Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Tree radial growth is influenced by climatic and various non-climatic factors, which can complicate the extraction of climate signals from tree rings. We investigated the influence of disturbance on tree-ring width (RW) and latewood blue intensity (BI) chronologies of Norway spruce from the Carpathian Mountains to explore the extent to which disturbance can affect temperature signals in tree rings. Overall, ∼15000 high-elevation Norway spruce tree cores from 34 sites grouped into four regions (Slovakia, Ukraine, North and South Romania) were analyzed. The curve intervention detection (CID) method was applied to detect and correct identified disturbance trends. RW chronology structural comparisons were performed among disturbance-affected and disturbance-corrected chronologies for various spatial (regional / site) scales and sampling subsets. Structural comparisons were also performed for RW and BI chronologies developed from separate groups of series (i.e., disturbed, and undisturbed) for five sites exhibiting clear disturbance trends. Temperature sensitivity was assessed for all chronology variants of both parameters. We found that disturbance trends only affected RW chronologies at the site/subset scale with relatively small series replication and were not detected at the regional scale. Unlike RW, BI chronologies were generally unaffected by disturbance. BI data also contained much stronger growing season temperature signals, which appeared to be both spatially and temporally more coherent. Whereas highly replicated and spatially extensive datasets can help minimize or eliminate disturbance trends in RW chronologies, this potential influence should be considered when interpreting climatic signals in tree rings and reconstructing historical climate in weakly replicated periods. On the other hand, BI is a promising alternative tree ring parameter with stronger and more stable growing season temperature signals, whose seemingly disturbance-free chronology structure does not appear to suffer from this ecological bias, and therefore represents a more suitable parameter for dendroclimatological research.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... These studies indicate that trees near active fault zones can detect seismic signals before the earthquake itself. Tree radial growth is influenced by both climatic and non-climatic factors like seismic events, complicating the extraction of climate signals from tree rings It is found that disturbances impacted on tree ring (9). It is essential to understand the impact of electromagnetic signals at normal environment condition. ...
Article
Seismic precursor identification is vital in the Himalayan range and near active fault lines to offer early earthquake warnings, as India and nearby areas face a high risk of seismic activity. This laboratory-based research conducted simulations aimed at replicating electromagnetic signals generated by artificial seismic events spanning frequencies from 1 Hz to 59 Hz. High-frequency seismic signal attenuation upon interaction with the Earth's surface was observed, focusing on emulating electromagnetic waves within the ultra-low frequency (ULF) to very high frequency (VHF) range and investigating energy transfer dynamics within conductive materials. Findings included a reduction in green stem ring diameter, an inversely correlated penetration depth with frequency, and fluctuations in the dielectric constant of tree tissues, linked to water molecule polarization with frequency changes. By applying an electric field, lower dielectric constants were observed at lower frequencies, stabilizing at around 40 eV as frequency increased from 1 Hz to 59 Hz. As frequency levels escalated, especially transitioning into the radio or microwave spectrum, alterations in the dielectric constant of tree tissues were noted, often marked by an increase in dielectric loss, signifying heightened absorption of electromagnetic energy and its conversion into heat. Banyan tree roots exhibited responses well in advance of any discernible alterations in the subsurface environment, offering valuable early indicators of impending seismic activity. This discovery encourages further exploration and holds the potential to advance earthquake prediction using deep-rooted trees as biosensors, ultimately contributing significantly to the preservation of human lives and overall safety.
... CDendro (Jiang et al. 2022). However, the diversity and complexity of the morphology, structure and colour of tree rings, time and labour intensity of traditional measurement methods are high. ...
Article
Full-text available
Tree-ring data are pivotal for decoding the age and growth patterns of trees, reflecting the impact of environmental factors over time. Addressing the significant shortcomings of traditional, labour-intensive and resource-demanding methods, we propose an innovative automated technique that utilizes panchromatic images and deep learning for measuring tree rings. The method utilizes convolutional neural networks to enhance image quality, precisely delineate tree rings through segmentation and perform ring counting and width calculation in the post-processing stage. We compiled an extensive data set from diverse sources, including Beijing Forestry University and the Summer Palace, to train our algorithm. The performance of our method was validated empirically, demonstrating its potential to transform tree-ring analysis and provide deeper insights into ecological and climatological research.
... While BI parameters have been previously shown to be less affected by disturbance agents than traditional radial growth parameters (Jiang et al., 2022), we suspect that the combination of microsite conditions (e.g., elevation, slope position, substrate) and regional variation in the response of P. rubens and T. canadensis stands to exogenous disturbance regimes, influences the suitability of each site-level chronology as a candidate predictor for the temperature reconstruction. For example, despite the GFM P. rubens collection having a similar elevation and slope position as the CDS P. rubens collection, the GFM LWBI chronology shows significant, negative correlation with August Pcp, thereby indicating that local summer moisture availability is a more dominant limiting factor than maximum temperatures at this site. ...
Article
Full-text available
Over recent decades, the southeastern United States (Southeast) has become increasingly well represented by the terrestrial climate proxy record. However, while the paleo proxy records capture the region's hydroclimatic history over the last several centuries, the understanding of near surface air temperature variability is confined to the comparatively shorter observational period (1895‐present). Here, we detail the application of blue intensity (BI) methods on a network of tree‐ring collections and examine their utility for producing robust paleotemperature estimates. Results indicate that maximum latewood BI (LWBI) chronologies exhibit positive and temporally stable correlations (r = 0.28–0.54, p < 0.01) with summer maximum temperatures. As such, we use a network of LWBI chronologies to reconstruct August‐September average maximum temperatures for the Southeast spanning the period 1760–2010 CE. Our work demonstrates the utility of applying novel dendrochronological techniques to improve the understanding of the multi‐centennial temperature history of the Southeast.
Article
Dendrochronological studies have increasingly explored tropical and subtropical trees, mainly focusing on their climatic signals. In the neotropics, growth ring width chronologies of Araucaria angustifolia have been developed at several localities in the south of its distribution, in the Atlantic forest biome. However, the signals identified in these studies indicate different patterns of growth response to climate. Understanding the causes of this variability in dendroclimatic signals is important to guide future dendrochronological studies with A. angustifolia. In this work we test the premise that at independent sites, but under similar environmental conditions, chronologies of A. angustifolia exhibit a common growth signal determined by limiting climatic conditions. We developed a new ring width chronology and correlated it with another one already published, both located in Curitibanos municipality, Santa Catarina state, Brazil and with similar climatic, edaphic and vegetational conditions. The chronologies, with reasonable level of internal growth synchrony and sampling effort, showed a common growth signal of moderate magnitude. This common growth pattern between the sites, represented by a regional chronology, showed significant correlations with local climatic variable and with El Niño Southern Oscillation (ENSO), with weak magnitudes. Partial correlations showed that this set of climatic variables was determinant of the common signal between the sites. Our results confirm the validity of the tested premise. Under the conditions studied, the growth response of A. angustifolia to climate is driven by yearly variation in temperature, which operate at different stages of the annual growth cycle and are influenced by ENSO. The low sensitivity of growth to climate is possibly related to the combined influence of multiple climatic factors and/or to moderate growth variability within sites. The multiplicity of climatic factors influencing growth of A. angustifolia trees may also explain some variability of climatic signals reported for with this species.
