Article

Uncovering Fake News by Means of Social Network Analysis

Authors:
  • SmallArms factory
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The short access to facts on social media networks in addition to its exponential upward push also made it tough to distinguish among faux information or actual facts. The quick dissemination thru manner of sharing has more high quality its falsification exponentially. It is also essential for the credibility of social media networks to avoid the spread of fake facts. So its miles rising research task to robotically check for misstatement of information thru its source, content material, or author and save you the unauthenticated assets from spreading rumours. This paper demonstrates an synthetic intelligence primarily based completely approach for the identification of the fake statements made by way of the use of social network entities. Versions of Deep neural networks are being applied to evalues datasets and have a look at for fake information presence. The implementation setup produced most volume 99% category accuracy, even as dataset is tested for binary (real or fake) labelling with multiple epochs.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Conference Paper
Full-text available
In recent times, "fake news" has become an increasingly important concept. Primarily, because information is now able to more quickly and deeply propagate among users due to the pervasive nature of the Internet and digital media. For this reason, it has recently received a large amount of attention from computer science researchers. A large number of studies demonstrate methods for detecting misinformation in content shared on the Internet. On the other hand, satire and irony as a part of usual human communication have received less attention. Whereas, fake news means misinformation meant to deceive people, satire is misinformation meant to entertain or criticize. Thus, despite both satire and fake news being misinformation these two concepts have different objectives and impacts. Currently, few studies have focused on differentiating between satire and fake news. In this paper, we present the limitations of existing works for classifying satire and fake news; discuss the feasibility of using a subjective concept like storytelling as a way to classify satire and fake news; and present a supervised learning approach to classify satire and fake news.
Chapter
Using fake news as a political or economic tool is not new, but the scale of their use is currently alarming, especially on social media. The authors of misinformation try to influence the users' decisions, both in the economic and political sphere. The facts of using disinformation during elections are well known. Currently, two fake news detection approaches dominate. The first approach, so-called fact or news checker, is based on the knowledge and work of volunteers, the second approach employs artificial intelligence algorithms for news analysis and manipulation detection. In this work, we will focus on using machine learning methods to detect fake news. However, unlike most approaches, we will treat incoming messages as stream data, taking into account the possibility of concept drift occurring, i.e., appearing changes in the probabilistic characteristics of the classification model during the exploitation of the classifier. The developed methods have been evaluated based on computer experiments on benchmark data, and the obtained results prove their usefulness for the problem under consideration. The proposed solutions are part of the distributed platform developed by the H2020 SocialTruth project consortium.
Cloud-Based System for Fake Tweet Identification
  • S Krishnan
  • M Chen
S. Krishnan and M. Chen, "Cloud-Based System for Fake Tweet Identification," 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Arlington, VA, USA, 2019, pp. 720-721.