phillips, R. J. (1991). On the initiation of subduction. Journal of Geophysical Research, 96(B1), 651–665. https://doi.
org/10.1029/90JB02237
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., etal. (2018). GPlates: Building a virtual Earth through deep time.
Geochemistry, Geophysics, Geosystems, 19(7), 2243–2261. https://doi.org/10.1029/2018GC007584
Nimmo, F., & Stevenson, D. J. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. Journal of Geophys-
ical Research, 105(E5), 11969–11979. https://doi.org/10.1029/1999JE001216
Pappalardo, R. T., & Barr, A. C. (2004). The origin of domes on Europa: The role of thermally induced compositional diapirism. Geophysical
Research Letters, 31(1), L01701. https://doi.org/10.1029/2003GL019202
Pappalardo, R. T., Head, J. W., Greeley, R., Sullivan, R. J., Pilcher, C., Schubert, G., etal. (1998). Geological evidence for solid-state convection
in Europa’s ice shell. Nature, 391(6665), 365–368. https://doi.org/10.1038/34862
Pappalardo, R. T., & Sullivan, R. J. (1996). Evidence for separation across a gray band on Europa. Icarus, 123(2), 557–567. https://doi.
org/10.1006/icar.1996.0178
Patterson, G. W., & Ernst, C. M. (2011). Modeling Plate motion on Europa: Phaidra Linea. #2102. In 42nd annual lunar and planetary science
conference.
Patterson, G. W., & Head, J. W. (2007). Kinematic analysis of triple junctions on Europa. Presented at the workshop on ices, oceans, and fire:
Satellites of the outer solar system (LPI contribution 1357).
Patterson, G. W., Head, J. W., & Pappalardo, R. T. (2006). Plate motion on Europa and nonrigid behavior of the icy lithosphere: The Castalia
Macula region. Journal of Structural Geology, 28(12), 2237–2258. https://doi.org/10.1016/j.jsg.2006.03.032
Phillips, R. J. (1990). Convection-driven tectonics on Venus. Journal of Geophysical Research, 95(B2), 1301–1316. https://doi.org/10.1029/
JB095iB02p01301
Prockter, L. M., Head, J. W., III, Pappalardo, R. T., Sullivan, R. J., Clifton, A. E., Giese, B., etal. (2002). Morphology of Europan bands at high reso-
lution: A mid-ocean ridge-type rift mechanism. Journal of Geophysical Research, 107(E5), 4-1–4-26. https://doi.org/10.1029/2000JE001458
Prockter, L. M., & Pappalardo, R. T. (2000). Folds on Europa: Implications for crustal cycling and accommodation of extension. Science,
289(5481), 941–943. https://doi.org/10.1126/science.289.5481.941
Prockter, L. M., & Patterson, G. W. (2009). Mor phology and evolution of Europa’s ridges and bands. In R. T. Pappalardo, W. B. McKinnon, & K.
Khurana (Eds.), Europa (pp.237–258). University of Arizona Press.
Rhoden, A. R., Militzer, B., Huff, E. M., Hurford, T. A., Manga, M., & Richards, M. A. (2010). Constraints on Europa’s rotational dynamics from
modeling of tidally-driven fractures. Icarus, 210(2), 770–784. https://doi.org/10.1016/j.icarus.2010.07.018
Rhoden, A. R., Wurman, G., Huff, E. M., Manga, M., & Hurford, T. A. (2012). Shell tectonics: A mechanical model for strike-slip displacement
on Europa. Icarus, 218(1), 297–307. https://doi.org/10.1016/j.icarus.2011.12.015
Rozel, A., Golabek, G. J., Näf, R., & Tackley, P.J. (2015). Formation of ridges in a stable lithosphere in mantle convection models with a visco-
plastic rheology. Geophysical Research Letters, 42(12), 4770–4777. https://doi.org/10.1002/2015GL063483
Sandu, C., Lenardic, A., O’Neill, C. J., & Cooper, C. M. (2011). Earth’s evolving stress state and the past, present, and future stability of cratonic
lithosphere. International Geology Review, 53(11–12), 1392–1402. https://doi.org/10.1080/00206814.2010.527672
Sarid, A. R., Greenberg, R., Hoppa, G. V., Hurford, T. A., Tufts, B. R., & Geissler, P. (2002). Polar wander and surface convergence of Europa’s
ice shell: Evidence from a survey of strike-slip displacement. Icarus, 158(1), 24–41. https://doi.org/10.1006/icar.2002.6873
Journal of Geophysical Research: Planets
COLLINS ETAL.
10.1029/2022JE007492
30 of 30
Schenk, P.M., & McKinnon, W. B. (1989). Fault offsets and lateral crustal movement on Europa: Evidence for a mobile ice shell. Icarus, 79(1),
75–100. https://doi.org/10.1016/0019-1035(89)90109-7
Sullivan, R., Greeley, R., Homan, K., Klemaszewski, J., Belton, M. J. S., Carr, M. H., etal. (1998). Episodic plate separation and fracture infill
on the surface of Europa. Nature, 391(6665), 371–373. https://doi.org/10.1038/34874
Tufts, B. R., Greenberg, R., Hoppa, G., & Geissler, P. (1999). Astypalaea Linea: A large-scale strike-slip fault on Europa. Icarus, 141(1), 53–64.
https://doi.org/10.1006/icar.1999.6168
Tufts, B. R., Greenberg, R., Hoppa, G., & Geissler, P. (2000). Lithospheric dilation on Europa. Icarus, 146(1), 75–97. https://doi.org/10.1006/
icar.2000.6369
van Hunen, J., & Moyen, J.-F. (2012). Archean subduction: Fact or fiction? Annual Review of Earth and Planetary Sciences, 40(1), 195–219.
https://doi.org/10.1146/annurev-earth-042711-105255
Vetter, J. C. (2005). Evaluating displacements along Europan ridges (Master’s thesis). University of Idaho.
Weller, M. B., & Lenardic, A. (2012). Hysteresis in mantle convection: Plate tectonics systems. Geophysical Research Letters, 39(10). https://
doi.org/10.1029/2012GL051232
Williams, S. E., Müller, R. D., Landgrebe, T. C. W., & Whittaker, J. M. (2012). An open-source software environment for visualizing and refining
plate tectonic reconstructions using high-resolution geological and geophysical data sets. Geological Society of America Today, 4–9. https://
doi.org/10.1130/GSATG139A.1