Article
Full-text available
Aims We examined differences in lifespan among the dominant tree species (spruce (Picea abies (L.) H. Karst.), fir (Abies alba Mill.), beech (Fagus sylvatica L.), and maple (Acer pseudoplatanus L.)) across primary mountain forests of Europe. We ask how disturbance history, lifetime growth patterns, and environmental factors influence lifespan. Locations Balkan mountains, Carpathian mountains, Dinaric mountains. Methods Annual ring widths from 20,600 cores from primary forests were used to estimate tree life spans, growth trends, and disturbance history metrics. Mixed models were used to examine species-specific differences in lifespan (i.e. defined as species-specific 90th percentiles of age distributions), and how metrics of radial growth, disturbance parameters, and selected environmental factors influence lifespan. Results While only a few beech trees surpassed 500 years, individuals of all four species were older than 400 years. There were significant differences in lifespan among the four species (beech > fir > spruce > maple), indicating life history differentiation in lifespan. Trees were less likely to reach old age in areas affected by more severe disturbance events, whereas individuals that experienced periods of slow growth and multiple episodes of suppression and release were more likely to reach old age. Aside from a weak but significant negative effect of vegetation season temperature on fir and maple lifespan, no other environmental factors included in the analysis influenced lifespan. Conclusions Our results indicate species-specific biological differences in lifespan, which may play a role in facilitating tree species coexistence in mixed temperate forests. Finally, natural disturbances regimes were a key driver of lifespan, which could have implications for forest dynamics if regimes shift under global change.
Article
Full-text available
The research aims to evaluate the impact of local industrial pollution on radial growth in affected Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) stands in the Tarnița study area in Suceava. For northeastern Romania, the Tarnița mining operation constituted a hotspot of industrial pollution. The primary processing of non-ferrous ores containing heavy metals in the form of complex sulfides was the main cause of pollution in the Tarnița region from 1968 to 1990. Air pollution of Tarnița induced substantial tree growth reduction from 1978 to 1990, causing a decline in tree health and vitality. Growth decline in stands located over 6 km from the pollution source was weaker or absent. Spruce trees were much less affected by the phenomenon of local pollution than fir trees. We analyzed the dynamics of resilience indices and average radial growth indices and found that the period in which the trees suffered the most from local pollution was between 1978 and 1984. Growth recovery of the intensively polluted stand was observed after the 1990s when the environmental condition improved because of a significant reduction in air pollution.
Article
Full-text available
Summer temperatures across eastern North America (hereafter East) will soon reach a level consistently above any observation experienced during the instrumental period. Increasing temperatures will have negative impacts on natural (e.g., water, plant and animal communities) and human (e.g., health, infrastructure, economies) systems upon which the large and growing centres of human population across the region depend. Within the network of Northern Hemisphere tree‐ring temperature proxy records, one of the most obvious geographic holes is the East, where few temperature‐sensitive proxies exist. Here we present the first steps towards building a network of temperature‐sensitive proxy records across the East using blue light intensity (BI) methods applied to the tree rings of multiple temperature sensitive tree species situated from North Carolina to Maine, USA. Our overall objective is to report on the most viable species for BI analysis across different regions of the East (e.g., Southeast US, Midwest US, Northeast US/Canadian Maritimes) by exploring temporal (e.g., since ca. 1900) and spatial relationships between instrumental temperatures and BI metrics. We found BI to be a strong predictor of March–October mean air temperature (R² = 0.61) across the Northeast US/eastern Canada, and Sep‐Oct maximum air temperature (R² = 0.42) across the Southeast US. Of all species tested, Tsuga canadensis and Picea rubens contained the strongest BI temperature signal. Adding more BI sites from these and potentially other species, as well as inclusion of other temperature proxies (e.g., ring widths) will allow for the development of a skilful broad‐scale and long‐term temperature field reconstruction across the East.
Article
Full-text available
Current global change is associated with an increase in disturbance frequency and intensity, with the potential to trigger population collapses and to cause permanent transitions to new ecosystem states. However, our understanding of ecosystem responses to disturbances is still incomplete. Specifically, there is a mismatch between the diversity of disturbance regimes experienced by ecosystems and the one-dimensional description of disturbances used in most studies on ecological stability. To fill this gap, we conducted a full factor-ial experiment on microbial communities, where we varied the frequency and intensity of disturbances affecting species mortality, resulting in 20 different disturbance regimes. We explored the direct and long-term effects of these disturbance regimes on community biomass. While most communities were able to recover biomass and composition states similar to undisturbed controls after a halt of the disturbances, we identified some disturbance thresholds that had long-lasting legacies on communities. Using a model based on logistic growth, we identified qualitatively the sets of disturbance frequency and intensity that had equivalent long-term negative impacts on experimental communities. Our results show that an increase in disturbance intensity is a bigger threat for biodiversity and biomass recovery than the occurrence of more frequent but less intense disturbances.
Article
Full-text available
Estimates of historical disturbance patterns are essential to guide forest management aimed at ensuring the sustainability of ecosystem functions and biodiversity. However, quantitative estimates of various disturbance characteristics required in management applications are rare in longer‐term historical studies. Thus, our objectives were to (1) quantify past disturbance severity, patch size, and stand proportion disturbed and (2) test for temporal and subregional differences in these characteristics. We developed a comprehensive dendrochronological method to evaluate an approximately two‐century‐long disturbance record in the remaining Central and Eastern European primary mountain spruce forests, where wind and bark beetles are the predominant disturbance agents. We used an unprecedented large‐scale nested design data set of 541 plots located within 44 stands and 6 subregions. To quantify individual disturbance events, we used tree‐ring proxies, which were aggregated at plot and stand levels by smoothing and detecting peaks in their distributions. The spatial aggregation of disturbance events was used to estimate patch sizes. Data exhibited continuous gradients from low‐ to high‐severity and small‐ to large‐size disturbance events. In addition to the importance of small disturbance events, moderate‐scale (25–75% of the stand disturbed, >10 ha patch size) and moderate‐severity (25–75% of canopy disturbed) events were also common. Moderate disturbances represented more than 50% of the total disturbed area and their rotation periods ranged from one to several hundred years, which is within the lifespan of local tree species. Disturbance severities differed among subregions, whereas the stand proportion disturbed varied significantly over time. This indicates partially independent variations among disturbance characteristics. Our quantitative estimates of disturbance severity, patch size, stand proportion disturbed, and associated rotation periods provide rigorous baseline data for future ecological research, decisions within biodiversity conservation, and silviculture intended to maintain native biodiversity and ecosystem functions. These results highlight a need for sufficiently large and adequately connected networks of strict reserves, more complex silvicultural treatments that emulate the natural disturbance spectrum in harvest rotation times, sizes, and intensities, and higher levels of tree and structural legacy retention.
Article
Full-text available
Norway spruce ( Picea abies [L.] Karst.) and silver fir ( Abies alba Mill.) are main tree species of Central Europe that are currently highly vulnerable in times of global climate change. The research deals with the effect of climate and air pollution on radial growth of silver fir and Norway spruce in mixed age-varied (56 – 146 years) forests in the Jeseníky Protected Landscape Area, the Czech Republic. The objectives were to evaluate biodiversity, structure and production, specifically interaction of radial growth of fir and spruce to air pollution (SO 2 , NO X , tropospheric ozone) and climatic factors (precipitation, air temperature). Concentration of SO 2 and NO X had negative effect on radial growth of fir, while radial growth of spruce was more negatively influenced by tropospheric ozone. Fir showed higher variability in radial growth and was more sensitive to climatic factors compared to spruce. On the other hand, fir was relatively adaptable tree species that regenerated very well when the pressure of stress factors subsided (air pollution load, Caucasian bark beetle, frost damage). Low temperature was a limiting factor of radial growth in the study mountainous area, especially for fir. Fir was significantly sensitive to late frost, respectively, spruce to winter desiccation and spring droughts with synergism of air pollution load. Generally, older forest stands were more negatively influenced by air pollution load and climatic extremes compared to young trees.
Article
Full-text available
The most frequently and successfully used tree-ring parameters for the study of temperature variations are ring width and maximum latewood density (MXD). MXD is preferred over ring width due to a more prominent association with temperature. In this study we explore the dendroclimate potential of dendroanatomy based on the first truly well replicated dataset. Twenty-nine mature living Pinus sylvestris trees were sampled in North-eastern Finland at the cool and moist boreal forest zone, close to the latitudinal tree line, where ring width, X-ray MXD as well as the blue intensity counterpart MXBI were compared with dendroanatomical parameters. Maximum radial cell wall thickness as well as anatomical MXD and latewood density appeared to be the most promising parameters for temperature reconstruction. In fact, these parameters compare favorably to MXD derived from X-ray techniques as well as MXBI, in terms of shared variation and temperature correlations across frequencies and over time. The reasons for these results are thought to be the unprecedentedly high measurement resolution of the anatomical technique, which provide the optimal resolution – the cell – whereas X-ray techniques have a slightly lower resolution and BI techniques even lower. While the results of this study are encouraging, further tests on longer and multigenerational chronologies are required to more generally and fully assess the dendroclimate potential of anatomical parameters.
Article
Full-text available
An extended European tree-ring network was compiled from various sources of tree-ring data from Europe, northern Africa and western Asia. A total of 1860 tree-ring chronologies were used to compare correlation coefficients calculated with aggregated day-wise and month-wise mean temperature, sums of precipitation and standardised precipitation-evapotranspiration index (SPEI). For the daily approach, climate data were aggregated over periods ranging from 21 to 365 days. Absolute correlations calculated with day-wise aggregated climate data were on average higher by 0.060 (temperature data), 0.076 (precipitation data) and 0.075 (SPEI data). Bootstrapped correlations are computationally expensive and were therefore calculated on a 69.4% subset of the data. Bootstrapped correlations indicated statistically significant differences between the daily and monthly approach in approximately 1% of examples. A comparison of time windows used for calculations of correlations revealed slightly later onset and earlier ending day of the year for the daily approach, while the largest differences between the two approaches arise from window lengths: Correlations calculated with day-wise aggregated climate data were calculated using fewer days than the monthly approach. Differences in the onset and ending dates of periods for the daily and monthly approaches were greater for precipitation and SPEI data than for temperature data. Note: Free full-text is available at: https://authors.elsevier.com/a/1ZYqj-4PRtyyk
Article
Full-text available
Key message Winter drought becomes a limiting factor of forest stand growth by the end of the twentieth century. Abstract Disturbances strongly influence the structure of natural forests. The frequency and severity of natural disturbances, as well as drought events, are expected to increase with climate change. Our study investigated if forests with differing forest structures related to disturbance histories also differed in sensitivity to drought. In a natural forest landscape in the Calimani Mountains of the Eastern Carpathians, Romania, we used six forest patches to represent different successional stages, from early- to late-successional stages. We used two temporal resolutions of the Standardized Precipitation-Evapotranspiration Index to describe short and long water resource dynamics within or between hydrological years, respectively. We detected an increase in the importance of winter drought across all successional stages; it was first identified in the oldest patch in the 1970s, and it consecutively affected younger patches. We observed that different forest structures do not lead to substantial differences in trends in drought–growth relationships. A shift in sensitivity to water availability from early spring to winter occurred over the twentieth century. These findings suggest that the impact of climate change on Norway spruce forest ecosystems of the Eastern Carpathians will likely be difficult to mitigate at a local scale using traditional forestry practices.
Article
Full-text available
Dendroclimatology and dendroecology have entered mainstream dendrochronology research in subtropical and tropical areas. Our study focused on the use of the chronology series of Masson pine (Pinus massoniana Lamb.), the most widely distributed tree species in the subtropical wet monsoon climate regions in China, to understand the tree growth response to ecological and hydroclimatic variability. The boosted regression trees (BRT) model, a nonlinear machine learning method, was used to explore the complex relationship between tree-ring growth and climate factors on a larger spatial scale. The common pattern of an asymptotic growth response to the climate indicated that the climate-growth relationship may be linear until a certain threshold. Once beyond this threshold, tree growth will be insensitive to some climate factors, after which a nonlinear relationship may occur. Spring and autumn climate factors are important controls of tree growth in most study areas. General circulation model (GCM) projections of future climates suggest that warming climates, especially temperatures in excess of those of the optimum growth threshold (as estimated by BRT), will be particularly threatening to the adaptation of Masson pine.
Article
Full-text available
Accurately capturing medium- to low-frequency trends in tree-ring data is vital to assessing climatic response and developing robust reconstructions of past climate. Non-climatic disturbance can affect growth trends in tree-ring-width (RW) series and bias climate information obtained from such records. It is important to develop suitable strategies to ensure the development of chronologies that minimize these medium- to low-frequency biases. By performing high density sampling (760 trees) over a ~40-ha natural high-elevation Norway spruce (Picea abies) stand in the Romanian Carpathians, this study assessed the suitability of several sampling strategies for developing chronologies with an optimal climate signal for dendroclimatic purposes. There was a roughly equal probability for chronologies (40 samples each) to express a reasonable (r = 0.3–0.5) to non-existent climate signal. While showing a strong high-frequency response, older/larger trees expressed the weakest overall temperature signal. Although random sampling yielded the most consistent climate signal in all sub-chronologies, the outcome was still sub-optimal. Alternative strategies to optimize the climate signal, including very high replication and principal components analysis, were also unable to minimize this disturbance bias and produce chronologies adequately representing climatic trends, indicating that larger scale disturbances can produce synchronous pervasive disturbance trends that affect a large part of a sampled population. The Curve Intervention Detection (CID) method, used to identify and reduce the influence of disturbance trends in the RW chronologies, considerably improved climate signal representation (from r = 0.28 before correction to r = 0.41 after correction for the full 760 sample chronology over 1909–2009) and represents a potentially important new approach for assessing disturbance impacts on RW chronologies. Blue intensity (BI) also shows promise as a climatically more sensitive variable which, unlike RW, does not appear significantly affected by disturbance. We recommend that studies utilizing RW chronologies to investigate medium- to long-term climatic trends also assess disturbance impact on those series.
Article
Full-text available
Aim Primary forests have high conservation value but are rare in Europe due to historic land use. Yet many primary forest patches remain unmapped, and it is unclear to what extent they are effectively protected. Our aim was to (1) compile the most comprehensive European‐scale map of currently known primary forests, (2) analyse the spatial determinants characterizing their location and (3) locate areas where so far unmapped primary forests likely occur. Location Europe. Methods We aggregated data from a literature review, online questionnaires and 32 datasets of primary forests. We used boosted regression trees to explore which biophysical, socio‐economic and forest‐related variables explain the current distribution of primary forests. Finally, we predicted and mapped the relative likelihood of primary forest occurrence at a 1‐km resolution across Europe. Results Data on primary forests were frequently incomplete or inconsistent among countries. Known primary forests covered 1.4 Mha in 32 countries (0.7% of Europe’s forest area). Most of these forests were protected (89%), but only 46% of them strictly. Primary forests mostly occurred in mountain and boreal areas and were unevenly distributed across countries, biogeographical regions and forest types. Unmapped primary forests likely occur in the least accessible and populated areas, where forests cover a greater share of land, but wood demand historically has been low. Main conclusions Despite their outstanding conservation value, primary forests are rare and their current distribution is the result of centuries of land use and forest management. The conservation outlook for primary forests is uncertain as many are not strictly protected and most are small and fragmented, making them prone to extinction debt and human disturbance. Predicting where unmapped primary forests likely occur could guide conservation efforts, especially in Eastern Europe where large areas of primary forest still exist but are being lost at an alarming pace.
Article
Full-text available
Reconstructions of defoliation by larch bud moth (LBM, Zeiraphera diniana Gn.) based on European larch (Larix decidua Mill.) tree rings have unraveled outbreak patterns over exceptional temporal and spatial scales. In this study, we conducted tree-ring analyses on 105 increment cores of European larch from the Valais Alps, Switzerland. The well-documented history of LBM outbreaks in Valais provided a solid baseline for evaluating the LBM defoliation signal in multiple tree-ring parameters. First, we used tree-ring width measurements along with regional records of LBM outbreaks to reconstruct the occurrence of these events at two sites within the Swiss Alps. Second, we measured earlywood width, latewood width and blue intensity, and compared these parameters with tree-ring width to assess the capacity of each proxy to detect LBM defoliation. A total of six LBM outbreaks were reconstructed for the two sites between AD 1850 and 2000. Growth suppression induced by LBM was, on average, highest in latewood width (59%), followed by total ring width (54%), earlywood width (51%) and blue intensity (26%). We show that latewood width and blue intensity can improve the temporal accuracy of LBM outbreak reconstructions, as both proxies systematically detected LBM defoliation in the first year it occurred, as well as the differentiation between defoliation and non-defoliation years. This study introduces blue intensity as a promising new proxy of insect defoliation and encourages its use in conjunction with latewood width.
Article
Full-text available
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree-ring based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11 595 tree cores, with ring dates spanning the years 1750 to 2000, collected from 560 inventory plots in 37 stands distributed across a 1000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded with higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events). This article is protected by copyright. All rights reserved.
Article
Full-text available
This study presents a summer temperature reconstruction using Scots pine tree-ring chronologies for Scotland allowing the placement of current regional temperature changes in a longer-term context. ‘Living-tree’ chronologies were extended using ‘subfossil’ samples extracted from nearshore lake sediments resulting in a composite chronology >800 years in length. The North Cairngorms (NCAIRN) reconstruction was developed from a set of composite blue intensity high-pass and ring-width low-pass filtered chronologies with a range of detrending and disturbance correction procedures. Calibration against July–August mean temperature explains 56.4% of the instrumental data variance over 1866–2009 and is well verified. Spatial correlations reveal strong coherence with temperatures over the British Isles, parts of western Europe, southern Scandinavia and northern parts of the Iberian Peninsula. NCAIRN suggests that the recent summer-time warming in Scotland is likely not unique when compared to multi-decadal warm periods observed in the 1300s, 1500s, and 1730s, although trends before the mid-sixteenth century should be interpreted with some caution due to greater uncertainty. Prominent cold periods were identified from the sixteenth century until the early 1800s—agreeing with the so-called Little Ice Age observed in other tree-ring reconstructions from Europe—with the 1690s identified as the coldest decade in the record. The reconstruction shows a significant cooling response 1 year following volcanic eruptions although this result is sensitive to the datasets used to identify such events. In fact, the extreme cold (and warm) years observed in NCAIRN appear more related to internal forcing of the summer North Atlantic Oscillation.
Article
Full-text available
Dendroarchaeology almost exclusively uses ring-width (RW) data for dating historical structures and artefacts. Such data can be used to date tree-ring sequences when regional climate dominates RW variability. However, the signal in RW data can be obscured due to site specific ecological influences (natural and anthropogenic) that impact crossdating success. In this paper, using data from Scotland, we introduce a novel tree-ring parameter (Blue Intensity – BI) and explore its utility for facilitating dendro-historical dating of conifer samples. BI is similar to latewood density as they both reflect the combined hemicellulose, cellulose and lignin content in the latewood cell walls of conifer species and the amount of these compounds is strongly controlled, at least for trees growing in temperature limited locations, by late summer temperatures. BI not only expresses a strong climate signal, but is also less impacted by site specific ecological influences. It can be concurrently produced with RW data from images of finely sanded conifer samples but at a significantly reduced cost compared to traditional latewood density. Our study shows that the probability of successfully crossdating historical samples is greatly increased using BI compared to RW. Furthermore, due to the large spatial extent of the summer temperature signal expressed by such data, a sparse multi-species conifer network of long BI chronologies across Europe could be used to date and loosely provenance imported material.
Article
Full-text available
Bark beetles are among the most devastating biotic agents affecting forests globally and several species are expected to be favored by climate change. Given the potential interactions of insect outbreaks with other biotic and abiotic disturbances, and the potentially strong impact of changing disturbance regimes on forest resources, investigating climatic drivers of destructive bark beetle outbreaks is of paramount importance. We analyzed 17 time-series of the amount of wood damaged by Ips typographus (L.), the most destructive pest of Norway spruce forests, collected across 8 European countries in the last three decades. We aimed to quantify the relative importance of key climate drivers in explaining timber loss dynamics, also testing for possible synergistic effects. Local outbreaks shared the same drivers, including increasing summer rainfall deficit and warm temperatures. Large availability of storm-felled trees in the previous year was also strongly related to an increase in timber loss, likely by providing an alternative source of breeding material. We did not find any positive synergy among outbreak drivers. On the contrary, the occurrence of large storms reduced the positive effect of warming temperatures and rainfall deficit. The large surplus of breeding material likely boosted I. typographus population size above the density threshold required to colonize and kill healthy trees irrespective of other climate triggers. Importantly, we found strong negative density dependence in I. typographus that may provide a mechanism for population decline after population eruptions. Generality in the effects of complex climatic events across different geographical areas suggests that the large-scale drivers can be used as early warning indicators of increasing local outbreak probability. This article is protected by copyright. All rights reserved.
Article
Full-text available
We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 °C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level tree-ring series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model's ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate.
Article
Full-text available
A detailed understanding of past temporal patterns and spatial expression of temperature variations is important to place recent anthropogenic climate change into a longer term context. In order to fill the current gap in our understanding of northwest European temperature variability, point-by-point principal component regression was used to reconstruct a spatial field of 0.5° temperature grids across Scotland. A sequence of reconstructions utilizing several combinations of detrending and disturbance correction procedures, and a selection of tree-ring parameters [including ring width (RW), maximum latewood density (MXD) and blue intensity (BI)] was used in an evaluation of reconstruction skill. The high resolution of the reconstructed field serves also as a diagnostic tool to spatially assess the temperature reconstruction potential of local chronologies. Best reconstruction results, reaching calibration r2 = 65.8% and verification r2 = 63.7% in central Scotland over the 1901–1976 period, were achieved using disturbance-corrected and signal-free detrended RW chronologies merged with BI data after low-pass (high-pass) filtering the RW (BI) chronologies. Calibration and verification r2 > 50% was attained for central, north and east Scotland, >40% in west and northwest, and >30% in southern Scotland with verification of nearly all grids showing some reconstruction skill. However, the full calibration potential of reconstructions outside central Scotland was reduced either due to residual disturbance trends undetected by the disturbance correction procedure or due to other climatic or non-climatic factors which may have adversely affected the strength of the climate signal.
Conference Paper
Full-text available
Here we present similarities and differences between thetree-ring width (RW) and adjusted Δblue intensity (ΔBIadj) parameters derived from three Scots pine chronologies in central and northern Sweden. Our results suggest that the ΔBIadj parameter has better skill to portray temperature variability than RW at all frequency ranges. We also show that although RW and ΔBIadj have significant coherence between 20 to 60-year cycles, the relationship between these proxies is unstable through time, implying differences in climate sensitivity.
Article
Full-text available
Nonclimatic disturbance events are an integral element in the history of forests. Although the identification of the occurrence and duration of such events may help to understand environmental history and landscape change, from a dendroclimatic perspective, disturbance can obscure the climate signal in tree rings. However, existing detrending methods are unable to remove disturbance trends without affecting the retention of long-term climate trends. Here, we address this issue by using a novel method for the detection and removal of disturbance events in tree-ring width data to assess their spatiotemporal occurrence in a network of Scots pine (Pinus sylvestris L.) trees from Scotland. Disturbance trends “superimposed” on the tree-ring record are removed before detrending and the climate signals in the precorrection and postcorrection chronologies are evaluated using regional climate data, proxy system model simulations, and maximum latewood density (MXD) data. Analysis of subregional chronologies from the West Highlands and the Cairngorms in the east reveals a higher intensity and more systematic disturbance history in the western subregion, likely a result of extensive timber exploitation. The method improves the climate signal in the two subregional chronologies, particularly in the more disturbed western sites. Our application of this method demonstrates that it is possible to minimise the effects of disturbance in tree-ring width chronologies to enhance the climate signal.
Article
Full-text available
The area of the Orlické hory Mts. has been characterised by decline and disturbances of Norway spruce (Picea abies/L./Karst.) stands since the 1980s. Currently, only three permanent research plots have been preserved from the original sixteen established plots in this region. In the present study, the health status, as indicated by defoliation, mortality, and stem radial growth, was studied in the peaty and climax spruce ecosystems in the upper elevations of the mountains from 1979 to 2014. This health status was correlated with ambient air pollution (SO2) as well as climate factors (temperature and precipitation). The health status of individual trees on the plots was determined by evaluation of the foliage status, and tree vitality was evaluated by measuring stem radial growth increment. Stress factor analysis showed that high air pollutant concentrations predisposed Norway spruce to stress from climatic events (drought, temperature changes), leading to forest decline. The most serious damage can be attributed to the combination of chemical and climatic stress. Stands with lowered vitality were attacked by secondary biotic pests (particularly bark beetle), resulting in rapid tree mortality. The damage process is marked not only by higher mortality, but also by chlorosis and necrosis of the needles. The stabilised trend in health status of the spruce stands was registered since approximately 1990s. In terms of climatic factors, the weather in June had the most visible influence on radial increment. Low temperatures and high precipitation were the limiting factors for radial growth in studied mountain area.
Article
Full-text available
Here we explore two new tree-ring parameters, derived from measurements of wood density and blue intensity (BI). The new proxies show an increase in the interannual summer temperature signal compared to established proxies, and present the potential to improve long-term performance. At high latitudes, where tree growth is mainly limited by low temperatures, radiodensitometric measurements of wood density, specifically maximum latewood density (MXD), provides a temperature proxy that is superior to that of tree-ring widths. The high cost of developing MXD has led to experimentation with a less expensive method using optical flatbed scanners to produce a new proxy, herein referred to as maximum latewood blue absorption intensity (abbreviated MXBI). MXBI is shown to be very similar to MXD on annual timescales but less accurate on centennial timescales. This is due to the fact that extractives, such as resin, stain the wood differentially from tree to tree and from heartwood to sapwood. To overcome this problem, and to address similar potential problems in radiodensitometric measurements, the new parameters Δblue intensity (ΔBI) and Δdensity are designed by subtracting the ambient BI/density in the earlywood, as a background value, from the latewood measurements. As a case-study, based on Scots pine trees from Northern Sweden, we show that Δdensity can be used as a quality control of MXD values and that the reconstructive performance of warm-season mean temperatures is more focused towards the summer months (JJA – June, July, August), with an increase by roughly 20% when also utilising the interannual information from the earlywood. However, even though the new parameter ΔBI experiences an improvement as well, there are still puzzling dissimilarities between Δdensity and ΔBI on multicentennial timescales. As a consequence, temperature reconstructions based on ΔBI will presently only be able to resolve information on decadal-to-centennial timescales. The possibility of trying to calibrate BI into a measure of lignin content or density, similarly to how radiographic measurements are calibrated into density, could be a solution. If this works, only then can ΔBI be used as a reliable proxy in multicentennial-scale climate reconstructions.
Article
The blue intensity (BI) technique provides opportunities to obtain surrogates to tree-ring density for reconstructing summer temperatures in high-latitude regions. In this study, we compare latewood BI (LBI) and delta BI (DBI), with the conventional X-ray maximum latewood density (MXD) and tree-ring width (TRW) data using 178 living trees of black spruce (Picea mariana (Mill.) B.S.P.), one of the most dominant species of conifers in the Northern Hemisphere, from 17 sites across the eastern Canadian taiga. The regional LBI and DBI chronologies are highly correlated to that of MXD (Pearson's r = 0.97 and 0.92, respectively), while DBI is also similar to TRW (Pearson's r = 0.67). Both LBI and DBI exhibit stronger responses to the May-August temperatures than TRW over larger time and spatial scales. However, only DBI is comparable to MXD data from inter-annual to decadal timescales. Low-frequency components of LBI data are likely distorted by color biases even if no obvious discoloration is present, as well as by the potentially low measurement resolution, leading to an overall weaker temperature sensitivity compared to the MXD data. Resampling experiments suggest that a minimum replication of 10 trees is needed to retain ≥90 % of the optimal temperature signal for MXD, LBI, and DBI data, and a minimum of 20 trees is required for TRW data.
Article
Covering large parts of Europe, Norway spruce (Picea abies L Karst.) plays an important role in the adaptation strategy of forest services to future climate change. Although dendroecology can provide valuable information on the past relationships between tree growth and climate, most previous studies were biased towards species-specific distribution limits, where old individuals grow slowly under extreme conditions. In the present study, we investigated the growth variability and climate sensitivity of 2851 Norway spruce trees along longitudinal (E 12–26°), latitudinal (N 45–51°), and elevation (118–1591 m a.s.l.) gradients in central-eastern Europe. We reveal that summer weather significantly affects the radial growth of spruce trees, but the effects strongly vary along biogeographical gradients. Extreme summer heatwaves in 2000 and 2003 reduced the growth rates by 10–35%, most pronounced in the southern Carpathians. In contrast to the population in the Czech Republic, climate warming induced a synchronous decline in the growth rates across biogeographical gradients in the Carpathian arc. By demonstrating the increased vulnerability of Norway spruce under warmer climate conditions, we recommended that the forest services and conservation managers replace or admix monocultures of this species with more drought-resilient mixtures including fir, beech and other broadleaved species.
Article
Disturbances play an important role in forest dynamics. The determination of long-term spatiotemporal characteristics of disturbance regimes is essential for understanding forest dynamics and its shifts under global changes. Tree rings are known to provide detailed insight into both temporal and spatial patterns of forest disturbance history. One of the most commonly used indirect tree-ring techniques for investigating past disturbances is growth release detection (GRD), i.e. the abrupt radial growth increase of trees as a reaction to improved light conditions after the death of a disturbed neighbouring canopy tree or trees. However, there are several issues which have not been addressed so far. Here, an overview of GRD and guide for researchers aiming to incorporate GRD into their research is provided, with focus on conventional running mean methods. The aim is to cover various issues of the GRD procedure such as sampling strategy and data quality, selection of appropriate methods and parameter settings, suggested analysis procedures as well as result presentation. Overall, the importance of GRD incorporation in multidisciplinary studies of forest dynamics is highlighted, as it offers a precise tool for gathering long-term information about past disturbances. Lastly, this paper also suggests several future challenges focused on possible utilization of GRD in mainstream ecology to answer long-standing global ecological questions and improve understanding of past processes in forest ecosystems.
Article
While shifting disturbance rates and climate change have major implications for the structure of contemporary forests through their effects on adult tree mortality, the responses of regenerating trees to disturbances and environmental variation will ultimately determine the structure and functioning of forests in the future. Assessing the resilience of forests to changing conditions requires information on what constrains tree performance during recruitment and whether recruitment dynamics have changed throughout history. We analyzed growth patterns in a large sample of tree cores (n = 14 793) collected from primary Picea forests throughout the Carpathian Mountains. Growth rate anomalies recorded in tree-rings permitted the reconstruction of several key recruitment and disturbance parameters: (1) whether individuals were recruited after a period of competitive suppression (Released Trees; RT; 66% of trees) or immediately following gap formation (Gap Recruited Trees; GRT; 33%), (2) growth rates during recruitment, (3) the duration of recruitment and (4) historical disturbance severity variation. High neighborhood density led to lower growth rates in RTs, but favored a higher growth rate in GRTs. Winter temperatures were positively correlated with Picea growth during recruitment, GRTs were also more sensitive to winter precipitation. Recent increases in growth during recruitment and reductions in recruitment intervals suggest that rates of canopy replacement have increased over recent decades. Assessments of forest resilience must recognize that constraints on tree growth differ during recruitment and interact with disturbance severity. An individual's experience prior to competitive release and factors altering the immediate abiotic conditions of a recruiting individual (competition and disturbance severity) are important determinants of canopy replacement rates; these recruitment parameters will certainly interact with shifting disturbance regimes. Ultimately, increasing growth rates and decreasing recruitment intervals suggest that forest dynamics are accelerating, and are potentially compensating for recent increases in tree mortality rates.
Article
Given the global intensification of forest management and climate change, protecting and studying forests that develop free of direct human intervention-also known as primary forests-are becoming increasingly important. Yet, most countries still lack data regarding primary forest distribution. Previous studies have tested remote sensing approaches as a promising tool for identifying primary forests. However, their precision is highly dependent on data quality and resolution, which vary considerably. This has led to underestimation of primary forest abundance and distribution in some regions, such as the temperate zone of Europe. Field-based inventories of primary forests and methodologies to conduct these assessments are inconsistent; incomplete or inaccurate mapping increases the vulnerability of primary forest systems to continued loss from clearing and land-use change. We developed a comprehensive methodological approach for identifying primary forests, and tested it within one of Europe's hotspots of primary forest abundance: the Carpathian Mountains. From 2009 to 2015, we conducted the first national-scale primary forest census covering the entire 49,036 km 2 area of the Slovak Republic. We analyzed primary forest distribution patterns and the representativeness of potential vegetation types within primary forest remnants. We further evaluated the conservation status and extent of primary forest loss. Remaining primary forests are small, fragmented, and often do not represent the potential natural vegetation. We identified 261 primary forest localities. However, they represent only 0.47% of the total forested area, which is 0.21% of the country's land area. The spatial pattern of primary forests was clustered. Primary forests have tended to escape anthropogenic disturbance on sites with higher elevations, steeper slopes, rugged terrain, and greater distances from roads and settlements. Primary forest stands of montane mixed and subalpine spruce forests are more abundant compared to broadleaved forests. Notably, several habitat types are completely missing within primary forests (e.g., floodplain forests). More than 30% of the remaining primary forests are not strictly protected, and harvesting occurred at 32 primary forest localities within the study period. Almost all logging of primary forests was conducted inside of protected areas, underscoring the critical status of primary forest distribution in this part of Europe. Effective conservation strategies are urgently needed to stop the rapid loss and fragmentation of the remaining primary forests. Our approach based on precise, field-based surveys is widely applicable and transferrable to other fragmented forest landscapes.
Article
Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate‐driven growth patterns, but existing data tend to be biased towards older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901‐2010) and spatial variation in radial growth patterns in 9 876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large‐scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict. This article is protected by copyright. All rights reserved.
Article
Annual surface air temperatures across the eastern United States (US) have increased by more than 1 °C within the last century, with the recent decades marked by an unprecedented warming trend. Tree-rings have long been used as a proxy for climate reconstruction, but few truly temperature-sensitive trees have been documented for the eastern US, much less the Appalachian Mountains in the Southeast. Here, we measure blue intensity (BI) and ring width (RWI) in red spruce growing at the southernmost latitudinal range margin of the species on the North Carolina-Tennessee border to test the efficacy of using either metric as a temperature proxy in the eastern US. The BI and RWI chronologies spanned 1883–2008 and had an interseries correlations of 0.42 and 0.54, respectively, but time series were trimmed to the period 1950–2008 due to low sample depth. We discovered strong, positive, and stable correlations between both current-year early fall (September–October) T max (r = 0.62; p < 0.001) and T mean (r = 0.51; p < 0.001) and ΔBI during the period 1950–2008, but found no significant relationships between temperature and RWI. We show BI metrics measured in red spruce to be a promising temperature proxy for the southern Appalachian Mountain region. Future research should focus on testing [1] the efficacy of using BI on red spruce collected from across the species range, and [2] the potential for using BI as a temperature proxy in other conifers distributed in the eastern US.
Article
A tree's radial growth sequence can be thought of as an aggregate of different growth components such as age and size limitations, presence or absence of disturbance events, continuous impact of climate variability and variance induced by unknown origin. The potentially very complex growth patterns with prominent temporal and spatial variability imply that our understanding of climate-vegetation feedbacks essentially benefits from the expansion of large tree ring networks into data-poor regions, and our ability to disentangle growth constraints by comparing ring series at multiple scales. In this study, we analyze Central-Eastern Europe's most substantial assemblage of primary Norway spruce forests found in the Carpathian arc. The vast data set, >10,000 tree-ring series, is stratified along a prominent gradient in climate response space over four separate landscapes. We integrated curve intervention detection and dendroclimatic standardization to decompose tree growth variance into climatic, disturbance and residual components to explore the behavior of the components over increasingly larger spatial hierarchies. We show that the residual variance of unknown origin is the most prominent variance in individual Carpathian spruce trees, but at larger spatial hierarchies, climate variance dominates. The variance induced by climate was further explored with common correlation analyses, growth response to extreme climate years and forward modeling of tree growth to identify leading modes of climate response, and potentially non-linear and mixed climate response patterns. We find that the climatic response of the different forest landscapes overall can be described as an asymptotic response to June and July temperatures, most likely intermixed with influence from winter precipitation. In the collection of landscapes, Southern Romania stands out as being the least temperature sensitive and most likely exhibiting the most complicated mixed temperature and moisture limitation.
Article
Long-term changes in climate substantially affect the tree growth and species distribution in Europe. In the presented study, the radial growth of Fagus sylvatica (L.) and Picea abies ((L.) Karst.) has been studied along an altitudinal gradient covering six vegetation formations characteristic for sub-montane, montane and high-montane conditions of the western Carpathians. Tree growth responses to temperature and precipitation changes have been analysed based on the sample of increment cores and standard dendroclimatic methods in two time periods, the reference period 1961–1990 and the recent period 1991–2012. The growth responses of spruce and beech to recent changes in climate were similar up to high-montane zones, where the beech shows significantly larger improvements of radial increments in comparison to spruce. The growth responses were mainly temperature driven. In the sub-montane area, the increased effect of precipitation in the recent period was overridden by the negative effects of warming, and the alleviated temperature limitation had an evidently supportive effect on tree growth in montane and high-montane areas. In the near future, the warming will likely cause decline in radial increments of beech and spruce in sub-montane areas due to expected landscape drying. At the same time, the improved competitive ability of beech in the high-montane zones suggests a shift in the leading edge of beech distribution into higher altitudes in East-Central Europe.
Article
Tree-ring chronologies from bristlecone pine (Pinus longaeva) are a unique proxy used to understand climate variability over the middle to late Holocene. The annual rings from trees growing toward the species' lower elevational range are sensitive to precipitation variability. Interpretation of the ring-width signal at the upper forest border has been more difficult. We evaluate differences in climate induced by topography (topoclimate) to better understand the dual signals of temperature and moisture. We unmix signals from trees growing at and near the upper forest border based on the seasonal mean temperature (SMT) experienced by each tree. We find that trees growing in exposures with SMT <7.5 ∘C are limited by temperature, while trees with SMT > 7.5 ∘C are limited by moisture. We demonstrate this independently through analysis of growth in the frequency and time domains and using a process model of xylogenesis. Furthermore, we identify increasing moisture sensitivity in trees formerly limited by temperature.
Article
In conifers growing at high latitudes and altitudes, the maximum density of tree rings is closely related to climate but is difficult and very expensive to measure. Here we compare maximum density with reflectance results obtained from Pinus sylvestris trees from northern Finland. Red, green, and blue reflectance spectra were obtained using a flatbed scanner and ultraviolet and infrared by scanning monochrome photographs at those wavelengths. A region-growing algorithm used to delimit the latewood of each ring automatically excludes resin ducts and cracks, and the minimum, mean, and maximum reflectance within the region were recorded. Blue minimum reflectance is most closely correlated with maximum density in both raw (r = –0.98) and detrended (r = –0.95) data, and as wavelength increases the correlation declines. The technique is probably most sensitive to lignin content, since the light energy absorbed by lignin declines as wavelength increases. Reliable results are obtained even from very thin (<0.1 mm) latewood rings and the use of a scanner, rather than a microscope-mounted system, allows viewing magnification to be changed without altering reflectance values. The simple chemical pretreatment routinely applied to X-ray samples is sufficient to remove the color difference between heartwood and sap wood in the blue band.
Article
The retrospective study of abrupt and sustained increases in the radial growth of trees (hereinafter 'releases') by tree-ring analysis is an approach widely used for reconstructing past forest disturbances. Despite the range of dendrochronological methods used for release-detection, a lack of in-depth comparison between them can lead researchers to question which method to use and, potentially, increases the uncertainties of disturbance histories derived with different methods. Here, we investigate the efficacy and sensitivity of four widely used release detection methods using tree-ring width series and complete long-term inventories of forest stands with known disturbances. We used support vector machine (SVM) analysis trained on long-term forest census data to estimate the likelihood that Acer rubrum trees experiencing reductions in competition show releases in their tree-ring widths. We compare methods performance at the tree and stand level, followed by evaluation of method sensitivity to changes in their parameters and settings. Disturbance detection methods agreed with 60-76% of the SVM-identified growth releases under high canopy disturbance and 80-94% in a forest with canopy disturbance of low severity and frequency. The median competition index change (CIC) of trees identified as being released differed more than twofold between methods, from −0.33 (radial-growth averaging) to −0.68 (time-series). False positives (type I error) were more common in forests with low severity disturbance, whereas false negatives (type II error) occurred more often in forests with high severity disturbance. Sensitivity analysis indicated that reductions of the detection threshold and the length of the time window significantly increased detected stand-level disturbance severity across all methods. Radial-growth averaging and absolute-increase methods had lower levels of type I and II error in detecting disturbance events with our datasets. Parameter settings play a key role in the accuracy of reconstructing disturbance history regardless of the method. Time-series and radial-growth averaging methods require the least amount of a priori information, but only the time-series method quantified the subsequent growth increment related to a reduction in competition. Finally, we recommend yearly binning of releases using a kernel density estimation function to identify local maxima indicating disturbance. Kernel density estimation improves reconstructions of forest history and, thus, will further our understanding of past forest dynamics.
Article
Annually resolved and absolutely dated Maximum Latewood Density (MXD) and Blue Intensity (BI) measurements are frequently used for reconstructing summer temperature variability over the last centuries to millennia. A direct comparison of the outcome of both methods using similar material is needed due to how quickly this method is being adopted. The application of slightly different measuring systems (hardware) and analysis tools (software) in tandem with different wood samples and preparation procedures further challenges any straightforward assessment. Here we process 26 Norway spruce samples from the upper timberline in the Polish Tatra Mountains with the six most frequently used MXD and BI applications. Although offset is found in the raw MXD and BI data (0.04–0.13 g/cm³ and 0.45–1.58 dimensionless blue intensity), interannual and longer-term fluctuations are significantly (p < 0.01) positively correlated between all MXD and BI time-series. Our results emphasize the potential of faster and cheaper, as well as overall more user-friendly techniques to generate reliable MXD surrogates for high-frequency dendroclimatological studies. Although the correlations between MXD and BI were lower than within MXD and BI, the results of growth-climate response performed for both proxies show only marginal differences. The obtained level-offset further questions the suitability of joining different density surrogates for developing long-term composite chronologies to reconstruct low-frequency climate variability.
Article
Questions We evaluate the role of past land use on long‐term forest succession and ask fundamental questions: (i) are successional patterns along a chronosequence consistent through time; (ii) is past land use or physiography a greater driver of forest composition; and (iii) does forest composition converge with age? Location Thomas Jefferson's Monticello plantation, Virginia Piedmont, USA . Methods Combining dendroecology, historical documents and a repeated vegetation survey from 1934, we reconstruct forest histories along a chronosequence that retains a temporal dimension. Tree‐ring data indicate initial canopy status and canopy release events using time series analysis with intervention detection. Results Forest extent was lowest during Jefferson's tenure; however, tree ring and documentary evidence revealed the location of Jefferson's timber zone. Jefferson‐era trees in this zone are largely on the west slope with scattered Pinus recruitment starting in the late 18th century, followed by Quercus species. Pinus cohorts also recruited into former agricultural fields on south and east slopes in two chronosequence stages from the 20th century. Synchronized release events were observed during the early 1800s, 1850s–1860s and 1960s, indicating periods of intense forest use. Ordination of repeated vegetation surveys showed a progression in forest age that explained more variation in forest composition than elevation and slope. The forest age gradient is also evident independently from tree‐ring data, but the ordination does not show convergence in composition with forest age. Conclusion Past land use is a greater driver of forest composition than an inferred soil moisture gradient. The composition of the most recent chronosequence stage suggests that future forest dynamics may be novel compared to the prior two centuries because of differences in land use and species availability. These land‐use legacies demonstrate how colonial‐era agricultural decisions at Monticello continue to impact forest growth and composition more than two centuries later.
Book
Landscape pattern is generated by a variety of processes, including disturbances. In turn, the heterogeneity of the landscape may enhance or retard the spread of disturbance. The complex relationship between landscape pattern and disturbance is the subject of this book. It is designed to present an illustrative analysis of the topic, presenting the perspectives of several different disciplines. The book includes conceptual considerations, empirical studies, and management examples. Important features include: hypotheses about the spread of disturbance and the effects of scale changes in landscape studies; the multidisciplinary approach; and the explicit focus on the landscape level. The intended audience comprises graduate students, academics, and professionals interested in landscape ecology. The reader will receive a state-of-the-art treatment of a current topic in landscape ecology.
Article
Interannual variability of wood density – an important plant functional trait and environmental proxy – in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree‐ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large‐scale tree‐ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support.
Article
Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.
Article
A historical emission inventory for sulphur dioxide has been compiled for Europe covering the period 1880–1991. The estimated emissions have been used as input to the sulphur module of the EMEP/MSC-W acid deposition model. The aim was to show the way and the extent to which the historical development of anthropogenic sulphur dioxide emissions alone has affected the concentration and deposition fields of oxidised sulphur in Europe. Although acknowledged, effects exerted by the meteorological variability and the changing oxidising capacity of the atmosphere over the years have not been taken into consideration. Long-term emission estimates reveal that combustion of coal was the dominant emission source before World War II in all countries and combustion of liquid fuels thereafter in most. Releases from industrial processes were relatively small. National sulphur dioxide emissions peaked mainly in the 1960s and 1970s, whilst emission control measures resulted in gradual reductions in most countries in the 1980s. In Europe as a whole, coal combustion remained the major emission source throughout the century. Total anthropogenic releases increased by a factor of 10 between the 1880 s and 1970s when they peaked at approximately 55 million tonnes of sulphur dioxide, followed by a 30% decline in the 1980s. Uncertainties in national emission estimates due to uncertain sulphur contents in fossil fuels are within ± 30% for 22 out of 28 countries and ± 45% for the rest. The location of emission sources in Europe has shown over the years a progressive detachment from the coalfields towards a widespread distribution, accompanied in the last decades by considerable emission reductions over north-western and parts of central Europe and substantial increases in the south and south-east. Modelled air concentrations and depositions reflect to a great extent the emission pattern, revealing two- to six-fold increases between the 1880 s and 1970s. Maximum sulphur loadings are confined over parts of north-western and central Europe. Accumulated depositions over the period 1880–1991 in these areas reach 600 g (S) m −2 . Emissions are principally in the form of sulphur dioxide, so that comparable concentrations of particulate sulphate in low emission regions indicate the importance of long range transport. Assuming a constant ecosystem sensitivity throughout the period, depositions sufficient to cause ecosystem damage may have occurred before 1880 in many areas of north-western and central Europe. Nevertheless, in large parts of eastern and southern Europe depositions are still below these critical loads. DOI: 10.1034/j.1600-0889.1996.t01-2-00005.x
Article
The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt, and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1,000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. This article is protected by copyright. All rights reserved.
Article
In order to gauge ongoing and future changes to disturbance regimes, it is necessary to establish a solid baseline of historic disturbance patterns against which to evaluate these changes. Further, understanding how forest structure and composition respond to variation in past disturbances may provide insight into future resilience to climate-driven alterations of disturbance regimes.
Article
Although long-lived trees grow in the Northern Caucasus, no single tree-ring chronology has been reported thus far from this area in the International Tree-Ring Data Base (ITRDB), neither has one been published in international journals. Extensive tree-ring studies were conducted over the last decade, and a tree-ring network was developed for the investigated area. The data on the minimum blue intensity based on 33 series of pine (Pinus sylvestris L.) and fir (Abies nordmanniana (Steven) Spach) is presented in this study. The minimum blue intensity (BI) chronology covers the period 1596–2011 with EPS value ≥0.85. The BI chronology strongly correlates with the mean June-September temperature (R = 0.74; p < 0.05) from the weather station “Kluhorskij Pereval” (1951–2011). Mean June-September temperature anomalies were reconstructed using the rescaling method. Based on the reconstruction provided in this study the twentieth century is characterized by highly increased June-September temperature. According to this study, the minimum blue intensity approach demonstrates a great potential for paleoclimatic research in the Caucasus. Vast spatial coverage of the new BI-based reconstruction based on data from only two locations in the Northern Caucasus provides prospects for reconstruction of temperature variations for a great region in the Middle East and Northern Africa.
Article
Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been pro- gressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together den- droclimatologists to identify a collective strategy for improving large-scale summer temperature re- constructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical cali- bration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (~900 e1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially.